


ABSTRACT 
We tackle, using the Isothermal Gas Equations, the problem of loss of 
monotonicity behind slowly moving shock waves as computed by 
Godunov-type schemes. A parameter by which slow-shocks can be 
detected within a flow-field is presented, along with a modification of 
Godunov’s scheme that introduces numerical dissipation into the flow to 
damp the oscillations. We also extend the scheme to second order in 
smooth flow. 







1 Introduction 
An important class of schemes in Computational Fluid Dynamics (CFD) today is that of Godunov- 
type schemes - those in which the intercell (numerical) flux is calculated from either an exact 
or approximate solution of the Riemann problem at cell interfaces. These have been found in the 
past to be an accurate and robust class of schemes. However it has been reported by Roberts [l] 
and Woodward and Collela [2,3] that these schemes display numerical noise behind slowly-moving 
shocks, where ’slowly - moving’ means that the ratio of shock speed to maximum wave speed in 
the domain is <1. This noise takes the form of low- frequency oscillations, and is present in the 
first-order versions of these schemes, i.e it is not due to modifications for obtaining second-order 
accuracy. The oscillations cannot be damped by resorting to the usual TVD procedures. It should 
be pointed out that the problem only arises when solving nonlinear systems of equations and scalar 
equations, such as the invicid Burgers equation, do not display this error. 

There are many reasons for resolving this problem. For example, the oscillations may have an 
adverse effect when using these methods to compute steady flows in a time asymtotic fashion, in 
that the rate of convergence will be reduced. Alternatively, when computing chemically active flows, 
the oscillations may cause premature detonations. Both types of computations are of interest of the 
authors. 

It is the aim of this paper to present an adaptation of Godunov’s scheme that is both as accurate 
at Godunov’s scheme in smooth parts of flow and at fast shocks, but in the vincinity of slow-shocks, 
produces no oscillations, or at minimum, oscillations vastly reduced in amplitude. This will involve 
two stages: (i) the detection of a slow shock and (ii) adding sufficient numerical dissipation in the 
appropriate places to damp the unwanted oscillations. It will then be shown how to extend the 
scheme to second-order accuracy in smooth parts of the flow. 

The remainder of this paper is set out as follows. In section 2 the equations used for studying 
numerical methods are described. In section 3 we describe Godunov’s method in detail along with 
the Weighted Average Flux (WAF) method, a second order extension of Godunov’s scheme. In 
section 4 Roberts paper is briefly reviewed, and some of his results are repeated for illustration of 
the problem. In section 5 we present our ideas and numerical results, and in section 6 the paper is 
summarized. 

2 The model equations 
In this paper we are concerned with a numerical phenonema that affects only nonlinear systems 
of equations. In the present study, we restrict ourselves to a very simple example of such: the 
Isothermal Gas Equations. This is a nonlinear, hyperbolic system of two conservation laws: 

Ut + F(U)= = 0 (1) 

where U is the vector of conserved variables, and F(U) is the vector of fluxes: 

Here p is the density, U is the velocity and a is a non-zero constant analgous to sound speed. For 
this system there are two characteristic speeds (eigenvalues): 

with corresponding Riemann invariants Inp & :. 

which, in conservation form, reads: 
For the purpose of illustration we shall also refer to the nonlinear, scalar inviscid Burgers equation, 

(4) 
1 

211 + (+ = 0 

and has one characteristic speed U, and has no Riemann invarients. 
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