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Rolling System Design Using Evolutionary
Sequential Process Optimization

Ashutosh Tiwari, Victor Oduguwa, and Rajkumar Roy

Abstract—The design of a rolling system is a multistage process
optimization problem involving sequential relationship between
consecutive stages. This relationship is peculiar to sequential
processes in which the output stock of one stage serves as the
input stock into the deforming tool of the other stage. This paper
describes the optimization of a real-life rolling system design using
a genetic algorithm (GA)-based approach capable of dealing with
the sequential nature of this problem. It presents a mathematical
model of a real-life rolling system design and explains the pro-
posed optimization approach. Even in the presence of multiple
stages, the proposed approach identifies a variety of near-optimal
design solutions from which one could be finally chosen based on
designer’s preferences. It is also shown that the obtained solutions
dominate the designs reported in literature.

Index Terms—Genetic algorithms (GAs), multiobjective opti-
mization, multistage process optimization, rolling system design
(RSD), sequential process optimization (SPO).

1. INTRODUCTION

HERE IS AN ever-increasing demand in the process in-
dustry to become more flexible, responsive, and energy
efficient. The competition is fierce; complex products are being
required at higher quality for the same cost with margins contin-
uously being squeezed. In order to succeed in such a competitive
environment, the industry is seeking innovative intelligent so-
lutions to optimize its processes. Process optimization involves
the generation of optimal design solutions for individual units of
the process including both design information (such as the geo-
metrical size of a unit) and the operating conditions for the unit.
Process optimization problems are complex and can be character-
ized by their multiple stages and hierarchical nature. Individual
units of process systems are connected to form multiple stages of
the overall process problem. The nature of this association could
be sequential (as seen in metal forming processes) or nonsequen-
tial (as seen in network optimization problems). The sequential
nature of the process offers the separate subsystems a dependency
link where the output of a subsystem becomes the input of the
subsequent subsystem in an orderly manner. Nonsequential is
nonordered association. This paper focuses on rolling system
design, which is a sequential process optimization problem.
A sequential process optimization (SPO) problem is a nested
problem in which decision-making is sequential from higher to
lower level, characterized by decisions made at one level in-
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Fig. 1. A multipass rolling system.

fluencing the decisions made at a lower level. The behavior of
the subsequent subsystem is influenced by the behavior of the
previous subsystem [1]. Thus, an important feature of the SPO
problem is that the objective functions of each unit may be par-
tially determined by variables controlled by other units oper-
ating at other levels. Real-world SPO problems are usually large
scale and complex [17]. The design of a rolling system is a mul-
tiobjective, multistage SPO problem involving a large number of
design variables and a sequential relationship between consec-
utive stages. This paper describes the optimization of a real-life
rolling system design using an approach based on genetic algo-
rithms (GAs).

II. MODELING A MULTIPASS ROLLING
SYSTEM DESIGN (RSD)

The multipass rolling system design (RSD) attempts to lo-
cate optimal design solutions for individual passes of the rolling
process including both design information (such as the geomet-
rical size of a roll) and the operating conditions for the mills.
As shown in Fig. 1, the multipass rolling system is a high-speed
continuous metal forming process where the metal from the re-
heating furnace (known as stock) is continuously deformed into
the desired geometry by passing through a series of rotating
cylindrical rolls.

A. General Mathematical Formulation of SPO Problems

The mathematical formulation of the SPO problem is pre-
sented in (1) and (2), and illustrated in Fig. 2. Equation (1) shows
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Fig. 3. Round-oval-round breakdown sequence.

the objective function % for an individual stage j, and its func-
tional relationship with m decision variables from stage j and r
decision variables from stage j — 1. The decision made at stage
7 is influenced by the r decision variables from stage j — 1. This
represents how multistage dependencies are represented in the
mathematical formulation of SPO problems. Only a subset of
variables from stage j — 1 influence the decision made at stage
7. This explains the condition 7 < m in (1). Equation (2) gives
the objective function for the overall system. Here, ¢ is the ¢th
objective, p is the number of objectives, and n is the number
of stages. This equation depicts that the overall objective func-
tion is dependent on the values of objective functions from in-
dividual stages. m and r are considered to be constant for all
stages. Most real-life SPO problems satisfy this condition. How-
ever, the mathematical formulation presented here can easily be
generalized by using m; and r; as m and r values at stage j

fii (@) ={fij(x1j, %25, . Ty, T1j—1, %251, .. Trj_1)

G=1,2,...n),r <m} )

B. Development of Multipass Rolling Model

This section develops the mathematical model of a RSD using
the generic formulation in Section II-A. Fig. 3 shows the process
geometry. The dashed line shows predeformation profile and the
solid line shows postdeformation profile at each stage. b is the
stock width, h is the stock height, R is the radius of curvature,
and D is the diameter. The overall breakdown sequence consists
of a number of cascaded passes. The jth pass is denoted by
P;. Each pass is physically separated from its neighbors, and
the output from the P;_; is provided to the P; as input. The
breakdown sequence shows the oval stock turned through 90°
with its major axis in-line with the vertical axis of the round
pass. This is repeated for all the subsequent passes. A detailed
description of the model is available by Oduguwa [11].

1) Objective Functions:

Throughput: Throughput (T},) is an important roll design
objective that expresses the effect of mill productivity. It is
a suitable measurement of how well the current schedule is
meeting the requirement. It is expressed in terms of exit speed
(w) and final stock area (As)

T, = Asw. 3)

Roll force: One of the most important objectives in sched-
uling is to provide an optimum rolling load (Pr) required for
deformation at each stand. Excessive loading in various passes
can affect the productivity of the rolling process. The total de-
formation load cost function for total IV, number of passes is
defined as

N,

Pr =7 (P)

i=1

“)

where P; is the roll load at pass j. Shinokura and Takai [16]
proposed a simple equation for calculating the nondimensional
roll force and torque arm coefficient expressed as a function
of the geometry of the deformation zone. This formulation is
adopted in this study since it is suitable for oval-to-oval passes.

2) Constraints: The total roll load is limited to the mechan-
ical design limits of the rolling mills imposed by the roll man-
ufacturers. Excessive roll load can cause roll breakage that can
be detrimental to production efficiency. This constraint can be
formulated as follows:

gl($) = PJ S Pmax (5)

where P is the roll load at pass j.
Ar and A; are the coefficients for total elongation and elon-
gation at stage j, respectively, therefore

g2(z) =D XAj = Ar > 0. (6)
7=1
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The following constraint is required to ensure that the break-
down sequence is achieved with reduction taking place from
pass to pass. For every pass j

Interpass reduction g3(x)=A;>1 7

where ) is the coefficient of elongation for jth pass.

The overall rod size is a measure of product quality. This is
allowed to vary within a given tolerance limit K. K is treated
as a soft constraint to allow the possibility to explore designs
within the specified boundaries. This is specified as

!]4(117) = Kunin < (DNP - D)2 < Kmax ®)

where D is the roll diameter and N, is the total number of passes
(Fig. 3).

The breakdown sequence (Fig. 3) shows the oval stock turned
through 90° with its major axis in the vertical diagonal of the
square pass. The square stock is provided as flat into the oval
pass and the oval stock is turned through 90° with its major axis
in-line with the vertical axis of the round pass. Constraints on
interpass sections can be shown as

__gvar __ pvar+1,
g5(x) =b;™" = hj¥

__gpvar __ pvar+1,
ge(x) =hi™ = bJ¥

7=12...n; var =1,2 ®

j=1,2..m;var=1,2 (10)

where j is the pass number, var = (1,2) for inlet and outlet
variables, respectively, 7 is the final pass number, b is the stock
width, and h is the stock height.

3) Complete Mathematical Formulation: A formal definition
of the multiobjective RSD optimization problem is presented
below

Minimize Total Deformation Load (4) f1(x) = Pr(z)

Maximize Throughput (3) fo(x) = T, (x)

Subject to : Roll load (5), Total elongation (6)
Interpass reduction (7), Rod size (8), and

?

Interpass section constraints (9) and (10).

The aim is to minimize deformation load and maximize
rolling throughput, subject to given constraints for a four-pass
oval to round design. The deformation load is a cost objective,
while throughput is a function of mill productivity. Excessive
deformation load results in excessive roll wear and, hence,
overall production cost. Both objectives are assumed to be
conflicting in nature since metal compression by the cylindrical
rolls encourages metal flow in the direction of rolling, which
also increases the metal deformation load. Fig. 1 illustrates the
conflict between the two objectives of this problem.

III. EXISTING APPROACHES

A review of literature reveals that there is very little work re-
ported on optimization approaches for dealing with SPO prob-
lems. Classical methods of solving these problems are based on
trial and error using mainly empirical guidelines, supported by
experience [13]. The optimization task, therefore, becomes slow
and often results in suboptimal solutions. Kobayashi [9] applied
a finite-element (FE)-based backward tracing technique to de-
sign a preform in a shell housing. This technique tends to be
more efficient when the loading path is known; however, this can

lead to difficulties in those problems in which the search space
is unknown, especially when multiple diverse loading paths are
present. Dynamic programming can handle continuous and dis-
crete variables; however, it is limited in its use since the SPO
problems normally involve a large number of process variables
with a wide range of values, which creates problems for dy-
namic programming. Some authors have used derivative-based
techniques and direct search methods for solving SPO prob-
lems [7]. However, the objective functions and constraints are
required to be twice differentiable creating difficulties for SPO
that generally reveal multiple stationary points. In addition, SPO
problems are multiobjective in nature. Traditional optimization
techniques have the problem of only one criterion being opti-
mized at a time ([3], [10]).

The drawbacks of classical optimization techniques have led
to the growth of research in the field of evolutionary computing
(EC). EC techniques do not require explicit knowledge of the
problem structure or differentiability, and have the ability to pro-
vide multiple near-optimal solutions to even ill-defined prob-
lems. In the field of SPO, a number of authors ([5], [15]) are now
adopting GAs with embedded FE solvers to automate the search
for good quality solutions. These approaches have been shown
to offer a more promising approach to SPO problems, and are
emerging as alternative optimization strategies for solving these
problems. They are proving to be robust in delivering global op-
timal quality solutions and are helping to resolve some of the
complexity issues encountered in SPO problems [12]. They also
offer the benefit of cataloging the optimal solutions for future
reuse. This can save design time and effort for future problems.
Roy et al. [14] implemented an adaptive micro-GA for shape op-
timization of process variables in multipass wire drawing pro-
cesses. Hwang and Chung [6] proposed a modified micro-GA
for the optimization of die shape in extrusion. These GA-based
techniques provide an algorithmic framework to deal with SPO
problems. These techniques can deliver multiple good solutions,
which speeds up the design process. However, the GA-based
approach using the FE solver as an embedded optimizer in-
curs severe computational cost in real-life problems. This is be-
cause the objective functions are often analytically unknown,
and hence function evaluations can only be achieved through
costly computer simulations. Therefore, the majority of research
effort in these areas has focused on the development of compu-
tationally efficient algorithms ([2], [8]). However, very little re-
search effort has been devoted to handling the fundamental issue
in SPO problems, namely, the interstage dependency link. Since
the design of a rolling system is characterized by its multistaged
sequential nature, this paper proposes an optimization approach
for handling this challenge using GAs.

IV. PROPOSED OPTIMIZATION APPROACH

This section proposes an optimization approach for handling
the sequential nature of real-life process optimization problems.
The solution strategy adopted by the optimization approach is
based on the GA. The dependency link between stages is mod-
eled by informing the subsequent stage (j) of the move made by
the (j — 1)th stage such that the solution alternatives considered
for the jth stage take into account the move made by the (j—1)th
stage. The solution strategy is only applicable to strictly sequen-
tial processes. For example, in roll design, we model “passes”
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as “stages,” whereby the output stock of one-pass/stage serves
as an input into the deforming tool of the other pass/stage. This
example is illustrated in Fig. 3.

The GA-based approach was selected because GAs have been
used extensively as search and optimization tools in various
problem domains and the primary reasons for their success are
applicability, ease of use, and global perspective. NSGA-II was
selected being the most robust and popular multiobjective opti-
mization algorithm [3]. The solution strategy is coded in C++
using the proposed algorithm shown in Fig. 4. The solution al-
gorithm consists of three main parts: the NSGA-II algorithm,
the multistage model, and the multiobjective fitness assignment.
The initial population is created by giving random values to
the decision/controllable variables of the problem. The termi-
nation criterion of the solution algorithm is purely based on the
number of generations specified by the user. Since the solution
algorithm uses NSGA-II as its optimization engine, its compu-
tational complexity is O(MN?) (where M is the number of ob-
jectives and N is the population size), which is the same as that
of NSGA-II.

Individual members of the population are evaluated in two
steps. The first step is a local evaluation of a subset of strings in
the chromosomes. This represents the objective function values
for each stage of the SPO problem. The second part is a global
evaluation that aggregates the objective function values of all the
stages by using a suitable aggregation operator. The objective
function value of the global evaluation determines the fitness of
the chromosome. The dependency relationship is modeled by
incorporating design variables from a previous pass j — 1 into

the objective function of pass j. This is peculiar to the sequential
processes in which the output stock from one stage serves as
input stock to the other stage.

The multiobjective fitness assignment, selection and repro-
duction follow NSGA-II [4]. The population is sorted based on
nondomination. Each solution is assigned a fitness equal to its
nondomination level (1 is the best level). Thus, minimization
of fitness is assumed. NSGA-II uses an elitist approach through
a selection operator that creates a mating pool by combining
the parent and child populations. This elitism ensures that the
“good” solutions of the population are not lost, thereby cre-
ating a selection pressure towards the global Pareto front. The
crowded tournament selection operator is used to select new off-
spring. That is, between two solutions with different nondomi-
nation ranks, the solution with the lower rank is preferred. Oth-
erwise, if both the solutions belong to the same front, then the
solution that is located in a region with lesser number of solu-
tions is preferred. In this way, the operator guides the selection
process at various stages of the algorithm towards a uniformly
spread Pareto front. Crossover and mutation operators are used
to create a child population. Due to the large number of vari-
ables in SPO problems, a multipoint crossover operator is used
to ensure a more effective transfer of genetic material during re-
production.

Fig. 5 illustrates the string structure adopted by the proposed
approach. A genetic string is made up of substrings representing
the number of stages, where the number of stages is assumed
to be fixed. Since there is only one finishing stage, the genetic
string has n — 1 string segments for roughing and one segment
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TABLE 1
DESIGN DETAILS OF FOUR-STAGE ROLLING PROBLEM

Pass No Design Variables Bits Design Variable Bounds
Semi-height (41); Semi-width (w,); 9; 10; 20 <=h; <=25, 60 <=w| <=175;
1 Roll radius (Rr); Roll Gap (Rg); 12; 7, 300 <= Rr <=350; 4 <= Rg<=06;
Temperature (7); Roll Speed (V) 14; 10 900 <=T<=1200; 25 <=N<=40
Pass Diameter (D); Roll radius (Rr); 8; 10; 28 <= D <=132; 295 <= Rr <=315,;
2 Roll Gap (Rg); Temperature (7)), 7; 14; 4 <= Rg <=6, 900 <=T<=1150;,
Roll Speed (V) 10 35<=N<=50
Semi-height (h;); Semi-width (w,); 9,9, 12 <=h; <=18; 40 <= w; <= 50;
3 Roll radius (Rr); Roll Gap (Rg); 12; 7, 250 <= Rr <=300; 4 <= Rg<=6;
Temperature (7); Roll Speed (V) 14; 11 900<=T<=1125,65<=N<=90
Pass Diameter (D); Roll radius (Rr); 8;12; 18 <= D <=22; 250 <=Rr <= 300;
4 Roll Gap (Rg); Temperature (7); 7;14; 4 <=Rg <=6; 800 <=T<=1100;
Roll Speed (V) 11 80 <= N<=120

for the finishing pass. Each substring consists of product and
process variables. Only controllable variables are represented
in the genetic string.

V. EXPERIMENTAL DETAILS AND DISCUSSION OF RESULTS

Results were obtained using the multipass RSD mathemat-
ical model developed in Section II-B. The proposed NSGA-II-
based optimization approach was applied to the mathematical
model to minimize deformation load while maximizing mill
throughput. Experiments were carried out using the proposed
approach for the two objectives and four passes to illustrate
how the algorithm deals with a multiobjective, multipass search
space. The following additional parameters were set for the ex-
periment: P,,.x = 750 kN per stand, final rod diameter (D) =
20.1 £0.25 mm, where k;, is set as 19.85 mm and k. is set
as 20.35 mm, and the tolerance range was estimated based on
design experience.

A. Experimental Details

Each variable is encoded first, and then linked together as a
chain to form the chromosome. Design variables encoded for
the rolling problem are semi-height (h1), semi-width (w; ), roll
radius (Rr), roll gap (Rg), temperature (7'), and roll speed
(N). The variable bounds are estimated using feasible design
values from literature [18]. This is stated as follows for pass 1:
20 <= h1 <= 25; 60 <= w; <= 75; 300 <= Rr <= 350;
4 <= Rg <= 6;900 <= T <= 1200; 25 <= N <=
40. The granularity for the design variables is chosen to be
0.01. The number of bits representing a design variable is a if
201 <= (upper limit — lower limit)/granularity<= 2°.
This implies that the number of bits representing h4 is 9 since
28 <= (25 — 20)/0.01 <= 29; similarly, 10 bits represent
w1, 12 bits represent Rr, 7 bits represent Rg, 14 bits represent
T, and 10 bits represent N. The bits representing each design
variable are finally concatenated as a binary chain. The total re-
sulting bit number of the chromosome is 225. Details of the vari-
able encoding are shown in Table L.

The performance of the solution approach was investigated
for different values of crossover and mutation probabilities. Ten
independent GA runs were performed in each case using a dif-
ferent random initial population. The crowded tournament se-
lection operator [4] was used to select new offspring. The best
results were obtained with the following parameters: population

of size 500 for 2000 generations with a three-point crossover
probability of 0.8 and a mutation probability of 0.03, and a tour-
nament selection of size 3. The crossover points in the chromo-
somes were randomly selected. Due to the large chromosome
length of 225 bits, the three-point crossover was chosen to en-
able more effective transfer of genetic material during repro-
duction than the standard two-point crossover. Six out of ten
runs with different random number seeds obtained similar re-
sults. The results reported in Section V-B were obtained from
one of the six runs that produced similar results. The remaining
four runs showed similar convergence but inferior diversity of
solutions. The computational complexity of the algorithm is
O(2 %5002) (where 2 is the number of objectives and 500 is the
population size). Using a 2.80 GHz computer with a Pentium 4
Processor, each run took about 28 minutes. The solutions were
evaluated using direct calculations rather than numerical simu-
lations. A random search of 10000 points was also conducted
in order to get an indication of the search space. This was used
to identify the likely presence of a Pareto front in the design
problem.

B. Experimental Results and Discussion of Results

This is a multiobjective, sequential, multistaged, constraint
process optimization problem, with interstage dependency
links. Fig. 6 illustrates the global search space of the problem
in objective function space. The following observations can
be made from this figure regarding the search space of this
problem.

» The existence of a Pareto front can be seen from Fig. 6. This
implies that there is conflict between the two objectives. By
fitting a curve to the optimized solutions, it can be seen that
the Pareto front is nonlinear, and a combination of convex
and concave regions.

» There is a bias in the search space towards a region that
corresponds to the T}, and Pr values lying between 400 and
600 mm? /s and between 1000 and 1400 kN, respectively.

* The boundary of the randomly generated 10 000 solutions
does not coincide with the near-optimal Pareto front identi-
fied by the set of solutions obtained by the algorithm. This
situation arises because the overall objective function is a
summation of the objective functions for individual stages.
Identification of Pareto optimal solutions requires that the
information about the previous stage is taken into account
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Fig. 6. Pareto front for four pass rolling process. (a) Complete picture of the
search space. (b) Blown-up view of a part of the search space.

by the next stage. There is a low density of population in
the region between the boundary of random solutions and
the near-optimal Pareto front. This is because there are very
few solutions existing in this region of the search space.

* The local search spaces corresponding to the individual
stages are uniform and constrained, with continuous Pareto
fronts.

The results obtained from the proposed optimization ap-
proach are compared with empirical results published in the
literature [18]. The optimized results (after 2000 generations)
shown in Fig. 6 were obtained for the parameters outlined in
Section V-A. Comparison of the random search space and the
results achieved from the algorithm confirms that the solution
algorithm has been able to converge to the Pareto front. The
solid line shown in Fig. 6(a) is composed of several optimized
solutions “x.” Since the search space is not known in absolute
terms, the results reported in Fig. 6 have converged to the
near-optimal Pareto front locating a reasonable spread of mul-
tiple optimized solutions. The presence of a Pareto front also
confirms the conflicting relationship between deformation load
and throughput. The empirical design point obtained from the
literature was superimposed on the search space and compared
with the near-optimal solutions. Since this point does not lie
on the identified near-optimal Pareto front, it is clear that the
solutions obtained are superior to the empirical solution.

Out of the optimized solutions identified by the proposed op-
timization approach, three are randomly selected [SP1, SP2, and
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Fig. 7. Selected Pareto solutions for four-pass rolling process. (a) Elongation
coefficient. (b) Deformation load.

SP3—located in Fig. 6(b)] and compared with the empirical so-
lution in terms of throughput, deformation load, elongation co-
efficient, and the deformed sections. These solutions are shown
in Fig. 7 and their nature is outlined in Table II. Table Il identifies
the near-optimal breakdown sequence of the stock deformation
from the proposed optimization approach.

Results obtained from the proposed approach also provide in-
sight into the complex behavior of the design problem. Fig. 7
shows the complex relationship between elongation coefficient
and the deformation load. The deformation load behavior shows
a similar downward trend for the four passes when compared
with the empirical solution. Although the deformation load for
point 3 at pass 3 appears to show an upward trend at 243 kN, this
is due to the large input stock area entering the roll at pass 3 from
the previous deformation. It is expected that large cross sections
would incur high deformation load and hence high elongation
coefficient values, since the load deforms the stock in the direc-
tion of rolling. However, point 3 at pass 3 shows a conflict. The
result shows a high load deformation, low elongation coefficient
for a large section. This can be attributed to the large coefficient
of spread of SP1 and SP2 at pass 3 (1.36) compared with that
of SP3 at pass 3 (1.17). Coefficient of spread is defined as the
percentage increase in breadth of the bar during rolling. The be-
havior of the spread coefficient correlates with load deforma-
tion. A large spread coefficient results in large deformation load
and vice versa. This is intuitive since a large spread coefficient
implies higher contact area, which results in a higher deforma-
tion load.
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TABLE II
DESIGN DETAILS OF FOUR-STAGE ROLLING PROBLEM

Rolling Parameters Empirical Schedule SP1 SP2 SP3
Input Stock Square 41 x 41 41x41 41 x41
1 Oval 21.1 x67.5 18.1x75 18.4x75 25x 75
2 Round ©29.5 030.2 ©30.2 028
3 Oval 14.8 x 43 15.7x 50 15.7x 50 15.7x 50
4 Round ©20.1 020.19 020.22 20.11

VI. DISCUSSION AND CONCLUSION

This paper describes the optimization of a real-life multipass
RSD problem using an approach based on GAs. The design of
a rolling system is a multiobjective, multistage SPO problem
involving a large number of design variables and a sequential
relationship between any two stages. The majority of recent re-
search effort in this area has focused on the development of
computationally efficient algorithms. However, very limited re-
search effort has been devoted to handling the fundamental issue
in these problems, namely, the interstage dependency link.

To address this gap in current research, a GA-based optimiza-
tion approach is applied to handle the dependency relationship
between multiple stages in these problems. Validation of the re-
sults is performed based on the visualization of the search space in
the presence of a random search, published results, and the near-
optimal solutions from the proposed optimization approach. Vi-
sual comparison of the results of the random search and the re-
sults achieved from the proposed optimization approach confirms
that the latter has been able to converge to the near Pareto front
with a good spread of solutions. Performance comparison with
the result reported in the literature confirms that the near-optimal
solutions obtained by the proposed optimization approach dom-
inate the result reported in the literature. The near-optimal solu-
tions obtained from the proposed algorithm offer the capability to
designers to tradeoff solutions at various dimensions such as pa-
rameter level, objective level and interstage level. The proposed
optimization approach is, however, limited to process optimiza-
tion problems with sequential relationships between consecu-
tive stages, and does not consider interstage dominations.

There are a number of proposed future research activities
for solving SPO problems within a multistage optimization
framework. It would be useful to investigate the nature of in-
teractions between the different stages during the evolutionary
search. Since the problem parameters are real, it would also be
interesting to test the performance of the algorithm with real
vector representation. Finally, further study could consider de-
veloping techniques for addressing the interstage dominations
in process optimization problems.
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