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ABSTRACT

The response to controls of a neutrally buoyant non-rigid airship was investigated for a
range of speeds from the hover to 30 m/s using a non-linear simulation model. The
responses shown include both flight path and a range of motion variables. The latter
show the influence of the stability modes on control. The controls included in the
airship model comprise equivalent elevator, equivalent rudder, thrust magnitude and
thrust vector direction.

A linearised state model of the airship was obtained from the simulation model for a
range of speeds from the hover to 30 m/s. The validity of the linearised model for short
term evaluation of stability and control was confirmed by matching linear response
plots with those obtained from the simulation model. By making assumptions about the
nature of response, the state equations were simplified to enable algebraic
approximations for the stability modes to be derived by analysis. The approximate
models were shown to compare favourably with the actual modes obtained in the
solution of the equations of motion.

© Copyright, Cranfield University, August 1999
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1. Introduction

The airship provided the first practical means for trans-global travel and during the
1920's and 1930's a number of very large rigid airships were developed for that
purpose. At that time, the very highly flammable hydrogen gas, being the lightest gas
available in sufficient quantities, was used to provide buoyancy. Over the years, a
number of high profile accidents involving the airship did not help its cause. In
particular, the loss of the Hindenburg in a spectacular fire in 1937 raised serious
questions about the role of the airship for passenger carrying services. Since large
transport aircraft were developing rapidly the demise of the large commercial airship
was not surprising.

In more recent years there has been a resurgence of interest in the airship for
commercial applications. The ready availability of inert helium gas in sufficient
quantities, the development of modern lightweight gas-tight materials and the relative
simplicity of a non-rigid structure, together make a modern commercial airship an
attractive proposition. A number of manufacturers are convinced that a market exists
for the unique operational advantages that can only be provided by the airship. Thus a
small, but significant, number of modern airship developments continue to be pursued
by various organisations around the world.

By the early 1980's Airship Industries Ltd. in the UK had developed and successfully
flown the Skyship 500 and 600 series of non-rigid airships. The undoubted success of -
these airships was due, in part, to the significant use of very advanced materials and
manufacturing techniques in their construction. The ultimate achievement by the
company was the development of a demonstrator airship with optically signalled tlying
controls, claimed to be the worlds' first fly-by-light control system. Trials reports
indicated that the control characteristics of the demonstrator were far superior to those
of the mechanically controlled airship.

In the mid-1980's Airship Industries Ltd. was awarded a contract by the US
Department of Defense to develop a very large non-rigid airship for the US Coast
Guard Service. The YEZ-2A airship was more than twice the size of existing machines
and was intended for a very long endurance surveillance role. In turn, the College of
Aeronautics was sub-contracted by Airship Industries Ltd. to undertake an extensive
series of wind tunnel tests and to contribute to the development of an aerodynamic
model of the YEZ-2A. This work was undertaken by Gomes!!! who eventually used the
aerodynamic model to study the dynamics, stability and control of the non-rigid airship.
A short time later a further study was undertaken by Crawford® in which the computer
simulation model developed by Gomes was used to investigate flying and handling
qualities.

Following the discovery of a minor error in the wind tunnel data reduction software,
the aerodynamic data base and the computer simulation were revised accordingly in
1996. Since the error affected some of the lateral-directional aerodynamic data only it
was fortunate that it had no influence on the aerodynamic trim model on which nearly
all of the foregoing work had been based. This report summarises some stability and
control investigations undertaken using models derived from the revised computer



simulation. All investigations were made for a neutrally buoyant airship. Three aspects
of stability and control were studied in the limited time available.

(i) Since the aerodynamic data base had changed, the response to aerodynamic
controls was revisited to confirm that the basic control characteristics were
unchanged. Since most of the earlier work had concentrated on the higher speed
end of the flight envelope the emphasis here is on the lower speeds in order to
extend the understanding.

(ii) One of the main problems faced by the airship is a lack of control at low speed due
to the poor performance of the aerodynamic controls. Thrust vectoring provides a
useful means for control at very low speed and this was investigated as a part of the

study.

(iii) Previous work by Crawford® on flying and handling qualities investigated the role
of various aerodynamic derivatives in determining the dynamic characteristics of
the airship. This work was based, in part, on an unpublished analysis by
Lipscombe®. This work was also revisited, the analysis by Lipscombe was revised
to more accurately reflect the characteristics of the aerodynamic model and the
findings are included in this report.

Fig.1 Body axis system in airship



2. Response to controls

2.1 The ACSL simulation

A comprehensive non-linear computer simulation model of the non-rigid airship was
written by Gomes!!! in the Advanced Continuous Simulation Language (ACSL)“.
Whenever the simulation is run, the initial conditions comprising speed, weight, thrust
and buoyancy are specified. Firstly, the airship model is trimmed by the simultaneous
adjustment of pitch attitude and the displacement air distribution in the ballonets. Once
trim 1s achieved, the simulated manoeuvre may be initiated by displacement of the
appropriate controls. For the present exercise, the controls comprised equivalent
elevator J,, equivalent rudder J,, left and right engine thrust, 7, and 7 respectively,
and thrust vector angle 1. For the purpose of modelling, a body axis system is fixed in
the airship with its origin at the centre of volume as indicated in Fig.1. Also shown are
the principal motion variables, linear and angular velocities, together with the control
variables assumed for the present study. Output from the simulation comprises all, or
any, of the control and motion variables as functions of time for the simulated response
time.
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Fig.2 Flight path response to elevator step inputs at an initial speed of 25 m/s
2.2 Longitudinal responses to an elevator type input
With reference to Fig.1 it is clear that, for a given trimmed thrust, longitudinal

manoeuvring may be effected by the equivalent elevator and, or, by varying the thrust
vector angle of both engines symmetrically. Note that equivalent elevator implies the



symmetric displacement of the flap surfaces attached to both horizontal fins. In all
simulated longitudinal manoeuvres the following response variables were recorded:
height A, axial velocity #, normal velocity w, pitch rate g and pitch attitude 6.

2.2.1 Aerodynamic control

In order to establish an indication of the longitudinal control characteristics of the
airship, response to elevator was measured at a typical cruising speed of 25 my/s. Flight
path responses for elevator inputs of various magnitudes are shown in Fig.2. It is not
surprising to see that the greater the elevator angle, the greater the rate of climb. It is
also evident, especially at the larger elevator angles, that the down force on the tail
surfaces causes the airship to sink initially until the hull develops sufficient lift to
reverse the tendency and causes the airship to climb away. This non-minimum phase
property is characteristic of most aeroplanes and is most significant when large pitch
attitude changes are demanded. Time histories for the remaining motion variables are
shown in Fig.3 for a —20° elevator step demand only. Clearly, the large change in pitch
attitude causes a consequent reduction in speed due to the increase in drag.
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Fig.3 Longitudinal response to a —20° elevator step at a speed of 25 m/s

The sensitivity of the non-minimum phase characteristic to speed in the longitudinal
response to elevator was examined further. Flight path response to a -11° elevator step
is shown in Fig.4 for various speeds at the low speed end of the flight envelope. The
sense of the elevator input is such as to demand pitch up to result in a climb. However,
it is quite clear that at speeds below approximately 12 m/s, the hull is unable to develop
sufficient lift to overcome the down load on the horizontal tail surfaces. The effect of
longitudinal control at very low speeds is therefore reversed. This phenomenon is well-



known and it implies that the pilot has to reverse the input if he wants to climb at low
speeds. Nevertheless, even if the pilot reverses the input, the amplitude of the response
is negligible at the hover, or very small at very low speeds. This low speed control
characteristics is one of the main disadvantages of the airship since it makes mooring
and ground handling a difficult control problem which has still not been completely
solved.
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Fig.4. The sensitivity of longitudinal control to speed
2.2.2 Comparison between vectoring thrust and aerodynamic control

Two representative low speed situations which are difficult to manage were studied,
the hover and the initial take-off manoeuvre. The hover is a particularly difficult
control condition since the aerodynamic controls are essentially ineffective and thrust
control 1s the only mechanism available to the pilot for short term control of the
vehicle. Clearly, the control problem is compounded in the presence of atmospheric
disturbances. The take-off manoeuvre, especially the part which is below the control
reversal speed, also poses an interesting control problem for the pilot. It is usual
practice to use thrust vectoring to assist the take-off manoeuvre.

To simulate a thrust control input, a symmetric thrust vector angle step x and a small
symmetric step increase in thrust were demanded simultaneously. Consequently, the
small change in thrust magnitude resulted in a small change in the trimmed speed. In
order to achieve a meaningful comparison of the responses to the vectoring thrust with
the response to aerodynamic control, the small step in thrust magnitude was also
applied simultaneously with the aerodynamic control input.



Since it is not possible to achieve a true zero speed hover with the simulation model,
the hover was modelled with a very small axial velocity of 0.1 m/s. Response to the
control input was recorded for 120 seconds and the small step in thrust magnitude
caused the speed to increase to 0.6 m/s at the end of this observation period. The
results of this experiment, limited to flight path responses only, are shown in Fig.5.
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Fig.5 Comparison between vectored thrust and aerodynamic control at hover

Clearly, thrust vectoring provides a much more effective means for control at very low
speed. Note that the maximum aerodynamic control input is applied in the pitch down
sense (positive) in order to demand climb. Its effectiveness is very poor, as might be
expected, since the airship climbs less than 0.5 m in 120 seconds. The responses to
thrust vectoring are, in comparison, rather better. Besides, it is possible to utilise a
large thrust angle to achteve greater control effectiveness.

The take-off simulation flight path responses are shown in Fig.6. The initial condition
for the simulation was hover at ground level, and as before, the hover was
approximated by an axial speed of 0.1 mv/s. The thrust magnitude step was chosen to
give a climb out speed of 11 m/s at the end of the simulation run time of 120 seconds.

Once again, it is clearly evident that thrust vectoring provides a more effect control
mechanism for initiating the take-off manoeuvre, especially for thrust vector angles
greater than 10°. Again, the aerodynamic control input is reversed in order to initiate a
climb response. However, once the speed has reached 12 m/s, it was found that the
aerodynamic control is sufficiently effective to be the main source of longitudinal
control.
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Fig.6 Comparison of thrust vectoring and aerodynamic control at take-off
2.2.3 Observations

Thrust vectoring provides an effective alternative to the aerodynamic elevator control
for the low speed range. This low speed range, below approximately 12 m/s, can be
described as the range where, in response to a control input, the dominant lift is not
provided by the hull but by the fin itself. For all longitudinal operations in this low
speed range, thrust vectoring could be used as the primary means of control. This
implies that when an airship is fitted with thrust vectoring controls, the dimensions of
the elevators could be reduced since they would only be required for control at high
speeds

2.3 Lateral-directional responses to a rudder type input

With reference to Fig. 1, lateral-directional manoeuvring may be effected by the
equivalent rudder J, and, or, by differential variation of the magnitude of the thrust of
the right and left engine, 7, and 7, respectively. Note that equivalent rudder implies the
symmetric displacement of the flap surfaces attached to both vertical fins. The airship
does not have an equivalent aileron and therefore direct control in roll is not possible.
Direct roll control is not necessary since the main source of lift is buoyancy and the lift
vector is always directed upwards. In all simulated lateral-directional manoeuvres the
following response variables were recorded, lateral displacement referred to earth axes
lateral velocity v, roll rate p, yaw rate r and roll attitude ¢.

>



2.3.1 Aerodynamic control

To establish the aerodynamic effectiveness of the equivalent rudder control, turning
response at the typical cruise speed of 25 m/s was evaluated for step inputs of various
magnitudes as shown on Fig.7. As might be expected, the radius of turn is reduced as
the rudder angle is increased. Note that no non-minimum phase effect is apparent in
directional control. Clearly, the rudder is an effective means for directional control at
the speed in question.
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Fig.7 Track response to a rudder step input at an initial speed of 25 m/s

Corresponding time histories for the remaining motion variables in response to a
rudder step input of —20" are shown in Fig.8. The oscillation which is clearly visible in
the roll rate response is the oscillatory roll mode which 1s lightly damped at this flight
condition.

In order to establish if there is also a reversal speed in directional control, the response
to rudder was examined further. Track response to a —11° rudder step input is shown
in Fig.9 for various speeds at the low speed end of the flight envelope. It is clearly,
evident that the turning performance is almost independent of speed, the radius of turn
being nearly constant. It is also clear that normal aerodynamic control may be
maintained at a speed as low as 3 m/s, the lowest recorded. It would therefore appear
that directional control reversal does not occur at low speed.
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Fig.8 Lateral-directional response to a -20° rudder step at a speed of 25 m/s
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Fig.9 The sensitivity of directional control to speed
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2.3.2 Comparison between differential thrust and aerodynamic directional control

Differential thrust and rudder were compared for directional control in a situation
representative of a landing approach. The simulation reproduces a left turn toward the
mooring mast at an initial speed of 2 m/s. The simulation run time was limited to 25
seconds to establish what level of performance can be achieved in a relatively short
time. The ground track responses are compared in Fig.10.

Thrust control was simulated by simultaneously increasing the thrust on the right
engine by a fixed amount and by reducing the thrust on the left engine by the same
amount to induce a turn to the left. In the first instance, the thrust increment was 207
and in the second instance the thrust increment was +407 where 7" was the initial trim
value of thrust. To simulate engine response time the thrust increment was applied as a
short ramp function rather than a step function. Even in the second case, the forty fold
increase in thrust was still representative of less than a quarter of the maximum power
available, which is 2070 bhp. Thrust control was compared with the maximum
equivalent rudder displacement of 20° as indicated in Fig.10.
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Fig.10 Comparison between differential thrust and aerodynamic control in a
landing approach.

Fig.10 indicates that, as might be expected, differential thrust is far more effective than
aerodynamic control. The large scale of the response plot reveals that there is a small
non-minimum phase effect with aerodynamic control at this very low speed. Thus, for
the first 25 seconds after control input, any lateral displacement due to rudder is almost
impossible. This emphasises the importance of differential thrust for lateral-directional
manoeuvring during mooring and ground handling.
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Corresponding time histories for the remaining motion variables in response to a
differential thrust input are shown in Fig.11. Again, the oscillation which 1s clearly
visible in the roll rate response, although its amplitude is very small indeed, is the
oscillatory roll mode which is essentially a lateral pendulum mode at this lightly
damped low speed flight condition.
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Fig.11 Lateral-directional response to a differential thrust input

2.3.3 Observations

Differential thrust control provides an effective alternative to rudder control for
manoeuvring at very low speeds. Although control reversal is barely perceptible in
response to rudder at the very lowest speeds, the rudder is not an effective means for
control at low speeds. Thus differential thrust is the only useful means for directional

control of the airship during a landing approach, and when rapid response is required at
low speed.

13



3. Linear analysis

3.1 State model

To facilitate mathematical analysis of airship dynamics it is first necessary to derive a
linear de-coupled model from the non-linear system of equations of motion described
in Appendix 1. A full description of the derivation of the linear equations of motion is
given in Cook®. However, in this work a very powerful feature of ACSL was used to
obtain numerical values for the linear state model at a predetermined operating
condition.. The ANALYSE command in ACSL enables the state and input matrices,
from the linear state equation, to be extracted for a given set of state vanables at a
defined operating point. In this work those matrices were obtained one second into the
response following an elevator or rudder step input. The de-coupling of the
longitudinal handling from the lateral-directional handling has long been established for
the airship. In the Zeppelins, for example, there were two control wheels, one for the
rudders and one for the elevators, each being operated by its own crew member.

With reference to Cook!, the general state equation may be written in the standard
form,

x = Ax +Bu (1)

where, A is the state matrix, B is the input matrix, x is the state vector and u is the
input vector.

Thus, the longitudinal state equation may be written,

u x, X, X, X, |u X5 X
W z, z, z, Z,wl |z 0 || o,
= 4 ¢ | % !: J (2)
q m,m, m, nglq| \m; ms |0
6] |o 1 06| Lo o

and the lateral-directional state equation may be written,

VI X Yo Y Yl v s

; A A 0

= A [ S I *) G)
;

n, n, n n g

v P v (]

p
6l o 1 0o ofg||o

The longitudinal and lateral-directional state equations were solved, with the aid of
MATLABUY, to obtain the transfer function matrices G(s) where,

9= [sT-ATBu _N(s)
det[sI-A]  A(s)

)
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N(s) denotes the numerator matrices, the elements of which are the numerator
polynomials in the Laplace operator s, and A(s) denotes the characteristic polynomial,
the poles of which determine the stability characteristics of the airship .

All the response transfer functions obtained by this means are presented in Appendix 3.
3.2 Comparison of the non-linear model with the linear model

The comparisons were made at two different flight speeds, 8 m/s and 25 m/s
respectively, and for an elevator or rudder step input of -11°,

The longitudinal motion comparisons are shown, for the two speeds, in Fig.12 and
Fig.13 respectively. In each of the following response plots, the solid black trace is the
non-linear response as given by ACSL and the dotted trace is the linear response as
given by MATLAB. It is evident that the match between the two models is really good
except for the surge speed at 25 my/s. This is because the surge speed depends on
coupled terms which are not included in the linear MATLAB model. Nevertheless, the
difference in speed is sufficiently small that the longitudinal linear state model can be
considered to give an acceptable representation of the airship dynamics for short to
medium term periods of observation.
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Fig.12 Response to a -11° elevator step at U;=8 m/s
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Fig.13 Response to a -11° elevator step at U;=25 m/s
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Fig.14 Response to a -11° rudder step at U,=8 m/s

16



The lateral-directional motion comparisons are shown, for the two speeds, in Fig.14
and Fig.15 respectively. As before, in each of the response plots, the solid black trace
is the non-linear response as given by ACSL and the dotted trace is the linear response
as given by MATLAB. The comparison of the two models shows that there 1s a small
difference in roll rate, and therefore in roll attitude as well, which increases with speed.
However, the fundamental shapes of the responses are very similar. Clearly, the
dynamic coupling omitted in the linearised lateral-directional model is rather more
significant. The differences are considered to be sufficiently small that the lateral-
directional linear state model can be considered to give an acceptable representation of
the airship dynamics for short to medium term periods of observation.
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Fig.15 Response to a -11° rudder step at U,=25 m/s
3.3 Stability modes analysis
3.3.1 The longitudinal modes

Lipscombel3! undertook an algebraic analysis of the equations of motion based on
approximations dependent upon typical relative magnitudes of the matrix coefficients.
The results of this analysis enabled the longitudinal stability modes characteristics to be
described in terms of approximate algebraic expressions comprising the matrix
coefficients. Lipscombe's original work has been reviewed and an addition has been
made to this work in order to establish analytically what Lipscombe demonstrated
numerically. The analyses are set out in Appendix 2.

Having established approximate models to described the longitudinal stability modes, it
was then considered necessary to test the validity of the models. This was done by

17



measuring the modes characteristics at various speeds using the full non-linear
simulation model and comparing the modes characteristics with the approximations.
The numerical values of the coefficients of the A and B matrices comprising the linear
model are given in Appendix 3, together with the transfer function poles, zeros and
gains obtained in the solution of the equations of motion. It should be remembered that
the linear models set out in Appendix 3 were obtained from the non-linear simulation
model by linearising about a chosen speed.

Surge mode

The longitudinal surge mode is characterised as a lag in axial speed response and, as
shown by the analysis in Appendix 2, is dominated by the derivative x,. In Fig.16 the
value of the derivative x, is plotted as a function of forward speed and the plot is
overlaid with a number of points representing the actual value of the surge mode pole
at various speeds. Both the values of the derivative x, and the surge mode pole were
obtained from the models given in Appendix 3. It is clear that the comparison is very
good implying that the surge mode pole is well represented by (s — xu).
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Fig.16 Surge mode characteristic
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Heave and Pitch subsidence mode

As Lipscombe demonstrated, at low speed the heave mode is characterised
approximately by z, and at high speed it becomes a pitch mode characterised
approximately by m, . This characteristic is also demonstrated in the response to an

elevator step input at different speeds. At low speeds, the response is poor whereas, at
high speed the response is good. The transition from a heave subsidence characteristic
to a pitch subsidence characteristic occurs at the fransition speed which, it may be
observed from Fig.17, is nominally around 12 m/sec. Below this speed, the pilot will
experience longitudinal elevator control reversal because the hull is unable to generate
enough lift to climb, which is in accordance with the findings in paragraph 2.2.1. The
values for the derivatives z, and m, are shown plotted as functions of speed in Fig.17.

Super-imposed on these plots is the mode pole, and at low speeds the pole aligns
closely with z, whereas, at high speed the pole aligns closely with m, . The values of

the derivatives z, and m, and the heave/pitch mode pole were obtained from the

models given in Appendix 3. It 1s clear that the comparison is very good implying that
the low speed heave mode pole is well represented by (s- zw), and the higher speed

pitch mode pole is well represented by (s—mq)‘
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Fig.17 Heave and pitch subsidence mode characteristic.
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Pendulum mode

At low speeds the pendulum mode is characterised approximately by (s2 —m,s— mg).
At higher speeds, the pendulum mode is modified by an incidence-pitch angle

interaction and is characterised approximately by (5’2 - zws——’zliz—w- . The variation of
m
q
frequency and damping ratio of the mode is shown in Fig.18.
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Fig.18 Longitudinal pendulum mode

3.3.2 The lateral-directional modes

V4

As the corrections to the aerodynamic data base mainly influence the lateral-directional
handling, the original assumptions made by Lipscombel3] were revised as described in
Appendix 2.

Sideslip subsidence mode

Fig.19 shows the plot of the approximate sideslip subsidence pole as given by the
expression, ( Y=Ly, /l¢). Superimposed on the plot are the mode poles as given for the
various speeds in Appendix 3. Clearly, the approximation is good. At low speeds, the
pole is near zero which implies that, since the mode is nearly neutrally stable, the pilot

has very poor control of sideslip at those speeds, which supports the observations
made in paragraph 2.3.
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Fig.20 Yaw subsidence mode characteristic
Yaw subsidence mode
Fig.20 shows plot of the approximate yaw subsidence pole as given by the yaw

damping derivative #n,. as before, superimposed on the plot are the poles as given for
the various speeds in Appendix 3. Again, the approximation is good. At slow speeds,
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the pole is near zero which implies that, since the mode is nearly neutrally stable, the
pilot has very poor control of yaw at those speeds, which corresponds with the
observations made in paragraph 2.3.

Oscillatory roll mode

The oscillatory roll mode is characterised approximately by,

l
[52 - [lp +, ——V—Xﬂ)s—lJ
Iy

The variation of frequency and damping ratio of the mode is shown in Fig.21.
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Fig.21 Oscillatory roll mode characteristic

4. Conclusions

%~ Longitudinal elevator control reversal occurs at speeds below approximately 12
m/s. At speeds below this transition speed, thrust vector control is more effective
for longitudinal manoeuvring.

& There is no discernible control reversal in aerodynamic directional control at any
speed. However, at speeds below approximately 3 m/s aerodynamic directional
control becomes ineffective. Below this speed, differential thrust is more effective
for lateral-directional control.
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& The short term response of the linear longitudinal model matches the response of
the non-linear simulation model well. The linear model is therefore considered
adequate for short term stability and control analysis.

&~ The short term response of the linear lateral-directional model matches the
response of the non-linear simulation model reasonably well. Therefore, with care,
the linear model is considered satisfactory for short term stability and control
analysis.

&= All of the stability modes are stable at all of the speeds for which they were
analysed.

&= All of the stability modes therefore describe convergent characteristics. However,
at low speeds all of the poles are near to zero, implying near neutral stability and
very slow convergence. Therefore, pilot control of the airship is very poor at low
speeds as demonstrated in the earlier part of the study.

¥~ By making appropriate assumptions about the nature of airship motion,
approximate models of the stability mode poles were found by analysing the linear
equations of motion. These models were found to give very good estimates for the
actual stability mode poles.

& The approximate low speed longitudinal stability mode poles expressed as
functions of concise derivatives were established,

Speed subsidence, or surge mode (s — x,)
Heave subsidence mode, (s-z,)

Longitudinal pendulum mode (s - ms— m,)

¥~ The approximate high speed longitudinal stability mode poles expressed as
functions of concise derivatives were established,

)

Speed subsidence, or surge mode (s — X,
Pitch subsidence mode (s —-m, )

Longitudinal pendulum mode [52 —z5— %]
m
q

&~ The approximate lateral-directional stability mode poles, for all speeds, expressed
as functions of concise derivatives were established,

Yaw subsidence mode (s— n,)

l
Sideslip subsidence mode [s +y, - “ly ”J
¢

[
Oscillatory roll mode [32 - [l Y, - vl—y"’)s— l ¢]
¢
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APPENDICES

Appendix 1: The equations of motion

The equations of motion of the airship have been set out variously by Gomes!!! and
Cookll. The axis system used here is a body fixed system as shown in Fig.1, with the
origin coincident with the centre of volume of the envelope. As is usual, a rigid body
model is assumed and the oxz axes define a plane of symmetry. The governing state
equation may be written,

(m, 0 0 0 ma, 0 Iy

0 m, 0 -ma, 0 ma, || vy

0 0 m, 0 -ma, 0 ||w]|_

0 -ma, 0 J, 0o -J_||P = Fq ©)
ma, 0 -ma, O J, 0 14
| 0 ma, 0o -J, 0 J, LT

and, expanding the right hand side of equation (5),

e
v
M g = D(u7v’wap’q3r) + A(u’vﬂw’p’q’r) +G(ﬂ'3l’ﬂ’32’ﬂ'33) +P (6)
q
— ’: d
Where,
D(u,v,w,p,q,r) 1s the 6x1 dynamics vector
Alu,v,w, p,q,r) is the 6x1 aerodynamics vector.
G(/I31 A, /133) 1s the 6x1 gravitational and buoyancy vector.
P is the 6x1 propulsion vector.
M 1s the mass matrix.

The elements in the mass matrix M comprise both physical mass and inertia terms and
virtual mass and inertia terms. The choice of body axis system and the symmetry of the
airship ensures that some terms in the mass matrix are insignificantly small, or zero.
The non-zero terms are defined as follows;

Mass m, cg coordinates in body axes (ax,ay,az), and a, = 0 since the airship is

symmetric.

25



Components of apparent mass

X,
K (7

s 3 3
1

m-—
m—
m—

N

w

where, X, ¥, and Z, are the aerodynamic derivatives which quantify virtual mass.

Components of apparent inertia

Jo=I.-L,
J,=1,- M, ® :
JZ = IZ Nr
Jo=1,+N,=1,+1,
where, 7, I, and I, are moments of inertia about the axes ox, oy and oz respectively.

I is the only non-zero product of inertia. L,, L,, M,, N, and N, are the

aerodynamic derivatives which quantify virtual inertia. For a buoyant vehicle like the
airship for which the displaced air mass is similar to the mass of the vehicle, these non-
zero virtual mass and inertia terms are significant. For example, the apparent mass of
the vehicle is about 50% greater than the physical mass.

The ACSL simulation model implemented and solved the above non-linear equations
as described by Gomesll], and the vectors D, A, G and P included full non-linear
elements as appropriate. The linear equations of motion used in the analysis were
obtained from the ACSL simulation by invoking the ANALYSE function to linearise
the solution about a chosen operating point - velocity in this instance.
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Appendix 2: Review of Lipscombe’s analysis

A2.1 Background

Lipscombe? wrote three unpublished papers in 1988 in which he analysed the
longitudinal and lateral-directional stability modes of the airship at hover and at various
flight speeds. The object of the papers was to find approximate expressions for the
stability modes in terms of aerodynamic stability derivatives. The assumptions he made
were founded on an analysis of an aerodynamic data base which was less accurate and
less complete than that which subsequently became available for the YEZ-2A airship.
In light of the availability of a better aerodynamic data base, it became clear that some
of his assumptions concerning, in particular, the lateral-directional stability modes,
especially the defining matrix approximations, were no longer valid. The following is a
revision and summary of the calculations originally made by Lipscombe.

A2.2- Approximate models of the longitudinal stability modes

Lipscombe analysed the longitudinal stability modes for higher speed flight conditions
by observing the numerical behaviour of the stability and control derivatives. The
purpose of this paragraph is to demonstrate that the same result may be obtained by

analysis.

The longitudinal state equation, assuming controls fixed, may be written,

u u

w w '

.|[=A ©)
q q

e 17

The stability modes are characterised by the zeros of the characteristic polynomial,
A(s) = det[sT- A] (10)

and, with reference to the longitudinal state models given in Appendix 3, the state
matrix may be simplified by omitting insignificant elements to,

X, X, X, X
0 z, z, z
A= 0 m mq mﬁ7 ()
w q 8
0 1 O

Whence, the approximate longitudinal characteristic polynomial may be written,
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A(s) = (s - xu)(S” - (mq -+ zw)s2 + (quw —-mz - mg)s +(m6,zw - mwze)) (12)
The third order factor may itself be factored to give,
A(s)=(s-x,)(s+a)(& +bs+c) (13)

whence,
a+b= -—(mq +Zw)

ab+c=mz,—-mz, —m, (14)

ac=mygz, —m,.z,

At an initial speed of 30 m/s the values of the derivatives are such that, typically,
¢=0.05ab. Thus, it is reasonable to assume that ab>>c, then it may be shown that,

a’ +(mq +z,)a +(quw -m,z, —-m,)=0 (15)

with solution,

|
—(mq+zw)i(mq~zw)\/l+%nz—g2 (16)
s 2w

For all speeds from the hover the square root term is approximately equal to 1, for
example at a speed of 30 m/s the square root is equal to 1.06. Thus,

1
a=—
2

a:—mq.or a=-—-2z

w

In fact, it is found that a = -z, at the very lowest speeds and a = —m, at higher speeds
where aerodynamic damping becomes effective.

Thus, at very low speeds the complete solution is,

and the approximate factors of the longitudinal characteristic polynomial may be
written,

Als)

in

z

w

(17)

(s- xu)(s- zw)(s2 —ms~ mg)

I

) mz
Since, at low speed m, >> —-2.
z

w
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Thus, to a good approximation the low speed longitudinal stability modes are
characterised as follows;

Speed subsidence, or surge mode (s— xu)
Heave subsidence mode, (s—z,)
Longitudinal pendulum mode (8- n,s — m,)

At moderate and higher speeds the complete solution is,

mz,—m
a=-m, b=-z, c=-—rf—Fr Cal

m,

and the approximate factors of the longitudinal characteristic polynomial may be
written,

A(s)

In

m,

(s— xu)(s - mq)[s2 -z, 8+ [MJJ

(18)
=(s— xu)(s— mq)[s2 -z,5— %)

m,

Since, at high speed mz, >>m z,.

Thus, to a good approximation the high speed longitudinal stability modes are
characterised as follows;

Speed subsidence, or surge mode (s - xu)

Pitch subsidence mode (s - mq)

m,

Longitudinal pendulum mode (53. P mb.,zw)

A2.3 Approximate models of the lateral-directional stability modes
The lateral-directional state equation, assuming controls fixed, may be written,
v
=A
’ (19)
¢

- e =
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The stability modes are characterised by the zeros of the characteristic polynomial,
A(s) = det[sT - A] (20)
Analysis of the lateral-directional state matrices obtained from the ACSL simulation, as

set out in Appendix 3, suggests that the state matrix may be simplified by omitting
insignificant elements to,

yv yp yr y¢
L L L1

A= o | 21
0 0 n O @
0 1 0 O

Whence, the characteristic polynomial may be written,

A(9) = (s=n )&= (1, +2,)8 - (1, + 1y, - Ly )s+(1y, - 13,)) (22)

It is possible to simplify the characteristic polynomial further since, for all flight
conditions, it may be shown that,

[,>>y,

and [, >>1y —1y,

whence,

A(s)=(s- n,)(s3 —1s* - l¢s+(l¢yv - vy¢>)

(23)
As before, the third order factor may itself be factored to give,
As) =(s—n)(s+a)(s* +bs+c) (24)
whence,
at+b=-1
ab+c=-I, (25)
ac=1Ly, -1y,

If it 1s assumed that ¢>>ab, then it follows that,

A(s) = (s—n,)[s+yv - lvly“’ J[f - [lp +y, —lvlﬂ)s— l¢) (26)
¢

¢
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Thus, to a good approximation the lateral-directional stability modes are characterised
as follows;

Yaw subsidence mode (s— n,)

l
Sideslip subsidence mode [ s+y, — Vly ¢J
¢

l
Oscillatory roll mode [52 - [lp +y, - %Js -1 J
s

31



Appendix 3: State space models and response transfer
functions

(1) The linear state space equations were obtained directly from the non-linear ACSL
simulation by linearising about a chosen trim speed.

(ii) Note that terms in the A and B matrices like 0.000 denotes a very small, but
generally non-zero, number. MATLAB computations retained the actual values of
such small numbers.

(iii) Neutral buoyancy is assumed.

(iv) The nominal mass of the airship is 87000 kg.
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A3.1 Longitudinal models
Thrust control transfer functions are not shown.

§ State space model for U, =30 m/ sec

@] [-0.0339 -0.0516 12.4561 0.8269 T« [0.0154 0.0000
w|_| 0.0007 -0.2166 37.3577 ~0.0161 | w|, |-0.0293 0.0000 [52]
g |=| 0.0001 00037 -13048 -0.0860 | ¢ |7|-0.0016 0.0000 | &
0 0 0 1 0 0 0 0

Elevator response transfer functions,

u(s) Ni(s) 0.0154(s+0.027)(s> +0.29885+0.0964)  m/s
5(s) 4(s) " (5+0.0326)(s+1.3638)(s* + 0.15885+ 0.0138) rad
w(s) Ny(s)  -0.0293(s+0.0257)(s+0.0327)(s+3.3131) m/s
5.(s)  A(s)  (s+0.0326)(s+1.3638)(s*> +0.15885+0.0138)  rad
g(s)  Ni(s) ~0.0016s(s +0.0326)( s +0.2849) rad /s
5.(s)  Als)  (s5+0.0326)(s+1.3638)(s* +0.15885+0.0138)  rad
ds)  Ni(s) —0.0016( s+ 0.0326)(s+0.2849) rad
5.(s)  A(s) ~ (s+0.0326)(s+1.3638)(s> +0.15885s +0.0138) rad

§ State space model for U, = 25 m/ sec

i) [-0.0283 -0.0434 10.3961 0.8266 J[«] [0.0106 0.0000
w|_| 0.0006 —0.1807 312069 —0.0102|lw | |~-0.0200 0.0000 [59}
g |7| 00001 00031 -1.0880 -0.0860 ¢ |"|~-0.0011 0.0000 | &
P2 0 0 1 0 6 0 0

Elevator response transfer functions,

u(s) Ni(s)  0.0106(s+0.0332)(s* +0.23545+0.0652)  m/s
5.(s)  Als)  (s+0.0272)(s+1.1159)(s* +0.15385+0.0140)  rad
w(s)  Ny(s)  -0.0200(s+0.0273)(s+0.0308)(s+2.7723) m/s
5.(s)  A(s)  (5+0.0272)(s+1.1159)(s* +0.15385+0.0140)  rad
q(s)  Ni(s) ~0.0011s(s+0.0272)(s+0.2374) rad /s
5.(s)  A(s)  (s5+0.0272)(s+1.1159)(s* +0.15385+0.0140)  rad
As) Ni(s) ~0.0011(s+0.0272)(s+0.2374) rad
5.(s)  Als)  (s+0.0272)(s+1.1159)(s* +0.15385+0.0140) rad
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§ State space model for U, =20 m/sec

u —0.0226 -0.0350 8.3287 0.8264 || u 0.0068 0.0000

w| | 0.0005 —0.1447 25.0153 -0.0054 | w + -0.0128 0.0000 || 5,
g|~] 0.0001 0.0025 -0.8709 -0.0860 | ¢ —0.0007 0.0000 | ¢,
2] 0 0 1 0 6 0 0

Elevator response transfer functions,

u(s) Ni(s) 0.0068(s +0.0438)(s*> +0.16925+0.0396)  m/s
5.(s)~ A(s)  (5+0.0218)(s +0.8593)(s? + 0.15705+0.0145) rad
w(s) Ny(s)  -0.0128(s+0.0218)(s+0.0386)(s+2.2200) m/s
5.(s)  A(s)  (5+0.0218)(s+0.8593)(s*> +0.15705+ 0.0145)  rad
q(s)  Ni(s) —0.0007s(s+0.0217)(s+0.1898) rad /s
5.(s)  A(s)  (s5+0.0218)(s+0.8593)(s* +0.15705+0.0145)  rad
ds) Ni(s) ~0.0007(s+0.0217)(s+0.1898) rad
5.(s)  A(s)  (5+0.0218)(s+0.8593)(s> +0.15705+0.0145) rad

§ State space model for U, = 12 m/ sec

u —-0.0135 -0.0212 5.0073 0.8262 || u 0.0025 0.0000
wi_| 0.0003 -0.0869 15.0435 0.0002 ||w + ~-0.0046 0.0000 |:5e:|
qg| | 0.0000 0.0015 -0.5229 -0.0859 | ¢ —0.0003 0.0000 | ¢,
0 0 0 | 0 0 0 0

Elevator response transfer functions,

u(s) Ni(s)  0.0025(s+0.0806)(s> +0.04785+0.0133)  m/s
5.(s)  A(s)  (5+0.0131)(s+0.3722)(s* + 0.2385+0.0201) rad
w(s) Ny(s)  ~0.0046(s+0.0131)(s+0.0665)(s+1.2915) m/s
5,(s)  Als) ~ (s+0.031)(s+0.3722)(s> +0.2385+0.0201)  rad
g(s)  Ni(s) —0.0003s(s+0.0130)(s +0.1142) rad /s
5.(s)  4ls) ~ (5+0031)(s+0.3722)(s* + 0.23851 0.0201)  rad
As) NZ(s) —0.0003(s+0.0130)(s+0.1142) rad
5.(s) A(s)  (s+0.031)(s+0.3722)(s +0.2385+0.0201) rad
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§ State space model for U, = 8 m/ sec

0.0011  0.0000

-0.0020 0.0000 {52}

~0.0001 0.0000 | &,
0 0

4] [-0.0090 -0.0141 33425 0.8261 |[u
w| 100002 -0.0580 10.0361 0.0019 || w
¢ |T] 0.0000 00010 -0.3487 -0.0859 || ¢
0 0 0 1 o | o

-+

Elevator response transfer functions,

u(s) Ni(s)  0.0011(s+0.0895)(s* +0.00405+0.0080)  m/s
5.(s)  A(s)  (s+0.0087)(s+0.0683)(s* +0.33865+0.0729) rad
w(s) Ny(s)  -0.0020(s+0.0087)(s+0.1076)(s+0.7994) m/s
5.(s)  A(s)  (s+0.0087)(s+0.0683)(s* +0.33865+0.0729) rad
g(s)  Ni(s) ~0.0001s(s +0.0087)(s+0.0761) rad /s
6.(s)  Als) (s+0.0087)(s+0.0683)(s* +0.33865+0.0729) rad
&s)  Ni(s) —0.0001( s +0.0087)(s +0.0761) rad
5.(s) A(s) ~ (s+0.0087)(s+0.0683)(s* +0.33865+0.0729) rad

§ State space model for U/, = 3 m/ sec

0.1528  0.0096

~0.2838 0.0000 [ 8,

~0.0160 0.0001 || &,
0 0

—-0.0034 -0.0053 1.2564 0.8260

_| 0.0001 -0.0217 3.7654 0.0030

—1{ 0.0000 0.0004 -0.1308 -0.0859
0 0 1 0

+107% x

QR I R
R TR

Elevator response transfer functions,

u(s)  Ni(s) 0.1528x107(s+0.0730)(s* +0.04245+0.0034) m/s
5.(s)  A(s)  (s+0.0033)(s+0.0221)(s* +0.13065+0.0845)  rad
w(s) Ny(s) -0.2838x107(s+0.0033)(s>+0.34365+0.0861) m/s
5.(s)  A(s)  (s+0.0033)(s+0.0221)(s* +0.13065+0.0845)  rad
q(s) Ni(s)  —0.0160x107s(s+0.0033)(s +0.0285) rad /s
5.(s)  A(s)  (5+0.0033)(s+0.0221)(s* +0.13065+0.0845)  rad
As) NI(s)  —0.0160x107(s+0.0033)(s +0.0285) rad
5.(s)  Als)  (5+0.0033)(s+0.0221)(s> +0.13065 +0.0845) rad



§ State space model for U, =1 m/ sec

QR TR

01728  0.0964

. |-03138 0.0000 4,

107X 00176 0.0010 [5,]
0 0

-0.0011 -0.0011 0.4192 0.8260

_| 0.0000 -0.0072 1.2553  0.0032

| 0.0000 0.0001 -0.0436 -0.0859
0 0 1 0.

R TR

Elevator response transfer functions,

§

QR TR

u(s)  Ni(s) 01728 x107*(s~0.0066)(s* +0.01665+0.0018) m/s
5.(s)  A(s)  (5+0.0011)(s+0.0072)(s* +0.04365+0.0857) rad
w(s) Ny(s) -03138x10*(s+0.0011)(s*+0.11425+0.0861) m/s
5.(s)  A(s)  (5+0.0011)(s+0.0072)(s* +0.04365+0.0857)  rad
g(s) Ni(s)  -0.0176x10*s(s+0.0011)(s+0.0095) rad /s
5.(s)  A(s)  (s+0.0011)(s+0.0072)(s* +0.04365+0.0857)  rad
&s) NI(s)  -0.0176x10"*(s+0.0011)(s+0.0095) rad
5.(s)  A(s)  (s+0.0011)(s+0.0072)(s> +0.04365+0.0857) rad

State space model for U, = 0.1 m/ sec (Hover)

0.0000 0.9641
+ 10’5 x _O 0341 _O 0004 5e
0.0000  0.0101 ff o,
0 0

—0.0001 -0.0001 0.0421 0.8260
0.0000 -0.0007 0.1256 0.0032
0.0000 0.0000 —0.0044 -0.0859

0 0 | 0

R TR

Elevator response transfer functions,

s)  0.0000x10°s(s~0.2191)(s+0.2166) m/s

) (5+0.0001)(s+0.0007)(s> +0.0044s +0.0859) rad

s) —0.3411x10°(5+0.0001)(s* +0.00445+0.0859) m/s
) (s+0.0001)(s+0.0007)(s> +0.00445+0.0859)  rad
S
)
S
)

) 0.0000 x 107°s* (s +0.0001) rad /s
(5+0.0001)(s +0.0007)(s* +0.00445+0.0859)  rad
) 0.0000 x 10 s(s +0.0001) rad
(5+0.0001)(s +0.0007)(s* +0.0044s +0.0859) rad
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A3.2 Lateral-directional models
§ State space model for U, = 30 m/ sec

v] [0.0931 -2.0392 12.3546 -2.9512Tv] [ 0.0455
p|_| 0.0490 -03758 16514 -05277|p|,| 0.0026
7 |7|-0.0054 —0.0055 -1.3979 —0.0044 | r |*|-0.0023
) 0 1 0 0 |¢ 0

>

Rudder response transfer functions,

w(s) Ni(s)  0.0455(s+0.8451)(s* +0.19185+0.5031)  m/s

5(s)  Als)  (s+0.1811)(s+1.3498)(s*> +0.14965+0.5904)  rad
p(s)  NZ(s) 0.0026s( s> +0.70425+0.4635) rad/s
5(s)  Als)  (s+0.1811)(s+1.3498)(s> +0.14965+0.5904)  rad

r(s)  Nj(s)  —0.0023(s+0.2333)(s*+0.16365+0.5922)  rad/s
(s)  (s+0.1811)(s+1.3498)(s> +0.14965+0.5904)  rad
#s) Ni(s) 0.0026(s” +0.70425 +0.4635) rad

Als)  (s+0.1811)(s+1.3498)(s* +0.14965+0.5904) rad

7
=
N

§ State space model for U, =25 m/ sec

v] [00765 -17072 10.1930 -2.9511v] [ 0.0306
p|_| 00408 -03132 13723 -0.5277 | p| | 0.0016 |s
F|7|-0.0045 -0.0048 -1.1612 -0.0058 | r |"|~-0.0016 |°
& 0 1 0 0 ) 0

Rudder response transfer functions,

v(s) Ny(s)  0.0306(s+0.7326)(s* +0.12125+0.4993)  m/s
) A(s)  (s+0.1550)(s +1.1259)(s* +0.1170s+0.5765)  rad
pls) NZ(s) 0.0016s(s% +0.5116s +0.4260) rad /s
) A(s)  (s+0.1550)(s +1.1259)(s* +0.1170s+0.5765)  rad
r(s) Nj(s)  —-0.0016(s+0.2019)(s* +0.1270s+0.5765)  rad/s
5(s)  Als)  (s+0.1550)(s+1.1259)(s* +0.11705+0.5765)  rad

#(s)  Ni(s) 0.0016(s* +0.5116s +0.4260) rad

5.(s)  Als) (s+0.1550)(s+1.1259)(s> +0.1170s+0.5765) rad

37



§ State space model for U, = 20 m/ sec

v] [00609 -13718 80877 -2.9513]v] [ 0.0189
p|_| 00326 -02507 10953 05277 | p|_| 0.0009 |,
F|7|-0.0036 —0.0040 —-0.9266 —0.0070 || 7 |*|-0.0010
P 0 1 0 0 ) 0

Rudder response transfer functions,

v(s)  Ni(s) 0.0189(s+0.6175)(s* +0.05685+0.4900)  m/s
5(s)  A(s)  (s+0.1264)(s+0.9039)(s* +0.08605 + 0.5636) rad
pls) NZ(s) 0.0009.s(s* +0.3348s + 0.2883) rad /s
5,(s): A(s)  (s+0.1264)(s+0.9039)(s> +0.0860s +0.5636)  rad
r(s)  Ni(s) ~ —0.0010(s+0.1662)(s* +0.09445+0.5623)  rad/s
s) A(s)  (5+0.1264)(s+0.9039)(s +0.0860s + 0.5636)  rad

S,
#(s) Ni(s) 0.0009( s> +0.3348s +0.2883) rad

S
5(s) A(s)  (5+0.1264)(s+0.9039)(s* + 0.0860s + 0.5636) rad

§  State space model for U, = 12 m/ sec

v] [0.0363 -08273 48063 -2.9516v] [ 0.0067
p|_| 00195 -01504 06554 -0.5278 p|, | 0.0003 |
F|7]-0.0022 -0.0025 -0.5542 —0.0084 || r |*|~0.0004
p 0 1 0 0 ¢ 0

Rudder response transfer functions,

v(s) Ni(s) 0.0067(s+0.4157)(s* - 0.01345+0.4439)  m/s
5(s) " A(s)  (5+0.0777)(s+0.5486)(s +0.04205+ 0 5448) rad
p(s)  NZ(s) 0.0003s(s* +0.17945 +0.1062) rad /s
5.(5) " A(s)  (5+0.0777)(s+0.5486)(s +0.04205 + 0.5448) rad
r(s)  N;(s)  —0.0004(s+0.1036)(s* +0.05245+0.5456)  rad/s
5.(s) " A(s)  (5+0.0777)(5+0.5486)(5 + 004205+ 0.5448) rad
#(s)  Ni(s) 0.0003(s> +0.1794 5 +0.1062) rad
5(s) A(a) " (5+0.0777)(s +0.5486) (s> + 0.04205 + 0.5448) rad
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§ State space model for U, = 8 m/ sec

15 0.0240 -0.5544 3.1954 -2.9518) v 0.0029
p|_| 00130 -0.1003 0.4366 -0.5278| p 0.0001 5
r

=|-0.0014 -0.0017 -0.3692 —0.0089 || r |*|-0.0002 |°"
P 0 1 0 0 ¢ 0

Rudder response transfer functions,

v(s)  Ni(s) 0.0029(s+0.2947)(s* —0.03125+0.4348)  m/s
5(s)  A(s)  (5+0.0522)(s+0.3688)(s* + 0.02465+ 0.5366) rad
pls) Nz(s) 0.0001s(s* +0.0668s +0.0517) rad /s
5(s) A(s)  (5+0.0522)(s+0.3688)(s* + 0.02465+ 0.5366) _ rad
r(s) Np(s)  —0.0002(s+0.0699)(s* +0.0330s+0.5392)  rad/s
5(s) A(s)  (5+0.0522)(s+0.3688)(5* + 0.02465 + 0.5366)  rad
#(s)  NE(s) 0.0001(s> +0.0668s +0.0517) rad
5(s) 4(s)  (5+0.0522)(s +03688)(5 + 0.02465+ 0.5366) rad

§ State space model for U, = 3 m/ sec

0.0089 -0.2099 11965 -2.9519| v 0.3781

v
P|_| 00040 -0.0376 01637 05278 p|, o3, | 0.0132 |
# || -0.0005 -0.0006 —0.1384 —0.0091 | r ~0.0230 |
p) 0 10 0 g 0

Rudder response transfer functions,

v(s) Nj(s) 0.3781x107(s+0.1181)(s*~0.02205+0.4310) m/s
5(s)  4(s)  (5+0.0197)(s+0.1396)(s> + 0.00785+ 0.5291)  rad
pls) NZ(s)  0.0132x107s(s* = 0.01625+0.0086) rad /s
5(s) Als)  (s+0.0197)(s+0.1396)(s* +0.00785+0.5291)  rad
r(s)  Nj(s) -0.0230x107(s+0.0264)(s*+0.01165+0.5337) rad/s
5(s) A(s)  (5+0.0197)(5+0.1396)(s* + 0.00785+ 0.5291)  rad
#(s)  Ni(s) 0.0132 x 107(s*> — 0.0162.5 +0.0086) rad
5.(s)  Als)  (s+0.0197)(s+0.1396)(s* +0.0078s+0.5291) rad
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§ State space model for U/, =1 m/ sec

v 0.0030 -0.0702 0.3989 —2.9519 0.4089
p|_| 00016 -0.0125 00546 —0.5278 | p| (54 | 0.0127 |
F|7]-0.0002 -0.0002 -0.0462 —0.0092 | r -0.0256 |9
¢ 0 1 0 0 P 0

<

Rudder response transfer functions,

v(s) Nj(s) 0.4089 x 10™*(s+0.0399)(s* — 0.00845+0.4370) m/s

5(s)  A(s) ~ (5+0.0066)(s +0.0466)(5 + 0.00265 1 0.5280)  rad
p(s) NZ(s) 0.0127 x 107 5(s*> — 0.01465+ 0.0011) rad /s
5(s)  A(s)  (s+0.0066)(s+0.0466)(s* +0.0026s5+0.5280)  rad

r(s) Ni(s) -0.0256x107*(s+0.0088)(s* +0.00385+0.5325) rad/s
5(s) A(s) ~ (s+0.0066)(s+0.0466)(s> +0.00265+0.5280)  rad
#(s) Ni(s) 0.0127 x 107*(s*> - 0.01465 +0.0011) rad
5(s) A(s)  (5+0.0066)(s+0.0466)(s + 0.00265 +0.5280) rad

§ State space model for U, = 0.1 m/ sec (Hover)

v] [-0.0054 -0.0071 0.0401 -2.95197v 0.4058
P|_|-0.0003 —0.0013 0.0055 -0.5278 | p |, 4o, | 0.0118 |,
77| 0.0002 0.0000 -0.0046 —0.0092 | r -0.0257 |9
p 0 1 0 0 é 0

Rudder response transfer functions,

v(s) N3(s) 0.4058x107(s+0.0040)(s> — 0.0008s +0.4418) m/s
5(s)  Als)  (5+0.0027)(s+0.0057)(s* +0.0028s+0.5278)  rad
p(s) NZ(s)  0.0118x10°s(s+0.0022)(s—0.0146) rad /s
5(s)  A(s)  (s+0.0027)(s+0.0057)(s* +0.00285+0.5278)  rad
r(s)  Nj(s) —0.0257><10‘6(s+0.0011)(s2+O.00426s+0.5320) rad /s
s(s) ( ) (5+0.0027)(s +0.0057)(s* +0.00285+0.5278)  rad
#(s) Ni(s) 0.0118 x 10°(s +0.0022)( s~ 0.0146) rad
5(5) A(.s) (s+0.0027)(s+0.0057)(52+O.0028s+0.5278) rad
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