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Linear Quadrati Control of Plane Poiseuille Flow - the Transient BehaviourJ.MKernan�y J. F. Whidbornez G. Papadakisx(May 2, 2007)This paper desribes the design of optimal linear quadrati ontrollers for single wavenumber-pair periodi 2-D disturbanes in planePoiseuille ow, and subsequent veri�ation using a �nite-volume full Navier-Stokes solver, at both linear and non-linear levels of initialonditions seleted to produe the largest linear transient energy growth. For linear magnitude initial onditions, open and losed-loop�nite-volume solver results agree well with a linear simulation. Transient energy growth is an important performane measure in uidow problems. The ontrollers redued the transient energy growth, and the non-linear e�ets are generally seen to keep energy levelsbelow the saled linear values, although they did ause instability in one simulation. Comparatively large loal quantities of transpirationuid are required. The modes responsible for the transient energy growth are identi�ed. Modes are shown not to beome signi�antlymore orthogonal by the appliation of ontrol. The synthesis of state estimators is shown to require higher levels of disretisation thanthe synthesis of state-feedbak ontrollers. A simple tuning of the estimator weights is presented with improved onvergene over uniformweights from zero initial estimates.Keywords: Flow ontrol, simulation, optimal linear quadrati ontrol, full Navier-Stokes solver.
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May 2, 2007 17:26 International Journal of Control ij2 Linear Quadrati Control of Plane Poiseuille FlowNomenlatureGreek Symbols� := streamwise(x) wave number, yles per 2� distane� := spanwise(z) wave number, yles per 2� distane�(t) := synhroni transient energy bound at time t�Error(t) := synhroni error energy bound at time t� := eigenvalue in synhroni transient energy bound eigensystem�(x; y; z; t) := wall-normal vortiity perturbation~�(�; �; y; t) 2 C := � Fourier oeÆient at wavenumber pair �; �� := diahroni transient energy bound�Error := diahroni error energy bound�Est := estimated energy bound�i 2 C := ith eigenvalue� 2 CM�M := diagonal eigenvalue matrix� := moleular or kinemati visosity� := uid density�i(A) := ith singular value of A��(A) := spetral norm or largest singular value of A� 2 RM := modal amplitude vetor, [0; : : : ; M ℄T�0 := initial �, at time t = 0	 := matrix of right eigenvetors i := ith right eigenvetor! 2 C := frequeny



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 3Roman SymbolsA 2 RM�M := system matrixB 2 RM�P := input matrixC 2 RQ�M := output matrixan 2 C := multiplying o-eÆient for nth Chebyshev polynomiali := amplitude of mode iE(t) := transient energy, XTQX, at time tEEst(t) := estimated transient energy, X̂TQX̂, at time tEError(t) := error energy �X� X̂�T Q�X� X̂�, at time tE0 := E of worst open-loop perturbation of max v = 0:0001, at t = 0:= 2:26� 10�9Epair;bound := upper bound on mode pair energy growthh := hannel wall separationI := identity matrix| := p�1K 2 RP�M := state feedbak gain matrixL 2 RP�M := estimator gain matrixN := highest Chebyshev polynomial degree used, �nal olloation point indexP := pressurePb := steady base ow pressurep := pressure perturbationQ 2 RM�M := state variable weighting (energy) matrixR 2 RP�P := ontrol weighting matrixR := Reynolds numberr := ontrol weight multipliers := measurement noise weight multiplierTp 2 RM�M := invertible matrix for onversion between state variables and ~v; ~�,exludes next-to-wall veloities and wall vortiitiest := timex; y; z := streamwise, wall-normal and spanwise o-ordinates~U = (U; V;W ) := ow veloity vetor~Ub = (Ub; Vb;Wb) := steady base ow veloityUl := Ub at entreline~u = (u; v; w) := veloity perturbation vetor~u; ~v; ~w 2 C := u; v; w Fourier oeÆients at wavenumber pair �; �U 2 RM := ontrol vetorV 2 RQ�Q := measurement noise power spetral densityW 2 RM�M := proess noise power spetral densityX 2 RM := state variable vetorX̂ 2 RM := state estimates vetorXError 2 RM := estimate error vetor, X� X̂XWorst 2 RM := X(t = 0) whih generates �XError;Worst 2 RM := XError(t = 0) whih generates �ErrorXp 2 RM := X transformed to ~v; ~� values at olloation points~X 2 RM := state variables transformed to Q1=2X, thus E = ~XT ~XY 2 RQ := measurement vetoryn := y at nth Chebyshev-Gauss-Lobatto olloation point



May 2, 2007 17:26 International Journal of Control ij4 Linear Quadrati Control of Plane Poiseuille Flow1 IntrodutionLaminar ow is haraterised by a smooth ow-�eld in whih adjaent layers of uid undergo shear.Turbulent ow is haraterised by an unsteady ow-�eld in whih utuations of widely varying lengthand time sales ause large amounts of mixing between adjaent layers of uid, in a self sustaining proess.The transition of laminar uid ow into turbulent ow results in large inreases in uid drag, and theprevention of transition would lead to substantial savings in the energy required to sustain the ow. Theproess of transition from laminar to turbulent ow is thought to begin with the rapid growth of smalldisturbanes in laminar ow.Plane Poiseuille or hannel ow, the unidiretional ow between in�nite parallel planes, is a simpleow that is prone to transition. Experiments show that this ow undergoes transition to turbulene forReynolds number as low as 1000, for example as shown by Carlson et al. (1982).Fluid ow-�eld veloity and pressure, and wall shear stresses, an be measured. The ow an be inuenedby the manipulation of the onditions on its boundaries, suh as the injetion and sution of uid at thewalls, known as wall transpiration. This opens up the possibility of the ontrol of the evolution of transitionby the feedbak ontrol of ow measurements to suitable wall atuators. The governing Navier-Stokes andontinuity equations an be used to develop plant models for the synthesis of ontrollers. Linear plantmodels are often based on spetral analysis of the linearized Navier-Stokes equations, e.g. as performed byBaramov et al. (2001), Bewley and Liu (1998), and Joshi et al. (1999).Experiments to detet transition, even in suh a simple ow, are diÆult and expensive to perform,but omputational uid dynamis (CFD) has progressed to the stage where it an be used to simulatethe performane of ontrollers. Baramov et al. (2001) used speialised �nite-di�erene full Navier-Stokessolvers, and the widely ited work of Bewley et al. (2001) employed hybrid spetral �nite-di�erene fullNavier-Stokes solvers. However little use has been made of �nite-volume CFD odes other than that byBalogh et al. (2000) testing low speed global Lyapunov stabilization, although their use is widespread inother �elds, for example see Yeoh et al. (2004).Although plane Poiseuille ow undergoes transition to turbulene for Reynolds number as low as 1000,it is known to be linearly stable at Reynolds numbers below approximately 5772, as alulated by Orszag(1971). The ourrene of transition in the linearly stable regime is thought to be due to large transientenergy growth ausing non-linear e�ets. Transient energy growth is the ampli�ation of the kineti energyontained in an initial perturbation. Trefethen et al. (1993) note that the large transient energy growthis itself due to non-normality of the system eigenvetors. Hinrihsen et al. (2002) have investigated statefeedbak stabilization with guaranteed transient bounds and Whidborne et al. (2005) have derived on-trollers whih minimise maximum transient energy growth. Although non-normal behaviour is the auseof the transient growth, little is known regarding the pairs of modes involved.This paper desribes the synthesis of optimal linear quadrati ontrollers using a state-spae model ofplane Poiseuille ow. This work is not the �rst to use linear quadrati ontrol for plane Poiseuille ow.Joshi et al. (1999) desribed the appliation of linear system theory to a stream funtion formulation oflinearised plane Poiseuille ow, limited to streamwise/wall-normal disturbanes. The paper by Bewley andLiu (1998) is seminal, and to some extent, the work desribed here is motivated by their results frominvestigations of ontrol of a spetral linear veloity/vortiity model at a single wavenumber pair using aninterpolating basis for wall-normal behaviour.Here, in ontrast to the approah of Bewley and Liu, the state-spae model employs a polynomial wall-normal basis derived by MKernan (2006), whih, using a rigorous appliation of the boundary onditions,



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 5produes a system free of spurious eigenmodes, and leads to ontrol via rate of hange of wall-normaltranspiration veloity. Furthermore, the transient energy matrix is rigorously derived, and tuned proessnoise ovariane matries are investigated. In addition, the ontrollers synthesized are subsequently testedin a full model of the ow, namely a �nite-volume non-linear Navier-Stokes solver. Thus the ontrollers aretested using a well tried non-linear algorithm whih is ompletely independent of the development model.Like Bewley and Liu, a single wavenumber pair is ontrolled, and the pair seleted represents streamwisevorties, whih lead to the largest transient energy growth. These perturbations are streamwise onstant,whih allows the subsequent �nite volume simulations to be two-dimensional.Setion 2 and 3 briey introdue plane Poiseuille ow and the linear plant model. For a full derivationof the model see MKernan (2006). Setion 4 desribes the synthesis of optimal state feedbak ontrollersand optimal state estimators. The ontrollers are linear quadrati regulators (LQR), whih are optimalin the sense of minimising a quadrati ost funtional of the weighted state variables and ontrol inputs.The estimators are linear quadrati estimators (LQE), whih are optimal in the sense of minimisingthe expetation of the state estimation errors, given weighting matries whih represent the proess andmeasurement noise ovarianes. The setion also desribes the seletion of appropriate weighting matries.Setion 5 desribes the linear and non-linear simulations undertaken on the open- and losed-loop sys-tems. The open-loop (OL) systems omprise the plant model with LQE state estimator and the losed-loop systems omprise the plant model with state feedbak LQR ontrol, and with output feedbak linearquadrati Gaussian (LQG) ontrol, the latter formed by employing both the LQE estimator and LQRontroller. The setion states the derivation of the worst initial onditions and the onditions for minimumtransient energy growth, and derives plant modal and non-modal energy terms and an upper bound onmode pair energy growth.Finally setion 7 draws onlusions regarding the ontroller and estimator synthesis, and the ontrollerand estimator performane in the linear and non-linear simulations.2 Plane Poiseuille Flow ControlInompressible uid ow is desribed by the Navier-Stokes and ontinuity equations. The Navier-Stokesequations (1) form a set of three oupled, non-linear, partial di�erential equations representing onservationof momentum, and the ontinuity equation is an additional onstraint representing the onservation of mass(2);- _~U + �~U � r� ~U = �1�rP + ��r2~U (1)r � ~U = 0 (2)where ~U; P; �; � are veloity, pressure, density and visosity respetively.Laminar Poiseuille ow has a paraboli streamwise veloity pro�le, with no slip ourring at the boundingparallel planes. It undergoes transition to turbulene when small disturbanes ~u = (u; v; w); p about thesteady base pro�le, ~Ub = �(1� y2)Ul; 0; 0� ; Pb, grow spatially and temporally to form a self-sustainingturbulent ow. If the equations for the perturbations are made non-dimensional by dividing length salesby the hannel half height h, veloities by the base ow entreline veloity Ul, and pressures by �U2l,



May 2, 2007 17:26 International Journal of Control ij6 Linear Quadrati Control of Plane Poiseuille Flowthey beome _~u+ �~Ub � r� ~u + (~u � r) ~u+ (~u � r) ~Ub= �rp+ 1Rr2~u (3)r � ~u = 0 (4)where R is the dimensionless Reynolds number �Ulh=�.The no-slip wall boundary onditions in plane Poiseuille ow are replaed by presribed wall transpirationveloities when boundary ontrol is implemented, (u(y = �1) = 0; v(y = �1) 6= 0; w(y = �1) = 0).In this paper, disturbanes ~u whih vary in the wall-normal (y) and spanwise (z) diretions are investi-gated, with no variation in the streamwise diretion (x). This paper also approximates the in�nite extentof the ow by a periodi representation, suh that the ow disturbanes may only grow in time, but notin spae.3 Linear Plant ModelBoundary ontrol of the linearized Navier-Stokes equations in a hannel, assuming periodi behaviour atstreamwise (x) and spanwise (z) wavenumbers � and � respetively, may be ast in state-spae form as_X = AX+BUY = CX (5)where the states X are wall-normal veloity ~v and vortiity ~� (�u=�z � �w=�x) perturbation Chebyshevseries oeÆients a in the wall-normal diretion (y), plus the upper and lower wall veloities ~vu and ~vlrespetively X = 0BBB�av;n=0;:::;N�4a�;n=0;:::;N�2~vu~vl 1CCCA (5A)where N is the disretisation parameter (for further details see MKernan, 2006, p36). The measurementsY are shear stresses on the upper and lower walls, and the inputs U are rates of hange of transpirationveloity on the upper and lower walls. Sine these are rates of hange, the system ontains two integrators,eah with an eigenvetor representing steady state transpiration from a wall. This situation arises sine, forthis linearised ow model, steady transpiration at a set veloity merely superimposes a veloity ow �eldon the existing perturbation. Only by varying the transpiration veloity does the existing perturbationow �eld hange dynamially.The oeÆients of the Chebyshev series, shear measurements and transpiration veloity are omplexsine they onvey the spatial phase of the wavenumber pair perturbations, but the state-spae system ishere made real-valued by deomposing them into their real- and imaginary-valued parts (Hinrihsen andPrithard, 2005, p720). The test ase onsidered here is � = 0; � = 2:044; R = 5000. This test ase isstable but has the largest diahroni transient energy bound, i.e. the largest linear transient energy growth



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 7over all unit initial onditions, time and �; �, and represents the very earliest stages of the transitionto turbulene. Modelling turbulene itself would involve using many more degrees of freedom. For a fullderivation of the model see MKernan (2006).4 Controller Synthesis4.1 Optimal State FeedbakThe standard LQR ontrol problem states that given the open-loop system or `plant', (5), the feedbakontrol signal that minimizes;- Z 10 �X(t)TQX(t) +U(t)TRU(t)� dt (6)is given by U = �KX where K = R�1BTP and P = PT � 0 is the solution of the algebrai Riatiequation ATP+PA�PBR�1BTP+Q = 0 (7)where Q and R are weighting matries. The losed-loop state feedbak LQR system is_X = (A�BK)XY = CX (8)The state feedbak ontrollerK is the optimal for all initial onditions (Skogestad and Postlethwaite, 1996,p354).In most problems the weighting matries are tuned by hand. However, for a uid system this is notpratial beause of the large number of state variables. Furthermore, it is useful to employ a weightingmatrix Q that is de�ned independently of the hosen state-spae basis sine then there is freedom toalter either. It is also helpful if the weights are de�ned independently of the level of disretisation, in orderto make interpretation of results easier, as reommended by Lauga and Bewley (2004). Bewley and Liu(1998) suggests that a natural hoie for the matrix Q is suh that XTQX represents the disretized formof the transient energy E, E = 1V Zvol=V �~uT~u2 dvol (9)where E has dimensions energy per unit volume, and ~u is the perturbation veloity vetor. This hoieof Q is independent of the de�nition of the state variables, is independent (in the limiting ase) of thedisretisation N , and also means that the LQR problem (6) minimises E in some sense. This evaluationof the transient energy requires that the state variables remain physially meaningful, and thus modelredution is not possible.Matrix Q e�etively performs quadrature on the wall-normal veloity ~v, veloity derivative�~v=�y and vortiity ~� values at the olloation (disretisation) points aross the hannel. Thestate variables and thus the energy matrix employed in this paper are based on a polynomialChebyshev form with the hannel wall and next-to-wall Navier-Stokes equations omitted,



May 2, 2007 17:26 International Journal of Control ij8 Linear Quadrati Control of Plane Poiseuille Flowand the highest order Chebyshev series oeÆients a (5A) disarded, as required duringthe appliation of the boundary onditions, as desribed in MKernan (2006). The veloityderivatives are obtained via well-behaved algebrai di�erentiation of the Chebyshev series.The polynomial form is amenable to the oeÆient disarding desribed above, due to thespetral deay of the oeÆients, and analytial and numerial tests validate the expressionused here for Q on distributions of veloity and vortiity whih ful�ll the open- and losed-loop boundary onditions.The state variables and energy matrix derived by Bewley and Liu (1998, p312) are basedon an interpolating Chebyshev form with the hannel wall values omitted. Quadrature onveloity and vortiity values in the open-loop ase when the wall values are zero is appro-priate, and a small approximation in their ontribution to the transient energy ours whenthe wall-veloity is non-zero in the losed-loop ase, as some energy very lose to the wallis negleted. However, omitting the hannel wall values in the losed-loop ase, when thewall veloity values are not zero, leads to the interpolating form assuming zero wall values,and this produes well-known high order interpolation osillation (Press et al., 1986, p77)and in partiular large and inaurate derivatives at olloation points as subsequently usedby quadrature of the veloity derivative in the alulation of the transient energy. For thisreason no meaningful omparison an be made with Bewley's losed-loop results.Regarding ontrol weightings, we set R = r2I, thus allowing variation of ontrol magnitude, whilemaintaining equivalent real and imaginary ontrol e�et on both walls.4.2 Optimal EstimationThe standard LQE ontrol problem assumes that the system has disturbane and measurement noise inputproesses wd and wn respetively _X = AX+BU+ wdY = CX+ wn (10)and that the noise inputs are unorrelated, zero-mean, Gaussian stohasti proesses with onstant powerspetral density matries V andW (Skogestad and Postlethwaite, 1996). Thus wd and wn are white noiseproesses with ovarianes;-E �wTd wd	 =WÆ(t � �); E �wTnwn	 = VÆ(t� �); E �wTd wn	 = 0; E �wTnwd	 = 0 (11)where E is the expetation operator . The theory states that for an LQE state estimator_̂X = AX̂+BU+ L�Y�CX̂� (12)where X̂ are the estimated state variables, the optimal estimator gain L that minimizes;-E �hX̂�XiT hX̂�Xi� (13)



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 9is given by L = PCTV�1 where P = PT � 0 is the solution of the algebrai Riati equationPAT +AP�PCTV�1CP+W = 0 (14)The statistial properties of the noise inputs on the present system are unknown, and so the matries Vand W an be treated as tuning parameters, in order to ahieve an estimator of aeptable performane.Reasonable tuning assumptions an be made if the system state variables X are transformed from veloityand vortiity Chebyshev oeÆients into veloity and vortiity values ~v(yk) and ~�(yk) respetively at theolloation points yk = os �k=NXp =  ~v(yk;k=0;2;:::;N�2;N)~�(yk;k=1:::N�1) ! (14A)by means of the transformation Tp (MKernan, 2006, p36). The system beomes;-_Xp = TpAT�1p Xp +TpBU+ wdY = CT�1p Xp + wn (15)Bewley and Liu (1998, p314) assumed that the proess noise power spetral density W is a unit matrix,and estimators synthesized using this assumption will be referred to as `uniform' estimators.However, being in the state spae of veloity and vortiity values at olloation points allows the ovari-ane between these physially meaningful values to be set as a funtion of the loations of the olloationpoints. Here the ovariane between pairs of variables is set asW = "�(1� y2k1)(1� y2k2)�k1;k2=0;2;:::;N�2;N 00 �(1� y2k1)(1� y2k2)�k1;k2=1:::N�1 # (16)where yk1; yk2 are the loations of pairs of state variables k1 and k2 in olloation point value formXp. This hoie implies that the ovariane between veloity state variables at loations yk1 and yk2is (1 � y2k1)(1 � y2k2), and similarly between vortiity state variables. Estimators synthesized using thisassumption will heneforth be referred to as `tuned' estimators.For tuned estimators, when k1 = k2, W represents the variane of the noise on a single state variable,whih therefore varies as (1 � y2k1)2. Thus disturbanes on a single state variable have a higher standarddeviation (the positive square root of variane) at the entreline (y = 0), than near the walls (y = �1).These varianes are ompatible with veloity disturbanes near the entreline being more variable thanthose near the walls and similarly for vortiity disturbanes. At the walls, the veloities are set reasonablyaurately by the ontroller, so they are given small variane (10�3).When k1 6= k2, W represents the ovariane of a pair of state variables. Pairs lose to the walls havelow ovarianes, whereas pairs lose to the entreline (y = 0) have high ovarianes. Pairs where one statevariable is near a wall, and the other near the entreline have ovarianes in between. These ovarianesare ompatible with veloity disturbanes near the entreline being physially larger than those near thewalls and similarly for vortiity disturbanes. The ovariane between veloity and vortiity state variablesis set to zero. These ovarianes vary smoothly over the olloation point state variables, and many othersuh distributions are possible e.g. those proposed by H�p�ner et al. (2005).By the symmetry and independene of the measurements (upper and lower wall, real and imaginary



May 2, 2007 17:26 International Journal of Control ij10 Linear Quadrati Control of Plane Poiseuille FlowFourier omponents of shear stress), it is reasonable to assume that the measurement noise ovariane isV = sI, where s is a positive tuning parameter, whih sales the measurement noise against the proessnoise.An estimator L designed in terms of these veloity and vortiity state variables, may be transformedbak for use on the untransformed state variables as T�1p L.4.3 Closed-Loop LQG Output Feedbak SystemThe ombined plant, LQR ontroller and LQE estimator may be ombined into an LQG output feedbaksystem, with dynamis " _X_̂X# = " A �BKLC A�BK� LC#" X̂X#+ " I 00 L#"!d!n # (17)where the estimate and state dynamis are not independent but are intentionally oupled. If the systemis reast in terms of estimator error XError = X� X̂ they beome" _X_X� _̂X# = "A�BK BK0 A� LC#" XX� X̂#+ "I 0I �L#"!d!n # (18)and thus the estimator error dynamis are independent of the state dynamis, as predited by the separationtheorem (Skogestad and Postlethwaite, 1996, p353).5 Simulations5.1 Initial ConditionsPlant Worst Initial Conditions. The maximum transient energy that a stable system ahieves over alltime from all possible initial onditions with unit energy is here termed the diahroni 1 transient energybound. In ow ontrol this is a measure whih is often onsidered in onnetion with non-linear e�etstriggering transition to turbulene. Here, the initial onditions whih generate the diahroni transientenergy bound are alulated, as performed by Bewley and Liu (1998) following Butler and Farrell (1992).Following these derivations, the transient energyE(t) = XT (t)QX(t) (19)is de�ned as measure of how far the state is from the equilibrium point, sine it onsiders all the statevariables (in a weighted sum of squares sense). The largest possible value at time t after starting from unitinitial transient energy but otherwise unknown state variables X(0)�(t) = maxE(0)=1E(t) (20)1diahroni: From the Greek dia through, hronos time, from linguistis (Sykes, 1976)



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 11is here termed the synhroni 2 transient energy bound . The diahroni transient energy bound � is de�nedas the largest synhroni transient energy bound possible over all time� = maxt>=0 �(t) (21)This may be determined as follows. If the system is diagonalizable, the state variables evolve with time tas X(t) = 	e�t�0 (22)where � is a diagonal matrix of the eigenvalues, 	 is the right eigenvetor matrix, and �0 is a vetor ofunknown initial modal amplitudes.Thus �(t) = max�T0 	TQ	�0=1�T0 e�T t	TQ	e�t�0 (23)and �(t) is given by a solution of�=��0 ��T0 e�T t	TQ	e�t�0 � � �XT (0)QX(0) � 1�� = 0 (24)by the method of Lagrange multipliers, where � is the multiplier of the onstraint equation. After di�er-entiation by �0�e�T t	TQ	e�t�0 + ��T0 e�T t	TQ	e�t�T�� � �	TQ	�0 + ��T0	TQ	�T� = 0 (25)Noting Q is symmetri, the �nal form is a generalised eigenproblem with eigenvetor �i and eigenvalue �ie�T t	TQ	e�t�0;i = �i	TQ	�0;i (26)Premultiplying by �T0;i, it is evident that �(t) = maxi �i. The initial state variables whih generate thissynhroni transient energy bound are given by Xworst = 	�0;i.The synhroni transient energy bound may also be ast as the square of the spetral norm of the statetransition matrix eAt, e.g. Lim and Kim (2004) and Whidborne et al. (2004),�(t) = ��2 �eAt� (27)where A = Q1=2AQ�1=2. This form requires full matrix exponential evaluations, whih, as Moler and VanLoan (2003) point out, may be unreliable, whereas in (26) � is diagonal, and the terms of the exponentialmatrix may be evaluated as salars.For a stable system the diahroni transient energy bound � of �(t) over all time t, an be found by a searhtehnique. Heneforth the assoiated initial onditions are referred to as the \worst" initial onditions. Forthe open-loop system worst initial onditions, � and 	 are the eigenvalues and eigenvetors of the systemmatrix A. To prevent the involvement of the steady-state transpiration modes, the system matrix must be2synhroni: From the Greek syn alike, hronos time, from linguistis (Sykes, 1976)



May 2, 2007 17:26 International Journal of Control ij12 Linear Quadrati Control of Plane Poiseuille Flowtaken from a form with ontrol by wall-normal veloity, rather than by its time derivative. For the statefeedbak system, � and 	 are the eigenvalues and eigenvetors of the losed-loop system matrix (A-BK).Estimator Energy. In a similar manner to the transient energy (19), the estimated transient energy maybe de�ned EEst(t) = X̂T (t)QX̂(t) (28)as measure of the energy that the estimates X̂ represent. The growth of the estimates is related to thegrowth of the states they attempt to reprodue (17), and this measure of estimator performane is used inthe presentation of simulation results. Proximity of plant energy and estimated energy does not guaranteethat their states are also lose.The error energy may be de�ned EError(t) = XTError(t)QXError(t) (29)as a measure of how far the estimates X̂, are from the atual state variables X, where XError = X� X̂.The growth of the estimator errors XError and thus of EError is independent of the growth of the statesthe estimator attempts to reprodue (18). This measure of estimator performane is used in the tuning ofestimator weights.Estimator Zero Initial Conditions. The estimated energy bound, �Est, is de�ned as the largest errorenergy, EError, during a simulation of the system from the worst plant initial onditions XWorst, and zeroestimator initial onditions, X̂(0) = 0, that is XError(0) = XWorst(0).Estimator Worst Initial Conditions. The largest possible value of error energy, EError, at time t, afterstarting from unit initial error energy but with otherwise unknown estimator error X(0)Error, is given bythe synhroni error energy bound �Error(t) = maxEError(0)=1EError(t) (30)The Diahroni Error Energy Bound �Error is de�ned as the largest synhroni error energy bound growthpossible over all time �Error = maxt�0 �Error(t) (31)The synhroni error energy bound may be determined from the generalised eigenproblem with eigenvetor�i and eigenvalue �i e�T t	TQ	e�t�0;i = �i	TQ	�0;i (32)where 	 and � are the right eigenvetors and eigenvalues respetively of the estimator system matrixA � LC. The synhroni error energy bound �Error is maxi �i and the initial estimator errors whihgenerate this are given by XError;Worst = 	�0;i.The diahroni error energy bound �Error may be determined by a similar searh of �Error over time tothat used for the diahroni transient energy bound �.



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 13Modal and Non-Modal Components of Kineti Energy Density in a System Transformed suh thatQ = I . If the state variables X are transformed to ~X suh that E(t) = ~XT ~X then ~X = Q1=2X and thestate-spae form (5) beomes _~X = Q1=2AQ�1=2 ~X+BUY = CQ�1=2 ~X (33)Substituting the expression for the evolution of state variables (22) into the expression for perturbationenergy (19) produes E(t) = ~�T0 e�T t	T	e�t ~�0 (34)where 	 is the matrix of right normalised eigenvetors  i of Q1=2AQ�1=2, and � is a diagonal matrixontaining the eigenvalues �i, whih are all assumed stable. If these eigenvetors are orthogonal, i.e.	T	 = I, then E(t) = ~�T0 e(�T+�)t ~�0 (35)whih deays monotonially for all �0, as the eigenvalues � are stable, and thus the diahroni transientenergy bound � is unity as shown by Whidborne et al. (2004). If the eigenmodes are not orthogonal	T	 = 0BBBB� 1 ( 1 �  2) ( 1 �  3) : : :( 2 �  1) 1 ( 2 �  3) : : :( 3 �  1) ( 3 �  2) 1 : : :... ... ... . . .1CCCCA (36)where ( i �  j) =  Ti  j. The energy an then be represented as per MKernan et al. (2005)E(t) = NXi=1 Ti ie(�Ti +�i)t + NXi=1 N;j 6=iXj=1 Ti j( i �  j)e(�Ti +�j)t (37)where (0; : : : ; N )T = ~�0. The terms of the �rst summation of (37)NXi=1 Ti ie(�Ti +�i)t (38)are the modal terms. They are positive for all i and deay monotonially, and annot lead to any energyinrease. The terms of the seond summationNXi=1 N;j 6=iXj=1 Ti j( i �  j)e(�Ti +�j)t (39)are non-modal. They deay in magnitude, at di�erent rates to the �rst summation, and an lead to energyinrease when either



May 2, 2007 17:26 International Journal of Control ij14 Linear Quadrati Control of Plane Poiseuille Flowi) they are negative, that is if Ti j( i �  j) is negative. The seond term in (37) provides an upper boundEpair;bound = max(0;�<(Ti j( i �  j))) on the energy growth possible from ordered mode pair i; j.ii) they osillate, that is if =(�Ti +�j) 6= 0. The seond term in (37) provides an upper bound Epair;bound =��Ti j( i �  j)�� on the energy growth possible from ordered mode pair i; j.Of ourse, all dissimilar-mode pairs in the system may ontribute to the aggregate energy growth, orredue energy growth by simply deaying, as all the individual modes do, and, in the absene of repeatedeigenvalues, all at di�erent time onstants.It is noteworthy that if the system eigenvetors annot be made aurately orthogonal by the introdutionof ontrol, seleting instead a system with the lowest dot produts ( i � j) will not neessarily lead to thelowest diahroni transient energy bound due to the presene of the other fators Ti j and e(�Ti +�j)t in(37), and sine, for the bound, i are seleted to maximise the transient energy growth, within the overallonstraint E(0) = (0; : : : ; N )T (0; : : : ; N ) = 1.Di�erentiating (38) the modal energy growth rate terms areNXi=1 Ti i ��Ti + �i� e(�Ti +�i)t (40)whih have an upper bound of zero, whereas the non-modal growth rate terms areNXi=1 N;j 6=iXj=1 Ti j( i �  j) ��Ti + �j� e(�Ti +�j)t (41)whih are not bounded above by zero.Modal and Non-Modal Components of Kineti Energy Density in a System with Q 6= I . If the statevariables X are not transformed, then substituting the expression for the evolution of state variables (22)into the expression for perturbation energy (19) produesE(t) = �0T e�T t	TQ	e�t�0 (42)where 	 is the matrix of right normalised eigenvetors  i of A, and � is a diagonal matrix ontainingthe eigenvalues �i, whih are all assumed stable. The ondition whih guarantees modal and thereforemonotoni deay is 	TQ	 = diag(d1; : : : ; dN ); di > 08i, sine thenE(t) = �0T e�T tdiag(d1; : : : ; dN )e�t�0= NXi=1 Ti e�Ti tdie�iti (43)whih deays monotonially for all �0. This may be interpreted as 	TQ	 not oupling any modes by beingdiagonal and thus preventing non-modal behaviour, and also being positive de�nite, and thus ensuringmodal energy deay rather than growth.



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 155.2 SimulationsThe state-spae model is oded in MatlabTM, and ontrollers and estimators synthesized for a range ofweighting parameters. Final ontrollers and estimators are seleted on the grounds of lowest energy bounds.Detailed linear simulations are performed for the open-loop, state feedbak and output feedbak systems,from the worst initial onditions, using the Matlab funtion lsim.A �nite-volume omputational uid dynamis (CFD) Navier-Stokes solver is used for the non-linearsimulations. This solver makes no assumption of spetral behaviour, solves the full non-linear Navier-Stokes equations, and is ompletely independent of the spetral ode used for the ontroller synthesisand linear simulations. See (MKernan, 2006) for details of the solver ode, and of the modi�ationsrequired, together with desriptions of the meshes, uid properties, and boundary onditions, and of theimplementation of the ontroller into the ode.6 Results and DisussionThis setion desribes the results of ontroller and estimator synthesis, and linear and non-linear simula-tions of the open-loop, state feedbak and output feedbak systems from the worst initial onditions. Awall-normal disretisation of N = 100 is used, to ensure onvergene with N , exept where the issue ofonvergene itself is investigated. As the wall-normal disretisation method is based on Chebyshev series itonverges exponentially (Boyd, 2001, p46). Sine the rate of onvergene is so fast, suessful onvergeneis assessed by graphial inspetion.6.1 Controller synthesisLQR ontrollers are synthesized for a range of ontrol weights r = 21 : : : 214, by solving the algebraiRiati equation (ARE) (7) with R = r2I, for disretisation N = 100. The Matlab Release 11 funtionsare (alled via lqr) and aresolv, with both eigen and shur options are used, to investigate whihperforms best on suh a large system. The Matlab funtion aresolv option eigen, produes the lowestrelative residuals i.e. the Frobenius norm of the residual divided by that of the solution kri(P)kF = kPkF .These residuals are less than 10�9, and are of aeptably small magnitude. The funtion reports that theproblem is well posed, implying no partiular problems solving the equation for suh a large system, atleast for this system and range of weights, although numerial problems arise outside this range. Otherlibrary routines, suh as Sliot slares (Benner et al., 1999; Van Hu�el et al., 2004), and newer tehniques,suh those derived by Morris and Navasa (2005), may be able to extend the range of weights.The variation of diahroni transient energy bound with ontrol weight r is shown in �gure 1. Severaldisretisations N are shown, and onvergene with N is relatively fast and has ourred by N = 30. Theontinued onvergene at high N again demonstrates the existene of few problems solving this partiularsystem when N is very large. The range of weights is appropriate for ontroller synthesis, sine it oversonvergene at low r, where the ontrol e�ort is large and the energy is small. As the ontrol weight rises,the ontrol e�ort falls, and thus the energy bound rises. The variation here is monotoni, but need notbe if very high ontrol (very low weight) itself inreases transient energy, as investigated by MKernan etal. (2005). A value of r = 128 was seleted for subsequent simulations, as this produes almost the lowestdiahroni transient energy bound, without being unneessarily small, whih would lead to unneessarilylarge ontrol e�ort. Low diahroni transient energy bound implies low transient energy over all unit



May 2, 2007 17:26 International Journal of Control ij16 Linear Quadrati Control of Plane Poiseuille Flowenergy initial onditions and all time, thus reduing the possibility of non-linear behaviour and transitionto turbulene.6.2 Estimator synthesisLQE estimators are synthesized for a range of measurement noise weights s, by solving the algebraiRiati equation (ARE) (14) with V = sI, using the Matlab funtions are (alled via lqe) and aresolv,with both eigen and shur options, for N = 100. The Matlab funtion aresolv option eigen generallyprodues the lowest relative residuals, less than 10�7 for the tuned estimator, and the funtion reportsthat the problem is well posed. The residuals are of aeptably small magnitude, but not as small as thosefound during the synthesis of ontrollers.Good estimator performane requires that the estimator poles be faster (real part more negative) thanthe plant poles. However, the urrent plant has a large number of poles, the faster ones of whih are notknown aurately, and it is not feasible to make the slowest estimator poles faster than these.Convergene of Estimated Energy Bound �Est with N is relatively slow, as ompared to that of theontroller, and does not our until N = 70, whih is onsistent with the behaviour of the wall eigenvetorgradients used for observation as found by MKernan (2006).The worst estimator initial error onditions XError;Worst are found to be very exating, sine theylead to growth of diahroni error energy bound �Error of omparable magnitude to the plant diahronitransient energy bound. Sine the estimators are stable and their states onverge upon the plant states,it is diÆult to see how suh estimator initial onditions ould our. In ontrast, zero estimates X̂ = 0are to be expeted upon initialisation of the estimators, implying initial errors equal to the plant initialonditions, XError = XWorst.Furthermore, for the LQG ontroller, both plant and estimator initial onditions need to be seleted. Itis not lear how to selet the relative magnitudes of the initial plant energy and estimator error energy,sine the plant energy is a physial quantity whih leads to transition, whereas the estimator error energyis not. Again, zero initial estimates are a reasonable assumption to make.Aordingly, zero initial estimates are seleted in preferene to the worst estimator initial error onditionsfor further simulations in the present work. Plots of estimated energy bound and slowest estimator pole(MKernan, 2006) favour the use of the tuned estimator over the uniform estimator, at low measurementnoise. A weight of s = 2�6 � 0:0156 is seleted for further work, as this produes lose to the lowestestimated energy bound.6.3 Initial ConditionsSynhroni Transient Energy Bound � vs Time. Figure 2 shows open-loop synhroni transient energybound, �(t), against time. As the eigenvalues in the test ase are real and stable, the only mehanism forgrowth is non-modal, and this is on�rmed by the non-linear nature of the logarithmi plot. The graphof the synhroni transient energy bound against time is onvex, and so there are no root braketingproblems. A golden setion searh (Press et al., 1986, p277) produes a maximum at 4896:94 at t = 379:16and thus � = 4896:94. This value ompares well with � = 4897 at t = 379 as reported by Butler and Farrell(1992, p1647). A bisetion searh (Press et al., 1986, p246) based on the riteria XTAX = 0, as desribedby Whidborne et al. (2004) proves inaurate in this ase.As shown from (27), the synhroni transient energy bound an be expressed as the square of the spetral



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 17norm of the state transition matrix. Now the Frobenius norm squared provides a upper bound on the squareof the spetral norm, and 1=min (l;m) times the Frobenius norm squared provides a lower bound, wherethe matries are l by m (Skogestad and Postlethwaite, 1996, p520). Figure 2 also shows the Frobeniusnorm of the state transition matrix and it an be seen that the synhroni transient energy bound �(t)lies within the orret bounds. The orresponding plots for the LQR ontrolled systems are qualitativelysimilar to �gure 2.Investigation of Open-Loop and Closed-Loop Diahroni Transient Energy Bound �. Investigations ofthe modes whih lead to maximum open-loop diahroni transient energy bound are performed. For theremainder of this subsetion, the state variables employed are transformed to ~X, as de�ned in setion 5.1suh that E = ~X ~X, and the eigenvetors are expressed in the same state variables, and normalised to unitmagnitude, unless stated otherwise. Eigenvetors are in order of inreasing eigenvalue stability.Figure 3 shows a bar hart of the dot produt between pairs of modes from 1 to 25. The main diagonalhas unit magnitude, due to the normalisation hosen. The next highest dot produts are on the adjaentdiagonals, orresponding to mode pairs omprising onseutive mode pairs. The dot produts of onseutiveopen-loop ~Xmodes, together with the vortiity ~� eigenvetors (the veloity eigenvetors are muh smaller inmagnitude) appear in �gure 4. It an be seen that a high dot produt orresponds to vortiity eigenvetorsof similar shape (within reetion), whih is to be expeted sine similar mode shapes imply similar statevariable vetors, and thus high dot produts.Figure 5 shows the same plot for the LQR system, for whih the diahroni transient energy bound isredued. It an be seen that in general the modes have omparable dot-produts as in the open-loop �gure 4and thus remain as non-normal or non-orthogonal as in the open-loop ase. The diahroni transient energybound is known to be minimised to a value of unity when the modes are made preisely orthogonal butwhen preise orthogonality is not ahieved, as here, the e�et of inreasing orthogonality may not produethe lowest energy, as shown in setion 5.1, and thus the absene of a distint redution of non-normalityis not surprising. It is suggested that the LQR ontroller diretly a�eting the modal orthogonality isunlikely, ontrary to observations by Bewley and Liu (1998, p343).The open-loop upper bounds on mode pair energy growth Epair;bound, alulated using the expressionsderived in setion 5.1, from the worst initial onditions, are presented in �gure 6. As would be expeted, thehart is symmetrial. Few mode pairs appear to have a signi�ant potential for transient energy growth,with the exeption of pair 4,5.Figure 7 shows the upper bounds on mode pair energy growth after the appliation of LQR ontrol,from the worst initial onditions. More mode pairs have a signi�ant potential for transient energy growth,those with the largest potential being 1,5 and 1,4. These signi�ant pairs are not onseutive modes, unlikethe open loop signi�ant pair 4,5. The largest upper bound of all the pairs has fallen from approximately2:5� 105 to 3� 103, due to the appliation of LQR ontrol.6.4 Linear SimulationsThe results of linear simulations on the open- and losed-loop systems are investigated in detail in thissetion.Open-Loop Linear Simulation. Five di�erent plant disretisations, N = 10; 20; 30; 40; 50, are simulatedand the results are presented in �gure 8, of open-loop transient energy against time. The results are



May 2, 2007 17:26 International Journal of Control ij18 Linear Quadrati Control of Plane Poiseuille Flowonverged at N = 20 and above, showing that a low disretisation of N = 20 is adequate to simulatethe open-loop ase. Sine the diahroni transient energy bound is maximised over time, and larger thanone, the transient energy starts at a minimum. Here the transient energy reahes the diahroni transientenergy bound value of 4896:94 at time 379:5, lose to the predited value of 4896:94 at time 379:16 fromsetion 6.3, before deaying to zero. The small disrepany is aused by the linear simulation results beingprovided at disrete timesteps. Calulations using (37) show that mode pair (4; 5) provides substantialgrowth of transient energy as predited in �gure 6 (MKernan, 2006, p151).LQR State Feedbak Linear Simulation. As the ~v initial onditions are symmetrial about the entreline,the ontrol signal at the lower wall _~v(y = �1) is idential to that at the upper wall. However, as the senseof the upper and lower wall boundaries are reversed, transpiration sution at the upper wall, ~v(y = 1) > 0,orresponds to blowing at the lower wall. Figure 9 shows the LQR ontrol signal at the upper wall _~v(y = 1)against time.Figure 10 displays the time integral of the LQR ontrol signal at the upper wall, namely the FourieroeÆient of the upper wall veloity, whih has real and imaginary omponents to allow variations in boththe magnitude and spatial phase of the transpiration. For the test ase onsidered here, the upper walltranspiration veloity is imaginary, i.e. in phase with the disturbane veloity but out of phase with thevortiity whih is assumed real (MKernan, 2006, p43). The oeÆient magnitude peaks at approximately1.75, i.e. 1.75 times the base ow entreline veloity. However, this �gure is for a unit initial transientenergy. The kineti energy density of the base ow is 1=15 � 0:0667. For an initial perturbation energy of10% of the base ow energy, the upper wall veloity would peak at around 1:75�p0:00667, approximately0:14, and for a perturbation energy of 1% of base ow, the veloity would peak at approximately 0:045times the base ow entreline veloity. This represents the transpiration at reasonable veloity.The double time integral of the LQR ontrol signal at the upper wall, namely the Fourier oeÆient ofthe upper wall uid quantity transpired, versus time is displayed in �gure 11. Although the net amountof uid transpired is zero sine the distribution is sinusoidal, this oeÆient represents the magnitude ofthe sinusoidal distribution. The oeÆient magnitude peaks at around 515, i.e. 515 times the hannel halfheight, for a unit energy initial perturbation. For an initial perturbation energy 1% of that of the baseow, the quantity would peak at approximately 13:3 times the hannel half height. This represents thetranspiration of a omparatively large amount of uid, requiring a large assoiated reservoir or distributionsystem. The �nal oeÆient is not zero, representing a permanent transport of transpiration uid withineah spatial period, and thus any reservoirs do not return to their initial level, but instead uid has beenpermanently moved between them.Figure 12 presents the LQR transient energy against time. The ontroller is able to limit the transientenergy to 848:80, whih is onsistent with the value of 848:81 from �gure 1, as ompared to the open-loopvalue of 4896:94. Thus the ontroller e�etively limits the growth of the worst ase disturbane. Threedi�erent disretisations N are shown, and onvergene has ourred for even the lowest N = 30.The LQR ontroller minimises the time integral of the transient energy plus weighted ontrol e�ort, fromall initial onditions, rather than the diahroni transient energy bound itself, although the diahronitransient energy bound has been redued from 4896:94 to 848:80 as a onsequene. Calulations using (37)show that mode pairs (1; 4) and (1; 5) provide substantial growth of transient energy as predited in �gure6 (MKernan, 2006, p158).



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 19Open-Loop LQE State Estimation Linear Simulation. LQE estimated transient energy against time ispresented in �gure 13. The tuned estimator onverges on the plant energy muh faster than the uniformestimator. Figure 14 shows LQE transient energy against time, for the tuned estimator, for several dis-retisations N . It is evident that the behaviour of the estimator is not fully onverged below approximatelyN = 50.LQG Output Feedbak Linear Simulation. Figure 15 shows the LQG transient energy and estimatedtransient energy against time. The ontroller is able to produe an diahroni transient energy bound ofapproximately 934:00, only slightly larger than the LQR state feedbak value of 848:80.6.5 Summary of Diahroni Transient Energy Bound � ResultsAs a hek, table 1 exhibits a summary of the diahroni transient energy bound values of the open-loopand LQR state feedbak systems, from both the diahroni transient energy bound eigensystem (26), andthe linear simulation from the worst initial onditions. The small disrepanies are thought to be due tonumerial inauraies, amongst whih are the disrete time steps used in the linear simulations.Table 2 shows a summary of the diahroni transient energy bound values from the open-loop andfeedbak systems, and also inludes the estimated energy bound ahieved by the LQE estimator on theopen-loop and LQG systems, from zero initial estimates.6.6 Choie of Disretisation N for Controller in Non-Linear SimulationsThe non-linear simulations require signi�antly more omputing time than the linear ones, in the order ofdays rather than minutes, on a Pentium 4TM personal omputer. It is appropriate to onsider the hoieof disretisation for the ontrollers to be applied to the non-linear models. Sine no ontroller redutionis employed, this equates to the disretisation of the spetral model used for the ontroller synthesis. Theissue of disretisation of the non-linear model itself is onsidered by MKernan (2006).For the LQR ontroller synthesis to onverge N = 30 is suÆient (setion 6.1), and for the LQE estimatorsynthesis N = 70 is suÆient (setion 6.2). The linear simulations require N = 30 for the LQR systemand N = 50 for the LQE system (setion 6.4). The more exating requirement of LQE is thought to berelated to the onvergene of the wall gradients and observability.For the observability and wall gradients to have onverged for the �rst 20 modes, approximately N = 100is required aording to MKernan (2006). The need for �ne disretisation at the wall is well known withinthe uid dynamis ommunity. Aordingly, ontrollers synthesized using a spetral model using N = 100are used within the non-linear simulations.6.7 Non Linear SimulationsA linear ontroller synthesized using a linearisation of a non-linear model will be able to stabilise the fullmodel given initial onditions near the linearisation equilibrium point, and provided the trajetories donot stray far from the equilibrium point. However, if large transients take trajetories far away from theequilibrium point, non-linear e�ets may predominate and the system may not be stable.This setion explores the performane of the ontrollers on a non-linear model of the plant, from smalland large initial perturbations. The non-linear simulations presented here annot beome fully turbulent



May 2, 2007 17:26 International Journal of Control ij20 Linear Quadrati Control of Plane Poiseuille Flowas they are not three-dimensional, but they are apable of aurately modeling the initial evolution ofinstabilities.Small Perturbation Results. For the small perturbation simulations, the open-loop initial maximum ~v is10�4Ul. This value orresponds to an initial transient energy of E0 (2:26 � 10�9), and has been shownby MKernan (2006, p166) to indue less than 1% non-linearity (as de�ned by the ratio of non-linearonvetion (~u � r) ~u to base ow onvetion �~Ub � r� ~u in the Navier-Stokes equations (3) ) in a regionthat overs more than 90% of the ow �eld area. Closed-loop worst initial onditions of equal transientenergy to the orresponding open-loop ase are used.Results from non-linear �nite-volume CFD simulations from small perturbation initial onditions aregenerally lose to those from the spetral linear simulations, despite the fat that the �nite-volume andspetral simulation odes have been independently developed. The only exeption is the behaviour of theestimator in the LQG output feedbak simulations, whih shows a small disrepany, although the plantenergies agree well.These small perturbation non-linear simulations show agreement between peak transient energy as om-puted from the states by E = XTQX and as alulated by diret integration over the mesh using (9)to within 0:3% for the LQR system. This result shows that the alulation of the states is substantiallyorret, and also that the energy matrix Q is orretly formulated.Large Perturbation Results. For the large perturbation simulations, the initial transient energy is 104E0,orresponding to an open-loop initial maximum ~v of approximately 10�2Ul.Open-Loop Non-Linear Simulation. The open-loop transient energy time history, from this larger initialperturbation, for both linear and non-linear simulations, is displayed in �gure 16. The linear and non-linear simulations agree initially for a period of non-normal growth up to time approximately 50 units.Thereafter the linear simulation inreases to omplete the non-normal growth to transient energy of 0:111,orresponding to an diahroni transient energy bound of 4896:94, and thene ontinue with deay, but thenon-linear simulation reahes a saturated state with peak transient energy of 0:0240 at time approximately124:5 units, and thereafter deays. The deay ontinues beyond t = 1500 (not shown), at approximatelythe same rate as at t = 1000. Although non-linear simulation soon deviates from the linear results, theearliest growth appears to be at a rate idential to that of the linear system non-modal phase.Regarding estimation, �gure 16 also shows the open-loop estimated transient energy against time. Inthis ase, the performane of the linear estimator on the non-linear plant model is poor, as it overshootsthe plant energy.LQR State Feedbak Non-Linear Simulation. Figure 17 presents the losed-loop LQR transient energyversus time, from this larger initial perturbation, for both linear and non-linear simulations. The ontrollerredues the transient energy, and the di�erene between the linear and non-linear simulation is somewhatredued, as ompared to the open-loop ase. The ontroller has redued the open-loop non-linear peaktransient energy from 0:024 to 0:0093, a redution of approximately 61% whih is not nearly suh a greatredution as that in linear simulation where the diahroni transient energy bound falls approximately83%. The peak nonlinear LQR transient energy of 0:0093 is approximately half the linear value of 0:019.The ontroller is aheiving a lower energy density on the non-linear simulation, as energy levels are ingeneral lower in the non-linear simulation. The wall transpiration veloities required in the non-linearsimulation are omparable with those in the linear one.



May 2, 2007 17:26 International Journal of Control ijJ. Mkernan, J.F. Whidborne and G. Papadakis 21The large perturbation CFD simulation for the LQR system showed poor agreementbetween the peak transient energy as omputed from the states using XTQX from (19)and as alulated by diret integration over the mesh using (9). The peak transient energyas omputed from the states under estimates that from diret integration by 44%. This isthought to be due to disturbanes at wave number pairs other than �; � being present atpeak E in the non-linear magnitude CFD simulation.LQG Output Feedbak Non-Linear Simulation. Figure 18 shows the LQG transient energy versus time.The linear ontroller is unable to stabilize the non-linear plant model at this level of initial disturbane.Sine the LQR ontroller is able to stabilise the test ase at this energy level, the de�ieny appears tobe in the estimator, and indeed its behaviour is poor, as its estimated energy overshoots the plant energyaround time 120, and diverges erratially from time 720 onwards. Sine an impliit method is employed, toavoid sti�ness problems, the estimator integration sheme is guaranteed to be stable, and thus integrationinstability is not the ause of this errati behaviour.Results from a smaller initial disturbane orresponding to an open-loop worst initial ondition withvmax = 7:5 � 10�3Ul, i.e. energy of 5625E0 are presented in �gure 19. The linear ontroller is able tostabilize the non-linear plant model at this smaller level of initial disturbane, approximately half that ofthe level whih ould not be stabilised. This time the estimated energy overshoots but does not diverge.The transient energy is limited to 0:01, as ompared to the open-loop plant whih reahes approximately0:04 (not shown).6.8 Summary of Simulation ResultsTable 3 show a summary of the linear and non-linear simulation results. At the perturbation sizes usedhere, non-linear e�ets redue the energy of large perturbation simulations below the level of saled smallperturbation results, with the exeption the LQG unstable large perturbation simulation.7 ConlusionsThis paper has desribed the synthesis and validation of output and state feedbak optimal ontrollers forplane Poiseuille ow, and has investigated aspets of the transient energy growth of the ontrolled andunontrolled systems.Tuned proess noise weights for the optimal estimator were hosen to reet the possible size variationsin disturbanes aross the hannel, as an alternative to uniform weights and proved better at following theplant worst ase initial onditions from zero initial estimates. Estimation required �ner model wall-normaldisretisation than state feedbak ontrol required.Regarding feedbak ontrol, although the sinusoidal transpiration was guaranteed to have a zero net uxover whole streamwise or spanwise periods, and thus also over any time span, its magnitude was suh thatat any partiular point the transpiration of omparatively large quantities of uid were required. Controllerimplementation shemes mooted e.g. by (Ho and Tai, 1998) envisage the use of miroeletrial mahines(MEMs) based on small reservoirs, but these shemes would appear unable to provide the quantities ofuid required for optimal ontrol of the test ase based on early transition onsidered here.Non-linear simulations on linear sized perturbations reprodued the linear simulation results . Theoverall agreement between the linear spetral results and the independent �nite volume results at low
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Figure 1. LQR Diahroni Transient Energy Bound � vs Control Weight r, for Di�erent Disretisations N

0 100 200 300 400 500
10

−1

10
0

10
1

10
2

10
3

10
4

ε

t

ε                 

Frobenius Norm
2
         

Frobenius Norm
2
/min(l,m)Figure 2. Open-Loop Synhroni Transient Energy Bound � vs t, N = 100



May 2, 2007 17:26 International Journal of Control ij26 Figures

Figure 3. Open-Loop Bar Chart of Mode Pair Dot Produts, N = 100
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Figure 6. Open-Loop Upper Bound on Mode Pair Energy Growth Epair;bound, N = 100
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Figure 7. LQR Upper Bound on Mode Pair Energy Growth Epair;bound, N = 100
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Figure 9. LQR Upper Wall Control U(1) vs t, from initial onditions Xworst saled to E = 1, N = 100
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Figure 10. LQR Wall Veloity CoeÆient, ~v(y = 1) vs t, from initial onditions Xworst saled to E = 1, N = 100
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Figure 11. LQR Fluid Depth Transpired on Upper Wall vs t, from initial onditions Xworst saled to E = 1, N = 100
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Figure 12. LQR Transient Energy E vs t, for Various Disretisations N , from initial onditions Xworst saled to E = 1
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Figure 13. LQE Transient Energy E vs t, from initial onditions Xworst saled to E = 1, N = 100
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Figure 14. LQE Transient Energy E vs t, for Several Disretisations N , from initial onditions Xworst saled to E = 1
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Figure 15. LQG E vs t, from initial onditions Xworst saled to E = 1, N = 100
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Figure 16. Open-Loop Transient Energy E vs Time t, from initial onditions XWorst saled to Energy 104E0
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Figure 17. LQR Transient Energy E vs Time t, from initial onditions XWorst saled to Energy 104E0

0 200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

E

Non−linear E
 
  

Non−linear E
Est

Linear E
 
      

Linear E
Est

    

Figure 18. LQG Transient Energy E vs Time t, from initial onditions XWorst saled to Energy 104E0
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Figure 19. LQG Transient Energy E vs Time t, from initial onditions XWorst saled to Energy 5625E0


