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Abstract

Although a full simulation of the flow field generated around helicopter rotor
blades in forward flight requires consideration of many complex interacting flow
phenomena, such as fluctuations in the velocity and incidence of the oncoming flow,
three dimensional effects, moving shock waves, shock induced separation and
dynamic stall, considerable physical insight may be obtained by removing the
influence of many of these phenomena and studying the simplified flows which result.

In the present work the problems of moving shock waves and shock induced
separation commonly encountered on the advancing side of helicopter rotor blades
during forward flight are addressed by examining the behaviour of the flow field
around aerofoils undergoing inplane oscillations, of the form M,, = M, (1+usin(wt)), at
constant angles of incidence.

In this paper a method for the solution of the thin layer Navier-Stokes
equations for aerofoils undergoing inplane oscillations is presented. The sensitivity of
the method to a number of the main control parameters is investigated and the results
of preliminary calculations and validation with experimental data are presented.



1. Introduction

Although a full simulation of the flow field generated around helicopter rotor
blades in forward flight requires consideration of many complex interacting flow
phenomena, such as fluctuations in the velocity and incidence of the oncoming flow,
three dimensional effects, moving shock waves, shock induced separation and
dynamic stall, considerable physical insight may be obtained by removing the
influence of many of these phenomena and studying the simplified flows which result.

In the present work the problems of moving shock waves and shock induced
separation commonly encountered on the advancing side of helicopter rotor blades
during forward flight are addressed by examining the behaviour of the flow field
around aerofoils undergoing inplane oscillations, of the form M, = M;(1+usin(wt)), at
constant angles of incidence.

The behaviour of aerofoils undergoing pure inplane oscillations"* and
combined transla’tion/pitchz’3 oscillations has been investigated by Favier and Maresca
at low free stream velocities. It was found that the flow field could be considered to be
essentially quasi-steady for angles of incidence below that of static stall. For
incidences through and beyond that at which static stall occurred large increases in
lift, drag and pitching moment coefficients were observed together with a phase delay
in the occurrence of maximum lift coefficient. The resulting flow field was found to
be strongly dependent upon the reduced frequency (k=c®w/2V ) and the reduced
amplitude (Aw/V,,). Instantaneous data and flow visualisation' show that the
boundary layer becomes reattached, following separation, while the aerofoil is
accelerating forwards. Such a reattachment leads to the formation of a large separation
bubble over the forward part of the aerofoil similar to that observed during the
dynamic stall of aerofoils oscillating in pitch.

A wide range of analytical approaches are available for calculating unsteady,
inviscid, incompressible flow. Van der Waal and Leischmann® have applied a number
of these models to the problem of inplane oscillations with some success and have
been able to demonstrate excellent agreement with results obtained from an Euler
code operating at low free stream Mach number.

At the present time no experimental results are available for aerofoils
undergoing inplane oscillations at transonic Mach numbers. Consequently the
validation of current computational methods is unsatisfactory and is performed by
appealing to the underlying flow physics, comparison with existing computational
approaches and comparison with three dimensional test data.

Current computational approaches are restricted to the solution of the unsteady
Euler equations. In Reference (5) Habibie et al transform the governing equations
onto a non-inertial frame of reference. This approach is however restricted to inplane
oscillations and a more general approach is adopted by Lerat and Sides® and Lin and
Pahlke’ who solve the Euler equations in general moving co-ordinates and are able to
obtain very good agreement with the published three dimensional experimental data
of Phillipe and Chattot”.



A finite volume method based upon Oshers flux difference splitting was
developed by Qin et al'® for both two dimensional parabolised Navier-Stokes
equations and three dimensionsal Navier-Stokess solutions for high speed flows (in
the transonic and hypersonic Mach number range) viscous flow problems. It has been
demonstrated' >’ that such a high resolution scheme can capture both shock waves
and shear layers accurately allowing the reliable prediction of shock wave-boundary
layer interactions. Badcock™'? has extended the above approach to unsteady problems
using the AF-CGS method for the time discretisation. It has been applied to unsteady
pitching aerofoils in transonic flow.

In the present work the above methodology has been extended for the study of
the transonic flow around aerfoils undergoing inplane oscillations. For some difficult
cases GMRES was used insteady of CGS because of its improved convergence
behaviour. In the following sections the computer code AF-CGS is described and
preliminary results are presented.



2. AF-CGS

The compressible formulation of the thin layer Navier-Stokes equations for
generalised moving co-ordinates may be given in strong conservation form as,
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in which Q is the vector of conservative variables, F and G are the inviscid fluxes and
S is the viscous flux. These terms are given by,
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and J is the determinant of the transformation between the physical (x,y) plane and the
computational (&,m) plane. Density, the two components of velocity, energy, pressure,
Prandtl number, Reynolds number, speed of sound, viscosity (with a turbulent
contribution calculated using the Baldwin-Lomax turbulence model’ 1) and the ratio of
specific heats are denoted by p, u, v, e, P, Pr, Re, ¢, p and y respectively. In the above
equations J is the Jacobian of the transformation from the physical to computational
planes and U and V are the contra-variant velocities defined as,

U= E,X(u—xt)+§y(v—y1)
(3)
V=n(u-x)+n,(v-y,)

where x, and y, represent the components of grid velocity.



Applying a backwards finite difference in time to the governing
equation (1) gives,
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The flux vectors are linearised about time level n+1 using expressions of the form,
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Substituting for the flux vectors in Equation (4) a fully implicit method is obtained
thus,
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in which Q™' = Q" + AQ".

This implicit formulation is unconditionally stable allowing the use of large
time steps. The maximum available time step is determined from a consideration of
the linearisation error contained in Equation (5).

Oshers approximate Riemann solver'? is used for the spatial discretisation of
the inviscid flux terms contained in Equation (6) while central differences are
employed for the spatial discretisation of the viscous flux term. This approach to the
spatial discretisation is based upon that proposed and tested by Qin et al'”*®and it has
been demonstrated that both shock waves and shear layers are calculated accurately.
Higher order spatial accuracy is achieved using MUSCL interpolation13 while Von
Albadas flux limiter is utilised for the removal of the spurious oscillations commonly
found in the region of strong discontinuities, for example shock waves.

For any implicit method the calculation, storage and solution of the large,
sparse non-symmetric matrix (the Jacobian matrix) which appears on the left hand
side of Equation (6) are important issues. The calculation of the exact flux Jacobians
involves the use of analytical expressions and the chain rule thus,
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where Q = [p u v P} and —a—Q—L,a—Q“ are calculated from the MUSCL
interpolation. It is readily apparent that the resulting expressions for the flux Jacobians
are complicated. Optimised, error free code has been produced using the symbolic
algebra manipulation package Reduce. The calculation of the flux Jacobians in this



way is significantly more expensive (both in terms of CPU time and storage
requirement) than a numerical approach. The use of numerical and analytical flux
Jacobians is considered in detail by Vanden and Orkwis'.

Having obtained the flux Jacobians Equation (6) results in a system of linear
equations,

[A]{x}={b} ®)

Direct solvers, such as LU decomposition, are inappropriate for problems of this size
and consequently iterative methods must be employed. The selection of an appropriate
iterative scheme is based on a wide range of criterion which include robustness,
efficiency and expense. In the current approach CGS" is used to solve Equation (8).
The system matrix, the matrix [A] on the left hand side of Equation (8), is generally
ill-conditioned for this class of problems which has severe consequences for the
convergence behaviour of CGS (and most alternate iterative solvers).

In order to improve the condition of the system matrix, and hence the
convergence behaviour of the iterative solver, pre-conditioning is required. We seek a
pre-conditioning matrix which when used to pre-multiply Equation (8) results in a
new system of equations,
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which is more amenable to solution by iterative techniques. In general the condition
of the matrix improves as the system matrix becomes more diagonally dominant (i.e.
as it becomes closer to the identity matrix) . We therefore require that,

A]-m
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In order to obtain a suitable approximation for the inverse of the system matrix
we note that Equation (6) may be approximately factored to obtain,
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Equation (10) is the basis of the well known alternating direction implicit
method'® and may be solved for AQ by first sweeping in the n-direction and then in
the &-direction. This approach is efficient (requiring the solution of a block diagonal
system of linear equations for each i and j) but introduces a factorisation error which
places restrictions on the maximum size of time step which can be considered. When
used to precondition Equation (8) this factorisation error is of little importance
(although it does provide a good measure of the accuracy of the approximation to the
inverse of the system matrix).In most iterative methods the system matrix is only



required as a matrix-vector product and ADI pre-conditioning can be introduced by
solving for {s} in,
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where [A]{x} is the matrix-vector product for which [C'l][A] {x} is required. Over the
course of one time step Equation (11) is solved for a number of right hand sides and
so the operations required to invert the approximate factors on the left hand side of
Equation (11) are stored leading to a reduced operations count (although this
increased efficiency is achieved at the expense of a considerable storage penalty).

The choice of time step can greatly influence the conditioning of the system
matrix with decreasing time step leading to greater diagonal dominance. The most
efficient implementation of CGS will therefore seek to balance the cost of solving the
linear system and the number of outer iterations (time steps) which are required.

Boundary conditions are specified at the far field boundary by consideration of
the characteristic solutions. For boundaries at which the flow is subsonic extrapolated
and free stream Riemann invariants of the form,

R=V -2 (12)

y -1

are used to obtain the normal velocity and local speed of sound using the following
relationships,

1
Vn - E(Re - Rw)
(13)
o=12@R +R)

Here the subscripts denote extrapolated and far field values of the Riemann invariant.
At outflow boundaries the tangential velocity and entropy are determined by
extrapolation from the interior of the computational domain while at inflow
boundaries this information is specified using free stream values. For supersonic
boundaries the required information is either all extrapolated (outflow) or all specified
(inflow). At the surface of the aerofoil velocity components are determined by
applying the no-slip condition while pressure and temperature are calculated by
assuming a normal pressure gradient at the wall and an iso-thermal wall respectively.



3. Grid Generation

The computational grid is created by mapping a uniformly distributed
rectangular mesh onto the physical domain. The method adopted is based upon that
proposed by Eriksson which produces an algebraic C-type mesh around the aerofoil,
this approach is described in Reference (17) by Gaitonde and Fiddes.

The mapping is given by,
0 1 aF 0 V
F(&,m)=a/F(0,n) + o, E(0,n)+cx2F(1,n) (14)

where o], 0,0 are weighting functions and £=0 and £=1 correspond to the aerofoil
surface (including the wake cut line) and the far field boundaries respectively. The
derivative term is introduced in Equation (14) to give some control over the direction
with which grid lines leave the aerofoil surface. The weighting functions are chosen
such that,

e —1-kx
o=
e —1-k
o) =1-a (15)
o =x-0
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and produce an exponential stretching of the grid points between the bounding
surfaces. Additional control of the mesh spacing can be achieved by specifying an
intermediate variable, denoted by x in Equation (15). For x=§ Equation (14) reduces
to the original scheme of Eriksson which does not always produce satisfactory results.
In the present code an intermediate stretching function,

tanh(Q(n - 1))}

16
tanh(Q) (1

X=P1’]+(1—P)‘:1—

is adopted. Control of the normal spacing of grid points is achieved by varying the
values of K, P and Q.



4. Unsteady grid motion

For aerofoils which are undergoing unsteady motions (such as inplane and
pitching oscillations) it is convenient to use an unsteady grid. While the inertial frame
of reference (x,y.t) is fixed in space the computational grid (¢,n,t) is moving (because
it is attached to the moving aerofoil). In order to relate the grid motion with the
inertial frame of reference grid velocity terms, such as those found in Equation (3), are
introduced.

The grid velocity terms can be specified either analytically, or by comparing
the position of the current grid with the position at the previous time step. In practice
either approach is acceptable and a decision is often made on the basis of the
convenience with which an analytical expression can be obtained. In aeroelastic
calculations the latter approach is most often adopted because of the difficulty in
providing an analytical expression for the surface deformation while for rigid aerofoil
motions ,such as inplane oscillations, the analytical approach is often most
convenient.

For the case of a helicopter rotor blade represented by inplane oscillations of
an aerofoil, the rotational velocity of the rotor provides a mean flow condition while
the forward flight speed is represented by oscillations. The grid velocity terms are
then defined by,

x, = -p sin(kt) and y,=0 17)

where p is the advance ratio (the ratio of the forward flight speed to the local
rotational velocity) and k is the reduced frequency (which in this case is given by the
ratio of the local chord to the spanwise position of the blade section).

These expressions may be added to those already available in AF-CGS for
pitching oscillations (which are calculated by comparing grids at consecutive time
steps) provided that the rotation is carried out relative to some fixed point on the
aerofoil. If this is not the case and the rotation is carried out about a point which does
not move with the aerofoil then the combined effects of translation and rotation are
non-linear and the problem is further complicated.
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5. Parameter tests

Calculations were performed using the modified AF-CGS method for the flow
around a NACA 0012 aerofoil undergoing inplane oscillations, described by
M, =0.5335(1+ 0.5778sin(0.8t)), at a fixed angle of incidence of 0.25 degrees.
Calculations were performed on the standard (153 grid points in the streamwise
direction, 100 around the aerofoil, and 48 grid points in the surface normal direction)
grids shown in Figures (8b) and (9) for the Euler and Navier-Stokes equations
respectively. Two cycles of the aerofoil motion were calculated with 600 time steps
per cycle and a convergence tolerance of 0.005 on the linear solver. In the following
section the sensitivity of these calculations to a number of the main AF-CGS
parameters is investigated, while in section (6) a more general discussion of the
numerical results together with a comparison with experimental data is presented.

Despite the unconditional stability of the present implicit approach the choice
of time step, At, remains of great practical importance due to the influence which this
parameter has on both the overall accuracy and efficiency of the current numerical
method. In Figure (1) results are presented which show the sensitivity of computed lift
coefficient (based on the average free stream velocity) to variations in the number of
iterations performed for each full cycle of the aerofoil motion. Good agreement was
found between the results of the three calculations over most of the cycle which
suggests that in general the choice of time step (in the range considered) does not
significantly affect the overall accuracy of the solution. Perhaps of greater
significance however, is the poor agreement which is found for a limited range of
azimuth angles close to 220 degrees. The poor resolution of this feature of the flow
suggests that the time scale of the underlying flow physics is much smaller than the
larger time steps which have been employed. Further calculations performed for 200,
400, 500 and 1000 time steps per cycle support this hypothesis and have shown that
as the time step is reduced the calculation becomes increasingly insensitive to the
choice of this parameter, eventually converging to a solution which does not change
with further changes in time step.

While the accuracy of the method and the ability to resolve the flow physics
fully are important experience has shown that the choice of a practical minimum time
step is determined not by such considerations, but by the stability and efficiency of the
linear solver which is employed. For the conjugate gradient type methods employed in
the current approach efficiency and stability are strongly dependent upon the
condition of the preconditioned Jacobian matrix of the linear system which must be
solved.

For time accurate implicit methods the condition of the Jacobian matrix is
heavily influenced by the choice of time step as this parameter occurs in the
denominator of the leading diagonal, consequently large time steps will result in an ill
conditioned system of equations (the Jacobian matrix is less diagonally dominant)
while smaller time steps lead to relatively well conditioned systems of equations (the
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Jacobian matrix becomes increasingly diagonally dominant).' The factorisation error
which is associated with the ADI preconditioning employed in the current method ,
which can be shown to be of the order of At*, provides a good indication of how well
ADI approximates the linear system. The order of the truncation error suggest that as
the time step is reduced in size the effectiveness of ADI preconditioning should
increase. The improved condition of the preconditioned Jacobian matrix with reduced
time step is demonstrated by the results presented in Figure (2) which show the
number of iterations of CGS required to solve the system of linear equations which
result from the choice of different time steps.

Unfortunately the improvements in the efficiency of CGS which result from
reductions in the time step must be balanced against the overall cost of the calculation.
We expect that some optimum value arises for the time step above which the gains in
the efficiency of CGS are outweighed by an increase in the number of outer iterations
and below which the reduction in the number of outer iterations is outweighed by the
increased cost of CGS. In Figure (3) results are presented which show the total time
required to calculate two full cycles of the aerofoil motion against the number of
iterations required for each cycle (which is inversely proportional to the size of time
step). The results show that the expected optimum value does indeed exist and occurs
at around 500 iterations per cycle for this calculation. The occurrence of such minima
has been found to depend strongly on the condition of the Jacobian matrix and is
therefore strongly case dependent.

The tolerance which is placed upon the convergence of the conjugate gradient
solver may have important consequences for the overall accuracy of the method. In
AF-CGS the initial ‘guess’ for the solution of the system of equations required by the
conjugate gradient method is obtained using ADI, this approach is adopted because it
can reduce significantly the work of the linear solver (at no extra cost as this result is
required for the preconditioned right hand side) when compared to alternate starting
strategies as the initial solution may be relatively close to the true solution. Low
convergence tolerances will therefore produce a final result which is close to that
obtained by ADI alone, which for larger time steps may have important effects on
accuracy, while for higher convergence tolerances the solution will approach that of
the unfactored equations. In Figure (4) the calculated lift coefficients (based on
average velocity) are presented for calculations performed using several convergence
tolerances (from one to three orders of reduction in the residual norm). The results
indicate very little sensitivity of the method to changes in the convergence criteria.
This result is unexpected and may possibly be explained by the fact that a single
iteration of CGS may reduce the residual much further than is required by the
tolerance criteria, i.e. calculations performed with lower convergence criteria may also
satisfy the more stringent convergence tolerances of the other calculations.

In Figure (5) results of similar Navier-Stokes calculations performed for a
NACA 0012 aerofoil at an incidence of 0° in an oscillating free stream described by

M,, = 0.536(1 + 0.61sin(0.185t)) are presented. It would be expected that the

! This property of the Jacobian matrix is used in AF-CGS as the basis of a strategy for overcoming problems which arise when
the convergence of the linear solver becomes stalled.
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calculated lift coefficient for this case would be close to zero as the flow conditions
are symmetric. We observe however, that for low tolerances, 0.005, the flow is non-
symmetric, as revealed by a relatively high lift coefficient at around y = 90°. An
examination of the flow field reveals that the flow is indeed symmetric until the shock
wave first appears. As the flow field develops further the shock wave on the lower
surface begins to move forwards towards the leading edge more quickly than that on
the upper surface and a non-symmetric flow is established. The unexpected behaviour
of the flow field for this case is clearly an artefact of the numerical method as more
stringent tolerances, 0.0005 and 0.00005, result in very different calculated lift
coefficients. Euler calculations performed for the same flow conditions do not exhibit
a sensitivity to this parameter which suggests that care should be taken in selecting an
appropriate value for this parameter for Navier-Stokes calculations.

Finally the influence of the computational grid was investigated. The
parameters tested were the grid density (number of grid points) and the location of the
far field boundaries.

In Figure (6) calculated lift coefficients are presented for Euler calculations
performed with successively finer grids ,Figures (8a) to (8c), having 101x24 (50
points on the aerofoil), 153x48 (100 points on the aerofoil) and 259x96 (200 points on
the aerofoil) grid points in the streamwise and surface normal directions respectively.
The coarse grid calculation (101x48) clearly fails to resolve the flow adequately and is
particularly poor for azimuth angles close to 90°, where shock waves occur, and 180°
where the flow is separated. A doubling of the number of grid points in both grid
directions leads to a dramatic improvement in the quality of the calculated results. The
medium grid calculation is able to resolve all of the flow physics which are captured
by the finer grid (259x96) calculation. The medium grid calculation does however
consistently underestimate the value for the lift coefficient obtained using the finer
grid and is particularly poor for azimuth angles close to C; ... this poor agreement
can be attributed to a poorer resolution of shock wave location in the medium grid
calculation.

Refinements of the computational grid, and grid stretching, have been found to
influence the convergence behaviour of the linear solver, with finer grid calculations
exhibiting a poorer rate of convergence than that found on a coarser grid. It is well
known that increasing the size of the system which the linear solver is required to
solve reduces the rate of convergence of the linear solver and so this behaviour is not
unexpected.

Unlike the steady version of AF-CGS the unsteady AF-CGS method does not
includes corrections to the calculated data for the location of the far stream boundary.
Consequently investigations were carried out to determine the sensitivity of the
calculated results to this parameter. The effects of doubling the location of the far
field boundary from 20 to 40 chord lengths are presented in Figure (7). Over the first
few cycles of the aerofoil motion agreement between the calculations is very poor,
this is a consequence of the poor convergence of the initial steady calculation for a far
field boundary located at 20 chord lengths from the aerofoil. As the unsteady
calculations converge to the final cyclical result agreement between the calculations
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improves until only very small differences are observed in the values of lift
coefficient at local maxima and minima. It is suggested that a value of 20 chord

lengths should be used to fix the location of the far field boundary from the aerofoil
surface.
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6. Validation.

In Reference (8) Phillipe and Chattot present experimental measurements for
several spanwise sections of a non-lifting rotor blade in forward flight. The rotor
blade, which has a symmetric NACA 00XX profile, was tested with a tip speed of
200 m/s (a tip Mach number of 0.536) at an advance ratio of 0.55. Fully turbulent
Navier-Stokes calculations were performed using AF-CGS for the free stream
conditions, an advance ratio of 0.61 and reduced frequency of 0.185, corresponding to
the NACA 0012 blade profile at r/R = 0.892.

The development of the flow field over one full rotation of the rotor blade is
shown in Figure (10), in which instantaneous contours of pressure are plotted for
selected azimuth angles. Initially the flow field is dominated by a rapid expansion of
the flow at the aerofoil leading edge, which is a characteristic feature of the flow
around the relatively blunt NACA 00XX family of aerofoils. As the incident Mach
number is increased a region of high adverse pressure gradient develops towards the
aerofoil trailing edge which eventually extends over most of the aerofoil chord. For
Mach numbers in the transonic range the favourable effects of an accelerating flow
become increasingly evident. In Figures (11a) and (11b) calculated surface pressure
distributions are presented which clearly show that for the unsteady flow the shock
wave is much weaker than that in the corresponding steady flow. Calculated
instantaneous velocity vectors, Figure (12), reveal that at an azimuth angle of 75° the
flow separates from the aerofoil surface at the foot of the shock, re-attaching a small
distance downstream to form a small separation bubble. As the incident Mach number
approaches its maximum value at y = 90° ,the shock wave continues to increase in
strength while moving towards the trailing edge of the aerofoil. The corresponding
shock induced separation becomes increasingly severe and the separation bubble
lengthens, until eventually the re-attachment point moves beyond the aerofoil trailing
edge and the flow becomes fully separated.

Although the incident Mach number reaches its maximum value at y = 90°,
the shock wave continues to increase in strength as the flow begins to decelerate.
Maximum calculated shock strength occurs at an azimuth angle of 120°, clearly
demonstrating the adverse effects of flow deceleration, Figure (11c) is also important
in this respect . For azimuth angles beyond 120° the shock wave begins to move
towards the aerofoil leading edge diminishing in strength as it does so, until by an
azimuth angle of 165° the flow is again wholly subsonic.

The flow on the retreating side of the rotor blade (azimuth angles 180° to
360°) is wholly subsonic and dominated by a characteristic rapid expansion at the
leading edge. Figure (10) indicates that for azimuth angles close to 270°, where the
incident Mach number is at its minimum value, there is a very weak pressure gradient
over most of the aerofoil surface..

The development of the flow field with azimuth angle described above shows
good qualitative agreement with the expected physical behaviour of the flow, however
a proper validation of the model requires a comparison with experimental
measurements. In Figures (13) and (14) the results of the present Euler and Navier-
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Stokes calculations are compared with those of Lerat and Sides® and the experimental
measurements of Phillipe and Chattot®. The current Euler calculations show excellent
agreement with those of Lerat and Sides, which would seem to indicate that the
present inviscid model is correct. Comparison of the present Euler calculation with
experiment is fair for azimuth angles in the range 0° to 90° but poor otherwise.
Comparison of the present Navier-Stokes calculation with the experimental
measurements of Phillipe and Chattot is much improved particularly for azimuth
angles in the range 90° to 140°. Such an improvement in the comparison with
experiment, for this range of azimuth angles, reveals the importance of shock-
boundary layer interactions for this class of flows. The remaining difference between
calculation (both Euler and Navier-Stokes) and experimental measurements are
thought to be due the three dimensional effects which are present in the experiment. In
the absence of suitable two dimensional test data it is unlikely that any further
improvements in validation can be made.
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7. Conclusions.

A method for the solution of the thin layer Navier-Stokes equations for the
flow field around aerofoils undergoing inplane oscillations has been presented. The
present Euler calculations are encouraging and follow the flow physics as we would
expect. The current Euler calculations show fair agreement with three dimensional
experimental measurements for azimuth angles 0° to 90° and with the Euler
calculations of Lerat and Sides, while for azimuth angles 90° to 120° agreement
between calculation and experiment is poor.

Fully turbulent Navier Stokes calculations show significant improvements
when compared with the experimental data which is thought to indicate the
importance of shock-boundary layer interactions for this class of flows. It is believed
that the differences which remain are due, in the main, to three dimensional effects
which are not currently modelled. In the absence of high speed experimental test data
for this class of flows it is unlikely that the method can be validated further.

Experience with AF-CGS has shown that the method is insensitive to most of
the main parameters. It has been found that the choice of time step is determined from
a consideration of the efficiency of the linear solver and not by accuracy as would be
expected. The current method is sensitive to grid refinement, it is thought that this is
due to the unsteady motion of the shock wave and it is suggested that local grid
redistribution should be used to refine the grid in regions of high density gradient.

Work is now required to extend the current numerical approach to three
dimensions.
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(c) Fine grid (259 x 96).

Figure (8) Computational grids used for Euler calculations.
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Figure (9) Computational grid used for Navier-Stokes calculations.
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Figure (10) Instantaneous local pressure contours.
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Figure (10) continued.
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Figure (11) Instantaneous surface

Figure (10) Concluded.
Pressure distributions.



ao

b)y=15°
g |
(d) y=45°
o ] )
(e) y = 60° ® wv=75°
~ | [\
% \_/
(8) y=90° (h) y = 105°

Figure (12) Instantaneous density contours.
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