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VISCOUS FLUX LIMITERS

E. F. Toro

Department of Aerospace Science
College of Aeronautics
Cranfield Institute of Technology
Cranfield, Beds MK43 OAL
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Abstract

We present Numerical Viscosity Functions, or NVFs, for use with Riemann-problem
based shock-capturing methods as applied to viscous flows. In particular, viscous flux
limiters are derived. The analysis pertain to a linear convection-diffusion model equation.
Our NVFs combine the physical viscosity, the role of which is maximised, with numerical
viscosity, whose role is minimised, to capture TVD solutions to viscous flows.

1 Introduction.

The development of Riemann-problem based shock-capturing methods for hyperbolic problems
has been a significant contribution to Computational Fluid Dynamics (CFD) in the last decade.
These methods are high-order extensions of the first-order Godunov method [1]. Two main
features are: they use solutions to local Riemann problems and introduce implicit numerical
viscosity to capture oscillation-free inviscid shocks. Applications of these methods to a wide
variety of inviscid flows have proved very successful.

Quite recently these methods have also been used to solve viscous flow problems such as the
Navier-Stokes equations (eg. [2], [3]). The basic strategy is to deploy these methods for the
convective terms (the Euler equations) and use central differences, for example, to discretise
the viscous terms. The approach has lead to satisfactory results. This is not surprising since,
in the absence of strong diffusion, it is the discretisation of the convective terms what is really
crucial. Riemann-problem based methods are in many ways optimal for treating convective
terms, particularly, for the way the implicit numerical dissipation to capture oscillation-free
shocks is controlled. In despite of this property some workers (e.g. [2]) have reported the
presence of excessive artificial viscosity in the computed solutions. The explanation for this is
that numerical viscosity functions, in the form of flux limiters for example, introduce numerical
viscosity as if the equations were actually inviscid. These limiters are blind to the fact that the
equations do have physical viscosity which is (correctly) superimposed on the added (excessive)
numerical viscosity. In this paper we present numerical viscosity functions that incorporate
fully the physical viscosity so as to introduce the absolute minimum of artificial viscosity for
capturing oscillation-free shocks. The analysis is based on a model convection-diffusion equation
and we select a particular Riemann-problem based method, namely the Weigthed Average Flux
(or WAF) Method [4]. The principles however apply to other methods of this kind.

The resulting NVFs can immediately be translated to more conventional functions such as flux
limiters and slope limiters ([5], [6], [7]). Numerical experiments for the linear model and for
Burgers‘ equation show the advantage of using the new viscous NVFs over traditional limiters.



The remaining part of this paper is divided as follows: section 2 contains a succinct description
of the WAF method, its application to the model equation and a derivation of TVD regions.
Section 3 deals with construction of numerical viscosity functions; section 4 contains numerical
experiments and conclusions are drawn in section 5.

2 TvD regions for a model equation.

We consider the model convection-diffusion equation

U + AUy = QUgy (1)

where a is a wave propagation speed and « is a viscosity coefficient. Both a and « are assumed
constant. We interpret the left-hand side of Eq. 1 as a conservation law with flux F(u) = au.
Applying an explicit conservative method to the convective terms in (1) and central differences
to the viscous term gives
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where d = Z—iﬁ is the diffusion number and Fj.;/, is the intercell numerical flux for the pair of

cells (¢,i+ 1). In this paper we use the WAF [4] numerical flux
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where A; 1/, is a numerical viscosity function yet to be constructed. If A;;y/, = ¢, wheree = “A—Az—t

is the Courant number, the WAF method reduces identically to the Lax-Wendroff method, which
is second-order accurate in space and time. This identity between WAF and Lax-Wendroff is only
true for the linear pure convection part of Eq. 1 (left-hand side). The quantities Az and At
define the mesh size in space and time respectively. In the first part of the analysis we assume
a>0.

As it is well known, the Lax-Wendroff method is upwind biased, for the coefficients (or weights)
Wi = l—',‘,tc- and W, = l—g-c— in Eq. (3) control the upwind F; and downwind Fj4; contributions
to the intercell numerical flux Fi;,/5, with Wy > W, for positive speed a. TvD solutions are
ensured by increasing the upwind contribution and decreasing the downwind contribution. The
objetive here is to construct numerical viscosity functions A = A(r,c,d) that depend on a flow
parameter r, the Courant number ¢ and the diffusion number d.

Insertion of (3) into (2) and after rearranging gives
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where the flow parameter r; is given by
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and is the ratio of the upwind jump Aypy to the local jump Ay, across the wave of speed a.
We now impose the sufficient TVD condition 0 < H < 1in eq. (4). After rearranging we obtain
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where R.. = § is the cell Reynold’s number.

So far we have assumed that the speed a is positive. For negative a the result is the same
as that of inequialities (6) but ¢ is changed to |c| and the upwind jump in (5) is changed to
Aupw = Uyg — Uiyy-

Hence in what follows we adopt the general case
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where now the cell Reynolds number is R, = l;_l.

We now select two inequalities such that (7) holds automatically. These are
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For given ¢ and d, or equivalently R, inequalities (8)-(9) lead to TVD regions for A as a
function of the flow parameter r (subscripts omitted) as shown in Fig. 1; dotted lines illustrate
the boundaries of these regions for the inviscid case d = 0 which apply to the pure convection
problem. The viscous TVD region is bounded by the thick full lines. There are two horizontal
lines that define the upper and lower bounds Aps and L respectively. The lateral bounds for the
left and right sides are given by the straight lines designated A, and Ag. In the present study
we keep the upper bound Aps fixed while all other bounds are allowed to vary.

The bounds are given by
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The parameter K is related to the minimum A,, by
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that determines the value of the lower bound A,, as well as A;. For K = 0 the boundary Ay,
coincides with Aps and the left TVD region coalesce to the single line Aps for negative r. Actually
one could include the band bewteen Aps and 1 within the TVD region but this would result in
excessive artificial viscosity. Note that the value A = 1 would give the Cole-Murmam first-order
upwind method for the pure convection (inviscid) equation u; 4+ au, = 0, which introduces too
much artificial viscosity. The viscous version of this scheme is given by A = Ajps, which reduces
the amount of artificial viscosity of the Cole-Murmam scheme. The choice A = |¢| would give
the Lax- Wendroff method for the inviscid equation which has no artificial viscosity. If Aas > |e|
then some artificial viscosity is needed to ensure TvD results. Otherwise the physical viscosity
is sufficient to do this and one should select A = |c| in that case. For A < |¢| one would be be
adding negative artificial viscosity, that is to say the downwind contribution would be greater
than that of the Lax-Wendroff scheme. The extreme case would be Ay = A4,, = —1, which for
the inviscid case leads to an unstable scheme.

The inclusion of the physical viscosity in the construction of the numerical viscosity functions
A results in a reduction of the numerical viscosity introduced by the upwind contribution to the
intercell flux. The physical viscosity compensates for that reduction.

3 Construction of numerical viscosity functions.

There is virtually unlimited freedom in constructing NvFs A within the TVD regions shown in
Fig. 1. The choice of the lower boundary A,, is significant. Here we select two cases, namely
Ay = e} (K = e} -1~ R—i;) and A, = 2|c| — 1 — 2/Rce. The first case generates NVFs that
are associated with the well known flux limiter MINMOD or MINBEE while the second choice is
associated with the flux limiter SUPERBEE. We thus call the respective families of NVFs the
MINAD and SUPAD families.

Once a function A has been constructed we relate it to flux limiters via

A-1

3.1 The MINAD family.

This family is shown in Fig. 2; it lies between the horizontal lines Aps and A,, = |c| and the
inclined lines
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We select two members which we call MINAD1 and MINAD2. They are respectively shown by
dotted and full lines. MINAD1 can be easily expressed as

(17)
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otherwise MINAD2 passes through the points r;, and rp which are given by

le] + & -1 le| + & -1
= oo —ipp = oo Hloog (19)
lel+ g +1 Ree ~ 1

L




3.2 The SUPAD family.

This family is illustrated in Fig. 3. Only one member is selected and corresponds to the lowest
boundary of the TVD region. For non-negative r and d = 0 this function can be identified with
the inviscid flux limiter SUPERBEE. We therefore call it SUPAD.

4 Numerical experiments.

Two test problems with exact solution are chosen for numerical experiments. Test 1 is the linear
convection-diffusion equation (1) in the spacial domain [0, 2], initial condition u(0,z) = sin(rz)
and periodic boundary conditions. The second test problem concerns Burgers’ equation

Ut + UlUg = QUgy (20)

in the spacial domain [0, 1]. The initial condition is u(0,z) = 1.0 for z < 0.1 and (0,z) = 0.0
otherwise. Transmissive boundary conditions are applied. Of course the analysis of this paper
is strictly valid only for the linear model equation, but empirical application to the (non-linear)
Burgers’ equation gives very satisfactory results. This is encouraging, since for realistic problems
(eg. the Navier-Stokes equations) the extension of these ideas will necessarily be empirical. We
use 100 computing cells for both tests and march the solution at a Courant number of 0.8; for a
and a we take 0.001 and 1.0 respectively. We compare numerical results with the exact solution
for MINMOD, MINAD2 SUPERBEE and SUPAD for positive r only; for negative r we set A = Ajps.

Fig 4. shows results for Test 1; 4(a) shows the result of using MINMOD while 4(b) shows the
result when using one of its viscous counterpart MINAD2; 4(c) and 4(d) are results obtained
by SUPERBEE and its viscous counterpart SUPAD. For this case of a smooth solution one can
clearly see the advantages of using the viscous functions of the MINAD type. Note that clipping
is absent in 4(b). As expected SUPERBEE gives wrong results for smooth flows as seen in 4(c);
its viscous counterpart does not improve matters as seen in 4(d). Note that MINMOD adds too
much numerical viscosity while SUPERBEE underdiffuses the solution, which is also incorrect.

Fig. 5 shows the corresponding results for Test 2. For this case with a shock wave both families
of viscous functions are superior to their inviscid counterparts.

5 Conclusions.

Numerical viscosity functions for a model equation have been presented. These incorporate the
physical viscosity so that the contribution from the numerical viscosity to ensure TVD results
is minimised. Numerical experiments confirm the theoretical analysis. Extension of these ideas
to realistic problems is a pending task.
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Figure 2: MINAD family of Numerical Viscosity Functions. MINADI is given by dotted lines
and MINAD2 is given by full lines.
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Figure 3: SUPAD family of Numerical Viscosity Functions. Only one member is selected and is
given by full line.
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Figure 1: Viscous TVD regions for the model convection-diffusion equation.
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Figure 4. Numerical results for Test 1 using:
(@) MINMOD, (b) MINAD2, (c) SUPERBEE, (d) SUPAD.
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Figure 5. Numerical results for Test 2 using:
(a) MINMOD, (b) MINAD2, (c) SUPERBEE, (d) SUPAD.




