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1 Abstract

The Artificial Compressibility approach is an important numerical method for solving the
incompressible Navier-Stokes Equations. The application of high resolution numerical meth-
ods to the equations of the artificial compressibility approach is a relatively new phenomenon
and deserves further investigation. In this paper we examine the performance of five Rie-
mann solvers: an exact Riemann solver, and four approximate solvers. The application of
reflective boundaery conditions is investigated, as well as the way in which the artificial
compressibility coeflicient is chosen.

2 Introduction

The range of flows modeled by the incompressible Navier-Stokes equations encompasses a
large number of industrially important applications for which the Mach number is less than
0.3. This includes use in the automobile industry, architectural flows, and sub-sea appli-
cations. All of these require accurate numerical solutions to the Navier-Stokes equations
that can be obtained in a realistic time scale using modern computing facilities. However,
the solution of the incompressible Navier-Stokes equations is still a significant numerical
challenge. The reason for this is that there is a lack of a coupling between the velocity
and the pressure fields. This means that the equations themselves provide no way of ex-
plicitly updating pressure as velocity is advanced. Several schemes have been developed to
solve this problem, and they can be divided in to two catagories: primative variable and
non-primative variable formulations.

The non-primative variable formulations are based on the introduction of dependent
variables other than velocity and pressure. Examples of methods in this catagory are: the
vector potential method, the two stream function method and the vorticity-velocity method.
All of these present problems such as boundary conditions, amount of data that must be
stored, and inefficiency.

Primative variable methods include the pressure correction method, and the artificial
compressibility method.The artificial compressibility approach, devised by A.J.Chorin?, is
arrived at by altering the incompressible equations in such a way as to result in a system



of equations in which the left hand side is hyperbolic. We wish to take advantage of the
hyperbolic nature of these equations and use Riemann-problem-based-numerical-methods
(or RP methods).

Riemann-problem-based methods have long been used for the computation of inviscid,
compressible, time dependent flows, and have more recently been extended for use with vis-
cous, compressible flow regimes. For flows of these types, Riemann-problem-based methods
offer high shock resolution, with a large reduction in post shock oscillation when compared
with traditional finite difference techniques that use artificial viscosity. This is achieved by
accurately representing the physical processes of shock propagation, adding the minimum
amount of artificial diffusion needed to eliminate spurious oscillations, and applying this
diffusion only where it is needed. Clearly those properties relating to numerical diffusion
are advantageous for flow regimes where viscosity plays an important role in determining
the flow solution. By adding only the minimum amount of artificial diffusion we can come
closer to representing the true flow field.

In this work several aspects of the numerical solution of the incompressible Navier-
Stokes equations are examined. We look at the use of five different Riemann solvers for the
equations of the artificial compressibility method. Four of these are approximate Riemann
solvers and one is an exact solver. We also examine three ways in which the boundary
conditions can be treated. As well as this the choice of c, the artificial compressibility
coefficient, is investigated.

3 Mathematical Model and Numerical Methods

The two-dimentional, time dependant, incompressible Navier-Stokes equations are
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Note that the density has been subsumed into the pressure. These equations clearly show
the lack of a coupling between presssure and velocity. To obtain the artificial compressibility
method we add a time derivative of pressure to the continuity equation, together with the
artificial compressibility coefficient, c. Here then are the equations that are to be solved.
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The artificial compressibility method constists of solving these altered Navier-Stokes
equations in some time depenent manner, until a steady state is reached. When this hap-
pens the time derivative of pressure is zero and we are left with the original Navier-Stokes
equations.

The first step in numerically solving these equations is to separate the convective and
diffusive parts of the problem. This has several advantages, the most important of which
is to allow us to choose the most appropriate methods for solving the different parts of
the equations. Splitting gives us two sets of equations, one of which is a set of hyperbolic
conservion laws, as is shown by Rizzi and Erikson?, and the other is the diffusion equation.
For the hyperbolic part of the problem we will adopt a modern high resolution method
known as the Weighted Average Flux method, or WAF (see Toro®). This is a Total Variation
Diminishing (TVD) scheme which ensures that no spurious oscillations are generated during
the solution procedure. It can however introduce clipping of maxima. In regions where
no limiting is required to eliminate oscillations, this method reduces to the Lax-Wendroff
method, for which there are no diffusion terms present in the truncation error. This is a
desirable property for any method that is to be used to solve viscous problems.

The diffusion terms are represented using second order finite difference approximations.
This is perhaps the simplest way of representing these terms, but it has been found that
the way in which the convective terms are represented is much more important than the
diffusive terms. In fact van Leer et al.4 state that the accurate representation of the contact
discontinuity is of vital importance for viscous problems.

4 Numerical Investigations

4.1 Riemann Solvers.

The numerical methods used here rely heavily on the accurate and economical solution of
a large number of Riemann problems. In the past this was a significant limitation, since
the Riemann solvers in use relied on complicated multistep solutions to the exact Riemann
problem. However, we now have a large range of approximate techniques available for solving
Riemann problems. Several solvers have been constructed for the hyperbolic left hand side
of the artificial compressibility equations. These are: an exact Riemann solver based on
the method put forward by Toro®, a Roe® type solver, an approximate Riemann solver
based on a local linearization of the equations (see Toro?) here refered to as the Linearized
solver, a two rarefaction solver, and a version of the Harten, Leer, and Lax® Riemann
solver known as the HLLC solver, in which the contact wave has been restored (Toro et
al.%). All of these Riemann solvers for the artificial compressibility problem are presented by
Elsworth®. These solvers where all used to solve three test problems. Test (a) was intended
to examine the correctness of the Riemann solvers for the simplest problem, and was a split
two-dimensional, time depedent test with no diffusion. The different Riemann solvers were
used to solve a global Riemann problem using the WAF method. The TVD amplifier used
was MINACO presented in Toro!l. This test was performed at a CFL coefficient of 0.9,
with 100 computational cells, and the artificial compressibility coefficient , c, was set at 0.9.
Since there is no diffusion present we are in effect we are solving the hyperbolic left hand



side of the artificial compressibility equations. The inital conditions of this test are given
in table 1 and the results are shown in figures 1 to 5. The graphs on the left of the figures
shows the exact (line) and the numerical results (symbol), and those on the right show
the absolute error between the exact and numerical solutions. Although this test has no
physical meaning it is a good way of investigating the performance of the Riemann solvers.
As a whole the results point out one of the strenghts of Riemann-problem-based methods.
Although some of the approximate Riemann solvers are quite inaccurate locally, with errors
in fluxes of upto 10%, the quatilty of the global solutions is good. This is illustrated by
table 2. This shows a sum of the difference between the results found using the exact

Riemann solver and the approximate solvers, ie.

=1

where
approrimate exact
U’ - U:

e; = |U;

The exact and approzimate superscripts refer to the Riemann solver used to generate the
numerical results. This shows the that there is very little difference between the results
generated using the exact solver and those generated using the approximate solvers. These
results are very reasuring, and show that, on accuracy grounds, any of the Riemann solvers
could safely be used.

Another aspect of the Riemann solvers that is of interest is their computational efficiency.
Test (b) examined this property. In order to investigate this the same test problem as above
was used, exept that this time there were 1000 computational cells. The CPU times taken
to solve this problem were measured, and these can be seen in table 3. The most efficient
is the linearized Riemann solver and the least efficient was the two rarefaction solver. At
first glance this suprising; after all the two rarefaction solver is supposed to a simplification.
However, the two rarefaction solver is iteratively solving the wrong exact relations for most
intercell boundaries, and so it may take longer for the solution to converge.

In test (c) all of the Riemann solvers were used to find the solution to a viscous, two-
dimentional, recirculating flow problem analogous to the driven cavity problem. The driven
cavity problem consists of a rectangular box in which the lid is translated at a constant
speed. Although it is one of the simplest examples of recirculating flow there is no known
analytical solution. However, with the addition of a source term, and a lid that has a
variable velocity along its lenght, we can arrive at a problem for which the solution is
known. This is exactly what Shih et al.12 have done. All of the Riemann solvers were used
in a program written to solve the Shih et al. problem. This uses the WAF method, but with
the amplifier set to give purely second order results (i.e. the Lax-Wendroff method). The
numerical conditions for this test, can be found in table 4. From these results we can see
that the Riemann solver has very little effect on the convergengence of the method (table 5).
The maximum error in the v-velocity along a line parrallel to the moving lid of the cavity,
and at half of the depth of the cavity is shown in table 6. The accuracy of the solution is
not effected to any large extent by the choice Riemann solver. Bearing in mind the results
of test (a) this is not surprising. On the basis of these results the most attractive Riemann
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solver is the Linearized solver, which is the least computationally expensive. The HLLC
solver is also a good choice, since it is known to be very robust.

4.2 Boundary Conditions.

The next investigation that was performed, test (d), was designed to analyse the effects that
different boundary condition had on the results. Here we consider only boundary conditions
for the hyperbolic part of the problem. The diffusive boundary conditions are based on the
no-slip condition applied at the wall. Once again the Shih et al. test problem was solved,
using the linearized Riemann solver, and the WAF amplifier set to provide the Lax-Wendroff
method, as in test (b). See Table 7 for the numerical conditions of this test. Three types
of boundary conditions were examined. These were: (i) a linear interpolation, as proposed
by Marx3, (ii) a first order boundary condition, and (iii) a second order condition. In
the first of these, (i), the pressure on the wall of the cavity is given by Pyt = (Pi + P2),
where P, and P, are the pressures in the first and second cells away from the wall in. The
Godunov flux is then used across the boundary. The second condition, (ii), is based on the
exact solution to the boundary Riemann problem. Here the pressure on the wall is found
by evaluating the expression for the incoming wave based on the state in the cell adjacent
to the boundary, and the wall values of velocity. The Godunov flux is then used across
the boundary. Finally, the third boundary condition, (iii), was based on the exact solution
to the boundary Riemann problem. The state in a ghost cell outside the computational
domain was found based on the state adjacent to the boundary, and the wall velocities.
Here the WAF flux was applied across the boundary. The effect of the boundary conditions
on convergence is shown in table 8.The differences between conditions was marked, with
the Marx type boundary condition, (i), taking significantly more time steps to converge
than the other two. The first order Riemann problem based condition, (i), took the least,
with the second order Riemann problem based condition, condition (iii), in between. The
second order condition performs better than we have a right to expect, since higher order
boundary conditions often have a significant detrimental effect on convergence. Marx has
already expressed his doubts about the convergence characteristics of condition (i). The
quality of the solutions generated are illustrated in table 9. The Marx type condition gave
the worst results, and the second order boundary condition the best. Conditions (i) and
(ii) are are firmly based on the hyperbolic nature of the problem, and these results confim
our suspisions that the characteristic nature of the equations should be considered when
generating boundary conditions. In addition to this, our knowlege of the exact solution to
the boundary conditions means that we can apply superiour boundary conditions.

4.3 Choice of c.

Test (e) was designed to investigate two strategies for choosing the value of the artificial com-
pressibility coefficient . Both are based on the analysis performed by Turkel'?, who states
that the value of c giving the best convergence properties is given by ¢ = 3/(u? + v?),,,.»
where +/(u? + v2),,_, is the maximum velocity in the flow. This theoretical result has been
verified numerically by Marx3. In the first calculation, (c)(i), ¢* was set at the constant
optimal value throughout the calculation.This optimal value is based on our knowlege of
the solution. In the second calculation, (c)(ii), ¢ was choosen to be the optimal value for
each time step. The numerical conditions for test (e) are given in table 10. Table 11 shows
the convergence properties of the two methods. The use of constant ¢ gave better con-



vergence properties by a substantial amount. Table 12 shows the maximum errors for the
two methods of chosing c. Here the use of varing ¢ gives better quality results than fixing
¢ throughout the calculation. However this may have noting to do with the method for
chosing ¢, but may be related to the fact that the varying c calculations were running for
more iterations than the fixed ¢ calculations.

With this test we have a difficult desision to make as to which is the best method to
use. On the one hand the convergence results favour the fixed ¢ method, whilst accuracy
considerations point towards the use of varying c. Although we may be able to have a
very good guess at what the maximum flow velocity is, for example from the free stream
conditions, in general we do not know the optimal value of ¢ before hand, since we do not
know the final solution. Thus,if the code is to be as general as possible it is advisable to
use the varying ¢ method, as this does not require the user to provide an optimal value of
c.
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ur, || 1.0

vy || 1.0

Pr | 0.1

up || 1.0

vgr || 0.5

Pr | 1.0

Table 1: Data for Test (a).
| Solver ” u | v [ P |

Exact 0.0 0.0 0.0
Two Rare’ || 1.1017 x 1077 | 1.6953 x 107 | 3.5274 x 10~°
Roe 6.4078 x 10~% | 4.0225 x 10~° | 1.4315 x 10~°
Linear 6.4078 x 107% [ 4.0225 x 107> | 1.4315 x 10~°
HLLC 1.2012 x 105 | 2.0604 x 107> | 3.6120 x 10~

Table 2: Summation of errors for Test (a).

rSolver ” CPU Units |
Exact 321.1
Two Rare’ 327.0
Roe 116.1
Linear 104.8
HLLC 172.0

Table 3: CPU Units in seconds for Test (b).

[test [ Re | Cells | CFL [ Convergence |
() 100 [32x32] 09 | 1.0x 103
(ii) 1000 | 32x32 { 0.9 1.0 x 10~%
(iii) || 100 | 64x64 | 0.5 [ 1.0x 1078
(iv) ][ 1000 | 64x64 | 0.5 | 1.0x 10°°

Table 4: Numerical Conditions for Test (c)

[Sober [ O] @[ @[ ]
Exact 2606 | 8134 | 6492 | 20216
Two Rare’ || 2606 | 8134 | 6492 | 20216
Roe 2606 | 8134 | 6492 | 20215
Linear 2606 | 8031 | 6492 | 20215
HLLC 2606 | 8138 | 6492 | 20217

Table 5: Riemann Solver Performance. Number of Iterations for Test (c).



Solver (i) (ii) (iii) (iv)

Exact 4.654 x 103 | 2.986 x 1072 | 1.199 x 107> | 8.346 x 10~3
Two Rare’ || 4.654 x 10~ | 2.986 x 102 | 1.199 x 10~ | 8.346 x 10~
Roe 4.470 x 103 | 2.872x 102 [ 1.176 x 1073 | 8.626 x 103
Linear 4470 x 1073 [ 2.872x 1072 | 1.176 x 1073 | 8.626 x 10~
HLLC 4858 x 10-3 | 3.002x 102 | 1.224 x 10°3 | 8.128 x 1073

Table 6: Riemann Solver Performance. Maximum Error for Test (c).

Re 1000
Cells 32x32
CFL 0.9
Convergence || 1.0 x 1072

Table 7: Boundary Conditions: Numerical Conditions for Test (d).

| Type [[ Tterations |
Marx 5289
1st Order 2564
2nd Order 2790

Table 8: Boundary Conditions. Number of Iterations for Test (d).

| Type | Maximum Error |
Marx 0.3522878
1st Order 0.2974891
2nd Order 0.2927429

Table 9: Boundary Conditions. Maximum Error for Test (d).

[ Re [ 1000 |
Cells 32x32
CFL 0.9
Convergence || 1.0 x 107°

Table 10: Method for ¢. Numerical Conditions for Test (e)

| Method | Linear Solver | Exact Solver |
Fixed ¢ 2550 2755
Varying ¢ 3312 3314

Table 11: Method for c. Number of Iterations for Test (e).

| Method | Linear Solver | Exact Solver |
Fixed ¢ 2.7871 x 1072 [ 2.2192 x 10~2
Varying ¢ || 1.5971 x 10~% | 1.6208 x 10~*

Table 12: Method for c. Maximum Error for Test (e).



Exact Solver,

Error in ¥-Direction Velocity
|‘ﬁ‘ M_
0854
0254
194
u-
025
s w18
m_
TR
[
0054
Q554
05+ 2o
¢ 0
FDirection Velocity Errer in ¥Direction Velocity
"’ e
124 05
Q4+
130
(&2
u‘
m-
“-
(roensemssessorsisssonserass a1
'l "N
o T 1 T T ¥ T
A A A ¢ 0w X I 4 % & W
«Q 0 & b 8 o9 100
Pressure Errer in Pressure
7 Sateaatintamennsnnd LR
/
7
—roncasssnsvessassil/ 054
044
134
24
d
014
.
1 T T T T T ! a0 T T T T T T
L] ] ® x L4 9 w L ® b} X L] 0 & n

Figure 1: Exact Riemann Solver
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Two Rarefaction Solver
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Figure 2: Two Rarefaction Riemann Solver
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Figure 3: Roe Riemann Solver

Roe Solver,
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Linearized Solver.
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Figure 4: Linearized Riemann Solver
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HLLC Solver.

08+

44

a4

04

2+

Figure 5: HLLC Riemann Solver
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