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1 Introduction.

The solution of the Incompressible Navier-Stokes equations still represents a significant
numerical challenge. The reason for this is that there is a lack of a coupling between
velocity and pressure. This means that the equations themselves provide no way of explicitly
updating the pressure field as the velocity field is advanced. The artificial compressibility
approach, devised by A.J.Chorin (see Chorin,1967), represents one way of overcoming this
difficulty. It is arrived at by altering the incompressible equations in such a way as to
result in a system of equations in which the left hand side is hyperbolic. We wish to take
advantage of the hyperbolic nature of these equations and use Riemann-problem- based-
numerical-methods (or RP methods).

Riemann-problem-based methods have long been used for the computation of inviscid,
compressible, time dependent flows, and have more recently been extended for use with
viscous, compressible flow regimes. For flows of these types, RP methods offer high shock
resolution, with a large reduction in post shock oscillation when compared with traditional
finite difference techniques with artificial viscosity. This is achieved by accurately represent-
ing the physical processes of shock propagation, adding the minimum amount of artificial
diffusion needed to eliminate spurious oscillations, and applying this diffusion only where
it is needed. Clearly those properties relating to numerical diffusion are advantageous for
flow regimes where viscosity plays an important role in determining the flow solution. By
adding only the minimum amount of artificial diffusion we can come closer to representing
the true flow field.

Although RP based methods have these numerical advantages they also tend to be
complicated and expensive. To a large extent this is due to the difficulties envolved in
calculating the exact solution to the Riemann problem. However, the use of approximate
solutions can significantly reduce the computational expense of this part of the numerical
procedure. Since the flow solutions generated using the artificial compressibility equations
are expected to be smooth we should be able to use approximate Riemann solvers without



any fear that they will fail due to overly large gradients in the flow. Five types of Riemann
solver are presented in this report. The first of these is an exact, iterative solver, based on
an the approach put forward by Toro ( Toro, 1992). The second is based on a two rarefac-
tion approximation which uses exact relations across rarefactions to to find the solution to
the Riemann problem. The third is an approximate solver based on a local linearization
proposed by Toro ( Toro,1991). The fourth is a Roe type Riemann solver (Roe, 1981).
Marx has already used a Roe Riemann solver in his work with the artificial compressibility
method (Marx, 1991). The fifth Riemann solver is an extension of the HLL Riemann solver
(Harten et.al., 1983), known as HLLC, in which the contact discontinuity is restored (Toro
et.al, 1992). This is the first time that the author is aware of that an Exact solver for the
artificial compressibility equations has been presented.

The remainder of this paper is organized as follows. In §2 the mathematical character of
the artificial compressibility equations is introduced. §3 contains the exact Riemann solver,
84 deals with the Two Rarefaction Riemann solver, §5 contains the Local Linearization
solver, §6 the Roe solver, and §7 the HLLC solver. All of these Riemann solvers are presented
for the split two dimentional artificial compressibility equations in which viscosity has been
neglected. The results of numerical tests perfomed on the various Riemann solvers are
presented in §8, and conclusions are finally given in §9.

2 The Artificial Compressibility Equations.

As stated before, the artificial compressibility equations are a modification of the incom-
pressible Navier-Stokes equations. However, for the time being, we will neglect the viscous
terms, and use the inviscid artificial compressibility equations. These equations then form a
set of hyperbolic conservation laws. In two dimensions the inviscid artificial compressibility
equations are

OP 0c*u Oc*v

ot + oz t Jy =0 (1)
ou d(ut+ P)  Ovu _
at + oz + oy 0 (2)
v  O(v*+P)  Ouv _
ot + dy + oz = 0 3)

P is pressure, u is z-direction velocity, v is the y-direction veloctiy and ¢ is the artificial
compressibility coefficient. We wish to find solutions to the split 2-D Riemann problem.
The split two dimentional artificial compressibility equations can be written in matrix form

P 0 ¢ 0 P
w | +|1 2u 0 u | =0 (4)
v ], 0 v u v ],
or
U+ AU, =0 (5)

Where A is the coefficient matrix, and U is the vector of conserved variables. The eigenvalues
of the coefficient matrix A are

M=zu—a,M=u,\3=u+a, (6)



where,
a=+\Vu?+c? (7)

Thus we have three real, distict, eigenvalues and hence the system of equations is hyperbolic.
The quantity a is analogous to the sound speed in the Euler equations, but here it depends
on the velocity variable. The eigenvalues tell us that speed of the acoustic wave associated
with the eigenvalue ), is always negative, whilst speed of the acoustic wave associated with
the eigenvalue A3 is always positive. The speed of the wave associated with the eigenvalue A,
lies between that of the other two waves. The eigenvalues have associated right eigenvectors

—(a+u) 0 (a—u)
R, = 1 ,Ro=]101],R3= 1 (8)
-v/a 1 v/a

which can also be written as

c? 0 c
Ri=|(a-u) | Ro=|0]|,R3=| (uta) |, 9)
—!u-—a!v 1 ‘u-}-a)v

The Riemann Problem for the split two dimentional artificial compressibility equations
consists of the initial value problem with piece-wise constant data Pr, ur, vr, and Pg,
uRr, vr. The left and right states (denoted by 1 and g respectively) are separated by a
discontinuity at x=0. The solution to the Riemann problem entails four constant states
separated by three waves, as shown in Figure 1. The waves associated with the eigenvalues
(u — a) and (u + a) can be either rarefactions or shocks, depending on the initial conditions.
Both the pressure and velocities change across these waves; in the the case of a shock the
change is discontinuous, whilst for a rarefaction it is smooth. In the region between the
waves, the so called star region, pressure and the z-direction velocity remain constant. Only
the y-direction velocity changes across the contact discontinuity. The complete structure of
the solution to Riemann problem is given in Figure 1.

3 Exact Solver.

The approach used here was orininally put forward by Toro (Toro, 1992). The main step
in the solution strategy is to find the solution for u., the velocity in the star region. This
is achived by finding an algebraic function of the form

F(u.) = PL— Pr+ fr(up,ur) — fR(uL,ur) =0 (10)

The form which the functions fy and fr take varies, and depends on the structure of the
solution of the Riemann problem. We have two functions for each of the two waves; one for
use when the wave is a rarefaction, and one for when it is a shock. The solution procedure is
iterative, and at each iteration we need to decide on which combination of functions to use.
Once u, is known, P. follows directly, as do v.r, v.g, and the wave speeds. If a rarefaction
is present in the solution more work is required to find the distribution of pressure and
velocity through the wave.
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Figure 1: The Structure of the Riemann Poblem

Let us start by finding fr and fgr, the functions for the relations across the left and
right waves. We have four cases to consider.

CASE 1: The left wave is a rarefaction.

Here we apply the Riemann Invariants across the left wave. This is

dP
and on integration this gives
2 Vu? 2 2
P+ (sinh’l (%) + "—"cz—'fi> + 5 = CONSTANT (12)

thus, when the left wave is a rarefaction, fy is

2 /5 2 2
fi = % (sinh"1 (EL_L_) + hl A Tl ucLz e > + i

c 2
C2 11 U UV utz + c? ‘U,,.2
7 (h (%) +=05) -5 (13)

CASE 2: The left wave is a shock.

Here we use the Rankine-Hugoniot jump conditions, ie,

SL(Pi— Pr)=cy(ue—ug) (14)



and,
Sp(we —up) = (w’ + P) — (ur? + Pp) (15)

Eliminating S, the shock speed, and rearranging we obtain a quadratic in P, — P,

(P. — P)?

+ (Pu— Pr)(ue —up) —c® (v —ur) =0 (16)
(us —ur)

which can be solved for P, — Pj,

_ —E+VE?_4DF

P, - P, 5D (17)
where
D=-1
Ue—UJ,
E=u,+ uy, (18)

F=—c?(u.—ug)

Now we need discover which sign to use. First we note that the presence of a entropy
satisfying left shock requires that we have converging characteristics.

ML) =ur —Vur?+¢2> 85> u. — Va2 + ¢ = A (u) (19)

This gives § < 0 for all u7,u,. Now, we can examine the Rankine-Hugoniot condition. This
tells us that if (u. —ug) > 0 then (P, — Pp) < 0 and if (u. — ug) < 0 then (P. — PL) > 0.
From equation (17) this means that the negative sign is the required one. Finally this gives

—-E-~+VE?-4DF

P.— Py = 5 (20)

CASE 3: The right wave is a rarefaction.

Following the same method as that used for the left rarefaction we can obtain.

./ wVu2 + 2 u.2
=g (s () + ) - 21
ct (. —1 /YR upvVup? + ¢? uR?
—— | sinh (——) + +
2 c c? 2

CASE 4: The right wave is a shock.

Following the same method that was used for the left shock we utilize the Rankine-
Hogoniot conditions

Sr(P. = Pr) = c3 (. — uR) (22)
and,
SR (us — ur) = (w.>+ P.) - (up? + Pg) (23)
to obtain.
P.— Pgr= _E’LW (24)



where .
D = Ue—=UR

E=u,+ugp (25)
F = —c? (u. — uR)

Once again the the sign of the descriminant was found by ensuring that the shock is entropy
satisfying, using the inequality

As(ur) = ur+ Vur?+c2> 5> ue + Vul + ¢ = A (w) (26)

Notice that the sign of the descriminant differs from that in equation (20).

3.1 Solution Strategy.

The equation F(u.) = 0 can be solved using Newton-Raphson iterative method. For this
we require the derivatives of each function fr, fr. These are given below.

CASE 1: The left wave is a rarefaction.

The derivative of this function is;

fi' = —Vul+c?—u. (27)

CASE 2: The left wave is a shock.

The derivative of this function is;

i == [t )+ @ (ur ) (14 22 (28)

where

Q= \/(u,., +up)® + 4c? (29)

CASE 3: The right wave is a rarefaction.

The derivative of this function is;

fRr=+Vul+c?—u (30)

CASE 4: The right wave is a shock.

The derivative of this function is;

fR'=—-;' [(?LR+U*)+Q+(U*—UR) (1+(u*#ﬁl)] (31)

where

Q= \/(u,. + ug)? + 4c? (32)



3.2 The Solution for Pressure.

Once u is known through the star region, the pressure can be determined from the functions
governing relations across waves that we have already found. The function used depends on
the wave structure present and whether the the function for left or the right wave is being
used. For example, if we are using the expression for the left wave, the pressure in the star

region is
P.=PL+ fL (33)

Which f;, we use depends on whether the left wave is a rarefaction or a shock.

3.3 The Solution for y-Direction Velocity.

The final step in finding the solution in the star region is to find the y-direction velocity.
The y-direction velocity changes across the left and right acoustic waves, as well as across
the central contact wave. In this way it is analogous to density in the Euler equations. Once
again, the way in which the solution is determined depends on the types of waves that are
present.

CASE 1: The left wave is a rarefaction.
In this case we again deploy Riemann invariants. For the left wave these give
v
du=——d
u Jdv (34)
which on integration and subsequent manipulation provides
v.r, = vy exp (sinh™! (up/ar) — sinh™! (u./a.)) (35)
where
ap = y/ul + ¢ a. = Vul + 2 (36)
CASE 2: The left wave is a shock.

In this case the Rankine-Hugoniot jump conditions are used

Sp (vep, — vL) = (WaVur — uLvL) (37)
which gives
_ 1-up/SL
oy = () (39)

where S, is the speed of the shock. This can be found from equation (14).
CASE 3: The right wave is a rarefaction.
Again we use the Riemann invariants, and obtain

v.p = vpexp (sinh™! (u./a.) — sinh™! (ur/aR)) (39)
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Figure 2: The Solution Within a Rarefaction
CASE 4: The right wave is a shock.
Using the Rankine-Hugoniot jump conditions we can obtain
1-ur/Sr
«R = —_— 40
R vL(l—'u,,/SR (40)

where Sg is the speed of the shock. This can be found from equation 22.

3.4 The Solution Within a Rarefaction.

When one or more of the waves in the solution to the Riemann problem are rarefactions
it is necessary to find the value of u,P, and v within the wave, since these vary smoothly
within the rarefaction. Consider the case of the left rarefaction wave. We wish to find the
value of u at the point Q(z,t) within the wave as shown in Figure 2. The equation of the
characteristic that passes through (0,0) and (z,1) is

i—:zu—\/u2+c2=% (41)

and has constant slope, so u is simply the solution of the equation.
z
u—\/uz-}-ci’—-i-:() (42)

Likewise for the right wave u is the solution of the equation

u+ u2+c2—?t—5=0 (43)



Both of these can be solved using Newton-Raphson.

The solution for pressure within a rarefaction can be found using the expression linking
variables across rarefactions since the Riemann invariants hold across any and all of the
waves within the rarefaction. Thus the solution within a left moving rarefaction would be

2 oty 2 2 2
P = PL + 52— (sinh_l <1_tc£.) + M) + EE’_

c? 2

A . /u uvu? + c2 u?
- (Smh (Z) + —= | 3 (44)
and within the right moving rarefaction
2 fun? + o2 2
P = Prp- < sinh™! (U—R) + URVUR" T C + “R
2 ¢ c? 2
(. _;ru\  uui+c? u?
+'§‘ (smh (;) + —= | 3 (45)

Finally we need to find an expressions for the y-direction velocity within rarefactions
within a left moving rarefaction we have

v = vpexp (sinh™! (ug/ar) — sinh™' (u/a)) (46)

where
ap = \Jul +c% 0= Vu? + c? (47)

and for a right moving rarefaction

v.r = vrexp (sinh™! (u/a) — sinh™! (ur/ag)) (48)

ar = yJuk + % a= Vul+c? (49)

where

3.5 Wave Speeds.

Once the values of velocity and pressure in the star region are known, and the solution
through any rarefactions has been determined, all that remains is for the wave speeds to be
determined. These are given below.

CASE 1: The left wave is a rarefaction.

A rarefaction has two significant wave speeds, that associated with the head, and that
associated with the tail. These speeds can be found using the eigenvalues for the states on

either side of the rarefaction.
S=u—-Vut+c? (50)

CASE 2: The left wave is a shock.



Again we use the Rankine-Hogoniot conditions. The simplest of these to evaluate is

SL(Py — P) = ¢? (uu — ur) (51)
giving
_ 2(u—ug)
SL =cC m ‘i (52)

CASE 3: The right wave is a rarefaction.

For a right rarefaction speeds we use the eigenvalue

S=u++\Vu?+c? ' (53)

for the states on either side of the rarefaction.
CASE 4: The right wave is a shock.

Using the Rankine-Hogoniot condition we have

Sg = c2% (54)

4 Two Rarefaction Solver.

The Two Rarefaction Riemann solver is based, not suprisingly, on the assumption or ap-
proximation that both of the acoustic waves are rarefactions. The exact relations across
rarefactions are then used to find the solution in the star region. For some sets of equations
this approach results in a closed system for which the solution in the star region can be
found directly. This is not the case for the artificial compressibility equations, and as with
the exact Riemann solver an iterative technique is required. The algebraic function that is
solved to find u, is,

F(w.)= P, — Pr+ fr(ur,ur) — fr(ur,ug) =0 - (55)

fr and fr are given by equations (13) and (22), the functions giving the relationships of
variables across rarefactions. Pressure in the star region can be found using equations (33)
and (13), and the y-direction velocities using equation (35) and equation (39).

5 Local Linearization Solver.

Here we present a split two dimensional linearized Riemann solver. It follows the approach
used by E.F. Toro for the Euler equations (Toro, 1991a). The basis of this approach is
to seek a solution to the Riemann problem for a local linearization of the equations. We
assume that, if the left and right states are sufficiently close to each other, the coefficient
matrix [A] is constant for a given Riemann problem. Further more, we assume that A can

10



be expressed in terms of an average state. This average state is expressed in terms of the
left and right states, and a linear system is produced.

Ui+ AU, =0 (56)
where )

- 0 ¢

A= [ 1 2% ] (57)

and 7 is a local average velocity, yet to be defined. Note that @ implies a local wave speed

1]

=ata (58)

where
a=+Vul+c? (59)
Having perfomed this linearization we can now use standard tequniques for linear hyperbolic

systems. We apply Riemann invariants across the waves of the approximate system. Using
the eigenvectors given in equation (8) for the left wave gives

dpP du
2 T i-a (60)
which on integration produces
2 c2
Py, — ﬁz-—c2uL:P*_ﬂ2_——?u* (61)
Doing the same for the right wave we obtain
dP du
2 T u+ta (62)
and
c? c?
PR-mURZP,——mu* (63)

Combining equations (61) and (63) to eliminate u. we have an expression for the pressure
in the star region.

2 i 1

C
P, = ﬁ(uL—uR)+ Y (PR— PL)-}- 2(PR+ PL) (64)

Using the alternative eigenvectors given in equation (9) we can again use the Riemann
invariants to give

Pp+(u—a)ur = Po+ (i —a) u. (65)
and .
Pr+ (a4 a)up= P+ (2 + @) u. (66)
from which we can obtain '
= (P - Pr) )+ = (uz + up) 67
s = 5= (PL = Pr) 5= (ur — wp) + 5 (ur + ur (67)

11



Thus we can find u. and P, and all that remains is to find v,z and v.g. This can be acived
using the left and right Riemann invariants. First, the left wave

v
du= —=d
u =dv (68)

giving
UL, — Uy ) D
vap = (up —u,)?® +og (69)

a
Using a similar approach for the right wave we get

g = (L;a“_R)_’i 4+ g (70)

6 Roe Solver.

The Roe approach to approximately solving the Riemann problem (Roe, 1981) is similar in
philosophy to that of the local linearization solver. Again we are seeking a linear approxi-
mation to the coefficient matrix A. Now, however, we wish to construct a matrix that will
satisfy specific conditions. Roe suggested these conditions in his paper, and showed how
to satisfy them and find an approximate solver. Here we follow one methodology. For a
linear system we known that the data difference can be decomposed in terms of the right
eigenvectors Ry, and the wave strengths @x as

AU =) axRy (71)

k=1

When this is applied to the artificial compressibility equations it gives

AP = act+ac? (72)
Au = @ (T-7a)+a3(T+3) (73)
Av = _Q—I(L-Eﬂua—ﬁa;@ (74)

The overbar represents quantities that are evaluated in terms of some average value yet to
be found. Equation (73) gives

AP —@3c?

& o= (75)
AP - ayc?

az = —65—1“ (76)

Substituting equation (76) into equation (74) gives

AP ,_ . Au
a1 = 9za T+ - o (77)
Similarly substituting equation (76) into equation (74) gives
Au AP
=== T+a 7
3= o7 " g (et ) (78)



Another expression that is valid for linear systems is

2
AF = Zak)\kRk (79)
k=1
or
Au = acl(i-a)+a3ct (T+a) (80)
Aul+ AP = wy(@-a)l+a(@+a)’ (81)

It can be seen that equation (81) is the same as equation (74), so we have three equations
and three unknowns. Now we substitute equations (77) and (78) into equation (81), which
gives

_ Au?
and since
Av? = uh -l (83)
Au = urp-—1ug (84)
we obtain
1
U= 5 (ur + ur) (85)
In its original form the definition of the Roe intercell flux used was
1 1 e —
F (UL, UR) = 5 (F (UL) + F (Ur)) - 3 > Xk ok R (86)
k=1

However it is posible to re-interpret Roe’s method to give the conserved variables in the
star region and this is the approach adopted here. For details of this see (Toro,1991b).

7 HLLC Solver.

The HLLC solver is an extension of the Harten-Leer-Lax Riemann solver (Harten et.al,
1983), in which the contact discontinuity is re-introduced into the solution. The ’C’ in
HLLC stands for contact. The first step of in this approach is to find estimates of wave
speeds. Note that for the HLLC Riemann solver this includes finding a wave speed for the
contact, and this depends on the solution to the Riemann problem. There is any number of
ways in which the wave speeds can be found, but one reliable method is to use the linearised
solver, as we have done here. This provides us with u., and we need to find the rest of
the vector of conserved variables. When used in its pure form, the HLLC method provides
us with P.r,P.r,v«r, and v,gr. This is at odds with the known exact solution in which
pressure is constant within the star region, and so it may be advisable to use other sources
for providing the pressure in the star region. For example, one could average the values of
P.;, and P.g, or use HLL to calculate P,, as we have done here. Then all that remains is
to find v,z and v.g. The first of these is found using

SLVuL — UuVul, = Spvp — upvr = qr (87)

13



For an explanation of the source of this relationship see (Toro et.al, 1992). This then gives

_ qL
Vs = SL o, (88)

For the right star y-direction velocity we use
SRU.R — UsV.R = SRVR — URVR = qR (89)

which gives

4R
«R = —— 90
e — (90)

Finally the vectors of conserved variables in the star region are used to compute the star
fluxes using

Fip = Fp+S.(U.—UL) (91)
F.r Fr+ Sr(Usr— Ur) (92)

8 Numerical Results.

Two types of test case are presented here. Firstly we compare the results obtained for the
values of pressure and velocity in the star region for a single Riemann problem. The ap-
proximate solvers are compared with the exact Riemann solver. Next the solutions obtained
from a FORTRAN program which was written to solve the one dimensional artificial com-
pressibility equations are compared. The program uses the first order Godunov method in
conjunction with the solvers presented, which are used to solve the local Riemann problems.
In addition to assesing the accuracy of the solutions generated consideration is given to the
robustness and computational expense of each Riemann solver. The test Riemann problem
used for all of these tests is shown in Table 1. This test problem is a harsh one, especially in
the context of the artificial compressibility equations, where smooth flow solutions are to be
expected. However, it is desirable to use such a test in order to get an idea of the robustness
of the approximate solvers. The results for the first test are given in Table 2. This shows
the fluxes in the star region. The reason that the fluxes, and not the conserved variables,
are given is two-fold. Firstly, it is the fluxes that are used to update the variables in RP
based methods, and secondly, the HLLC Riemann solver gives the fluxes, not the conserved
variables. These results show several interesting features. The Roe type solver, and the
linear solver give identical results. This is not particularly surprising, given that they are
based on the same average state, namely U = %U. In fact it is a simple task to verify
that the two methods are identical for this case. It is also notable that the Roe and Linear
solvers are the least accurate of the solvers for this test case. The results obtained for the
two rarefaction Riemann solver are much better that those obtained by the other solvers.
Having said all of this, it has to be remembered that this test case is much harsher that we
would expect to meet when solving the equations to find the solution to the Navier-Stokes
equations.

Figures 3 to 7 show the results obtained using the different Riemann solvers to solve
a global Riemann problem using the Godunov method. They were performed at a CFL
coefficient of 0.9, with 100 computational cells, and the artificial compressibility coefficient,

14



c, was set at 0.9. The results are given for a time of 0.1. As a whole, they point out one
of the strenghts of Riemann-Problem-based methods. Although some of the approximate
Riemann solvers are quite inaccurate locally, the quality of the results is good. This is due
to two factors; firstly, it is the flux difference that is used to update the conserved variables,
and secondly, RP based methods ensure conservation. These results are very reassuring,
and any of the approximate Riemann solvers can safely be used. This is bourn out by the
results given in Table 3. This shows a sum of the differences between the results obtain
using the exact solver and the approximate solvers, ie.

N

€ = IUiappTOI _ U{ezactl

where

This shows that there are no large discrepancies between the solutions generated using the
the exact solver and those generated with the approximate solvers.

The final test performed was to compare the efficiency of the Riemann solvers. The CPU
time taken for the above test problem, with 1000 cells, was measured and these are shown
in Table 4. The linear solver is the least computationally expensive of the solvers, the two
rarefaction approximation solver is the most expensive. At first glance it is surprising that
the two rarefaction solver is more expensive than the exact solver. After all it is suposed
to be a simplification. On closer analysis this phenomenon does make sence. In the two
rarefaction approximation we are itteratively solving the wrong exact expressions, so that
it may take longer for the solution to converge. In addition to this the expressions for a
rarefaction are more complicated than those for a shock. The HLLC solver lies in the middle
of the range of Riemann solvers, and to a large extent the computational expense comes
from finding reliable estimates for the wave speeds. In the above example this is done using
the linear solver, and so the HLLC solver must take at least as long as the linear solver.

9 Conclusion

Five Riemann solvers for the artificial compressibility equations have been presented. All
of these give accurate results when used to produce global solutions to the test problem.
Although this may not be the case for more demanding cases, test problem given is harsher
than what we would expect to find in a solution to the Navier-Stokes equations. The two
rarefaction solver is computationally expensive, and offers no special advantage over the
other solvers and so is not a good choice. The linear solver is the cheapest computationally,
is simple and has proven sufficiently accurate to use in a program to find the solution to the
Navier-Stokes equations. The HLLC solver is also relatively cheap, and has a reputation
for being very robust. Under certain conditions it may be better to select this solver above
the linear one.
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up, | 1.0
vy | 1.0
Py | 0.1
ur | 1.0
vp | 0.5
Pr 1.0
Table 1: The Test Case.
Solver cu, UnTVu, ULVR ul 4+ P,
Output [ % [Output | % [Output | % | Output| %
Exact 0.51010 | 0.0 §0.85635 | 0.0 | 0.23202] 0.0 1.2478 0.0
Two Rare’ | 0.51045 | 0.069 | 0.85480 | 0.169 | 0.23200 | 0.008 | 1.2486 | 0.064
Roe 0.53907 | 5.679 | 0.78961 | 7.794 | 0.20866 | 10.07 { 1.3274 | 6.379
Linear 0.53907 | 5.679 | 0.78961 | 7.794 | 0.20866 | 10.07 | 1.3274 | 6.379
HLLC 0.46778 | 8.296 | 0.86439 | 0.939 | 0.26650 | 14.86 | 1.2155 | 2.589
Table 2: Comparison of Results for Local Riemann Problem.
| Solver | u | v | P |

Exact 0.0 0.0 0.0
Two Rare’ | 5.2508 x 10~7 | 3.3184 x 10~7 | 1.8900 x 10~"
Roe 2.7507 x 10~° | 1.7918 x 10~* | 3.1680 x 10~3
Linear 2.7507 x 10=° | 1.7918 x 10~* | 3.1680 x 10~°
HLLC 1.3050 x 1074 | 9.4740 x 10~° | 5.6512 x 10~4

Table 3: Summation of errors.

I Solver || CPU Units ]

Exact 269.9
Two Rare’ 283.4
Roe 66.5
Linear 60.7
HLLC 106.7

Table 4: CPU Units in seconds.
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