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Abstract 

We present Numerical Viscosity Functions, or NVFS, for use with Riemann-problem 
based shock-capturing methods as applied to viscous flows. In particular, viscous flux 
limiters are derived. The analysis pertain to a linear convection-diffusion model equation. 
Our NVFS combine the physical viscosity, the role of which is maximised, with numerical 
viscosity, whose role is minimised, to capture TVD solutions to  viscous flows. 

1 Introduction. 

The development of Riemann-problem based shock-capturing methods for hyperbolic problems 
has been a significant contribution to  Computational Fluid Dynamics (CFD) in the last decade. 
These methods are high-order extensions of the first-order Godunov method [l]. Two main 
features are: they use solutions to local Riemann problems and introduce implicit numerical 
viscosity to capture oscillation-free inviscid shocks. Applications of these methods to a wide 
variety of inviscid flows have proved very successful. 

Quite recently these methods have also been used to solve viscous flow problems such as the 
Navier-Stokes equations (eg. [23, [3]). The basic strategy is to deploy these methods for the 
convective terms (the Euler equations) and use central differences, for example, to discretise 
the viscous terms. The approach has lead to  satisfactory results. This is not surprising since, 
in the absence of strong diffusion, it is the discretisation of the convective terms what is really 
crucial. Riemann-problem based methods are in many ways optimal for treating convective 
terms, particularly, for the way the implicit numerical dissipation to capture oscillation-free 
shocks is controlled. In despite of this property some workers (e.g. [a]) have reported the 
presence of excessive artificial viscosity in the computed solutions. The explanation for this is 
that numerical viscosity functions, in the form of flux limiters for example, introduce numerical 
viscosity as if the equations were actually inviscid. These limiters are blind to the fact that the 
equations do have physical viscosxy which is (correctly) superimposed on the added (excessive) 
numerical viscosity. In this paper we present numerical viscosity functions that incorporate 
fully the physical viscosity s o  as to introduce the absolute minimum of artificial viscosity for 
capturing oscillation-free shocks. The analysis is based on a model convection-diffusion equation 
and we select a particular Riemann-problem based method, namely the Weigthed Average Flux 
(or WAF) Method [4]. The principles however apply to other methods of this kind. 

The resulting NVFS can immediately be translated to  more conventional functions such as flux 
limiters and slope limiters ( I S ] ,  [6], [7]). Numerical experiments for the linear model and for 
Burgers' equation show the advantage of using the new viscous NVFS over traditional limiters. 



The remaining part of this paper is divided as follows: section 2 contains a succinct description 
of the WAF method, its application to the model equation and a derivation of TVD regions. 
Section 3 deals with construction of numerical viscosity functions; section 4 contains numerical 
experiments and conclusions are drawn in section 5. 

2 TVD regions for a model equation. 

We consider the model convection-diffusion equation 

where a is a wave propagation speed and a is a viscosity coefficient. Both a and a are assumed 
constant. We interpret the left-hand side of Eq. 1 as a conservation law with flux F ( u )  = au. 
Applying an explicit conservative method to the convective terms in (1) and central differences 
to the viscous term gives 
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where d = 9 is the diffusion number and 
cells (i, i + 1). In this paper we use the WAF [4] numerical flux 

is the intercell numerical flux for the pair of 

aA t where A;+,/ ,  is a numerical viscosity function yet to be constructed. If A;+,/, = c ,  where c = 
is the Courant number, the WAF method reduces identically to the Lax-Wendroff method, which 
is second-order accurate in space and time. This identity between WAF and Lax-Wendroff is only 
true'for the linear pure convection part of Eq. 1 (left-hand side). The quantities Ax and At 
define the mesh size in space and time respectively. In the first part of the analysis we a sume  
a > 0 .  

As it is well known, the Lax-Wendroff method is upwind biased, for the coefficients (or weights) 
W 1 -  - k k ~  2 and W2 = 9 in Eq. (3) control the upwind F; and downwind F;+l contributions 
to the intercell numerical flux Fi+1/2,  with W1 > W2 for positive speed a.  TVD solutions are 
ensured by increasing the upwind contribution and decreasing the downwind contribution. The 
objetive here is to construct numerical viscosity functions A = A ( r , c , d )  that depend on a flow 
parameter T ,  the Courant number c and the diffusion number d. 

Insertion of (3) into (2) and after rearranging gives 

where the flow parameter r; is g i v h  by 

and is the ratio of the upwind jump AUpw to the local jump Aloe across the wave of speed a.  
We now impose the sufficient TVD condition 0 5 H 5 1 in eq. (4). After rearranging we obtain 
















