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1 Introduction

The fluid dynamics community has dealt with a num-
ber of numerical challenges since the 1950’s. These
include the development of numerical methods for hy-
perbolic conservation laws with particular interest in
capturing shock wave propagation and related phe-
nomena, solution algorithms for the solution of the
incompressible Navier-Stokes equations - a numeri-
cal challenge arises here due to the absence of the
pressure term from the continuity equation - meth-
ods/techniques for the acceleration of the numerical
convergence, modelling of turbulence and grid gener-
ation techniques. Within each of those areas different
numerical approaches have been pursued by various
researchers aiming to achieve higher accuracy and ef-
ficiency of the numerical solution.

Continuous interest exists in relation to the devel-
opment of accurate and efficient numerical methods
for the computation of instabilities, transition and
turbulence. It has been observed for more than a
decade that high-resolution methods can be used in
(under-resolved) turbulent flow computations with-
out the need to resort to a turbulence model, but this
approach has only recently gained some theoretical
support and structural explanation for the observed
results [3, 15]. Because of this there is a necessary
overlap between the classical modelling of turbulence
and its computation through high resolution methods
[5]. These methods are currently used to simulate a
broad variety of complex flows, e.g., flows that are
dominated by vorticity leading to turbulence, flows
featuring shock waves and turbulence, and the mix-
ing of materials [23]. Such flows are extremely dif-
ficult to practically obtain stably and accurately in
under-resolved conditions (with respect to grid reso-
lution) using classical linear (both second and higher-
order accurate) schemes. Further, new applications
at micro-scale, e.g. microfluidics, microreactors and
lab-on-a-chip, have raised a number of challenges for
computational science methods.

In this paper we provide a brief overview of high-
resolution methods in connection with some of the
above problems. An extensive description of these
methods for incompressible and low-speed flows can
be found in [5].

2 Overview of Properties of High-
Resolution Methods

We classify as high-resolution methods those with the
following properties [11]:

e Provide at least second order of accuracy in
smooth areas of the flow.

e Produce numerical solutions (relatively) free
from spurious oscillations.
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e In the case of discontinuities, the number of grid
points in the transition zone containing the shock
wave is smaller in comparison with that of first-
order monotone methods.

The motivation for the development of high-
resolution methods emerges from our effort to circum-
vent Godunov’s theorem [10] that states: There are
no monotone, linear schemes for the linear advection
equation of second or higher order of accuracy. In
other words, second-order accuracy and monotonicity
are contradictory requirements. The key to circum-
vent Godunov’s theorem lies on the assumption made
in the theorem that the schemes are linear. Therefore,
if we want to design methods which provide at least
second order of accuracy and at the same time avoid
spurious oscillations in the vicinity of large gradients,
then we need to develop nonlinear methods. The de-
velopment of high-resolution methods is done in the
one-dimensional context due to the lack of adequate
theory in multi-dimensions. Even though a numerical
scheme can be designed to be second-order accurate
for one-dimensional problems its accuracy in multiple
dimensions is not guaranteed to be second-order.

To discuss properties of numerical methods it is
convenient to consider the hyperbolic conservation
law
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One can discuss numerical approximations to
weak solutions w; which can be obtained, for exam-
ple, by (2k+1)-point explicit schemes in conservation

form, where i denotes cell centered value and ¢ +1/2
denotes intercell value.
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E(wi ;. 1, wl;), and n denotes the time level.
The numerical flux should also be consistent with the
flux E, ie., E(U,...,U) = E(U).

Weak solutions of (1) should satisfy the inequal-
ity Uy + F, < 0 (entropy condition), where U is a
convex function of U, i.e. Uyy > 0, and U satisfies
UyEy = Fu, where F is the entropy flux [11]. The
solution (2) converges to a weak solution of (1) when
the following conditions are satisfied:

where for the numerical flux E yields E

1. The total variation of the solution (defined be-
low) with respect to x is uniformly bounded with
respect to ¢, At and Az.

2. The scheme (2) satisfies the entropy condition.
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3. The entropy condition implies unique solution of
the initial value problem.

Conditions 1 and 2 can be satisfied by the addition
of artificial viscosity to the numerical scheme. This
will possibly provide non-oscillatory solutions at the
expense of loss of physical information thus deterio-
rating the overall computational accuracy.

Below we review some of the basic properties
that are considered in the design of high-resolution
schemes. The total variation of a function u(z) is
defined as

TV (u )—hmsup /\u x+e) —ux)dx. (3)

If u(z) is smooth then (3) can be written

+oo
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If u is a function of space and time, u(z,t), then we
define the total variation of u at a fixed time, ¢t. In
a discretised domain, u is a function of the mesh and
its total variation at a time instant indicated by the
index n is defined as

—+o0
Z laiyy —uil. (5)
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TV(u") = TV(u(t

The function u is assumed to be either 0 or constant
as the index i approaches infinity, in order to obtain
finite total variation.

The monotonicity property is defined for a scalar
conservation law as

u  Of(u) _ Ou a(u)@ -
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where a(u) = df/du, u(z,0) = ¢(z) ,—c0 <z < 00,
and ¢(z) is assumed to be of bounded total variation.
An important property of the weak solution of the
scalar initial value problem is the monotonicity prop-
erty according to which:

0, (6)

e No new local extrema in x may be created.

e The value of a local minimum increases, i.e., it is
a nondecreasing function [11], and the value of a
local maximum decreases, i.e., it is a nonincreas-
ing function [11].

Thus the total variation, TV (u(t)), is a decreasing
function of time
TV(u(tg)) < TV(u(t1)> A to > t1 . (7)

The explicit scheme of (2) can also be written in
a shorter form as

1
sz‘H_ = H(wi"y, wzn—k—&-lv ) w?—&-k) =L-w}, (8)
where L is an operator. We say that the scheme (8)
is total variation nonincreasing (TVNI) if for all w

TV(L - -w) < TV(w) . (9)

The scheme (8) is monotonicity preserving if the
finite difference operator L is monotonicity preserv-
ing, that is, if w is a monotone mesh function, so is
L-w. Moreover, the scheme (8) is a monotone scheme
if H is a monotone increasing function of each of its
2k 4+ 1 arguments. The hierarchy of these properties
can be stated as follows: the set of monotone schemes
is contained in the set of TVD schemes and this is
in turn contained in the set of monotonicity preserv-
ing schemes. Monotone schemes can be constructed
as upwind or centered. TVD and Essentially Non-
Oscillatory (ENO) [12] schemes can also be designed
to be monotone in the one-dimensional context. How-
ever, the set of monotone schemes is the smallest set
of schemes and is a subset of the set of TVD schemes.

For a constant coefficient a(u) = «, we obtain
the linear advection equation. Well known schemes
such as the Godunov first-order upwind scheme [10]
and the Lax-Wendroff scheme [14], among others, can
cast in the general form

l=kr

witt = " bl (10)
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where k;, and kgr are two non-negative integers and
b; are constant coefficients. Harten [11] has shown
that the linear finite difference approximation (10) is
monotonicity preserving if the coefficients b; are non-
negative, i.e., by >0, —kp <l <kp.

Thus any linear monotonicity preserving scheme is a
monotone, first-order, accurate scheme.

3 Instabilities and Bifurcation Phe-
nomena

The study of separated flows through suddenly ex-
panded geometries is a classic yet complex area of
research. These type of flows can feature instabil-
ities which may lead to bifurcation. Nonlinear bi-
furcation phenomena is of great importance when
considering hydrodynamic stability and the mecha-
nism of laminar-to-turbulent flow transition. We have
considered the problem of flow through a rectangu-
lar channel with a suddenly-expanded and suddenly-
contracted part and have conducted a computational
investigation to examine numerical effects on the pre-
diction of flow instabilities and bifurcation phenom-
ena. Three different high-resolution (Godunov-type)
methods [4, 8, 21] in conjunction with first-, second-
and third-order accurate interpolation schemes have
been employed.

The computational results obtained were com-
pared to the experimental results of [18, 17]. At low
Reynolds numbers the flow separates symmetrically.
As Reynolds numbers is increased a critical Reynolds
number is reached and symmetry breaking bifurca-
tion occurs. For this particular geometry it was found
that as Reynolds number was further increased the re-
circulation regions extended to the full length of the
expanded part and a second critical Reynolds num-
ber was reached upon which the separation regions
became symmetric again. The results obtained re-
vealed that the solution of the flow depended on the
numerical method employed.

The effect of the order of interpolation used in
the discretisation of the wave-speed dependent term
(non-linear dissipation term) and averaged part of
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the intercell flux, was examined for Reynolds num-
bers within the critical region of symmetry break-
ing bifurcation. It was found that computations us-
ing first-order discretisation for the calculation of the
flux components resulted in symmetric stable flow for
all numerical schemes except one (the characteristics-
based scheme), whereas second- and third-order dis-
cretisation lead to symmetry breaking bifurcation for
all schemes. Figures (1)-(3) show the numerical solu-
tion using the three different Godunov-type methods
for a Reynolds number of 120 using third-order in-
terpolation accuracy. It is clear to see that the three
different methods give different solutions. The differ-
ence between the Rusanov scheme [21] and the HLLE
scheme [8] lies in the way the wave-speed dependent
term is calculated. The Rusanov scheme employs the
definition given by [2] and only considers the max-
imum wave speed and hence cannot recognise the
slowest moving acoustic waves thus causing a larger
amount of dissipation. It should be noted that the
wave speed dependent term encompasses information
about the eigenstructure of the system of equations
and is also responsible to adapt the discretisation ac-
cording to the local solution data.

Figure 1: Re=120 Characteristics-based scheme in
conjunction with third-order interpolation accuracy.
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Figure 2: Re=120 Rusanov’s scheme in conjunction
with third-order interpolation accuracy.
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Figure 3: Re=120 HLLE scheme in conjunction with
third-order interpolation accuracy.

Comparing the computational results obtained to

the experimental results of [18] (see table 1 below),
show that the characteristics-based scheme is the
most accurate of the three numerical schemes em-
ployed. Also its ability to predict symmetry breaking
bifurcation even when using first-order interpolation
accuracy is something that neither of the other two
schemes could predict. The present results show how
important it is to further understand the properties
and numerical behaviour of computational methods,
especially in relation to instabilities and flow transi-
tion.

Table 1: Comparison of solutions with previously
published experimental results [18] for symmetric (S)
and asymmetric (A) cases.

Re Exp CB Rusanov HLLE.
80 Bubble Bubble Bubble Bubble
(S) size size size size
=0.0278m =0.028m =0.0265m =0.027m
116 Ax Ax Ax Ax
(A) =0.019m =0.02m  =0.0215m =0.021m

4 Compressible Flows

Previous computations for turbulent flows have sug-
gested that high-resolution schemes appear to achieve
many of the properties of sub-grid models used in
LES, e.g. [3, 9, 16, 19, 23]. The idea to use these
methods as an implicit way to numerically model tur-
bulent flows is referred to as MILES or Implicit Large
Eddy Simulation (ILES). We have employed three
high-resolution schemes for solving the compressible
Euler and Navier-Stokes equations in the context of
ILES:

e Flux Vector Splitting Scheme (FVS) [25]: This
is a modified Steger-Warming FVS scheme.

e Godunov-type characteristic flux aver-
aging scheme (Godunov-type) [7]: The scheme
provides third-order of accuracy in smooth flow
regions and second-order of accuracy in discon-
tinuities.

e Hybrid total wvariation diminishing (TVD)
scheme [25]: It combines the Godunov-type
characteristic flux averaging and FVS schemes
through a flux limiting approach.

The following examples investigate under-resolved
simulations of decaying turbulence in a triply peri-
odic cube and compressible flow around open cavities,
both for low and high Reynolds numbers, at transonic
and supersonic speeds.

4.1 Decaying turbulence

ILES of homogeneous decaying turbulence — a generic
problem in turbulence studies [13, 16, 23] — has
been carried out in a three-dimensional cube apply-
ing periodic boundary conditions in each spatial di-
rection. The compressible Euler equations have been
employed on uniformly spaced grids of three differ-
ent resolutions 323, 643, and 1283 with initial con-
ditions similar to [13] (corresponding, in the present
simulations, to a reference Mach number M = 0.1).
The analysis of the computational results has been
performed by transforming the kinetic energy into
Fourier space via a power spectrum estimation.
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A comparison of the energy spectra (ES) using dif-
ferent high-resolution schemes on the 1283 grid is pre-
sented in Figure 4. At high wave numbers the slope
of the energy spectra obtained by the Godunov-type
scheme is closer to Kolmogorov’s k~5/3 slope for a
broader range of wave numbers compared to the FVS
and hybrid TVD schemes. This can be explained by
the more dissipative nature of these schemes (the FVS
contribution to the hybrid flux accounts for 40% of
the total flux value). In the aforementioned cases,
the high-resolution schemes produce plausible solu-
tions without resorting to explicit addition of dissi-
pation (e.g., through subgrid scale modelling).

10°

10"

107?

B10° -

10* =
Fo| ———- FVS (128°%) N

10°k Godunov-type (128 °) '\,_\_\
F — — —— Hybrid TVD (128 °) .
- K3 AN
= S\

10° "\L’;);R.\.
F R
| Ll [ | L
10° 107 10

Wave Number

Figure 4: Results for decaying turbulence using dif-
ferent high-resolution schemes on a 1282 grid.

4.2 Open cavity

Results from the implementation of high-resolution
methods in wall-bounded flows [3, 9] show that in
principle there is nothing that prevents the use of
these methods in near wall flows even without using
an explicit turbulence model. Compressible, turbu-
lent flow past an open cavity encompasses a variety
of flow phenomena including large and small vortical
structures, free shear layers, transitional flow, flow
separation and flow re-laminarisation, shock and rar-
efaction waves. DNS studies with a grid resolution
15 times finer than the present ILES were performed
in [20] at low Reynolds numbers to investigate the
resonant instabilities in the flow past an open rectan-
gular cavity.! Cavity resonance arises from a pressure
feedback loop including shear layer instability, sepa-
ration at the leading edge, vortical structures, noise
radiation at the trailing edge and re-attachment, see
Figure 5. Further, experimental (and computational)
results for cavity flows at high Reynolds numbers and
supersonic speeds have been presented in [24].

Table 2 shows results for the Strouhal number as
predicted by ILES, DNS of [20] for transonic flows (at
low Reynolds numbers) and experimental data of [24]
for supersonic flow at high Reynolds number. The
comparison of dominant frequencies shows the appli-
cability of ILES for open cavity flows. Simulations

fThe Reynolds number is Re = 2,500 based on the cavity
depth and free stream velocity, which is equivalent to Re = 56.8
based on the momentum thickness at the cavity’s leading edge.

Figure 5: Iso-density contours and streamlines for the
trasnsonic cavity flow at M., = 0.8 and Re = 1.813 x
10°.

for the transonic cases using a SGS (Smagorinsky-
type) model have shown no further improvement of
the results.

Table 2: Strouhal number comparisons of ILES with
DNS [20] and experimental data [24]. The Re num-
ber is based on the cavity’s depth and free stream
velocity.

Ma Re ILES DNS Exp.
0.5 2.5x10° 0.730 0.74
0.6 25x10° 0.683 0.70
0.8 2.5x10° 0.635 0.65
1.5 4.5x10° 0.197 0.208

5 Variable
Flows

Variable density incompressible flows are encountered
in many practical applications in mechanical, biomed-
ical and chemical industries. Here, we are particu-
larly interested in the application of high-resolution
methods in microreactors and microfluidics. This
field is rapidly progressing due to factors such as
the elimination of scale-up procedures, higher preci-
sion of mixing and component contact surfaces, and
minimization of processing hazards. The system of
equations comprises the Navier-Stokes equations and
chemical reaction equations for N species. Although
the flow in microdevices remains laminar, computa-
tional challenges arise from the stiffness of the nu-
merical solution associated with the different time
scales of chemical reaction and fluid flow equations.
The vast majority of mixing devices rely on diffusion,
which occurs between fluid layers. Due to the lami-
nar flow, large contact surfaces between components
and small microdevice dimensions induce small diffu-
sional paths. These short paths reduce the time, with
demonstrated speeds in the range of a few millisec-
onds to as fast as few microseconds.

In relation to the solution of variable density flow
through micro reactors, we have employed the ar-
tificial compressibility approach [1] combined with
a characteristics-based Godunov-type scheme of [4],
which has been extended to handle variable density
flows [22]. An example of a diffusion broadening
study is shown in Figure 6. Currently, the extension
of the aforementioned high-resolution methods in the
context of multiscale modelling ranging from macro-
to nanoscales is pursued by the research group.

Density Incompressible
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Figure 6: Computation of diffusion broadening
in a microchannel using the characteristics-based
Godunov-type scheme [4, 22].

6 Conclusions

The desire for understanding better the physics en-
compassed by numerical methods, high-resolution
methods in particular, is motivated by the fact that
almost all practical computations in engineering are
under-resolved. Numerical aspects play an important
role in the prediction of instabilities, transition and
turbulence in terms of both accuracy and efficiency.
Further, emerging fields in science such as nanotech-
nology pose new challenges in the development of nu-
merical methods.

Numerical methods encompass numerical dissipa-
tion which acts to regularize the flow, thereby allow-
ing shock propagation to be captured physically re-
alistically even if it is not fully resolved on the com-
putational mesh. One develops numerical schemes
with two competing criteria in mind: a desire for
high accuracy coupled with protections against catas-
trophic failure due to nonlinear wave steepening or
unresolved features. Nonlinear mechanisms (limiters)
in high-resolution methods guard the methods from
such catastrophic failures by triggering entropy pro-
ducing mechanisms that safeguard the calculation
when the need arises. The two key questions are: (i)
what criteria should be used to design the nonlinear
mechanism that triggers the entropy production, and
(ii) to what extent numerical dissipation accounts for
turbulent flow effects.

The theory of numerical methods for hyperbolic
conservation laws has made significant progress in
one-space dimension. However, we need to fur-
ther understand the nonlinear behaviour of numerical
methods in multi-dimensional problems. This non-
linear behaviour is also closely related to the numer-
ical mechanisms underlying the formation of spuri-
ous solutions in under-resolved flows. Previous stud-
ies [6] seem to indicate that the generation of spu-
rious vortices in under-resolved simulations depends
solely on the advective scheme. In particular, it de-
pends strongly on how the numerical dissipation is
partitioned between different terms of the advective
scheme. Although one can succeed to regain control
over deficient (spurious-wise) schemes [6] by modi-
fying the dissipative terms of the schemes the ex-
act numerical mechanism is not yet understood. In
particular, the question “why certain schemes evince
spurious solutions while others do not” still eludes a
scholastic answer. In [6] it was shown that for an
idealized finite-difference scheme the definition of the
advective velocities in the primitive variable formu-
lation of the equations can induce a truncation error
vorticity source. However, a rigorous vorticity anal-
ysis of nonlinear approximations such as high-order
Godunov-type schemes appears very difficult.

The success of high-resolution methods to com-

pute turbulent flows as well as the issue of spuri-
ous solutions in under-resolved flows seem to depend
on a delicate balance of truncation errors due to
wave-speed-dependent terms (chiefly responsible for
numerical dissipation) in the case of Godunov-type
fluxes and hyperbolic part of the flux. It is the essence
of this balance that needs to be understood.
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