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ABSTRACT 

There are a vast number of field–portable data loggers currently on the market. They 

differ greatly in terms of capability and complexity, in many cases being application or 

function specific. A survey was undertaken to identify market trends and future 

developments, system hardware specifications and the technologies employed. After 

comparing system specifications, it was apparent that there was a strong correlation 

between system performance and power consumption - high performance systems tend 

to be power hungry, and are typically larger and heavier than their lower performance 

counterparts. 

The aim of this project was to design the core of an advanced, flexible, low-power 

portable data acquisition system, a ‘personal’ data logger (PDL), suitable for medical or 

athletic performance monitoring. The pocket-sized target system should be capable of 

high performance - sampling daily or up to 20,000 samples per second – with low 

power operation, and should be able to measure both analogue and digital signals. The 

data must be stored in a high-capacity non-volatile memory card, with USB and RS-232 

ports provided for data upload and system configuration. 

With the design specification defined, low power design techniques and the various 

battery and power supply options were investigated. A survey of system components 

was carried out and suitable low-power parts identified and selected for the design. 

After checking the project schematics, the circuit board was designed, manufactured 

and carefully assembled, ready for function and performance testing. 

The test results indicated that the project met the design specification, demonstrating 

its potential for use in a small portable personal data logger. Further work would be 
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required to refine the power supply and power management systems, add an interface 

board housing a real-time clock, analogue signal conditioning, and input and output 

connectors, and to develop embedded system software. 
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Chapter 1 - Systems Review  

1.1 Overview 

Portable or field instrumentation can encompasses everything from simple low-cost 

meters and data loggers, to expensive precision measurement, and high-performance 

data acquisition systems. The first ‘portable’ data loggers in the 1930s were quite large 

and heavy analogue systems such as chart recorders, which plotted data graphically on a 

roll of paper, tape recorders, or wire recorders that stored data on a spool of stainless 

steel wire.  

The rise of digital systems and the development of the first microprocessors in the 

early 1970s, and solid-state memory saw the appearance and growth of digital logging 

systems. The increasing popularity of lower power CMOS circuitry and higher storage 

capacities over the following years saw the emergence of an increasing number of 

battery-powered systems. 

Field instruments or portable data loggers are designed for use in mobile or remote 

applications, and are capable of reliable operation outdoors or outside of a controlled 

laboratory environment. In addition to application specific issues, systems should 

generally be: 

� As small and lightweight as possible for portability 

� Capable of operating from internal or external batteries, or a local power 

supply such as a car’s auxiliary power supply  

� Rugged enough to withstand both environmental conditions and user abuse 
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1.2 System Manufacturers 

The systems featured in this study were chosen as they are representative of the 

many varied units available in the marketplace, and reflect a range application areas, 

interface options and technologies. The selection includes both simple and sophisticated 

systems and demonstrates both typical market trends and emerging developments.  

Campbell Scientific 

Campbell specialise in instruments for weather stations and environmental 

monitoring. They also provide a wide range of versatile systems for use in engineering 

research applications. 

Comark 

From developing the first digital thermometers in the 1960s, Comark specialise in 

temperature and humidity sensing and monitoring equipment. 

Cranfield Impact Centre 

The current generation of CIC’s CardCorder rugged product family are of modular 

design and may be configured according to test requirements. Units have found use in 

motor racing, automotive testing, engineering research and aerospace. 

Datataker 

A provider of flexible data acquisition systems for environmental and industrial 

applications, Australia-based Datataker are part of the Grant Instruments group of 

companies. 
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Grant Instruments / Eltek  

Grant supplies a range of scientific equipment for the laboratory and portable data 

acquisition systems for field use. The Grant group of companies include Datataker, and 

are active in bioscience, environmental monitoring and engineering research. 

Eltek are associated with Grant, and provide customised versions of their Squirrel 

data logger. 

Gemini Data Loggers 

Gemini produce the Tinytag range of compact battery-powered data loggers and 

accessories for environmental, and shock and vibration monitoring. 

IMC Dataworks 

A provider of high specification data acquisition systems and data analysis software, 

IMC specialise in rugged modular and CAN-based instruments for automotive and 

engineering research. 

Pace Scientific 

Pace manufacture a range of compact and low power monitoring systems and sensors 

for a wide range of applications. 

Racelogic 

With a focus on CAN and differential GPS measurement, Racelogic offer a range of 

data acquisition and monitoring products. CAN expansion enables thermocouple, 

analogue and digital inputs to be added to a basic system for automotive and 

engineering testing. 



MSc by Research David Pitts 

 

4 

SoMat (Ncode) 

The modular Edaq family offer a wide range of input interface options for direct 

sensor connection, having a particular strength in strain measurement and fatigue. 

Designed to operate in challenging environments, application areas include aerospace 

and automotive testing, and engineering research. 

Valitec 

Valitec manufacture a series of low power, battery equipped, portable data loggers 

for field-based applications. 

Zeta-Tec 

A supplier of low cost, compact, battery operated data loggers, low power Zeta-Tec 

systems focus on temperature and humidity monitoring applications. 

1.3 Overview of System Parameters 

The majority of field-based data loggers, data acquisition systems and instruments 

have a similar architecture. This may differ in detail as some systems may use highly 

integrated chips that combine several functions, and others may have multiple input 

blocks to cater for high input channel counts, but the general layout is essentially that 

shown in Figure 1. 
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Figure 1: A Basic Data Logger System Architecture 

When considering different systems, it is important that the various parameters are 

well defined; these are discussed next: 

1.3.1 Analogue Inputs 

These are able to measure a continuously varying analogue waveform, i.e. a voltage 

or current, from a signal source or transducer. The majority of transducers produce 

signals in an analogue form (at least at origin), and therefore sensors with analogue 

output signals tend to be more numerous (Texas, 1996) than the various digital options 

(which are described in section 1.3.4). 

There are many different types of sensors with analogue outputs, e.g. for measuring 

temperature, strain, force, displacement, rotation, pH and gas concentration. These 

signals may have markedly different properties, which could be incompatible with a 

data logger’s input requirements. To overcome this problem additional signal-

conditioning circuitry may be necessary to optimise sensor outputs to suit system input 

Processor 
Data 

Memory 

Analogue 

Inputs 

Power Supply/ 

Management 

Input 

Protection 

Digital 

Input/ 

Output 

Comm- 

unications 
PC 

 

ADC 

Real-time 

Clock 

Signal 

Condit- 

ioning 



MSc by Research David Pitts 

 

6 

requirements. Some systems feature dedicated inputs to accept specific sensor types, 

such as thermocouples. 

The various analogue input types are shown below: 

1.3.1a Single Ended Input 

This is the simplest and most common signal type, and consists of single input 

channel to accommodate a signal carried on a single wire (usually) referenced to signal 

ground. A number of single-ended (SE) inputs referenced to a common signal ground 

reduces the number of connector terminals required, which may be advantageous in 

smaller systems. 

1.3.1b Differential Input 

Here, two inputs are required, often referred to as signal+ and signal- as one is the 

inverse of the other, to accommodate signals carried on a pair of wires, usually 

referenced to signal ground. As it is the difference between the two signals that is 

ultimately measured, any signal noise present on the pair of wires is removed by 

cancellation. Differential inputs exhibit superior signal to noise ratio to single-ended 

inputs, and have better performance for small signals and long cable runs.  

1.3.1c Bridge Input 

Bridge based transducers, such as strain gauges, have differential outputs, but require 

special signal conditioning. In essence, a strain gauge bridge features four resistive 

elements, one or more of which may be a strain gauge. The gauge itself consists of a 

length of resistive material of constant width and thickness on an insulated substrate. 

When strain is applied, there is a minute change in length (and therefore resistance), of 

the material which is proportional to the applied strain. 
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Strain gauges may be used in quarter, half, or full bridge configuration, therefore 

bridge completion resistors (mounted on-board or externally) may be required to 

provide a functioning Wheatstone bridge circuit. 

As the changes in resistance can be very small, the resistance of the wires connecting 

the sensor to the signal conditioning may become significant. Some systems provide 

methods of compensating for these effects using sense inputs to determine the cable 

resistance. 

As the sensor bridge is ratiometric, having the ability to increase a programmable 

excitation voltage will result in a larger output response. This can be desirable as it 

effectively reduces the signal to noise ratio, although the effect of self-heating (P = 

V2/R) can cause problems under some circumstances unless compensated for. 

1.3.1d Piezo Sensor Inputs 

This is a special type of single-ended input for use with piezo-resistive and piezo-

capacitive sensors. These sensors feature a small piezo transducer and normally require 

an external charge amplifier to condition the output signal to appropriate levels; some 

forms have integral amplification providing a low impedance AC-coupled output signal. 

PCB Piezotronic’s ICP-type sensors utilise the signal output pin to provide a 2-20mA 

constant current input at 18-30V, which powers the sensor (PCB Piezotronics, 2007). 

These sensors only provide a dynamic output as the piezo-element has no charge 

under static conditions. Common examples include force sensors, such as 

accelerometers. 
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1.3.1e 4-20mA Input 

This is a widely used industrial standard for instrumentation and control systems 

with a wide range of available sensors. The signal is scaled from zero to 100% for the 4 

to 20mA range. 

1.3.1f Thermocouple Input 

A thermocouple consists of a welded junction of two dissimilar metals. The 

thermoelectric voltage produced across the junction, which ranges from µV to mV, is 

proportional to temperature and differs according to the metals used. Temperature is 

measured relative that of the measurement circuit’s Cold Junction Compensation (CJC) 

sensor, which should ideally be positioned next to the input connector as this can form 

another junction. The calibration for each type of thermocouple, i.e. E, J, K, N, T, is 

different, and non-linear, requiring the appropriate compensation and linearization to 

convert Volts to Celsius, or the preferred temperature scale.  

1.3.1g Smart Sensor Input 

By combining an analogue sensor with a small programmable memory circuit, sensor 

details and calibration may be stored. Known as TEDS (Transducer Electronic Data 

Sheets), these smart sensors require special inputs with digital capability, namely a 

serial bus. Designed as ‘plug and play’ devices, a suitably equipped data logger can 

configure system parameters autonomously from TEDS settings. 

1.3.2 Analogue Input Range 

It is vital that the measured signal range falls within the input range of a data logging 

system; this means that the signal may need to be attenuated if too large, or amplified if 
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the sensor output is of a low level. The most popular input range is 0–5Vdc, although 

ranges such as 0-10V and ±5V are not uncommon.  

Systems with a programmable input range have the greatest flexibility as this can be 

adjusted to match a specific sensor. At higher voltage gains, the effect of voltage offset 

can become significant as the DC gain can take the signal outside the measurement 

range; in this instance, the addition of programmable offset adjustment is a desirable 

feature. 

1.3.3 ADC Resolution 

Resolution is normally described by the number of bits. Two raised to the power of 

this value gives the number of discrete steps that the ADC chip's input range may be 

divided by, hence: 

12 bits gives a resolution of  Vin/2
12

 = Vin/4096 

16 bits gives a resolution of  Vin/2
16

 = Vin/65536 

For a 0-5V input range, this gives a minimum resolution of 1.2 mV and 76.3 µV 

respectively. 

1.3.4 Digital Inputs 

These are compatible with discrete voltages representing binary values or digital 

waveforms. Signals are often at TTL-level (0 – 5 Volts) but may be much higher. 

Digital inputs can take many forms; these are described below: 



MSc by Research David Pitts 

 

10 

1.3.4a Pulse Counter Input 

This is used to measure pulse frequency. The number of pulses are counted over a 

period, (typically one second), to produce pulse frequency. Some systems provide the 

alternative of accumulating the number of pulses to give a total figure. 

1.3.4b Period Measurement Input 

As an alternative to pulse counting, the period of a pulse may be measured to give 

instantaneous frequency measurement or timing information.  

1.3.4c Event Input 

This is used to monitor ‘binary states’, such as a switch or relay status, or signal 

logic. Event inputs are sometimes used to trigger recording. 

1.3.4d CAN Bus Input 

The Controller Area Network, or CAN bus, is a serial differential data bus standard 

for linking sensors and control and instrumentation systems. Originally developed by 

Bosch for automotive use, CAN and its derivatives have found acceptance in many 

other application areas.  

With a data rate of up to 1Mb/second relatively high performance is possible across a 

few channels, although it is more commonly used to transfer data from a number of 

sensors (up to 128) sampled at lower rates. Data from many sensors or other systems, 

sampled at different rates, may be processed and recorded. As it is bidirectional the 

CAN bus can also be used to output data; and thus, it may be used for device 

networking. 
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1.3.4e Serial Data Input 

RS-232 or RS422/485 serial ports may also be used to receive data from intelligent 

sensors or external devices. The serial output from a GPS receiver can provide 

geographical position and timing information for mobile applications once the data has 

been decoded. 

1.3.5 Sample Rate  

This dictates the number of discrete measurements that may be taken within a given 

period, usually one second. This is usually quoted in samples per second or Hertz (Hz). 

Some systems allow the user to set different sample rates for individual input channels 

whilst others use global settings. 

Some manufacturers quote aggregate sample rates; this is the combined rate of all 

active input channels. 

1.3.6 Triggering 

Multiple triggering options are usually available to initialize recording. A manual 

trigger, such as a switch on an instrument’s enclosure, is perhaps the simplest triggering 

method. Alternatively, an event or control input may be connected to a remote switch or 

external control circuit. 

For long-term unattended operation, there are two main triggering methods. The first 

method utilises the system’s real-time clock, which may be used to initiate recording at 

a predetermined and pre-programmed time and date. The second monitors sensor inputs, 

and starts recording upon preset conditions on one or more of these being met. 
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1.3.7 Data Storage 

Data memory may take several forms: volatile SRAM or DRAM, non-volatile 

battery-backed SRAM, Flash ROM, or compact flash (CF), Secure Digital (SD), 

PCMCIA (PC) or Multimedia (MMC) flash memory card. Some manufacturers quote 

the physical storage capacity, e.g. 512 kb, whilst others specify the number of samples 

that may be stored. As data memory typically has a byte-width of 8-bits, a 12 or 16-bit 

data sample must be stored as two bytes; therefore specifying the maximum data 

samples capacity provides a more realistic storage figure, and makes it easier to 

calculate recording duration. 

1.3.8 Communication 

A communications link to a PC or PDA is used to upload settings, download logged 

data or interrogate a system in real-time. Most systems have one or more serial data 

ports. Currently RS-232 is the most common method of data transfer; although this is 

starting to become obsolete as most new notebook PCs do not have a compatible serial 

port. This does however permit connection to a GSM cellular or radio modem for 

remote access, which opens up the possibilities of sending reports and alarms via text 

message, or broadcasting data (at low sample rates) in real-time. 

USB, Ethernet, Bluetooth and GSM cellular modems are becoming more popular; 

USB and Ethernet in particular offer high data transfer rates, facilitating the 

downloading of large data files. Ethernet also provides a portal for internet connectivity 

allowing systems to be connected to a central server, or, if data is stored in the correct 

format, interrogated using standard SQL (Structured Query Language) commands. 
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1.3.9 Outputs 

Some systems provide analogue or digital outputs, which may be user 

programmable. These can be used as indicators or alarms, or for control applications 

when used in conjunction with other devices.  

1.3.10 Sensor Excitation Voltage 

Many systems provide sensor excitation outputs to power sensors. These may be 

fixed or variable, common rail or separate supplies for each sensor, and are normally 

current limited or fuse protected. 

1.3.11 Power Source 

Manufacturers use a variety of different power supply options. Some systems require 

an external power source, typically in the range of 6-24 Volts dc; others operate from 

removable batteries or integral rechargeable battery packs.  

The power source is an important consideration for field-based instrumentation as it 

can determine how a system is used, and its size and weight. The number and type of 

batteries (primary cells or rechargeable), internal or external fitment, and whether they 

are fixed or removable, will largely depend on power demand, typical usage cycles, the 

application and environmental factors – this is discussed in detail in chapter 4. 

1.4 A Comparison of System Features 

The systems featured in the following comparison shown in Tables 1a, 1b, 2a and 

2b, are representative of those currently on the market. The contrasts between various 

system parameters illustrate the differences between the systems; these are discussed in 

section 1.4. 



  

 

 

- - - - - - - - - - - - Inputs - - - - - - - - - - - - 
System Maker 

Analogue Digital Max 

Resolution/ 

bits 

Sampling 

Rate/ Hz 

CR1000 Campbell Scientific 
8 Diff/ 16 Single-Ended 

(programmable) 
 2 x pulse/ 8 x event 

(programmable) 
26 13 100 

CR200 Campbell Scientific 
5 Single-Ended analogue/ 

digital 
2 pulse + 2 control 9 12 1 

CR5000 Campbell Scientific 
20 Diff/ 40 Single-Ended 

(programmable) 
 2 x pulse/ 8 x event 

(programmable) 
50 16 100 

CR800 Campbell Scientific 
3 Diff/ 6 Single-Ended 

(programmable) 
2 x pulse/ 4 x I/O 
(programmable) 

12 13 100 

CR9000X Campbell Scientific 
14 Diff/ 28 Single-Ended 

(programmable) 
2 x pulse/ 8 x event 

(programmable) 
38 16 100,000 

Diligence EVG Comark 8 thermocouples none 8 8 0.1 

CardCorder Cranfield 
16-48 Diff/ 48 SE/ICP/ 96 

Single-Ended 
(programmable) 

 8 x pulse/ 8 x period/ 32 
event/ serial/ CAN 
(programmable) 

101 12 100,000 

CardCorder Pro Cranfield 
32 Diff/ 64 Single-Ended 

/ICP (programmable) 
 8 x pulse/ 8 x period/ 32 

event/ serial (programmable) 
113 12 300,000 

 DT50 Datataker 
5 Diff/ 10 Single-Ended 

(programmable) 
3 pulse +  5 x  I/O 18 15 25 

DT500 Datataker 
10 bridge/ 30 Single-

Ended (programmable) 
3 pulse +  4 x  I/O 37 15 70 

DT800 Datataker 
12 bridge/ 24 Diff/ 42 

Single-Ended 
(programmable) 

16 x I/O + 1 x serial 
(programmable) 

59 16 100,000 
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- - - - - - - - - - - - Inputs - - - - - - - - - - - - 
System Maker 

Analogue Digital Max 

Resolution 

(bits) 

Sampling 

Rate/ Hz 

Squirrel  851 Eltek Ltd 
8 Single-Ended 
(programmable) 

 1 x pulse/ 8 x event 17 12 1 

Squirrel 2040 Eltek Ltd 
16 bridge/ 32 Single-

Ended (programmable)/ 2 
high voltage 

4 x pulse/ 8 x event 44 24 100 

Tinytag IS-0020 Gemini  Thermistor probe none 1 10 1 

DAX-2408 IMC Dataworks 
8 Differential / TEDS 

(programmable) 
4 pulse/ 16 event/ 2 CAN 30 16 400,000 

XR440 Pace Scientific 4  (programmable)  1 x pulse 5 12 200 

VBOX III Racelogic 4  (programmable) 
2 x pulse/ 2 CAN 
(programmable) 

8 24 100 

E-DAQ Lite SoMat 
32 bridge/ Differential/ 

(programmable) 
96 (programmable)/ GPS 96 16 100,000 

E-DAQ Plus SoMat 

128 Single-Ended /  
64 bridge/ Differential / 

thermocouple 
(programmable) 

256 pulse/ event/ I/O  + GPS/ 
CAN 

192 16 400,000 

AD128 Valitec 8 16 24 8 500 

AD2012 Valitec 12 4 16 12 500 

uLogger-4V Zeta-Tec 4 x 0-2V none 4 12 1 
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- - - -  Power  - - - - 
System Maker 

Comm 

Ports 
Data Storage Min Size  (mm)/ Weight 

Source Current 
Misc 

CR1000 Campbell  RS232 
2Mb + Compact 

Flash 
216 x 99 x 22/ 1 kg External 9.6 - 16 Vdc 4 - 28 mA  

CR200 Campbell  RS232 128kb 140 x 76 x 51/ - External 7 - 16 Vdc 4 mA+ Telemetry 

CR5000 Campbell  RS232 
900 k samples + PC 

card 
247 x 210 x 114/ 5.5 kg 

7 Ah Battery/ External 
11 - 16 Vdc 

- LCD 

CR800 Campbell  RS232 2 Mb  241 x 104 x 51/ 0.7 kg External 7 - 16 Vdc 4 mA+ PAKbus 

CR9000X Campbell  
RS232/ 
Ethernet 

128Mb + PC card 457 x 343 x 229/ 19.1 kg 
14 Ah Battery / 

External 9.6-18 Vdc 
525 mA + Modular 

Diligence EVG Comark RS232 64 k samples 190 x 138 x 45/ - 
4 x AA Batteries / 

External DC 
- LCD 

CardCorder Cranfield  RS232 
1 Gb Compact Flash 

card 
105 x 95 x 74/ 1-2 kg External 9 - 36 Vdc 0.4 - 1.5 A Modular 

CardCorder Pro Cranfield RS232 4 Gb PC card 189 x 149 x 88/ 2-4 kg External 9 - 36 Vdc 0.7 - 2.5 A Modular 

DT50 Datataker RS232 166 k samples  260 x 110 x 55/ 1.5 kg External 9 - 18 Vdc 80 mA + PC card 

DT500 Datataker RS232 166 k samples  260 x 110 x 85/ 2.2 kg 
External 9-18 Vdc/ 1.2 

Ah Battery 
80 mA + PC card 

DT800 Datataker 
RS232/ 
Ethernet 

130 k samples 260 x 110 x 90/ 3.1 kg 
External 11-28 Vdc/ 

2.2Ah Battery 
420 mA + PC card 
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Power  
System Maker 

Comm 

Ports 
Data Storage 

Min Size  (mm)/ 

Weight Source Current 
Misc 

Squirrel 851 Eltek Ltd RS232 250 k samples 180 x 120 x 85/ - 
6 AA cells/ External 9-

14 Vdc  
155 mA LCD 

Squirrel 2040 Eltek Ltd RS232/USB 1.8 M samples  235 x 175 x 92/ 1.5 kg 
6 x AA cells/ External 

9-18 Vdc 
80 mA LCD 

Tinytag IS-0020 Gemini  RS232 16 k samples 80 x 59 x 34/ 100 g 3.6V 1/2 AA Li Battery   

DAX-2408 
IMC 

Dataworks 
RS232/ 
Ethernet 

PC card 195 x 120 x 110/ 1.8 kg 
External 9 - 36 Vdc/ 

'UPS' Battery 
830 mA Modular 

XR440 Pace RS232 32 k samples 120 x 61 x 24/ 156 g 9V Li PP3 Battery   

VBOX III Racelogic RS232 Compact Flash  170 x 121 x 41/ 900 g External 5.3 - 30 Vdc 900 mA GPS 

E-DAQ Lite SoMat 
Ethernet/ 
RS232 

64Mb/ 256 Mb 
Compact Flash 

180 x 140 x 45/ 1-2 kg 
External 10-18 Vdc/ 
0.6Ah UPS Battery 

0.9 - 4.2 A Modular 

E-DAQ Plus SoMat 
Ethernet/ 
RS232 

64Mb/ 256 Mb 
Compact Flash 

274 x 231 x 154/ 3.4 kg 
External 10-60 Vdc/ 
0.6Ah UPS Battery 

0.9 - 4.2 A Modular 

AD128 Valitec RS232 130 k samples 147 x 91 x 33/ 225 g 
External 7 - 12 Vdc/ 

PP3 Battery 
4-10 mA  

AD2012 Valitec RS232 540 k samples 147 x 91 x 33/ 225 g 
External 7 - 15 Vdc/ 

PP3 Battery 
20-32 mA  

uLogger-4V Zeta-Tec RS232 32 k samples 50 x 24 x 90/ - AA cell   
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1.4.1 ADC Resolution 

Figure 2 depicts the ADC resolution of the systems in this survey. Those systems 

with 24-bit resolution employ delta sigma ADCs. These chips can provide a very high 

effective resolution at low sampling frequencies due to high oversampling ratios, noise 

shaping, averaging and digital filtering; however, this also limits the maximum 

sampling rate. As sampling rates rise, the oversampling ratio is reduced and the noise 

reduction techniques less efficient, resulting in a much lower effective resolution. 

The remaining systems use the more common Successive Approximation ADCs with 

a resolution of 12 to 16 bits. Here the basic resolution is unaffected by the sample rate, 

which may be as high as hundreds of thousand samples per second. 

1.4.2 Data Storage 

To compare system’s data memory, the storage capacities have been converted to 

data samples where appropriate. For comparative purposes, it is assumed that a data 

sample takes up two bytes of memory unless stated otherwise in the manufacturer’s 

literature. 

The differences are shown in Figure 3. There are several orders of magnitude 

between the top and bottom ranked systems. The data storage capacity shows 

correlation to the sampling rate (Figure 5), and the number of signal inputs (Figure 4), 

but also to the application. The Tinytag, a digital thermometer with a 16,000-sample 

capacity, does not need much memory; if used to log the temperature every hour it 

would take 666 days to fill the memory. The DAX-2408, E-DAQ or CardCorder Pro 

sampling eight inputs at 10 kHz per channel, would require 80,000 samples per second 

of recording time. More signals, sampled quickly, require more storage.  
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As memory is now relatively cheap, especially in the form of flash memory cards, 

and accounts for a relatively small percentage of component costs, large storage 

capacities are not necessarily restricted to premium products.  

Many systems provide the option of additional flash memory cards storage; however, 

only the primary storage capacity is considered here. Systems with secondary storage 

options are shown in highlights. 
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1.4.3 Input Channels 

All the input types previously discussed may be found amongst the featured systems. 

Analogue inputs dominate, although most units also accommodate a range of digital 

inputs.  

Regarding the analogue channels, single-ended inputs are the most prevalent with 

some systems being configurable for single-ended, differential, or range of other input 

types. For field-based systems, integral signal conditioning is an important feature; 

external boxes add to the overall size and weight, and may prove cumbersome. A 

number of systems include this feature; some offer dedicated inputs while others have 

various levels of programmability. For instance, systems designed with engineering 

applications in mind may feature inputs specifically for use with strain gauge based 

sensors.  

The most common forms of digital input are the pulse and event inputs. Some 

systems provide programmable digital channels that may be used as pulse inputs or for 

input or output tasks. The CAN bus appears to be a growth area, having expanded 

beyond the confines of the automotive world into other sectors (Marsh, 2002). Many 

suitably equipped units are currently available. Some manufacturers use CAN to add 

remote modules, providing additional analogue and digital sensor inputs. 

To illustrate the difference between systems, the total input channel count is shown 

in Figure 4. The top five units are of modular construction and may be configured with 

the number and type of interface modules to suit individual monitoring applications. 
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The maximum number of inputs quoted is the maximum that may be directly 

connected, ignoring additional inputs from network expansion devices. In the case of 

modular systems, it assumes that the maximum number of modules are fitted. 

1.4.4 Sample Rates 

It is perhaps the range of aggregate sample rates, as shown in Figure 5, that best 

exemplify the differences between the various systems. In fact, when divided into three 

bands, these closely match the systems’ typical application areas: environmental 

applications tend to require sample rates from daily to a maximum of 50 Hz per 

channel, whereas engineering research may require rates from 1 Hz to 50 kHz. General 

purpose applications (0.1 to 200 Hz per channel) span the middle ground. 

The higher speed systems can sometimes only maintain these rates for a few seconds 

at a time; nevertheless, with the right triggering, they would prove to be very useful for 

anomaly or ‘glitch’ detection.  

1.4.5 Power Consumption 

The respective systems’ typical current consumption, less sensors, is displayed in 

Figure 6. It can be quite difficult to extract typical power figures from manufacturers’ 

data sheets; the information some provide could best be described as sparse. This is 

perhaps understandable as there are a number of variables that affect power 

consumption: 

It is the operating current of a unit running in a typical configuration that is of most 

interest. Thus, if powered by batteries, the likely continuous operating duration can 

easily be calculated. In the case of long-term monitoring, sampling perhaps hourly, a 
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system can enter a low power standby mode between sample intervals to prolong 

battery life; consequently, battery duration is dependent upon the sampling interval. 

Manufacturers commonly quote typical battery life, without specifying the duty cycle, 

rather than operating current. 

It may prove difficult to assess the power demand of a modular system, as this is 

dependent of the number and type of modules fitted. The figures quoted are most often 

for a specific basic configuration. Even where the demand of individual modules is 

specified, the total power consumption may differ from the sum of the parts 

A consideration often overlooked is sensor power budget. Most systems provide 

regulated, low-noise supplies to power sensors. The current demand of potentiometric 

devices, such as displacement transducers, or semiconductor temperature sensors is 

typically no more than a few milliamps (Active Sensors, 2006). In the case of standard 

120Ω or 350Ω strain gauges, power demand can quickly escalate: in the case of sixteen 

350Ω gauge inputs supplied with 5V excitation, the current demand would be 229 mA. 

There is an immediate correlation between current consumption and sampling rate. 

The units with the highest sampling rates, shown highlighted, head the ordered table; 

the VBOX III’s ranking is due in part to its onboard differential GPS receiver.
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1.5 Aim and Objectives 

After investigating the features of a broad spectrum of currently available field 

instrumentation systems, one thing that stands out is the relationship between power 

demand and sampling rate. This is best illustrated by the graph shown in Figure 7; units 

with higher sampling rates tend to consume more power. In practice, this often leads to 

a requirement for larger batteries, increasing system size and weight, or external power 

sources. This has serious repercussions for system portability and places serious 

restrictions on usage. 
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Figure 7: A Comparison of System Power Consumption v. Sampling Rate 

The aim of this project is to design the core of an advanced small, flexible, low-

power data acquisition system. The application focus is a ‘personal’ data logger (PDL), 

a pocket-sized portable system that may be used to measure a range of parameters for 

medical or athletic performance monitoring. Parameters of interest could include 
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temperature, humidity, heart monitoring (ECG), breath flow, acceleration and 

stress/strain, for monitoring both human performance and that of prosthetics or sports 

equipment. These could be measured with out the encumbrance of umbilical cables. 

The circuit board must be compact, rugged, and lightweight, with sophisticated 

power management features, and capable of autonomous operation. As the system is to 

ultimately operate from a small battery pack, current consumption should be minimised 

to preserve battery life. For maximum flexibility, it is desirable that the system should 

be capable of aggregate sample rates from below 1Hz, up to around 20 kHz across 

multiple input channels.  

Project objectives are split into five main areas:  

� To define the system product design specification 

� To investigate suitable low power design techniques 

� To determine the optimum power supply system 

� To produce a detailed circuit design 

� To quantify the design’s performance 

The design would also provide an ideal hardware platform for use in a diverse range 

of field applications, including both long-term monitoring and transient capture. This 

however, is outside the scope of this project. 
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Chapter 2  - Defining the Design Specification 

2.1 Introduction 

The project brief is to produce a flexible design for a personal data logger (PDL). It 

should be able to sample data at high or low recording rates whilst minimising power 

consumption. There are many factors which must be considered in designing a viable 

system, some of which have an influence on power demand. These factors are discussed 

below: 

2.2 System Parameters 

2.2.1 Analogue Inputs 

From the system survey, it is apparent that although many units may cater for both 

differential and single-ended inputs, it is the latter that are the most numerous (see tables 

1a and 1b) of the general purpose analogue input forms. By using a common signal 

ground, single-ended inputs offer a high connector pin density and require minimal 

interface circuitry. 

Ideally, at least eight inputs should be provided, each with some form of protection 

from voltage transients and high frequency signal noise. A nominal input range of zero 

to 5 Volts dc will accommodate most common sensors, although programmable gain 

would offer greater flexibility. 

2.2.2 ADC Resolution 

After surveying currently available systems, it is clear that resolutions of 12 and 16-

bits dominate; with more recent devices showing a tendency towards 16 bits.  
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It should be noted that more bits do not necessarily mean greater precision; this has 

as much to do with the sensor. If a sensor is only able to measure to a precision of 0.1% 

for example, this is a good match for a 10-bit ADC (100% x 1/210 = 0.098%). Thus, a 

12-bit device able to measure to 0.02% of full scale (100% x 1/212), or 16- bits, down to 

0.0015%, do not offer any real benefit. In addition, higher resolution devices, capable of 

measuring down to microvolt levels, make extremely effective noise measurement 

systems unless due care is taken with noise reduction techniques. It could be argued, 

perhaps, that the drive for higher resolution sometimes has more to do with product 

marketing than operational requirements. 

2.2.2a Noise Issues 

As small portable instruments do not have the benefit of racks of signal processing 

boards, or a closely controlled laboratory environment, it can be much more difficult to 

achieve low noise figures. Noise sources such as transmitted electromagnetic 

interference (EMI) from radio signals or 50Hz mains noise, and the environmental 

effects of temperature, humidity and vibration upon sensors can all lead to signal 

degradation.  

Most of the higher performance systems use onboard digital signal processing (DSP) 

techniques (e.g. Somat’s EDAQ series) or sophisticated filtering techniques to achieve 

low noise figures. Filters in particular require very careful design and application. If the 

wrong type or class of filter is used, or the cut-off frequency is incorrectly applied, it 

may be ineffective, or perhaps worse, attenuate the signal of interest.  

Without careful attention to signal and system screening, careful circuit layout and 

passive noise reduction, it is possible that a 16-bit field-based system will measure as 



MSc by Research David Pitts 

 

32 

many as six bits of noise. With the PDL’s constraints on size and power demand, DSP 

is out of the question. The selective use of low power programmable filter chips, such as 

Maxim’s MAX7409/7410 (Maxim, 1998), could be of benefit for particularly noisy 

signals.  

2.2.2b ADC Selection 

In choosing to base the design around a 16-bit ADC, it is possible to provide both 

high resolution, where appropriate, and additional flexibility. By using a software bit-

masking technique to create a ‘data window’, as depicted in Figure 8, it is possible to 

reduce the full 16-bit sample to 12 or 14 bits. This may be performed dynamically at 

slower sample rates or on a PC prior to data analysis. If the data memory is of a limited 

size, this dynamic scaling can effectively increase the number of samples that may be 

stored. With the PDL, storage capacity is not an issue, but this method still provides 

benefits as shown. 

If 12-bits are to be recorded, moving the window left or right provides effective 

signal gain or attenuation. If the incoming signal is large, the window may be shifted 

fully left masking the bottom four bits. Assuming an input range of 0 to 5 Volts, this 

reduces the resolution to 1.2mV per bit, and potentially removes a milliVolt of signal 

noise.  
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Figure 8: ADC bit-masking to create a data window 

Moving the window fully to the right and masking the top four bits gives an 

equivalent input range of 0 to 0.3125 V. Whilst reducing the dynamic range, this scaling 

method provides an effective voltage gain of 16. This is useful for small signal levels, 

although with a resolution of 76µV per bit, any signal noise could be significant. 

This technique was successfully employed in early versions of the Cranfield-

developed CardCorder data acquisition systems in 1990. By effectively providing the 

design with a virtual multi-channel programmable gain amplifier (PGA), this gives the 

PDL considerable flexibility, with no power budget penalties or an increased chip count. 

2.2.3 Sample Rate 

From the analysis of current systems, it is clear that the sampling rate often defines 

the application area. As previously stated, this design project aims to provide a flexible 

platform with a wide range of sampling rates. The benefits of sampling at higher 

frequencies must also be considered; more data points over the sampling period can 
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provide more signal information for data analysis. When considering the sampling rate, 

the following points should be taken into account:  

2.2.3a The Nyquist Rate 

According to The Sampling Theorem (National Semiconductor, 1980), signals 

should always be sampled at frequencies at or above the Nyquist Rate (Nyquist, 1928), 

i.e. at least twice a bandwidth-limited signal’s maximum frequency, in order to be able 

to reconstruct the original waveform. Thus, the Nyquist frequency of a 10 Hz signal is 

20 Hz. Sampling at a higher rate will naturally give more data points and therefore 

clearer signal reproduction. 

2.2.3b Oversampling 

Sampling above the Nyquist frequency is known as oversampling. The greater the 

oversampling ratio, the better its’ reproduction as more data points are produced for a 

given period. In addition, by oversampling a waveform, the extra data samples can be 

digitally manipulated to help reduce noise and improve resolution. Although digital 

signal processing is it is beyond the scope of this project, it is however worth 

mentioning one commonly applied technique.  

Sampled data can sometimes have several bits of signal noise; this can be reduced, 

and ADC resolution improved, by a combination of oversampling and averaging. First, 

the waveform must be oversampled at four times the Nyquist frequency for every 

additional bit of resolution (Atmel, 2005), i.e.:  

foversampling = 4n
 x fnyquist 

where n is the number of bits 
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A moving average applied to these extra samples, i.e. sequentially taking the sum of 

a block of 4n samples and dividing by 4n. This results in the attenuation of signal noise 

and the flattening of any sharp peaks. If the system processor has sufficient 

performance, this process may be performed dynamically, ‘online’. For data acquisition 

systems however, it is arguably better to perform signal processing tasks offline during 

post-processing unless there adequate memory for the ‘raw’ data to be retained. 

2.2.3c Summary 

Having a wide sampling range greatly enhances the PDL’s flexibility. Hence the 

design should be capable of achieving an aggregate sample rate from once daily to 

around 20 kHz, with a maximum of around 10 kHz on an individual channel. In 

considering Nyquist, a 10 kHz anti-aliasing filter is required to band-limit each input. 

2.2.4 Digital Inputs 

It is desirable to provide at least one TTL-level 16-bit pulse counter (giving a count 

of up to 65535 before resetting), and one or more event inputs; these functions may be 

combined to save input connector pins. In addition, there should be a dedicated trigger 

input to initialize remote recording. 

Each input would need to be provided with some form of protection from voltage 

transients and high frequency signal noise. Galvanic isolation, using opto-isolator 

circuits, would provide the necessary protection. However, the turn-on current may be 

several milliamps per input, and then there is of course the detector current to consider. 

Simple resistor-capacitor circuits, clamping diodes and Schmitt-input logic may offer a 

reasonable lower power solution. 
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2.2.5 Triggering 

The design should have a trigger input capable of waking the system from shutdown, 

and initialise data logging. The trigger source could be from an off-board manual switch 

or an active signal from a programmable device. 

2.2.6 Data Storage 

From the study in the previous section, it can be seen that a range of storage sizes 

and technologies are in common usage. For maximum flexibility, the PDL should 

include mass storage capability. This offers the benefit of high sampling rates, a long 

recording duration, or a combination of the two. If sufficient processor performance is 

available for on-board data processing, a large data memory also allows both raw and 

processed data to be retained. 

For autonomous operation, and the use of power management techniques to 

maximize battery life, the data memory must be non-volatile. Available technologies 

include battery-backed SRAM, Ferroelectric RAM (FRAM), flash ROM and flash 

memory cards. Of these, Flash memory and SRAM are the most popular.  

SRAM offers fast access times, but has relatively low memory density and is 

volatile, requiring that power, often from a backup battery, is supplied to the chip’s 

voltage terminals to prevent data being lost.  

Flash has slower access times, but offers very high memory density and is non-

volatile. Hence, Flash is the preferred option. 
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2.2.6a Flash Memory Cards 

In choosing to use Flash memory, either an array of chips, together with the 

associated address decoding logic, or memory cards may be used. Memory cards offer 

the advantages of integral memory controller chips, very high memory density and 

compact packaging, in addition they are readily available in a range of form factors and 

storage capacities, at low cost.  

System storage capacity is often a major factor in determining pricing in a product 

range, the top of the range models having the largest memories. If this design project 

was a commercial system, the cost difference between 128MB and 2GB Flash cards 

would likely be less than £10 to the manufacturer, but could command a premium 

several times higher in the marketplace. 

2.2.7 Communication 

The design should have an RS-232 port for serial communication with suitably 

equipped PCs, modems and a range of other devices. As autonomous operation 

(whether long-term or otherwise) is a key feature for the PDL, serial connection to a 

GSM cell phone or a low-power radio modem could provide remote wireless access. 

The serial port may also be used as a digital input. If connected to a GPS (Global 

Positioning System) receiver for example, longitude and latitude position may be 

logged, or a number of systems synchronised to the GPS clock signal. The port’s Baud 

rate should be software programmable, and capable of operating at all common data 

rates up to a maximum of 115 kBaud. 

With a large data memory, a USB (Universal Serial Bus) port will greatly improve 

data upload performance compared to the RS232 port. Performance should be roughly 
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comparable to that typically experienced with MP3 players and digital cameras. As 

USB offers high data rates, it may also be possible to stream data direct to a host PC in 

real time, albeit at reduced sample rates. USB could also provide system power to 

preserve battery life during data uploads. 

2.2.8 Power Management 

To save power, power management techniques should be employed. The PDL core 

should have the facilities to control a number of off-board power supplies serving both 

the system itself, and providing excitation for sensors. 

2.2.9 Power Sources 

The PDL should be capable of running either on internal removable batteries, or 

from an external power source, such as that available from a host PC’s USB port. The 

various power supply options are discussed in detail in Chapter 4. 

2.2.10 Other Considerations 

Like all field-portable systems, the PDL should be of rugged construction. 

Components should be capable of withstanding the effects of vibration and mechanical 

shock. Compact size is a desirable feature; therefore, circuit boards should have as small 

a footprint as practical component spacing constraints permit. The battery pack and 

input/output connectors ultimately determine overall system dimensions, but the 

ubiquitous Sony Walkman would be close to the ideal system size. 
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2.3 Summary 

Based on the preceding discussion, the design specification for the Personal Data 

Logger core is summarized below: 

� Eight single-ended analogue inputs, with a nominal 0 – 5 Volt input range. 

� 16-bit ADC resolution. 

� Sample rate ranging from daily to around 20 kHz aggregate. 

� One 16-bit pulse counting input. 

� One event input. 

� External input for system wakeup and/or triggering. 

� Large Flash Card (i.e. at least 512MB) for mass data storage. 

� Serial RS-232 and USB communication ports. 

� Control of off-board voltage regulators or power supplies for system and 

sensor supplies. 

� Maximum transient system operating current of around 300mA.  

� Capable of operation from two to six batteries, or an external supply.  

� Rugged, compact board design – ideally less than 75 x 50mm 
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Chapter 3  - Low Power Design Techniques 

3.1 Overview 

Lowering a battery-powered circuit’s power consumption means that operating 

duration may be usefully extended, or smaller or fewer batteries may be used, offering 

packaging advantages. In addition, less heat is dissipated, reducing the size of, or even 

eliminating the need for cooling fans and heat sinks. This has the advantage of reducing 

the effects of thermal drift in measurement circuits, which in turn may remove the need 

for temperature compensating components. 

Low-power circuit design may only be achieved by the combination of a number of 

design techniques. As the circuit board track lengths are relatively short, the power 

hungry buffers and bus driver chips associated with large systems will not be required. 

Selecting low-power components and minimising the component count is a good 

starting point. This, together with effective power management, will have a significant 

effect, but there are many additional factors to consider. 

3.2 Component Selection 

When selecting a component, its typical operational power consumption must be 

considered in addition to the usual primary performance criteria. Many modern chips 

are based on CMOS (Complementary Metal Oxide Semiconductor) technology or its 

various derivatives. Under static conditions, CMOS power demand is minimal. 

Dynamic power requirements however can be considerable. 
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3.2.1 Power in CMOS Circuits 

Field effect transistors (FETs) are the building blocks of all CMOS integrated 

circuits (ICs), microprocessors are constructed from many thousands of these devices. 

FETs in CMOS microprocessors, memory and digital systems operate as switches to 

provide binary logic functions. The FET’s input, or gate terminal, has a resistance of 

many MegOhms and thus draws negligible static current. Dynamic power demand is 

due to the capacitance of gate terminal. As each logic transition causes the capacitor to 

charge or discharge, causing power to be dissipated. The more transitions, the greater 

the current consumed; thus, power demand is directly proportional to switching speed. 

All microprocessor-controlled systems are synchronised to the system clock. The 

clock frequency, normally derived from a crystal–controlled oscillator, largely 

determines processor performance. As the clock frequency controls logic switching 

speed, it follows that higher clock speeds consume more power. This may be expressed 

in the form: 

Power = Vdd
2
 f (CL + Cd) 

where Vdd = IC supply voltage, f = clock frequency,  

CL = load capacitance and Cd = device capacitance. 

Like power consumption, processor performance, usually quoted in millions of 

instructions per second (MIPS) is also proportional to clock frequency. The ubiquitous 

desktop PC best illustrates this relationship; as performance has increased in line with 

processor clock speed, it can be seen that both the power supply and heat sink have 

significantly increased in size.  
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Whilst reducing the clock frequency to a minimum is desirable, this adversely affects 

processor performance capability. Some newer microprocessors use internal 

programmable phase-locked loops (PLLs), often indexed to an external crystal 

oscillator, to generate the system clock. This allows dynamic adjustment of the clock 

frequency to suit system performance requirements. Such devices, benefiting from a 4:1 

clock ratio or better, provide a good balance of power versus performance. 

The supply voltage, which is a squared term in the equation, may be reduced from 

the once common 5 Volt (TTL-level) to 3.3 Volts, or lower, on many devices. This 

would reduce power consumption by almost one-third. The latest generation of PC 

processors have a core voltage of 0.8 to 1.0 Volts to minimise power dissipation.  

3.2.2 Microprocessor Busses 

Microprocessors use pipelines known as busses to communicate with memory and 

peripheral devices. For optimum performance, these normally consist of parallel signal 

paths. The data bus, as the name suggests, carries system data, and in most 

instrumentation systems is either eight or sixteen bits wide. The address bus is used to 

map the memory and input / output peripherals, allowing individual locations to be 

addressed for read or write operations. Address bus width is dependent on the size of the 

memory to be addressed, thus a one-megabyte memory requires twenty (220 = 1024kb) 

address bits. 

When memory is accessed a considerable number of address and data bits are active, 

all at high switching frequencies. The more lines that are active, the greater the devices’ 

load capacitance, and hence, the higher the power demand. As the width of the address 

bus increases with memory size, larger memories tend to consume more power. By 
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minimising the number of active bus lines, through multiplexing the address and data 

busses, or better still, by using a serial bus, power may be saved. 

Serial busses typically require between one and four data lines to communicate with 

peripheral circuitry. Although usually lacking the throughput of parallel busses, serial 

busses offer a number of advantages: 

� Fewer active lines result in lower load capacitance, reducing power demand 

� Simplified circuit board layout and improved packing density 

� Easier system expansion as fewer lines are required 

� Fewer high speed signal lines may result less induced circuit noise 

3.2.2a The I
2
C Bus 

Philips Semiconductor originally developed the Inter Integrated Circuit, or I2C bus, 

in the early 1980s (Philips Semiconductor, 2000). Many semiconductor manufacturers 

have since licensed the bus technology and it is in common usage. I2C also forms the 

basis of other bus systems, such as SMbus, which can be found in intelligent power 

supplies. 

 

Figure 9: I
2
C Connectivity 
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A master-slave system, I2C uses two lines for synchronous half-duplex 

communication (see Figure 9): SCL, a master clock signal, and SDA, a bidirectional 

data line. Both lines are of open-drain configuration and thus require the addition of 

pull-up resistors to produce the higher logic state.  

Compatible devices have encoded addresses assigned to them; Philips provides these 

to the manufacturer. In its original form, the seven-bit addressing could manage up to 

128 nodes, with a typical bus speed of 100 kbits per second (kb/s). Later incarnations 

with ten-bit addressing, offer up to 1024 nodes at 400 kb/s (Fast Mode) and even 3.4 

Mb/s (High-Speed Mode).  

The I2C bus tends to be used for less demanding, lower speed or infrequent 

communication between a processor and its peripherals. Typical examples include 

Electrically Erasable Memory (EEPROM or E2ROM), real-time clock, lower speed 

analogue-to-digital and digital-to-analogue converters (ADCs and DACs), digital 

environmental sensors and power management chips. 

3.2.2b The SPI Bus 

Motorola’s Serial Peripheral Interface (SPI) bus (Freescale Semiconductor, 2003), 

and the similar Microwire (National Semiconductor) and Three-Wire busses, are 

proving an increasingly popular means of IC data transfer. Like I2C, SPI is a master-

slave system. It uses three data lines for synchronous full-duplex communication, plus a 

separate chip select line for each peripheral device. Whilst this places a greater demand 

on the number of processor input/output (I/O) pins, it is outweighed by the performance 

benefits of the high bus speed (typically several Mbits per second).  
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Figure 10: SPI Connectivity 

The master clock signal, SCK, synchronises bus operation. In a conventional 

arrangement, the SDI (Slave Data In)/MOSI (Master Out Slave In) line outputs 

processor data, and the SDO (Slave Data Out)/MISO (Master In Slave Out) line 

receives data from peripherals. Peripherals are selected by driving the appropriate chip 

select (CS or SS, Slave Select) low.  

In addition to its high bus operating frequency, SPI also has less software overheads 

than most other serial busses. The SPI bus offers the high-speed communication 

essential for acquiring, and storing, data logged at the throughputs called for in this 

project. Typical example devices include EEPROMs, flash memory cards, real-time 

clocks, ADCs, DACs (Digital to Analogue Converters) and programmable signal 

conditioning. 

3.3 Power Management 

The essence of power management is to minimise power usage. There are a number 

of active and passive techniques that may be used to reduce circuit power consumption. 
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3.3.1 Passive Methods 

Most digital circuits use a few resistors tied to the supply Voltage (pull-up) or ground 

(pull-down) to maintain a signal line in a known state, high or low respectively. As 

current flows when the signal level opposes that of the resistor, it follows that a pull-up 

or pull-down resistor should be chosen to match the default logic of the signal line. 

Thus, power is only consumed only while the signal is active, and not in it’s low-power 

state. The same principle holds when considering driving LEDs and output loads. 

The value of a circuit’s pull-up and pull-down resistors must also be considered. 

Values of 10k Ohms are very common. With a 5 Volt supply, each resistor will see a 

current of 0.5 mA; this can easily add up to a few milliamps across a circuit. As the 

input impedance of digital CMOS circuitry is very high, these resistor values may be 

increased to as much as 1M Ohm. Notable exceptions to this are when rise times or 

switching speed is critical. The gate capacitance of the FET CMOS input must be 

considered; lower resistances allow this to charge quicker, improving performance. 

3.3.2 Active Control Methods 

In most electronic circuits, there are usually some parts of the design that are only 

used periodically. Analogue signal conditioning for example has little part to play 

unless signals are to be monitored. To save power, the voltage supply to redundant 

circuitry may be turned off until needed. If power is to be selectively turned off, there 

are three main ways of achieving this. In the first two instances, care must be taken to 

ensure digital devices respond in a controlled manner once power is applied. If spurious 

signals appear on lines connected to the processor, they may cause a variety of 

intermittent problems or even cause the embedded software to crash.  
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3.3.2a Regulator Control 

Many commonly available voltage regulators are provided with a shutdown terminal, 

this normally being pulled down to ground to disable the voltage output. If different 

functional blocks are powered from separate regulators, inactive circuits may be 

shutdown under processor control. 

3.3.2b FET Power Control 

An alternative to using several voltage regulators to control power is to use a number 

of FETs; these may also be switched under processor control. With an On Resistance 

(RDS, or drain-source resistance) as low as a fraction of an Ohm, FETs are very efficient 

as there is negligible voltage drop and little power is consumed by the device. 

3.3.2c IC Shutdown 

Many devices now feature shutdown terminals allowing them to be individually 

disabled. Although valuable for minimalist designs, those with moderate chip counts 

would necessitate a significant number of dedicated control lines, tying up precious 

microprocessor outputs or requiring additional multiplexer chips.  

Some advanced devices, such as RS-232 driver chips, automatically enter a low-

power or sleep mode after a period of inactivity, awakening if a signal is detected on an 

input terminal. The number and type of chips with auto-shutdown is relatively small, 

although increasing, and is a likely growth area. 

3.3.3 Phantom Power Problems 

When devices are in their shutdown mode, or the voltage supply to their power 

terminals disabled, it is possible that they may still be drawing power from signal lines. 

A typical CMOS input, as depicted in Figure 11, features protection diodes that connect 
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the input to the power rails. If power is absent and the input is driven to a high logic 

level, current i can flow through the protection diode to power the chip. 

 

Figure 11: Phantom Power in a CMOS Input Circuit 

After observing this phenomenon, whilst prototyping programmable gain signal 

conditioning based upon Maxim’s MAX1452, a number of methods were employed to 

control the effects. Firstly, signal lines should ideally be held in a low logic state 

whenever components are in shutdown. This is not always possible as some lines, such 

as bus signals for example, may also be connected to active parts of the circuit. In this 

instance, the addition of a series resistor can limit the current flow to more acceptable 

levels. 
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Chapter 4  - An Investigation of Power Supply Options 

Field instruments are often powered by internal batteries, although some depend on 

external supplies. There are a variety of battery technologies available, in a range of 

shapes and sizes, and with different terminal voltages and capacities. The power source 

feeds the system’s power supply circuitry which may provide several different voltage 

outputs to satisfy the demands of the system circuitry. 

4.1 Types of Battery 

Batteries, which, strictly speaking are a collection of cells, are classified as either 

primary (single-use or non-rechargeable) or secondary (rechargeable). Battery capacity 

is quoted in milliamp hours (mAh), which is a measure of duration when delivering 

current into a load impedance. This section discusses the benefits of the various battery 

types. 

4.1.1 Primary Cells 

Primary cells include Zinc-Carbon, Zinc-Chloride, Alkaline, Lithium Thionyl 

Chloride (Li-SOCl2), Lithium-Iron Disulphide (Li-FeS2) Mercury and Silver Oxide. Of 

these, Mercury cells are too specialised, not to mention difficulties with the Restriction 

of Hazardous Substances (RoHS) regulations (HMSO, 2006), and Silver Oxide cells, as 

found in watch batteries, are expensive and of limited capacity. Examples of the various 

formats and their form factors are described in Table 3. 

4.1.1a Zinc Carbon/Zinc Chloride 

These are the standard consumer batteries, having a cell voltage of 1.5V. They are 

now largely being supplanted by Alkaline batteries on supermarket shelves. They suffer 
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minimal self-discharge, but have a relatively high internal resistance which precludes 

their use in applications requiring higher currents. 

4.1.1b Alkaline 

Alkaline Manganese Dioxide cells (normally shortened to Alkaline) have the same 

terminal voltage and shelf life as Zinc Chloride, with a reduced internal resistance and 

higher capacity. Thus, they are better suited to higher current applications. 

4.1.1c Lithium-Iron Disulphide 

Li-FeS2 cells are compatible with both alkaline and Zinc Chloride cells, but offer 

extended shelf life and operating temperatures and provide a high current output.  

4.1.1d Lithium Thionyl Chloride 

These have a terminal voltage of 3.6V (twice that of the other types), a relatively 

high capacity and a wide operating temperature range. They are designed for long-term 

use rather than high current drain, but are quite expensive and not readily available. 

Type Manufacturer Format Voltage 

(V) 

Capacity 

(mAh) 

Size 

(mm) 

Zinc Chloride Eveready 
Silver 

AAA 1.5 560* 44.5 x Ø10.5 

Alkaline Duracell Plus AAA 1.5 1,150* 44.5 x Ø10.5 

Li-FeS2 Energizer L92 AAA 1.5 1,250*** 44.5 x Ø10.5 

Alkaline Duracell Plus AA 1.5 2,850* 50.5 x Ø14. 5 

Li-FeS2 Energizer L92 AA 1.5 3,000** 50.5 x Ø14. 5 

Li-SOCl2 Saft LS14500 AA 3.6 2,250 50.3 x Ø14.65 

Alkaline Energizer E93 C 1.5 8,350* 50.5 x Ø26.2 

Alkaline Energizer PP3 9.0 625 48.5 x 26.5 x 17.5 

The quoted capacities assume an endpoint voltage of 0.8V
*
, 0.9V

**
 and 1.0V 

***
 respectively. 

Table 3: A Comparison of Primary Cells 

(Source: RS Components and Manufacturer’s Data Sheets) 
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4.1.1e Primary Cell Comparison 

In considering AAA cells, Zinc Chloride has half the capacity of Alkaline or Li-

FeS2. In turn, AA cells are just over twice the volume of AAAs but have a superior 

energy density. The PP3 battery has the lowest energy density of all; the combined 

internal resistance of its six series-connected cells also seriously restricts is use in 

anything except low power applications. 

4.1.2 Secondary Cells 

Common secondary cells include Lead-Acid, NiCad, NiMH, Lithium-ion and 

Lithium Polymer. Lead-Acid batteries must be discounted due to their size and weight; 

they are better suited to high-power applications in larger systems. Over the last few 

years, NiCad batteries have gradually fallen out of favour and are generally being 

replaced by the more environmentally friendly NiMH cells; thus, they too are not 

included in the comparisons in Table 4. 

4.1.2a Nickel Metal Hydride 

Rechargeable NiMH cells (which a have a low internal resistance) are replacing 

Alkaline cells in many applications where a high current demand is required. They are 

available in both OEM packages and a range of popular sizes, and in many cases, the 

nominal 1.2 – 1.3V terminal voltage is close enough to that of Alkaline batteries to 

ensure compatible operation. They may be recharged at rates ranging from a trickle (a 

few mA) to a fast charge at 1C (equal to the mA capacity rating) or more.  

Drawbacks of this technology are self-discharge, which can exceed 20% of the total 

capacity in a month (depending on the ambient temperature), and a limited 

charge/discharge cycle life. Most manufacturers quote a typical life expectancy of 500 
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cycles, although this is dependent on the typical duty cycle, charge and discharge rates 

and temperature. The maximum storage capacity also deteriorates as the battery ages; 

this is a good indication that replacement is due. 

4.1.2b Lithium-Ion and Lithium Polymer 

The major difference between the two forms of rechargeable Lithium cells is the 

electrolyte. With Li-ion, it has a liquid or gel form, whilst in Li-Poly cells it is a solid 

polymer, and thus leak-free. This subtlety does affect performance; both types offer 

high capacity but Li-Ion has a superior current output capability. The cells are generally 

designed for OEM (Original Equipment Manufacturer) use and non-removable. The 

packaging, which can be of a thin flat housing or of a soft and flexible construction, 

facilitates accommodation in a small enclosure. These cells offer most of the benefits of 

NiMH, but with higher energy densities, and significantly lower self-discharge. They 

offer the best volumetric and gravimetric energy efficiency of all of the cell types 

studied. 

There are a number of issues with to consider with Lithium secondary cells. They 

require a special charging regime (constant current - constant voltage), and may be 

irreversibly damaged if overcharged or discharged excessively. To prevent damage they 

are normally fitted with onboard protection circuits, but careful battery management is 

required for optimal performance. Although they typically have a reasonable life cycle, 

cell capacity shows irrecoverable degradation over time. This is charge and temperature 

dependent and can exceed 30% per annum.  

In its metallic form, Lithium is highly reactive. At higher temperatures batteries may 

even ignite or explode. Lithium cells gained a certain amount of notoriety during 2006 
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after the widely reported problems with laptop PC batteries catching fire. This prompted 

system manufacturers to recall several million Sony-produced batteries. 

 

Type Manufacturer Format Voltage 

(V) 

Capacity 

(mAh) 

Size 

(mm) 

NiMH Sanyo HR-4U AAA 1.2 1,150 44.5 x Ø10.5 

NiMH Duracell AA 1.2 2,500 50.5 x Ø14. 5 

NiMH Ansmann C 1.2 3,500* 50.5 x Ø26.2 

Li-Ion Enix 800040 Soft Pack 3.75 6,800 70 x 60 x 20 

Li-Ion Enix 800052 Soft Pack 7.5 2,200 70 x 37.5 x 19 

Li-Poly Varta PoLiFlex Pack 3.7 1,560 66 x 35 x 4.2 

Table 4: A Comparison of Secondary Cells  

(Source: RS Components and Manufacturer’s Data Sheets) 

4.1.2c Secondary Cell Comparison 

Compared to Lithium cells, NiMH are cheap and well established. Both degrade over 

time, with Lithium being the worst offender. Whilst both battery types suffer from self-

discharge, Lithium is markedly better than NiMH. With respect to charging, both may 

be fast charged (in an hour or less) although the charger requirements are quite 

different. Lithium cell packaging requires that they are built-in to equipment, requiring 

the development of battery management and charging circuitry. NiMH cells are, for the 

most part, compatible with popular non-rechargeable cells; this facilitates their in-field 

replacement with whichever type is appropriate or freely available. For this reason, the 

comparison in Section 4.3.2 will focus on NiMH cells. 

4.2 Voltage Regulation 

The problem with battery power is that the voltage level changes over time as the 

battery discharges. For reliable operation, both analogue and digital circuits need to run 
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from a constant voltage source. A voltage regulator maintains a constant output voltage 

from a variable voltage input. There are two types of voltage regulator, linear and 

switch mode. These are described and compared in the next sections: 

4.2.1 Linear Regulators 

These are the simplest and cheapest type of voltage regulator. Linear regulators are 

offered by many semiconductor manufacturers, and come in a variety of packages, 

voltage and power ratings, with fixed or adjustable outputs, and with or without 

shutdown options. Few additional components are required (see Figure 12) to construct 

a basic circuit. 

 

Figure 12: A Typical Linear Regulator Circuit 

A characteristic of all linear regulators is that the input voltage must be higher than 

the output (Maxim, 2001). For maximum efficiency, the difference between the input 

and output, known as the Drop-out voltage, should be as small as possible; the greater 

the difference, the more power is wasted as heat. Power dissipation is given as: 

Power Dissipation = (Voltage in – Voltage out) / Current out 
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Low drop out (LDO) devices with a dropout voltage of around 100 mV are available 

for lower current ratings. 

4.2.2 Switch Mode Regulators 

Unlike linear regulators, switching, or switch-mode voltage regulators are able to 

produce higher, lower or negative outputs with respect to the input. There are various 

circuit configurations to satisfy the output requirements, but they are all loosely based 

around a PWM (pulse width modulation)-controlled transistor controlling the 

charge/discharge cycle of a inductor and capacitor circuit. The switching frequency is 

normally quite high (up to a megahertz) as this allows lower value, and therefore 

smaller inductors and capacitors to be used. 

 

Figure 13: A Basic Step-Down or Buck Converter Circuit 

The layout of a basic step-down switching regulator (National Semiconductor, 

2002), also known as a buck converter, is shown in Figure 13. Turning on the FET, Q, 

causes the inductor, L, to charge and initiates the charging of capacitor C. When Q is 

turned off, the inductor discharges through capacitor C, which smoothes the output to 

drive a load, RL. The output voltage is dependent on the duty cycle of the PWM control 
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signal; the feedback circuit that controls this is not shown in the schematic. As the 

transistor is either turned off, or saturated, it consumes little power; efficiency ratings 

approaching 95% are not uncommon.  

A SEPIC (Single Ended Primary Inductance Converter) can provide a good solution 

for battery powered systems. It is able to both step-down and boost the input voltage, as 

appropriate, to maintain a constant voltage output. This can help extract more energy 

from a partly discharged battery’s reduced terminal voltage. SEPICs tend to add to 

circuit complexity and component count although single chip solutions, requiring only 

external passive components, are readily available. 

A drawback of all switching regulators is that they generate circuit noise. This is due 

to switching noise caused by surges as the inductor charges and discharges. The noise 

produced is predominantly at the switching frequency (and its harmonics) and can be as 

high as 200mV peak to peak. 

4.3 Power Supply Selection 

For optimum performance, the battery characteristics should be a good match for 

both the instrument’s power requirements and usage patterns. Therefore, the PDL’s 

typical usage pattern and duty cycle must be considered. Ideally, the power supply 

should have the following properties: 

� Output for 3.3V (200mA*) digital supply,  

� Outputs for separate 5V analogue (50mA) and 5V sensor excitation (50mA) 

supplies, with shutdown facilities, 

� Low noise 

� Battery powered 

� USB power option 
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� Capable of running for extended periods on one charge or set of batteries 

* The specified output current for the 3.3V supply is based upon a worst case 

estimate, and allows around 10% headroom. 

4.3.1 Regulator Selection 

In selecting the type of regulator for the design, their respective properties must be 

carefully considered:  

Switching regulators are more efficient than their linear counterparts, and, as they 

may operate from voltage levels below that of their outputs, are able to extract more 

power from a battery. The inherent switching noise however is a concern for precision 

analogue circuits.  

Linear regulators cannot offer the same levels of efficiency as switching circuits, 

extract less power from a battery and may require heat sinking. Their benefits lie in low-

noise operation and a minimal component count. 

Ultimately regulator choice boils down to efficiency versus noise, and which is of 

greater importance for the design – battery life or measurement accuracy. Consensus in 

manufacturer’s design guides, application notes, and textbooks (e.g. Hill and Horowitz, 

1989), is that switching regulators should be avoided for precision analogue 

measurement circuits. Switching noise may be reduced, by adding a LDO linear 

regulator to the switching regulator’s output (reducing efficiency) and/or adding RC 

low-pass filters around the circuit for example, but only at the expense of increased 

complexity, component count and therefore, cost.  

As the PDL has the potential to sample analogue signals to a 16-bit resolution, circuit 

noise would seriously compromise measurement accuracy. Thus, in keeping with best 
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practice, linear regulators would provide the best option. Even with a dynamic load, as 

the power management control demands more or less current, noise should be kept in 

check. Although efficiency is sacrificed, power losses may be reduced if a device with a 

very low dropout voltage is specified. 

4.3.2 Battery Selection 

If linear regulators are to be used, the battery output must be greater than that of the 

highest voltage regulator. As a 5v supply is required, this necessitates a battery output of 

at least 5V plus the regulator’s drop-out voltage. When considering the different cell 

types, in practical terms this provides the options shown in Table 5. 

Cell Type Terminal Voltage No. of Cells Output Voltage 

Alkaline 1.5V 4 6V 

Alkaline 1.5V 5 7.5V 

NiMH 1.2V 5 6V 

Table 5: A Comparison of Battery Output Levels 

As the battery output voltage is close to that of the regulator’s minimum input, the 

battery characteristics are of particular interest. The simple test circuit in Figure 14 was 

constructed, with load resistor (RL1 and RL2) values of 10Ω and 3.3Ω being selected for 

two tests.  



MSc by Research David Pitts 

 

59 

 

Figure 14: Battery Discharge Test Circuit 

These loads were chosen as they represent estimates of the typical operational and 

worst case maximum transient system loads respectively. Outputs OP 1 and OP 2 were 

connected to the analogue inputs of a CIC CardCorder data acquisition system to log the 

test results.  

Figures 15 and 16 depict the comparative discharge characteristics of Alkaline 

(Duracell Procell) and freshly charged NiMH (Uniross 2500 mAh) AA cells. The shape 

of the discharge curves in both graphs is very distinctive. The Alkaline cell voltage 

shows a gradual voltage drop off as it discharges while the NiMH cell voltage plateaus 

before falling away rapidly.  
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Battery Discharge Characteristics with a 10 Ohm Load
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Figure 15: A Comparison of Battery Discharge Characteristics with a 10Ω Load  

It should be noted that as the initial terminal voltages are different for the two battery 

types, Ohm’s law comes into to play. As the current drawn is dependent on the initial 

terminal voltage, the initial currents would be: 

Alkaline cell - 1.5V / 10Ω = 150 mA  & 1.5V / 3.3Ω = 454 mA 

NiMH cell - 1.3V / 10Ω = 130 mA  & 1.3V / 3.3Ω = 393 mA 

As this demonstrates, the initial current consumption at 10Ω and 3.3Ω loads is 

around 15% higher.  

5 x Alkaline 

4 x Alkaline 

NiMH cut off 
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Battery Discharge Characteristics with a 3.3 Ohm Load
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Figure 16: A Comparison of Battery Discharge Characteristics with a 3.33Ω Load 

Of particular interest is the minimum voltage required to operate a 5V voltage 

regulator. The input threshold for a 5V LDO regulator is a nominal 5.2V; dividing this 

figure by the number of cells gives the cell cut-off voltage. The cell cut-off voltages for 

the battery packs quoted in Table 5 are shown in Figures 15 and 16. The quoted 

endpoint discharge voltage for a NiMH cell is 1.1V and therefore this figure is used for 

the cell cut off voltage.  

Cells Cut Off 10Ω Continuous 3.3Ω Continuous 

4 x Alkaline 1.3V 4.5 hours 0.5 hours 

5 x Alkaline 1.05V 17 hours 3.5 hours 

5 x NiMH 1.1V 13 hours 3.75 hours 

Table 6: Approximations of Battery Life for Continuous Operation with a 5V LDO 

Regulator 

NiMH cut off 

4 x Alkaline 

5 x Alkaline 
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The approximations of continuous battery life shown in Table 6 must be treated as 

such as there are other issues to consider when dealing with multiple cells. Alkaline 

cells have a relatively high internal resistance, which increases as the cell discharges. As 

the internal resistance of a battery pack is the sum of that of the cells, the voltage drop 

off will be more pronounced.  

In continuous operation, the PDL’s power management can reduce power 

consumption to a minimum by shutting down redundant circuits. This would extend 

battery life well beyond the figures quoted in this section. With intermittent use of 

perhaps one hour per day (an average of 1/24th of continuous use) and power 

management, PDL battery life expectancy would be improved dramatically. 

Even though the Alkaline cell initially appears (graphically) to offer the best 

operating time, examination of the respective cut off voltage markers tells a different 

story as much of the cell’s capacity is unused. NiMH cells show a superior performance 

with higher power demands, but for long-term operation self-discharge becomes an 

issue.  

An important point of concern is that of operating temperature; most batteries show 

reduced terminal voltages and capacities at temperatures approaching 0°C. The resulting 

reduction in battery life can be quite dramatic as the lower terminal voltage means 

operating closer to the regulator’s cut off voltage. Some alkaline batteries can lose up to 

60% of their normal capacity (Energizer, 2007) at 0°C compared to that at room 

temperature (20°C). Nickel Metal Hydride cells demonstrate better low temperature 

characteristics, losing around 30% of their capacity over the same range (Energizer, 
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2001). Compared with these technologies, Lithium iron disulphide (Li/FeS2) cells offer 

superior performance over a broader temperature range (Energizer, 2005).  

All three battery technologies discussed in the previous paragraph are available in the 

familiar AA and AAA form factors. In terms of gravimetric energy density, 

manufacturer’s data sheets (Energizer) show Li/FeS2 at 208 mAh/g, alkaline at 124 

mAh/g and NiMH providing 83 mAh/g for AA cells. Here the Li/FeS2 cells come out on 

top. With discharge characteristics similar to alkaline cells, they are more expensive, but 

with increased capacity and extended operating temperature range, they provide a useful 

alternative. 

For field applications, the ability to easily replace old or tired batteries rather than 

charge equipment before use can be advantageous - the user should never be left high 

and dry. Popular battery sizes such as AA and AAA are readily available, and the 

appropriate technology may be selected to suit the application and environmental 

conditions. 
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Chapter 5  - Circuit Design 

5.1 System Architecture 

The architecture of the basic system in Figure 17 shows how the various component 

blocks are arranged. At the heart of the system is a microcontroller, this is typically 

based on the common 8051 processor core, or one of Atmel’s AVR or Microchip’s PIC 

family of devices. There are many variants of these devices with on-chip 10- or 12-bit 

ADCs and real time clocks; this level of integration can simplify the design, minimising 

external components and saving valuable circuit board space 

 

 

 

 

 

 

 

 

 

Figure 17: Basic System Architecture 

To reduce the circuit’s power demand the microcontroller operates from a minimal 

crystal frequency. This frequency will be determined by the level of performance 

required, and the microcontroller’s UART’s (Universal Asynchronous Receiver/ 

Transmitter) demands in interfacing to an RS-232 port at standard baud rates. 
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5.1.1 Design Outline 

Whilst similar in concept, the Personal Data Logger (PDL) design is split into 

functional areas, on separate circuit boards. This project is concerned with the design of 

the PDL system core, as depicted in Figure 18, which controls all aspects of system 

operation.  

An integrated ADC typically has inferior resolution, performance and signal-to-noise 

ratio than a dedicated chip, which provides the best all-round option. In addition, the 

design includes a USB and serial interfaces, and a flash card for mass data storage. 

Other components, such as the real time clock, would feature on a second circuit board 

together with the system power supply and connectors; further details may be found in 

Section 5.6. 

 

 

 

 

 

 

 

 

 

Figure 18: Design Project System Architecture 
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5.2 Device Selection 

When selecting components for the design, there are some common criteria to 

consider in addition to type-specific issues : 

Power demand: Low power devices are preferred. 

Availability: Parts should be of current manufacture, and not subject to extended 

lead times or large minimum order quantities. 

Packaging: Devices should be available in packages suitable for low-volume 

manual assembly. 

Component availability proved to be a bigger issue than originally anticipated. Some 

supplier’s offerings are seemingly only available to the volume market. Thankfully, 

there are a few manufacturers, such as Maxim, Microchip and Ramtron, who are 

pleased to provide sample quantities; these are ideal for prototyping.  

Another important issue is that of chip packaging. The push for ever smaller 

components is driven by the mass market demand for hand-held, high-tech consumer 

electronics. Some otherwise ideal components could not be considered due to their 

small size and terminal arrangement, with Ball-Grid Array (BGA) and the increasingly 

popular Quad Flat No-lead (QFN) being the main culprits. Miniaturisation is perfectly 

suited for mass production, but without specialist equipment is a step too far for low 

volume production. Hand assembly is not an option. 

5.2.1 Choosing a Microcontroller 

There are many devices that may be considered, including high performance chips 

from Atmel’s AVR and Microchip’s PIC families and the MSP430 series from Texas 
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Instruments. Whilst systems based upon both PICs and AVRs have been successfully 

developed within the school, the highly-integrated ARM-based microcontrollers are of 

greater interest. They have many of the features found on AVRs and PICs, but their 

RISC (Reduced Instruction Set Computer) architecture offers distinct advantages. RISC 

machine code, which is executed at one instruction per clock cycle, is both code-

efficient and offers performance benefits. Many manufacturers offer chips based around 

the ARM-7 processor core. These may differ in terms of the range of features provided, 

but typically share the same software development environment and tools. 

The ideal microcontroller for this design project should have the following features: 

� Low power operation, with power saving and power-down modes 

� Programmable clock frequency to optimize system performance 

� On-chip SRAM for temporary storage 

� On-chip Flash memory for embedded code storage 

� In System Programming (ISP) and good software development tools 

� SPI and I2C serial bus interfaces 

� On-chip USB controller 

� On-chip UART for serial RS-232 interfacing 

� 16 or 32-bit timer/counter inputs 

� Multiple general purpose I/O (input/output) terminals 

The properties of a range of ARM processors from a range of manufacturers are 

shown in Table 7: 
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 STR711FR2T6 AT91SAM7S64 LPC2148 

Clock 66 MHz max 55 MHz max 60 MHz max 

Number of Pins 64 64 64 

Flash (kB) 272 64 512 

SRAM (kB) 64 16 40 

USB Yes Yes Yes 

Clock Scaling Yes Yes Yes 

Max Current (mA) 150 50 90 

SPI 2x 1x 2x 

I
2
C 1x 1x 2x 

JTAG Yes Yes Yes 

Table 7: A Comparison of ARM Processor Properties 

After careful consideration of the various ARM devices, taking into account the 

aforementioned features and component availability, the Philips LPC2148 

microcontroller (NXP, 2005) was selected for the project.  

5.2.1a LPC2148 Key Features 

Low Power Consumption 

The ARM7 processor core runs at 1.8V, which helps reduce power consumption. 

This voltage is derived from the 3.3V supply via an on-chip dc to dc. Operating from an 

external 60MHz crystal, the LPC2148’s programmable phase-locked loop (PLL) 

provides system clock frequencies of 10 - 60 MHz. This gives a net current 

consumption ranging from 15 – 90mA at 3.3V (NXP, 2006), depending on the PLL 

setting and the number of active on-chip peripherals; inactive parts of the device may be 

shutdown under software control to minimise power demand. Power-down modes can 

reduce consumption to round 100µA.  
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Memory 

The chip has a generous 512kB of flash memory for embedded software code or 

long-term data storage. With this amount of non-volatile memory, there is plenty of 

code space available for software development. In addition, 32kB of on-chip SRAM 

may be used to temporarily store code or data. 

In-System Programming 

An industry standard JTAG (Joint Test Action Group) port is provided for in-system 

programming, software development and debugging. A range of software tools, JTAG 

adapters and emulators are available from leading vendors such as IAR Systems and 

Keil; these are available within the School. 

Serial Busses 

The device features two I2C bus interface ports. These are capable of operating at up 

to 400 kB/second, and in master or slave configuration. For higher speed operation (up 

to an eighth of the system clock frequency), SPI is available. Additionally an SSP 

(Synchronous Serial Port) bus may be configured for SPI, Microwire or Three-Wire bus 

operation.  

Communications 

Two UARTs (Universal Asynchronous Receiver Transmitters) are available for 

serial communication. UART0 offers a basic transmitter-receiver pair whilst UART1 

has a full eight-line modem interface. An on-chip USB controller is provided for high-

speed data transfer, at up to 12 megabits per second, to a USB host. 
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General Purpose Input/Output Terminals 

Most terminals have multiple functionality. The chip’s Pin Connect Block allows 

individual terminals to be configured as either basic input or output pins, or for a range 

of other functions depending on design requirements. 

Other Features 

The chip also has a range of other features which include: 

� an onboard real-time clock running from an external 32kHz crystal 

� up to fourteen 10-bit analogue to digital converter (ADC) inputs 

� a 10-bit digital to analogue converter (DAC) output 

� up to six pulse width modulation (PWM) outputs 

� two 32-bit timer/event counters 

� external interrupt pins 

� sophisticated power management 

5.2.1b LPC2148 Pin Assignments 

With such a versatile device as the LPC2148, there are many design decisions that 

must be made. The chip has 64 terminals, most of which (as previously stated) support a 

number of different functions. This is best illustrated in Figure 19: 
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Figure 19: LPC2148 Microcontroller Pin Mapping (NXP, 2005) 

Careful consideration is required before pin functions can be defined. The primary 

purpose of the design is to acquire and store data, with an emphasis on high 

performance. Therefore, as two SPI-compatible serial busses are available this allows 

the memory and ADC to be assigned to separate busses, improving system performance. 

An I2C port provides interfacing for a real-time clock and board expansion. 

As the design has the option of mass data storage via an onboard memory card, USB 

will be the primary means of transferring data. A basic RS-232 serial port provides a 
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lower-speed secondary transfer method and serial expansion, the full modem interface 

of UART1 is not required. In considering these issues, the device pin assignment outline 

can be simplified as shown in Figure 20. 

 

Figure 20: LPC2148 Microcontroller Pin Assignments 
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5.2.2 Selecting an ADC 

A typical analogue data acquisition sub-circuit usually consists of a number of chips 

– a multiplexer, sample and hold amplifier, voltage reference and ADC at its most basic 

level.  

 

Figure 21: A Basic Analogue Data Acquisition Circuit 

The multiplexer sequentially switches an analogue input to the sample and hold 

amplifier, here the waveform is sampled and ‘frozen’ while the ADC performs the 

analogue to digital conversion. With the conversion complete, the ADC sends a signal 

to a microprocessor that initiates the process once more.  

The throughput of the circuit is dependent upon the sum of the multiplexer settling 

time, the acquisition time of the sample and hold amplifier and the conversion time of 

the ADC. The timing of the control signals is critical for accurate data conversion.  

The analogue to digital conversion process has largely been streamlined with the 

advent of chips that include all the necessary circuitry in a single monolithic package. 
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Apart from the convenience a single-chip solution offers, the timing is simplified and 

there is a significant saving in both cost and board space.  

The design specification calls for a multi-channel 16-bit ADC, with a serial SPI 

compatible interface. In addition, the device should also: 

Operate from a single-rail supply voltage of no more than +5 Volts, with the 

possibility of running the digital interface from a lower voltage to save power. 

be capable of sampling at more than 100,000 samples per second 

have an integral multiplexer providing at least four, or preferably eight analogue 

input channels 

There are a number of seemingly suitable ADCs available; their specifications are 

shown in the following table: 

Device Manufacturer 
Power 

(mW)* 

Sample 

Rate 

(ksps) 

Inputs Input Range 

LTC1859 Linear Tech 40 100 8 
0-2.5V, 0-5V, ±5V, 

±10V (programmable) 

LTC1867 Linear Tech 6.5 200 8 0-4.096V, ±2.048V 

MAX1168 Maxim 13.3 200 8 0-4.096V, 0-Vref 

ADS8345 Texas 10 100 8 Vcc/2 

Table 8: A Comparison of Selected ADC Properties 

* The power consumption quoted is the typical power at the given sample rate; this 

figure should be reduced at lower sampling rates. 

There are surprisingly few ADC chips that meet the criteria. The LTC1859 can be 

disregarded due to its relatively high power demands. Of the other three, the ADS8345 

appears quite attractive due to its convenient input range. However, the MAX1168 
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requires much less processor intervention, and therefore less software overheads, as the 

converted data from all eight channels is read by the processor in one go. This compares 

favourably against the other ADCs which transfer data one channel at a time. For this 

reason, and the fact that the chip has been used successfully in Cranfield Health’s 

Tandem Gas Analyser instrument, the MAX1168 was selected for the design. 

5.2.3 Data Storage 

After evaluating available options, it was decided the best approach was to include 

two memory devices, a flash card for mass data storage and a small non-volatile 

memory chip for local or temporary storage. The addition of the second device allows 

the contents of the microcontroller’s registers and critical data to be backed up for 

continuity after system power failure. It would also provide a small amount of data 

memory, permitting the design to operate without the flash card for power critical 

applications where only minimal storage capacity is necessary. 

5.2.3a Flash Card Storage 

There are numerous different types of Flash memory card available: PCMCIA (also 

known as PC Card), Compact Flash (CF), MMC, SD, XD-Picture Card and Memory 

Stick Pro to name but a few. Factors that must be considered in choosing a card include-  

Power Consumption 

The device should ideally operate from a single supply voltage of 3 to 5 Volts, and 

draw minimal current. It should be noted that although the quoted power consumption 

can be quite high, this is often a worst case. Actual consumption is dependent on 

whether data is being written to the card or read from it; the quiescent current is usually 

very low (typically around 500 µA) and may be considered to be negligible. 
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Connector Availability 

Printed circuit board (PCB) mounted connectors should be readily available from a 

number of different suppliers. The card housing should be firm and secure, and not 

significantly larger than the card itself. As it is intended to leave the card in-situ, an 

ejecting card socket is not essential. 

Bus interface 

The flash card should be compatible with the SPI serial bus interface 

Data Read and Write Times 

System performance is, in part, dependent on the time required to write logged data 

to the card. A fast card is therefore desirable as this maximises system performance. The 

read time is not so critical but this may have influence on data download times. 

Size 

The card should be reasonably small as card size will have an influence on circuit 

board size, and determine circuit board layout.  

The selected media should be widely available and not disproportionately more 

expensive than other flash cards. XD and Memory Stick Pro cards are largely 

proprietary to Olympus\Fujifilm’s and Sony’s products respectively, and are not that 

well supported; thus for this reason they were not considered for this design. 

The following table shows a comparison of three popular card types, each with a 

2GB memory capacity: 
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Manufacturer Type Bus 
Power 

(mW) 

Write 

Speed 

(MB/sec) 

Size 

(mm) 

Lexar - Professional CF# ATA 165 20 42.8 x 36.4 x 3.3 

Transcend MMC SPI 66 2 34 x 24 x 1.4 

Sandisk – Extreme III SD 
SPI/ 4-

bit 
200 20 34 x 24 x 2.1 

Table 9: A Comparison of Selected Flash Card Properties 

Compact flash, MMC and SD cards are perhaps the best supported and amongst the 

most popular of available cards. MMC and SD cards have the same form factor and are 

around half the size of the older Compact Flash. Another difference is the bus type. 

Compact Flash has a standard parallel ATA interface, this is electrically the same as 

many (non-SATA) hard disk drives. SD cards are designed around a 4-bit bus, but will 

operate in serial mode using SPI; in this mode they are also compatible with MMC 

cards. For these reasons, SD/MMC memory was selected for the design. 

5.2.3b Local Storage 

There are three basic technologies available to satisfy local storage requirements: 

E2PROM or EEPROM (Electrically Erasable Programmable Read-Only Memory), 

Flash and FRAM (Ferroelectric Random Access Memory), which is the most recent 

development. Devices based upon all of these are non-volatile and available with SPI 

interfaces. Current consumption is generally similar (around 35 mA) and is relative to 

the operating frequency of the SPI bus. The pros and cons are outlined in Table 10. 

Technology Pros Cons 

E2PROM Widely available 
Slow access and erase times, 

capacity 

Flash High capacity Slow access and erase times 

FRAM Read and write speeds Limited selection, capacity 

Table 10: A Comparison of Secondary Storage Technologies 



MSc by Research David Pitts 

 

78 

To summarise - E2PROM and Flash are broadly similar in performance terms, with 

the latter offering large storage capacities, whilst FRAM has far superior performance 

but lower capacities. As the 8-pin variants are pin compatible and offered in the same 

industry standard packages, differing only in software routines, this allows the end 

application to determine the type of memory to be fitted. For general-purpose 

applications, Ramtron’s FM25L512 provides fast access times and 64k x 8 of storage. 

For power critical, low speed use, Atmel’s 8Mbit AT26DF801 could replace the SD 

card as the prime data storage medium. 

5.3 Description of Design Schematics 

The schematic design and circuit board layout was produced using Easy-PC for 

Windows CAD software, supplied by Number One Systems Ltd. After creating 

schematic and circuit board layout symbols, and producing library files for all necessary 

components, the multi-sheet schematic design went quite smoothly. The full schematics 

may be found in Appendix A. 

5.3.1 LPC2148 Microcontroller Connections 

The chosen pin assignments are shown in the following tables, grouped by their 

board functions. The microcontroller’s pin connect block must be programmed to 

enable these functions to ensure correct circuit operation from power up. 

5.3.1a Defined Control Pins 

These pins are defined for the control of specific on-board devices.  
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Pin Name Pin Number Defined Control Pins 

P0.21 1 ADC End of Conversion (EOC) output 

P1.16 16 Power control switch, FET Q2 

P1.17 12 FRAM Chip Select (pin 1) 

P1.18 8 FRAM Data Hold (pin 7) 

P1.19 4 FRAM Write Protect (pin 3) 

Table 11: LPC2148 Defined Control Pins 

5.3.1b The SPI Memory Bus 

This used by the SD flash card (Philips Semiconductors, 2005 – AN10406) and 

FRAM for all memory read and write operations. 

Pin Name Pin Number SPI Memory Bus 

P0.4/SCK0 27 Clock, connects to SD card pin 5 & FRAM pin 6 

P0.5/MISO0 29 Data In, connects to SD card pin 7 & FRAM pin 2 

P0.6/MOSI0 30 Data Out, connects to SD card pin 2 & FRAM pin 5 

P0.7/SS0 31 Slave Select, connects to SD card Chip Select, pin 1 

Table 12: The SPI Memory Bus 

5.3.1c The SPI Input/Output Bus 

The LPC2148’s second SPI port is used by the MAX1168 ADC for data transfer, and 

also provides off-board expansion. This allows additional SPI devices, such as slave 

microcontrollers, ADCs, DACs, programmable instrumentation amplifiers and signal 

conditioning, to be connected and controlled by the host microcontroller. For optimum 

performance with the MAX1168 ADC, off-board access should be limited during high-

speed data conversion. 
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Pin Name Pin Number SPI (SSP) Input/Output Bus 

P0.17/SCK1 47 Clock, connects to ADC pin 4 & DIO header, pin 9 

P0.18/MISO1 53 Data In, connects to ADC pin 3 & DIO header, pin 6 

P0.19/MOSI1 54 Data Out, connects to ADC pin 5 & DIO header, pin 5 

P0.20/SS1 55 Slave Select, connects to ADC Chip Select, pin 20 

Table 13: The SPI Input/Output Bus 

5.3.1d Serial Port 

This connects to the MAX3227 to produce RS-232 level signals at the DIO header. 

Pin Name Pin Number RS-232 Serial Port 

P0.0/TxD0 19 
UART0, serial data transmit 

MAX3227, pin 11 

P0.1/RxD0 21 
UART0, serial data receive 

MAX3227, pin 9 

Table 14: LPC2148 Serial Port Connections 

5.3.1e USB Port Implementation 

The LPC2148’s on-chip USB controller requires minimal external components (as 

shown in Figure 22) to implement USB 2.0 compliant data transfer at up to 12 

Mb/second to a USB host.  

The presence of USB power VUSB (+5 Volts), and therefore a USB connection, is 

detected via a pull-up resistor connected to the P0.23/VBUS terminal. Data lines D+ and 

D- are protected by 33Ω series resistors (Philips Semiconductors, 2005 - datasheet), 

whilst a 1.5kΩ pull-up resistor connects D+ to the SoftConnect circuit controlled by 

transistor Q1. SoftConnect, as perhaps its name suggests, allows connection to the USB 

bus under software control. Switching in the 1.5kΩ pull-up resistor identifies the device 

to the host as USB 2.0 compliant. 
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Pin Name Pin Number USB Port 

D+ 10 USB data i/o 

D- 11 USB data i/o 

P0.23/VBUS 58 USB power detect 

P0.31/Connect 17 USB Soft Connect 

Table 15: LPC2148 USB Port Connections 

 

Figure 22: LPC2148 USB Port Connections 

5.3.1f Digital Input/Output Expansion 

The majority of the LPC2148’s terminals have multiple functionality, as defined by 

the Pin Connect Block. Those pins not already assigned for system functions are 

available for off-board expansion. At the most basic level they can be used for general 

purpose input and output utilities; these range from turning on LEDs or power switches, 

to system event or control inputs and providing chip select outputs for SPI I/O bus 

expansion. Some of the pins however offer additional functions, these include: 

� Two I2C serial ports - P0.2, P0.3 and P0.11, P0.14 

� Two Pulse Width Modulation (PWM) outputs – P0.8, P0.9 
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� Two timer inputs – P0.10, P0.22 

� An external interrupt input for system management – P0.16 

� A second serial port with full modem interface (UART1) – P0.8 to P0.15 

Pin Name Pin Number Digital Input/Output Header 

P0.2/SCL0 22 
DIO header, pin 24 

I2C port 0, SCL0 clock 

P0.3/SCL0 26 
DIO header, pin 25 

I2C port 0, SDA0 data 

P0.11/SCL1 37 
DIO header, pin 17 

I2C port 1 - SCL1 clock, UART1 CTS, GP i/o 

P0.14/SDA1 41 
DIO header, pin 13 

I2C port 1 - SDA1 data, UART1 DCD, GP i/o 

P0.9/RxD1 34 
DIO header, pin 20 

general purpose i/o / UART1 receive / PWM output 

P0.8/TxD1 33 
DIO header, pin 21 

general purpose i/o / UART1 transmit / PWM output 

P0.13/DTR1 39 
DIO header, pin 15 

general purpose i/o / UART1 DTR  

P0.12/DSR1 38 
DIO header, pin 16 

general purpose i/o / UART1 DSR  

P0.10/RTS1 35 
DIO header, pin 19 

Timer input / general purpose i/o / UART1 RTS  

P0.15/RI1 45 
DIO header, pin 11 

general purpose i/o / UART1 RI / ext interrupt input 

P0.16/EINT0 46 
DIO header, pin 10 

external interrupt input / general purpose i/o 

P0.22 2 
DIO header, pin 7 

general purpose i/o / timer input  

P1.25 28 
DIO header, pin 22 

general purpose i/o / external trigger input 

P1.20 48 
DIO header, pin 8 
general purpose i/o 

P1.21 44 
DIO header, pin 12 
general purpose i/o 

P1.22 40 
DIO header, pin 14 
general purpose i/o 

P1.23 36 
DIO header, pin 18 
general purpose i/o 

P1.24 32 
DIO header, pin 23 
general purpose i/o 

Table 16: LPC2148 Digital Input/Output Connections 
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The terminals in the preceding table are connected to the digital input/output header 

(DIO) as shown in Figure 23. 

 

Figure 23: Digital Interface Header 

5.3.1g JTAG System Debugging 

JTAG (Texas Instruments, 1997) provides an in-circuit debugging capability. The 

microcontroller’s JTAG pins connect to an industry-standard test header as shown in 

Figure 24. The header is compatible with a number of popular interface adapters, such 

as CrossConnect for ARM from Rowley Associates and the Wiggler, originally 

developed by Macraigor Systems, but widely available from other manufacturers. Both 

adapters allow JTAG interfacing to either a PC’s parallel or USB port for software 

development and debugging. These devices, together with ARM software development 

tools, are available within the School. 



MSc by Research David Pitts 

 

84 

Like most other LPC2148 pins, the JTAG connections also have alternative 

functions. Thus the JTAG header may also be used for digital expansion if not required 

for system debugging. 

Pin Name Pin Number JTAG System Debugging Header 

P1.31/TRST 20 
JTAG header, pin 3 

JTAG Test Reset input 

P1.28/TDI 60 
JTAG header, pin 5 

JTAG Test Data input 

P1.30/TMS 52 
JTAG header, pin 7 

JTAG Test Mode Select input 

P1.29/TCK 56 
JTAG header, pin 9 

JTAG Test Clock input 

P1.26/RTCK 24 
JTAG header, pin 11 

JTAG Returned Clock Test output 

P1.27/TDO 64 
JTAG header, pin 13 

JTAG Test Data output 

Table 17: The LPC2148 JTAG Port 

 

Figure 24: JTAG Header Connections 
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5.3.1h On-Chip Analogue Input/Output 

The microcontroller has a number of 10-bit ADC input terminals; four of these 

connect to the Analogue Input/Output header (ANA1) as shown in Figure 26 and 

described in section 5.3.3. The LPC2148 has a separate analogue supply input (VDDA) 

and analogue ground (VSSA); these power the on-chip ADC and DAC. In an effort to 

provide noise immunity, the analogue supply connects to the circuit’s 3.3 Volt supply 

via a series inductor (L1), whilst bypass (C18) and decoupling (C20) capacitors connect 

to analogue ground. The ADC voltage input range set by a 2.5 Volt bandgap voltage 

reference (ZD1) which connects to the VREF terminal. 

Pin Name Pin Number Analogue Input/Output 

P0.28/AD01 13 
ANA1 header, pin 3 

ADC input 1 / timer input / general purpose i/o 

P0.29/AD02 14 
ANA1 header, pin 4 

ADC input 2 / timer input / general purpose i/o 

P0.30/AD03 15 
ANA1 header, pin 5 

ADC input 3 / timer input / general purpose i/o 

P0.25/AD04 9 
ANA1 header, pin 6 

ADC input 4 / DAC output / general purpose i/o 

VREF 63 ADC voltage reference 

VDDA 7 +3.3 Volt analogue supply 

VSSA 59 Analogue Ground 

Table 18: LPC2148 Analogue Input/Output Connections 

5.3.1i Miscellaneous Functions 

The LPC2148 has a number of fixed function terminals; these are shown in the 

Tables 18 and 19. The Reset pin, as its name suggests, is used to reset the processor, and 

connects to both the JTAG header, for in-system debugging and programming, and a 

MAX821 watchdog chip, which invokes a system reset if the voltage level falls below 

preset thresholds. A 12 MHz crystal oscillator connected to XTAL1 and XTAL2 provides 
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the input for the system clock. The onboard real-time clock, which is not used on this 

design, accounts for the remaining terminals RTXC1, RTXC2 (32 kHz oscillator inputs) 

and VBAT (the clock battery back up voltage input). 

Pin Name Pin Number Miscellaneous Functions 

Reset 57 MAX871 watchdog + JTAG header, pin 9 

XTAL1 62 Oscillator in 

XTAL2 61 Oscillator out 

VCC 23, 43, 51 +3.3 Volt supply 

VSS 6, 18, 25, 42, 50 Digital Ground 

RTXC1 3 Not used 

RTXC2 5 Not used 

VBAT 49 Not used 

Table 19: Miscellaneous LPC2148 Terminals 

5.3.2 MAX1168 ADC Connections 

The ADC connections are shown in Figure 25. The digital interface is powered by 

the system 3.3V supply; a decoupling or bypass capacitor (C12) between DVdd and 

digital ground should help reduce circuit noise. DSPR is pulled-up to the digital supply 

(R15) to enable SPI operation. DSEL, the data bit transfer input, is connected to digital 

ground to select 8-bit wide data transfer. The four-wire serial bus connects to SPI1, the 

SSP bus, while the end of conversion output EOC connects to processor terminal P0.21, 

providing the necessary ADC timing information. 
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Figure 25: MAX1168 ADC Connections 

On the analogue side of the device, the analogue supply terminal AVdd connects to 

+5V via a small series inductor (L3) which should help remove any high-frequency 

noise. A power supply decoupling capacitor (C8) connects to analogue ground, and 

should be placed close to the power terminal. As the chip’s internal reference is used, 

the Ref and Refcap terminals are bypassed to analogue ground (via capacitors C6 and 

C7 respectively) as suggested on the device datasheet. 

Each ADC input, Ain0 to Ain7, is provided with a simple low-pass RC (resistor-

capacitor) anti-aliasing filter (RN1/CN1 and RN2/CN2). These filters limit the 

bandwidth of the input signals to satisfy the demands of the Sampling Theorem 

(National Semiconductor, 1980). The filter roll-off is very gentle; the frequency of the 

3db point may be calculated using the following formula: 
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f = 1 / 2Π RC 

With a capacitor value of 33nF and resistance of 1kΩ, the 3db point of the anti-

aliasing filter is: 

f = 1 / 2Π x 1000 x (33x10-9) 

f = 4.83 kHz 

As the MAX1168 has an input range of 0 – 4.096V, the analogue inputs would 

require scaling to accept a 0 – 5V signal. This would require the addition of appropriate 

scaling resistors to form potential divider circuits on each input; these attenuators would 

then feed simple non-inverting unity gain op-amp buffers. The op-amps also offer extra 

input protection and provide low impedance outputs (set by output resistors) to the 

ADC. This circuitry would be added to a second board (see the signal conditioning 

block shown in Figure 18).  

5.3.3 Analogue Interface Connections 

All analogue input signals connect to the board via a 20-pin header (ANA1), shown in 

Figure 26. This accommodates the eight inputs to the MAX1168 ADC (An1 to An8), 

the +5 Volt supply and analogue ground, plus four inputs (AD01 to AD04) to the 

microcontroller’s own onboard ADC. The latter features the same low-pass RC anti-

aliasing filters (RN3/CN3) as the MAX1168 ADC inputs. Terminal AD04 may be 

configured as a DAC output for control applications. The addition of the LPC2148’s on-

chip ADC inputs provides the board with a total of twelve analogue input channels, 

eight 16-bit and four 10-bit; if AD04 is used in DAC mode, 11 analogue inputs and one 

output are available. 
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Figure 26: Analogue Interface Header 

5.3.4 Memory Connections 

Both the SD flash card and the FM25L512 FRAM chip, shown in Figure 27, connect 

to the processor via the SPI serial bus, and are powered from the same 3.3 Volt system 

supply (VCC). The flash card has a decoupling capacitor (C4) and a bypass capacitor 

(C2) across the power rails. The bypass capacitor is a 10µF tantalum device, which, like 

the 100nF decoupler, will help reduce power supply noise, but also acts as a reservoir to 

smooth out momentary power surges as the flash card becomes active. The two RSV 

terminals, which are used in the SD card’s four-bit operating mode, are pulled high 

through the 1MΩ resistors R3 and R11. Two further pull-ups (R4 and R9) hold the DO - 

MISO and CS/SS0 (Chip Select) lines high to enable the SD card to start correctly on 

boot-up. 
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The FM25L512 has its own decoupling capacitor (C15) connected across the power 

rails. The chip’s write protect terminal, WP, is connected to processor pin P1.19, and is 

normally held high, in its protected state, by pull-up resistor R17. The Hold and CS 

(Chip Select) pins connect to P1.18 and P1.17 respectively on the processor. With 

CS/P1.17 held high by the processor, the FM25L512 automatically enters a standby 

mode which reduces the current demand to around 20 µA. 

 

Figure 27: SD Card and FM25L512 FRAM Connections 

5.3.5 RS-232 Driver 

The MAX3227 line driver (Maxim, 2005) derives the voltages required for RS-232 

compliant communication from the system 3.3V supply (VCC). The device’s on-chip 

voltage converter produces a ±5.5 Volt regulated output from a dual charge pump 
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circuit, one acting as a voltage doubler, the other as a voltage inverter. Figure 28 shows 

the four 100nF capacitors, (C5, C9, C10 and C14) form the charge pump whilst a fifth 

(C11) is used for power supply decoupling. 

The LPC2148’s UART0 terminals, the transmit output TxD0 and receive input RxD0, 

connect to pins 11 and 9 respectively on the ‘digital voltage’ side of the MAX3227’s 

RS232 transceiver. The Rx232 input and Tx232 output connect to the chip’s RS-232 

side, providing RS-232 level signals to the digital input/output header, DIO. The 

MAX3227 is specified for use over the full range of common serial data rates and is 

capable of high-speed operation up to 1Megabaud. 

 

Figure 28: MAX3227 RS-232 Driver Connections 

A useful feature of the chip is its Auto-Shutdown Plus Mode which can reduce 

current consumption to around 1µA. This enabled by the pull-up resistor (R12) holding 

ForceOff (pin 16) high and connecting ForceOn (pin 12) to digital ground. Auto-

shutdown becomes active if the serial port is dormant for more than thirty seconds. This 
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disables the MAX3227’s charge pumps and sets the transmit output to a high-

impedance state 

5.3.6 Power Management 

All circuits, with the exception of the analogue side of the MAX1168 ADC, operate 

solely from a 3.3 Volt supply. The LPC2148 processor connects directly to this supply, 

while the other devices connect to VCC, a switched 3.3 Volt supply controlled by the 

PMOS FET, Q2 (see Figure 22). Resistor R23 pulls the FET’s gate high, holding VCC 

off until LPC2148 terminal P1.16, which controls the FET’s gate, is held at a low logic 

level, turning VCC on. With this arrangement, the microcontroller is able to control 

system power - switching on VCC at power up, or upon waking up from shutdown. 

The general-purpose I/O pins described in section 5.3.1f may be used to control off-

board voltage regulators. This would allow the analogue 5V supply and sensor 

excitation voltages to be shutdown when not required. 

5.3.6a System Clock Control 

Power consumption of the LPC2148 is a function of the Phase locked Loop (PLL) 

derived system clock frequency. This is software selectable (NXP, 2005), and may be 

set using the following formulas: 

CCLK = M x FOSC = FCCO/2P 

FCCO = FOSC x 2 x M x P 

Where CCLK is the system clock frequency, FOSC is the crystal oscillator frequency 

and FCCO is the frequency of the PLL current controlled oscillator. Two registers control 

the values of M (1 to 32) and P (1, 2, 4 or 8), the PLL multiplier and divider 
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respectively. The register values must be set to keep FCCO in the range 156 – 320 MHz 

and CCLK between 10 and 60 MHz. With a 12 MHz oscillator, this gives system clock 

frequencies (CCLK) of 12, 24, 36, 48 and 60 MHz. Operating at lower clock frequencies 

reduces power demand, but reduces system performance; thus, a balance between these 

factors must be found to suit the PDL’s operational requirements. 

5.3.6b Microcontroller Power Saving Modes 

The LPC2148 has a number of power saving modes allowing redundant on-chip 

peripherals to either be disabled or operate in lower power modes. For example, the 48 

MHz PLL-derived USB clock may be disabled unless a USB connection is present, and 

the SPI bus frequencies reduced if the PDL is required to record at slow sample rates 

(e.g. an aggregate of less than 200 samples per second).  

Ultimately, the chip can enter a power-down or sleep mode, reducing current 

consumption to around 50 µA. On entering power down, which is controlled (in 

software) by the Power Control Register, the system clock and peripherals are shut 

down. The contents of the local RAM and registers are preserved ready for use on wake 

up. 

The presence of a USB connection or a signal on P0.16/EINT0, an external interrupt 

pin, can reawaken the microcontroller from power-down. The source of the interrupt 

signal could be a simple push-button switch, the alarm output from a real time clock 

chip or a combination of these and other inputs.  

5.4 Circuit Board Layout and Assembly 

Having produced the schematic design, the Easy-PC for Windows CAD software 

was used to layout and manually route the circuit board. An important feature of the 
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software was that design integrity between the schematic and circuit board layout was 

maintained by a common netlist (or database). Design rule checking (DRC) against 

specified tolerances identified clearance issues and tracking errors.  

The majority of the components used are surface mount devices (SMD). This is 

partly due to limited choice as many semiconductor manufacturers only offer chips in 

these packages. However, the majority of components used are SMDs, even when 

conventional alternatives are readily available. As SMDs are relatively small, and have 

minimal mass, they are less prone to damage due to high shock or vibration levels than 

most conventional components. The use of surface mount technologies greatly improves 

the ruggedness of the design. 

5.4.1 Component Placement 

Size was an important consideration in this design, which thus necessitated the use of 

surface mount components. These offer a small footprint and may be mounted on either 

or both sides of the board, effectively doubling the potential board density.  

Components were arranged and placed on both sides of the board. Two major factors 

determined placement: (1) the separation of analogue and digital components to reduce 

signal noise, and (2) the minimisation of track lengths. The final layout is shown in 

Figures 29 and 30. The disproportionate size of the passive components (i.e. the 

resistors and capacitors), and connectors, compared to that of the semiconductor 

devices, is quite apparent. In the case of the passive components, which are mostly of a 

0805 case size (2.0 x 1.25mm), this is due to the restrictions placed upon component 

size by manual assembly; in volume production, these could be significantly smaller. 
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Figure 29: Circuit Board Artwork Top View 

In keeping with best practice, the decoupling capacitors for each chip were placed 

close to voltage terminals to provide localised power filtering. The LPC2148 

microcontroller (U5) was positioned centrally to facilitate connection fan out to the rest 

of the circuit. The 12 MHz crystal oscillator, X1, was placed close to the 

microcontroller’s oscillator input terminals together with the oscillator’s capacitors 

(C21 and C 22). 
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Figure 30: Circuit Board Artwork Bottom View (shown mirrored) 

5.4.2 Circuit Board Layout 

After starting to route the interconnections, it soon became clear that the top and 

bottom copper layers would not be sufficient to complete the design without increasing 

board size. To address this problem it was decided to opt for a four-layer circuit design. 

The two new internal layers were used for analogue and digital ground and power 

planes (plus a few signal lines). As the planes offer a very low resistance path for the 

power rails, reducing ground loops, and provide screening for the two outer signal 

layers, this should result in lower circuit noise.  

Noise sensitive tracks, such as analogue signal inputs and ADC voltage references, 

were kept away from high-speed digital signals (e.g. busses and clocks) to further 

reduce induced circuit noise; and where possible, routed on a different electrical layer. 
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In an effort to minimise board problems due to manufacturing processes, the 

software’s design rules were set to maintain relatively generous clearances. The 

design’s minimum track thickness and clearance of 0.2 mm may be compared 

favourably to the 0.15 mm quoted by many circuit board manufacturers (Beta Layout, 

2004). Via holes, used to connect between electrical layers, were also optimised with 

this in mind and were kept to a minimum wherever possible. To ensure good 

connectivity, surface mount component pads were made slightly larger than industry 

standards as an aid to hand soldering. 

 

Figure 31: 3D CAD Circuit Board Image 

5.4.3 Circuit Board Assembly 

The circuit was carefully hand-assembled using tweezers, side cutters, long-nosed 

pliers, solder braid, low melting point solder (Smartwire), a head-mounted magnifier 

(Optivisor) and a conventional soldering iron. 
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First a corner pad of the LPC2148 layout shape was tinned. With the chip carefully 

positioned, the pad reflowed to secure one corner. After reflowing the joint a second 

time to ensure correct alignment between the chip’s other terminals and the solder pads, 

the pin diagonally opposite was soldered down to anchor the device flat to the board. 

With a pin pitch of 0.5 mm, it would prove almost impossible to individually solder all 

the LPC2148’s 64 pin without bridging (and therefore short-circuiting) a few pins. 

Instead, the well-tinned soldering iron was dragged along each side of the chip to 

produce continuous solder fillets. Excess solder was then removed with solder wick to 

leave perfect solder joints. A similar process was used to mount the MAX1168, 

MAX3227, and the surface mount resistor and capacitor networks, which also have 

small pin pitches. 

 

Figure 32: Assembled Circuit Board – Top Side 
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Figure 33: Assembled Circuit Board – Bottom Side with SD Card Inserted 

The pin spacing of the remaining surface mount components was large enough to 

permit the terminals to be soldered individually. Again, one pad on each component was 

tinned, and, with the component in position, reflowed. Where necessary, the joint was 

again reflowed to ensure optimal pin alignment and component flatness. The remaining 

terminals were then soldered. To simplify initial testing, the power control FET, Q2, 

was omitted at this stage, and the drain and source connections shorted together. 

The plated through hole components were the last to be fitted, in order of height. 

Each component was held flat to the board while (with the exception of the two-pin 

crystal) the corner pins were soldered. The rest of the pins were soldered and the leads 

clipped short.  
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Chapter 6  - System Testing 

In order to test the PDL board, the test rig shown in Figure 34 was designed and 

assembled. This provided circuit power, connections to a PC’s USB and serial ports, 

and analogue inputs. After visual inspection using an Optivisor and carefully checking 

for continuity and short circuits on the board’s power supply rails, the PDL was plugged 

into the test rig to commence testing. 

 

Figure 34: PDL Circuit Board Test Rig 

6.1 Board Tests 

With the bench power supply (PSU) set to 6V and a current limit of 200mA, power 

was applied to the circuit. Initially no apparent problems were observed, so a JTAG 

debugger was connected to the JTAG header and the power cycled. The board failed to 

communicate with the test PC and after monitoring the state of the JTAG bus with an 

oscilloscope; it was found that the Reset terminal could not be pulled low to assert a 

system reset. The fault was traced to a design error caused by transposed pin 

assignments when the MAX821 watchdog chip was added to the CAD library. The 
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offending tracks on the PCB were cut and corrections made using a short length of wire. 

This proved to be successful. 

With the modification to the Reset line, the JTAG was able to connect to the PDL but 

communication proved to be unreliable. Closer examination of the PDL’s JTAG 

connections, and reference to Section 22.5 of NXP’s LPC214x User Manual (NXP, 

2005), established that the P1.26/RTCK pin required a pull-down resistor. A 10kΩ 0805 

resistor was added between pins 11 (RTCK) and 12 (VSS/GND) on the back of the 

JTAG port. Following this change, the JTAG port operated correctly. 

A number of test programs produced and provided by Paul Knight were used to 

assess system performance. These results of these tests are discussed in the following 

sections. 

6.1.1 Processor Power Consumption and Performance 

A basic monitor program was downloaded to the PDL board via the JTAG link. This 

allowed the system clock frequency to be changed, as discussed in Section 5.3.6a, to 

determine the board’s current consumption. In addition, code was included to run the 

Sieve of Eratosthenes benchmark; an algorithm for finding prime numbers used to check 

processor or code performance (Keil, 2007).  

The results in Table 20 show the trade-off between power and performance. The tests 

were performed without an SD Card and with the SPI clocks disabled in software. As 

the power control FET was effectively always on (see the end of Section 5.4.3), all other 

devices were powered. As the PDL board’s RS-232 port was fully functional, this was 

used to control the tests via a serial terminal program running on a PC, and the JTAG 

adapter was disconnected. The supply current quoted is that measured at the bench PSU.  



MSc by Research David Pitts 

 

102 

Regarding the supply current, this reduced by 5mA when the MAX3227 entered 

auto-shutdown after 30 seconds of inactivity. It was determined that the regulators on 

the test rig were responsible for another 2mA. The actual current drawn by the PDL 

board at 60MHz operation, with the MAX3227 shutdown, was therefore approximately 

58mA. Enabling the SPI clocks increased demand to around 85mA at 60MHz. 

System Clock (MHz) Supply Current Sieve Test (seconds) 

12 25 0.0728 

24 35 0.0364 

36 45 0.0242 

48 55 0.0182 

60 65 0.0145 

Table 20: PDL Board - Power v. Performance Tests 

An interesting comparison may be made with the Sieve benchmarks of other 

board/processor combinations. This standard performance data was collected by Paul 

Knight over a period of time from various devices used in Cranfield University projects. 

Some examples are shown in Table 21.  

Board/Processor 
System Clock 

(MHz) 
Complier 

Time per Loop 

(seconds) 

Phycore/ Philips 80591 12 Keil v4.0 0.306 

Atmel AVR Mega103 4 GCC 2.95 0.1 

Taskit 386 25 Borland 16 bit 0.0479 

DSP Design/ Elan 486 66 Borland 16bit 0.0435 

EB01/ ARM7 TDMI 32 
GCC3.0 Thumb 

Mode 
0.0206 

PDL/ LPC2148 60 
GCC 4.1 Thumb 

Mode 
0.0145 

Home Celeron PC 800 Borland 16bit 0.0018 

Table 21: PDL Board - Performance Comparison 
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The PDL board’s performance on this benchmark compares favourably with the 

other combinations, particularly considering it has much lower current consumption 

than some of its closest competitors. The Elan 486 board for example, which is based 

around the AMD SC400 486-class processor, has a third of the performance yet takes 

more than five times the power. 

6.1.2 Flash Card Performance 

The PDL board’s ability to log data at high speed is largely determined by the time 

taken to write data to the SD card. Memory test software developed for another ARM 

processor (Atmel’s SAM7x), was modified to run on the PDL board. After confirming 

that the SPI memory bus was working, performance tests were conducted on some 

example SD cards with the bus running at 7.5 MHz. 

Test Figures (kb/sec) Claimed (kb/sec) 
Card Type 

Write Read Write Read 

Kingston 256MB (33x) 105 415 1,500 5,000 

Kingston 2GB (Mini SD)  200 716 - 7,500 

Sandisk 256MB (66x) 273 573 - 10,000 

Lexar 64MB (Mini SD) (66x) 501 603 - 10,000 

Table 22: PDL Board – SD Card Performance Tests 

The test results show a wide spread in performance, demonstrating the difference 

between read and write speeds. The published performance figures appear to be based 

upon four-bit bus operation. Data published by Sandisk (Sandisk, 2003) shows times of 

163.8µs and 41.0µs for SPI and four-bit mode respectively, to transfer 512 bytes of data 

with a 25MHz bus for their standard (66x) card. Thus, four-bit mode is four times faster 

than SPI. Taking this into account together with the difference in bus speed – 7.5 MHz 

in the performance tests compared with 25 MHz for published figures – the system’s 
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SPI bus performance is 13.33 times ([12.5/3.125] x [25/7.5]) slower than the optimum. 

Multiplying the measured speeds by this factor gives figures much closer to those 

published by the manufacturers.  

Card performance is normally specified as multiples of 150 kbps, e.g. 66x cards have 

a notional performance of 66 x 150kbps or 9.90 Mbps. It should be noted that these 

figures are typical rates and do not indicate whether read or write speeds (which are 

typically lower) are being quoted. Faster cards, such as 133x (19.95 Mbps) and 150x 

(22.5 Mbps), offer improved system performance potential (> 1Mbps using SPI running 

at 7.5 MHz); this is ultimately limited by a combination of card and SPI bus speed.  

6.1.3 USB Port Performance 

The JTAG port was used to download software to test the USB port (Sourceforge, 

2006), courtesy of Paul Knight. After successfully testing USB operation, some 

benchmark tests were performed to study the effect of data block size on USB 

throughput. Data blocks read from the LPC2148’s buffer were stored to disc on the host 

PC, and the transfer rate measured. 

Block Size 

(bytes) 

Transfer Speed 

(KBytes/sec) 

512 255 

1024 340 

2048 511 

3072 613 

4096 680 

Table 23: PDL Board – USB Port Performance Tests 

The test results (see Table 23) show that transfer speed increases with data block 

size. Each time a data block is read, the host device must request the next block to sent 
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and receive an acknowledgement in return. This ‘handshaking’, together with cyclic 

redundancy check (CRC) error correction, adds a quite an overhead to data block 

transfer. Increasing the block size improves the data block-to-overhead ratio, improving 

transfer times.  

6.1.4 ADC Performance 

Some basic performance tests were carried out using modified code originally 

developed for the LPC2294 ARM processor used in Cranfield Health’s Vapour Guard 

system. With the SPI I/O bus running at 4MHz, and a single conversion requiring a 

single-byte write and two-byte read (24-bits in total), the maximum performance of the 

MAX1168 was measured at 166ksps (k samples per second), compared to the stated 

maximum of 200ksps.  

This only tells half the story, as the sampled data must stored on a SD card if it is 

operate as a data logger. Here, the write time for the SD card is the controlling influence 

on logging performance. Tests with a Sandisk 256MB card (with a write speed of 273 

kb/second) gave a reliable logging performance of 30ksps.  

Test signals, from both a DC source and a function generator, appeared quiet, with 

only two to three bits of noise, despite a lack of screening. 

6.2 Conclusions and Further Work 

The aim of the project, though challenging was achieved. A system capable of 

operating as the core of a Personal Data Logger, was designed, built and tested in the 

laboratory. The small board size combined with a low-power high performance ARM 



MSc by Research David Pitts 

 

106 

processor, SD card for mass data storage, high-speed 16-bit analogue data converter, 

USB and RS-232 ports, and provision for further expansion, provides a potent package. 

The test results demonstrate that the design certainly has the potential to fulfil its 

intended role as the heart of a portable pocket-sized personal data logger. The wide 

range of sampling rates and virtual programmable analogue gain, encompassing many 

types of sensors, offers a flexible platform for the measurement of various parameters 

for dynamic health or athletic performance monitoring. 

There are two design errors to correct (the pin connections to the MAX821 and the 

addition of a pull-down resistor on the JTAG port), and further checks to fully test the 

analogue performance criteria. With such a large number of system variables to 

consider, comprehensive testing or modelling would be required to establish power 

consumption for all operating modes.  

In addition, the design of the second PDL board to must be considered; this would 

feature analogue signal conditioning, a real-time clock circuit, power supplies and all 

external system I/O connections. Once completed, there is the not insignificant task of 

developing the embedded software that turns an otherwise inert circuit board into a 

functioning data logging system.  

A proposed design combining a real-time clock and trigger circuitry is shown in 

Figure 35. Both the clock chip and the three-input AND gate are powered from the 

same voltage source; this may be either +5V, if available, or a backup battery to 

maintain supply. The clock chip provides timing data via an I2C interface to the PDL 

core.  
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Figure 35: Proposed Real-Time Clock and Trigger Circuit 

The three-input AND gate connects to the PDL core’s External Interrupt pin 

(P0.16/Eint0), and is held high by resistor R3. If any of the gate’s normally high inputs, 

push button SW1, external trigger input or the clock’s alarm output, go low, this flips 

the output, waking up the LPC2148. 

Following the discussion in Section 4.3.1, although linear regulators are the best low-

noise option, SEPIC regulators are worthy of further study. Their ability to operate at 

voltages below their output level allows increased efficiency as more energy may be 

extracted from a battery pack; it also gives the option of using fewer batteries. With a 

high switching frequency (e.g. >1MHz), the noise generated may prove easier to filter, 

or, being several orders of magnitude above the maximum sampling frequency, may 
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have little effect on analogue signals. Comparative performance tests with a linear 

regulator would be necessary to establish the amount of noise present. 

For all their added complication, lithium secondary cells, with their small size and 

high energy density have a lot to offer. Lithium polymer (Li-poly) cells are preferred to 

lithium-ion as they are more robust, but still capable of delivering ample supply current 

(see section 4.1.2b). The high volumetric and gravimetric efficiency and range of 

packaging options would allow either single (with a SEPIC regulator) or dual cell 

operation, whilst keeping overall system size to a minimum.  

Choosing Li-poly cells would necessitate the development of battery charger and 

battery management circuits for optimum performance. For field use, it would be 

desirable to combine the Li-poly cells, charger and management circuitry into a 

removable pack – these could then be charged remotely if necessary and exchanged as 

required. The charger should have a wide voltage input range to facilitate recharging. 

A combination of low-noise SEPIC regulators and Li-poly battery packs (including 

battery management and charger circuitry as discussed), could provide the best all-

round solution. Although the mechanical aspects of the design would need careful 

attention, building the cells and circuitry into a removable pack eliminates the main 

drawbacks of running from fixed integral batteries. 

Ideally some of these points would have been addressed and investigated as part of 

this project. Unfortunately, time constraints prevented this work from being undertaken 

in time for the completion of this thesis. However, development of the technologies 

described in this project, including research on SEPIC regulators and lithium batteries, 

continues as part of various Cranfield Health research projects. 
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Appendix B 

 

 

 

Personal Data Logger 

Parts List 
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Ref Name Function Side Package 

C1 100nF capacitor LPC2148 Decoupler Bottom 0805 sm 

C2 10uF 10V tantulum capacitor SD Decoupler Top TAJB sm 

C3 100nF capacitor Watchdog Decoupler Bottom 0805 sm 

C4 100nF capacitor SD Decoupler Top 0805 sm 

C5 100nF capacitor MAX3227 V- Decoupler Top 0805 sm 

C6 1uF 10V tantulum capacitor ADC Ref Top TAJA sm 

C7 100nF capacitor ADC RefCap Top 0805 sm 

C8 100nF capacitor ADC Avdd Decoupler Top 0805 sm 

C9 100nF capacitor MAX3227 Boost Cap Top 0805 sm 

C10 100nF capacitor MAX3227 Boost Cap Top 0805 sm 

C11 100nF capacitor MAX3227 Decoupler Top 0805 sm 

C12 100nF capacitor ADC Decoupler Top 0805 sm 

C13 10uF 10V tantulum capacitor Power Decoupler Bottom TAJB sm 

C14 100nF capacitor MAX3227 V+ Decoupler Top 0805 sm 

C15 100nF capacitor FRAM Decoupler Top 0805 sm 

C16 100nF capacitor LPC2148 Decoupler Top 0805 sm 

C17 100nF capacitor LPC2148 Vref Decoupler Top 0805 sm 

C18 10uF 10V tantulum capacitor LPC2148 VddA Decoupler Top TAJB sm 

C19 100nF capacitor LPC2148 Decoupler Top 0805 sm 

C20 100nF capacitor LPC2148 VddA Decoupler Top 0805 sm 

C21 22pF capacitor Crystal Capacitor Top 0805 sm 

C22 22pF capacitor Crystal Capacitor Top 0805 sm 

     

CN1 33nF capacitor array ADC Anti-Aliasing Cap Bottom C0612 sm 

CN2 33nF capacitor array ADC Anti-Aliasing Cap Bottom C0612 sm 

CN3 33nF capacitor array LPC2148 Anti-Aliasing Cap Bottom C0612 sm 

     

L1 Ferrite Chip Bead LPC2148 Avdd Filter Bottom 0805 sm 

L2 Ferrite Chip Bead LPC2148 Power Filter Bottom 0805 sm 

L3 Ferrite Chip Bead ADC Power Filter Top 0805 sm 

     

R1 1k5 resistor USB Soft Connect Bottom 0805 sm 

R2 2k2 resistor USB Connect Bottom 0805 sm 

R3 47k resistor SD RSV pull-up Top 0805 sm 

R4 47k resistor MISO0 SD pull-up Top 0805 sm 

R5 10k resistor USB Connect pull-up Bottom 0805 sm 

R6 47k resistor SCL1 I2C pull-up Bottom 0805 sm 

R7 47k resistor SDA1 I2C pull-up Bottom 0805 sm 

R8 10k resistor USB V+ Detect Bottom 0805 sm 
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R9 47k resistor SS0 SD CS pull-up Top 0805 sm 

R10 2k2 resistor LPC2148 Vref Bottom 0805 sm 

R11 47k resistor SD RSV pull-up Top 0805 sm 

R12 47k resistor MAX3227 Foff pull-up Top 0805 sm 

R13 47k resistor SS1 SPI pull-up Top 0805 sm 

R14 33R resistor USB Input Top 0805 sm 

R15 47k resistor ADC DSPR pull-up Top 0805 sm 

R16 33R resistor USB Input Top 0805 sm 

R17 47k resistor FRAM WP pull-up Top 0805 sm 

R18 47k resistor JTAG TCK pull-down Bottom 0805 sm 

R19 470k resistor Reset pull-up Bottom 0805 sm 

R20 1k resistor PFET Switch - Gate Bottom 0805 sm 

R21 47k resistor SCL0 I2C pull-up Top 0805 sm 

R22 47k resistor SDA0 I2C pull-up Top 0805 sm 

R23 1M resistor PFET Switch - Gate pull-up Bottom 0805 sm 

     

RN1 1k resistor array ADC Anti-Aliasing Res Top 1206sm array 

RN2 1k resistor array ADC Anti-Aliasing Res Top 1206sm array 

RN3 1k resistor array LPC2148 Anti-Aliasing Res Top 1206sm array 

RN4 47k resistor network (common) JTAG pull-ups Top SIL-5 pth 

     

Q1 2N3906 PNP transistor USB Soft Detect Bottom SOT-23 sm 

Q2 IRLM6401F PMOS FET P-channel MOSFET Bottom SOT-23 sm 

     

U1 MAX3227  RS232 Driver Top SSOP-16 sm 

U2 MAX1168  ADC Top QSOP-24 sm 

U3 MAX821  Watchdog Bottom SOT-143 sm 

U4 FM25L512  FRAM Top SO-8 sm 

U5 LPC2148  Microcontroller Top LQFP64 sm 

     

X1 12.000 MHz Crystal  System Clock Top HC49/4H pth 

ZD1 LM4040  LPC2148 Vref Bottom SOT-23 sm 

     

ANA1 10x2 0.1" Header Analogue I/O Bottom pth 

DIO 17x2 0.1" Header Digital I/O Bottom pth 

JTAG 10x2 0.1" Header JTAG Header Top pth 

SD1 Mini SD Skt Data memory Bottom sm 

     

J1 Solder Link ADC Ground Link Top n/a 

J2 Solder Link LPC2148 Ground Link Top n/a 

 


