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. Motion of a Rigid Body in an Unsteady Non Uniform Heavy Fluid
. by
P.G. Thomasson
College of Aeronautics
Cranfield University

1.0 Introduction

The Lagrangian formulation of the equations of motion of a body immersed in a steady
but heavy perfect fluid is outlined in Lamb [1] and a resulting set of equations for the
unsteady fluid case, is given in Lewis et al [2] in a form suitable for the flight dynamics
of underwater vehicles. These equations have also been used to model the motion of
airships in a steady uniform atmosphere, Cook et al [4]. Recently however the author
has had some difficulty in applying these equations to the motion of other vehicles. In
principle they should be applicable to not only underwater vehicles but also to airships,
parafoils and aircraft. Two major problems of the equations in [2] is that they do not
reduce to the small perturbation equations that are used for aircraft in gusts [3],[13],
plus as will be seen later, the fluids inertial velocity causes difficulty. This paper
identifies the source of the problems as being the conventional approach of lumping
together the inertial and added masses. It provides an alternative formulation that
keeps them separate and so avoids the difficulties.

2.0 Original equations

The form of the equations given in [2] is an expression of Newton’s second law of
motion expressed in body axes,

Mx=F,+F, +A+F (1)

where

X = [u vV w p g r]T the inertial body axis velocities of the vehicle

M = the 6x6 mass matrix including added masses and inertias

F, = the dynamics vector arising from body fixed rotating axes 2)
F, = the vector of forces and moments due to the fluids inertial motion

A = the vector of the fluid dynamic forces and moments due to relative velocity

F = the vector of other external forces and moments

From [2], we define effective masses and inertia’s as, (the bar refers to the displaced
fluid, and conventional derivative terms are used to represent the added masses and
inertia’s),
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m=m-X, m=m-2X,

m,=m-Y, m=m-1,

m=m—-2Z, m=m-L7L,

Jo=I-L, J,=I_+M,=I,+N, ®)
J=L-M, J.=I +N,=I_+L,

J=L-N, Jy=I,+L,=1+M,

If the ¢.g. has body axis co-ordinates of (ax,ay,az) then the mass matrix is,

am-M,

—~am—N,

0 0 -X, am-X, -am-X,|
m, 0 ~am-1Y, -7, am-Y,
0 m, am-72, am-Z, -Z, @)
-am-L, am-1L, I ~Jy -J,
-M, -am—M, ~Jy J,y =J,.
am-N, -N, -J, -—Jyz J,

and if the co-ordinates of the centre of buoyancy are (bx,by,bz) then the dynamics

vector is given by,

~(J, =g+ J (q* -r’)+J pq—J pr+m-a,(vp—qu)+a,(ur—pw)]
~(J, = J)pr-J,pq+J (r* - p)+J qr+ma (vp—qu)—a,(wqg —rv)]
(S, = J )+ T pr—J g+ Jo(0* - q*) +ml-a,(ur - pw)+a, (wq—r)];

—mwq +myv+mla,(q’ +r*)-a,pq-a,rp]
~m ur +m,pw +m-a,pq+a,(p’ +r*)-a,rq]
—-myp+mqu+ m[—-a rp— ajrq+a, (g2 + p2 )]

&)

whilst the fluid motion vector is,

~La, —(bm+ L), +bm— LY, +mlb,(v,p—qu.)—b(ur- ;)]
(bz;”— + Mc:)”f - M\}‘}f - (bxﬁ - Mw)wf + h—i[_bx(vfp - quf) + bz(wfq - r"f)]
(BT + N ity + (b7 — N,Yv, — My, + 1B (u,r = pw )= b, (w,q = rv,)]

mu, +mw.q—mrv,
My, +muy —mpw,
mw,+my.p—mqu,

©

In the derivation of the equations given in [2] some added mass terms have been
assumed to be zero ( Lambs A’, B’ and C’ ) and some perfect fluid terms have been
moved to the right hand side of the equation and absorbed into the vector A. In
addition of course, the vehicle mass and inertia’s have been combined with the added
mass and inertia terms to give ‘effective inertia’s’.



P G Thomasson College of Aeronautics Report 9501

2.1 Difficulties

Several difficulties arise with the above equations. The most obvious is if the fluid is
unsteady, then the fluid motion vector F,is a function of the fluid inertial velocity as
well as its inertial acceleration and this is counter intuitive. This can be clearly seen by
giving the body the mass and inertia properties of the fluid that it displaces. In that case
the relative acceleration between the body and the fluid should be zero, but the above
equations do not reduce to this. A less obvious difficulty arises with the mass matrix M
if we attempt to apply the equations to a vehicle such as a partially constrained
dynamic wind tunnel model. Then it would be expected that the forces and moments
due to the vehicles inertia would depend upon its inertial acceleration whilst the forces
and moments due to the fluid acceleration (the added mass and inertia terms) would
depend upon the relative acceleration of the fluid and the vehicle and so we might
rearrange the equations to the form,

Mxi+Mx =-Mx, +F,+F, +A+F (7)
where

x, =x—X, = relative velocities of vehicle and fluid, and 3)

m 0 0 0 am -am]
0 m 0 =-am O am
0 0 m am -am O

y
M, = 0 -am am I, -1, -I, ©
am 0 -am -I, [I,6 -1,
-am am 0 -1, -1, I,
-X, O 0 -X, -X, -X,]
0 -7, 0 ~-Y, Y, I
M = 0 o -z, -z, -1, -Z, 10)
' y-L, -L, -L, -L, -L, -L
-M, -M, -M, -M, -M, -M,
-N, -N, -N, -N, -N, -N,|

For completeness the M_ matrix should be full but for compatibility with [2] some
elements have been left zero.

The above fluid motion and fluid acceleration vectors can be combined into a new fluid
motion vector. This results in most of the acceleration terms cancelling but not all and
the fluid motion vector remains a function of the inertial fluid velocity. The source of
this is party due to the fact that in the derivation used in [2] some but not all perfect
fluid relative velocity terms have been absorbed into the vector A. As a result a full set
of equations involving all the perfect fluid terms is required prior to any rearrangement
such as that above.
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3.0 Alternative Derivation

Lamb [2] derives the general expression for the kinetic energy of a body moving in a
steady fluid but does not give the general expressions for the forces and moments.
Imlay [5] carries out the necessary differentiation’s of the full energy equation and
presents the general expressions for the forces and moments. Lipscombe [6] attributes
to Burnett the addition of the bulk fluid motion terms to Lambs original analysis and
uses a partially complete energy equation to derive the forces and moments. However
the present author has been unable to trace Burnett’s work and [6] only quotes a set of
equations of motion for the zero velocity gradient case. Taylor [8] derives expresions
for the forces on a stationary ridgid body in a fluid with velocity gradients

Due to the complexity of the real fluid case the approximate approach based upon the
ideas of Lamb and Taylor is used as the starting point. The development of the
equations is done in several stages. First the equations of motion of a rigid body in a
non uniform unsteady perfect fluid are derived for the case in which the undisturbed
fluid velocities do not change significantly over distances comparable to the dimensions
of the vehicle. Secondly the viscous forces and moments are added to the above
equations and combined with the perfect fluid terms that are a function of relative
velocity alone. Finally gust penetration effects are grafted on so as to represent the
variation of the undisturbed moving fluid velocities over the vehicle.

3.1 Perfect Fluid Equations

If we consider a rigid body moving in a perfect fluid that is circulating in a multiply
connected region and use Taylors [8] approximation that the circulating fluid velocities
do not change significantly over the length of the vehicle, we can write the Lagrangian
of the system including the bulk translation of the multiply connected fluid, as twice the
total kinetic energies of,

1. The undisturbed circulating fluid moving with velocity #,,v,,w,,

2. The fluid disturbed by the presence of the body. This is due to the relative velocity,
u—u;,v—v,,w-w,,plus

3. a uniform density, neutrally buoyant vehicle moving at the relative velocities
U—Up V=V ,W—W,,

4. The actual non uniform density, non neutrally buoyant vehicle moving with the
vehicles speed u,v,w,. Minus,

5. a uniform density, neutrally buoyant vehicle moving with the vehicles speed u,v,w.

Plus
6. the steady circulating fluid in the multiply connected region

The second and third items are essentially those due to Lamb but modified so as to be
in terms of the relative velocity, whilst the remaining ones are required to account for

the fluids own motion and that of the vehicle.

In equation form this is,
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2T

_ )
= Mf(uf +V; +wf)

2 2 2
—Xﬁ(u—uf) —Yv.(v-—vf) —Z‘.y(w—wf)
—2Yﬁ(v—-vf)(w—-wf)—2X‘.,(w-wf)(u—uf)-2X‘.,(u-—uf)(v—vf)
—L,p* ~M,q* - N,r* -2M,qr-2L.rp—-2L, pq
—Zp(XI.,(u—uf)+Y}.,(v—vf)+Z,-,(w—wf))
—2‘](Xq(u—uf)+Yq("“’f)"’zé(w"wf))

—2r(X,-(u—uf)+Y,-(V—Vf)+zr'(w_wf))

(11

+ﬁ((u—uf —rb, -+c_]bz)2 +(v—vf - pb, +rbx)2 +(w~wf +pb, —qu)z)

+fip2 +I_;;q2 +I_:;r2 —2ffz

qr-—ZI—fzpr—Zf:;pq

+m((u—ray +qaz)2 +(v-pa,+ra,) +(w+pay —qax)z)
+IEp* + I8 q" +15r* =212 qr-21% pr—21% pq

_m((u —rb, + qbz)2 +(v—pb,+rb) + (w +pb, — qu)z)

T T T 7o Th 24
—ILp-I'g* - Ly + 2L qr + 2L pr + 21 pq
+1

Where M, is the mass of the volume of fluid circulating in the multiply connected
space and the region is moving with velocity #,,V,,w,, Ty is the kinetic energy of the

undisterbed circulating fluid. The superscripts b and g refer to inertias derived with the
axis origin at the centre of buoyancy and the centre of gravity respectively.

The symmetries in the equations can be exposed by using matrix notation so that the
Lagrangian becomes,

2T =21, +
[u, 7 [M, 0 0 0 0 0] [u]
v, 0 M, 0 0 0 0] |v,
w, y 0 0 M, 000 y Wl
0 0 0 0 0 0O 0
0 0 0 0 000 0
o] o o o0 oo o0f |0
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u—u, X, X, X, X, X, X u—u,
V=V, r, T Y, Yja Y:; )4 V=V,
w—-w zZ, Z, Z, Z, Z, Z, W—w
1 x P 7| T+ (12
p L, L L, L, L, I P
q M, M, M, M, M, M, q
| N, N, N, N, N, N, | | r |
Cu-u, T [ 7 0 0 0 b, ~inb, 1 Tu-u,
v-v, 0 m 0 b, 0 b, v-v,
w—w 0 0 7 mb b 0 wew
"I <l o mb, mb, I'+m vy Pt b I' -mbbh, |~ ’
P ~mb, my xxtm(y-‘-z) —xy_mxy —_z_mxz
g @b, 0 -mb, -It-wbp, If+m(b}+b?) I, -mbp,
L r | |-mb, mb, O ~I® —7ibb, I8 -mbh, It +mb} +87)| |
"y 7 [ m 0 0 0 ma, —-ma, Tr u]
v 0 m 0 -ma, 0 ma, v
W 0 0 m ma, —ma, 0 w
pl X 0 -ma, ma, I -s—m(avy2 +azz) -I¢ —maga, -1t -maga, "lpl|”
q ma, 0 -ma, -I{-maa, I+ m(a;z +azz) -1} -maga, q
Lrl |-ma, ma, 0 -1¢ -ma,a, -1{ —maa, IS+ m(ax2 +ay2)_ L7
T, m 0 0 0 mb, ~mb, I
v 0o m 0 b, 0 b, v
W 0 0 @ b, b, 0 w
pl X 0 -mb, mb, I\+m(p?+b?) I -mbp, I -mby, Xl
g| |mb, 0 -mp, -It-mbp, Ib+m(b?+b?) ~I.-mbp, q
Lr] |-me, mb, 0  -Ii-mbp, It -mbp, It+mlp?+b7)| L7

The terms added to the products and moments of inertia are, by the parallel axis
theorem those required to give the corresponding inertias about the co-ordinate origin.
As a result the superscripts can be omitted and the extra terms dropped, and all
inertia’s will then be taken to be referenced to the body axis origin.

The vehicle equations of motion with the extra terms for the fluids motion can be
derived using Lagranges equations. However the above Lagrangian is not in terms of
generalised co-ordinates and their velocities and so the convential equations cannot be
used.

This problem belongs to a class that can be solved by the use of ‘quasi co-ordinates’.
This general class of problems is described by Whittaker [7] and Meirovitch [16].

The true co-ordinates of the current problem are
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q=(N,E,D,$,6,y,N,,E;,D;) (13)
while the rates of change of the quasi co-ordinates are

® = (U,V,W,p,q.7,Us,V, W, ). (14)
Lagrange’s equations in matrix form are,

T.-T.=Q (15)

q q
where

" |oN O D o M oy oON, Ok, oD,

T
p_|or or or or or or or ar aT] (16)

where Q represents the generalised forces. To convert this to quasi co-ordinates first
express the rates of change of the quasi co-ordinates as linear combinations of the rates
of change of the true co-ordinates,

o=[a]"q 17)
then the inverse relation is
q=[Blo (18)
and Lagrange’s equations can then be written as [7],[16],
d| oT oT oT
dt(amrj+§ZI:‘Yrslml a(os —anr _Hr (r=1’23"':n) (19)

where the I, are the generalised forces associated with the quasi co-ordinates 7, and

00y, Oty
Y st =;Zm:ﬁkrﬁml(aqm - aq, ) (20)

For the present problem we have,

u cosBcosy cosO sin y —sin® | N
v |=|sindsinOcosy —cos¢psiny sindsinOsiny + cospcosy sin¢cosO E |21
w cosdsinOcosy +singsiny cospsinOsiny —sinpcosy cos cosO D

p 1 0 sin© o
g|=|0 cos¢ sindcosd |0 (22)
r 0 -—sindg cosdcosO |y
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u cosOcosy cosO sin y -sin® |N;| [u

v, |=|sin¢sinOcosy —cospsiny sin¢sinOsiny +cospcosy sin¢ cosd Ef +|v, (23)

wy cos¢sinOcosy +sindsiny cosPsinOsiny —sinpcosy cos¢cosd Df w,
Where [uc v, wC]T are the steady circulating velocities.

The above equations define the [o] matrix, and after considerable algebra the indicated
transformations yield the Lagrangian equations of motion.

d(BT] or ar or

a2\ "o T o
- d(aTj o, _ar

a\ov) Pon ou o

d(aT) or T or
Z= gL oL o7

dt\ow ou 6v Oz

d (aT) oT or or or or or @
L= ~We——t V=W, ——+ V=T —+ ——

a\op) "o Tow v, Tow, og lor

_d (a:rj or  or oT 0T oT ér
—U—+W——U— AW, ———p——+T
7 dq ow  ou oW, ou, ~or op

(6T) or, or_ or . or or  or
“ar\ar

—V—u U, ——~ p
o o ou, T"ov, "op " oq
These equations are similar to Lamb’s [1] but with fluid motion terms included.

For subsequent analysis equations (24) are written more conveniently in matrix form

as,

T.=F-(P+W)T,-WT,-T, (25)
where
|0 or or or or orf
u o ow op o or
" (26)
1|2 9L oL 4 4 ¢
o&x oy oz
(27)

F=[X Y Z L M N]
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0 -r ¢g 0 0 0
0 -p 0 0 0
- 0 0 0 0
p=| 1 P (28)
0 0 0 0 -r g
0 0 0 » 0 —p
' 0 0 0 -¢g p O
0 0 0 0 0 O]
0 0 0 0 0 0
0 0 0O 0 0 O
W = (29)
0O -w v 0 0 O
w 0O —-u 0 0 O
v u 0 0 0 0]
"0 0 0 0 0 0]
0 0 0O 0 0 O
0 0 0 0 0 O
W, = (30)
0 W, V. 0 0 O
W, 0 —U; 0 0 O
-V, U 0 0 0 0O
or or or i
T, = 0 00 (31)
ou, v, ow

The differentiation gives,

_QZ:_Xﬂ(u—uf)—Xw(w—wf)—X(v v) X,p—X,q—Xr—mu +rr(u ar+aq)
%:—K(v—-vf) Y;(w wf) Yu(u—uf) Y.p-Yq-Yr-mv,+mv-ap+ar)
'ngz Zw(w—wf)—Zv.(v—vf)—Zﬂ(u——uf)——Zj,p—qu-—Zfr—Wwf+n(w+ayp—axq)
—Zg—(l ~L)p+ (-1, - Ly +(-1I,-L,)q

( u-— uf)+Lv(v vf)+L(w wf))+mbvf mbw, —ma,v+ma,w
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or
—5q—= -I,-M))p+(,-M)q+(-1,-M)r

~(M,u—-u)+ M,(v-v,)+ M, (Ww—w;))~mbu, +mbw, +ma,u—maw

X (N o+ (1~ N~ N

—(Nﬁ(u —u )+ N,(v-v, )+ N, (w-— wf)) +mbu, —mby, —mau+may

(32)

—g—: I.,p+(——l'n'bz - Xq)q+(r_n‘by +X,.)r +(Xﬂ(u-uf)+Xv.(v-vf)-ka(wmwf))
!

7w+ (7 + M, Ju,

gvl = (mbz +Y;.,)p +Yq+(-mb, + 1) +<Yﬂ(u —uf)+Yv.(v— vf)—f- Yw(w —wf))
!

_r“n‘v+(7n"+Mf)vf

DL (b, + 2,)p+ (b, + Z, )+ 2 +(2fu=,)+ 2o =v,)+ Zufr-w,))
!

—7n“w+(17+Mf)wf

or _

==

or _

ar _

o

and again more convenient matrix forms of these are,
T, =M,x, + Mx-Mzx, = (M, + M, )x— (M, + M,)x,
I 0 — (33)
T, = —[0 0}(M, +M,)x, + M,x,
and x, = X~—X, (34)

where

10
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-X, -X, -X, -X, -X, -X,]
A A A A A 4
M - -Z, -4, -Z, -Z, -1, -Z, 35)
" \-L, -~L, -L, -L, -L, -L
-M, -M, -M, -M, -M, -M
-N, -N, -N, -N, -N, -N,
X, =[ ~u, V-V, w-w, p ¢q r]T 36)
[ m 0 0 0 ma, -ma,]
0 0 ~-ma, 0 ma,
M. = 0 0 m ma, -ma, 0 37
' 0 -ma, ma, I, -1, -1,
ma, 0 -ma, -1, [, -I,
—-ma, ma, 0 -, -1, I, |
x=[u v w p q 7] (38)
[ m 0 0 0 mb, -mb,|
0 7] 0 -mb, O  Tib,
— 0 0 m mb, -mb, O
M=l o @ mbp, o 0 o0 (39)
mb, 0 -mb, O 0 0
~mh, mb, 0 0 0 0
X, = [uf ve w, 0 0 O]T (40)

Substituting in the equations of motion gives

T, =M%, + Mg - M, = (M, + M)i - (M, + M)x,

=F - (P+W)M,x, + Mx - Mx,) + W,(M, + M)z,
=F—(P+W){M,x, + Mx - Mx+Mx, }+ W, (M, + M))x, (4D)
=F—(P+W)(M, - M,)x - (P + W,)(M, + M)z,

where W, =W - W,

3.2 Viscous Effects
The term (P+W,)(M, +-Mi))§{r in the above equation is a function of the relative

velocities only and can therefore be absorbed into the vector A as the perfect fluid
component of the aerodynamic forces and moments due to the relative velocity

11
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between the fluid and the vehicle. In many cases the elements of the vector A will be
derived empirically from wind tunnel or tank facilities and will include the perfect fluid
effects. The acceleration dependant terms or ‘added masses’ arise from the work done
in accelerating the perfect fluid, in a real fluid additional acceleration effects come into
play such as the increase in vorticity and its convection past tailplanes etc. It is
assumed that all such effects are added into the corresponding perfect fluid added mass
terms. This is a reasonable assumption for streamlined vehicles supported by bouyancy,
but is less exact for vehicles with substantial lift such as aircraft. The unsteady aspects
of lift generation and the nature of the a ‘derivatives’ is discussed by Etkin [14] and
Hancock [15] and whilst the above assumption is not stricly correct, it is still a
working approximation for many aircraft situations.

The perfect fluid terms that may be absorbed into the vector A are,

( -rY, +qZ, -rY, +qZ, Y, +qZ,
rX, -pZ, rX, - pZ, rX, -pZ,
'qXﬁ +pYﬂ —q‘X\; +PY\7 ”qu +pr

—w Y, +v Z, ~rM,+qN, -w Y +v Z —-rM,+qgN, -w Y +v.Z —rM +gN,
wX,-uZ,+rL,~pN, wX,-uZ,+rL,-pN, wX,-ulZ, +rL,—pN,
L—v,X,., +u Y, —qL, +pM, -v.X,+u Y —qlL,+pM, -v X_ +ulY, —qlL, +pM,

u v

-rY, +qZ, -rY, +qZ, -rY, +qZ, [u,
rX,-pZ, rX,-pZ, rX,-pZ, v,
"‘IXp +PYp "qu' +qu -gX, +pY, w,

——

“w Y, +v,Z,-rM,+qN, -wY, +v.Z,-rM,+gN, -w Y, +v,Z,-rM,+qN,|| p
wX,-uZ,+rL,—~pN, wX,-uZ +rL;-pN, wX,-uZ +rl,—pN, || q
v, X, +u Y, ~qL,+pM, v X, +ul, -qL;+pM, v X,+ul —qL, +pM,.‘ r

42)
] 0 —rii qm b, +qmb, —qmib, -rmb, Tu,
rm 0 —pm -pmb, rinb, + pmb, ~rmb, v,
~qm pm 0 —pmb, —qmib, qmb, + pmb, |w
-rmb, - qmib, 0 0 w, mib, +v 7itb, 0 0 P
0 —~#b, — pmb, 0 0 w, mb, +u mb, 0 q
] 0 0 ~qmb, + pmb, 0 0 v, b, +u,mb, | r

Depending upon how the elements of the A vector are determined, some or all of the
above terms may already be included and care should be exercised that terms are not
omitted nor ‘double accounted’ for. The risk of double accounting can be seem by
considering an axisymmetric body in a turn with w = p = q = 0. Then the perfect fluid
yawing moment is from Equation (42),

N=—vXu +uly,

Now if the vehicle is sidesliping,

12

-
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. v,
sinp =
P27,
U
cosp ==
V;ot
Hence,
V2
N =-2(Y, - X,)sin2B

2
i.e. this is the classic Monk moment [17], and this may be already in the vector A.
With all the terms absorbed the equations of motion become,

(M, +M, )i = <P+ W)(M, - M, ) +(M, +M, )i, +A+F

or

Mi=F,+F, +A+F (43)
where

M= (M, +M,)

F, = (Mr +TVI_,)X,

[(m=7)rv - qw) + ma(q* + %) - a,pg — a1p] |
(m~ @) pw— ru) + ma,(p* +r*) - a,pq - arq]
(m~)gu - pv)+ma g’ + p*) - a,rg - a,7p]

~(p =L yrg+1,g" ~r*)+ L.pg—ILpr
+m~a,(vp - qu) + a(ur - pw)]
F,=-(P+W)YM,-MJx=| -7-b,0p - qu)+&ur- pw)]

U= 1)pr—I,pg+ 1. (7" - p)+ Lar
+ma,(vp ~ qu)~ a,(wq - )]
~mb,(vp~ qu) - b,(wg — rv)]

Uy~ Lo+ Lpr-Lgr+1,(p" - ¢°)
+mi~a (ur - pw) + a,(wq ~ )]
b, (ur - pw)+b, (wg - )]

These are more acceptable from a physical point of view since the fluid motion terms
now only depend upon the fluids inertial acceleration. Giving the body the same mass
and inertias as the displaced fluid results in the relative acceleration becoming zero as
would be expected. If the mass of displaced fluid is negligible they revert to the
conventional aircraft equations of motion.

3.3 Gust Penetration Effects

In the above, all relative velocity terms were moved to the aerodynamics vector. If the
vehicle is flying in a steady but non-uniform airstream there will still be varying relative
velocity components due to the bodies translation through the fluid. Using Taylors
theorem, the fluid velocities in the vicinity of a point x,,y,,z, can be described by the

nine velocity gradients,

13
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Oou Ou Ou
ox oy Oz
» > )
ox oy Oz
ow ow ow
| &x oy Oz

and this can be split, Prandtl [12], into symmetric and anti-symmetric parts, the former
representing strain and the later representing vorticity. As a result the velocity
gradients in the fluid can be treated as ‘effective rotation rates’ since they produce
velocity distributions identical to those due to rotation,

r [ow, &, ou, ow, &, & 1
[Pf q; "f] =L @,f“oazf Oazf‘ékf o’kf_@fJ ='2‘CW1[Vf] 45)

In an aircraft the vertical dimensions are small compared to the tail arm and the span so
that the variation with z can be neglected, so that,

r [ow ow., ov, ou |
T

This is the linear field approximation used in [9].

If the vehicle has a velocity U relative to the fluid (along the x-axis),

T aw o % o % au T
[Pf 95 rf] =[Ef _EU_f_’ %f“"a“yi} (47)

Where the starred terms are the apparent rate of change due to the motion of the
turbulence field past the vehicle i.e. NOT the inertial accelerations of the undisturbed
fluid. The above expression is added to the vehicle rotation rates so as to give the
effective relative angular velocity for use in the aerodynamic calculations of A ( it
being solely a function of the relative velocities ). This avoids one of the problems with
the formulation used in [2], it had fluid velocity terms in the fluid motion vector and it
was not clear how the ‘effective’ rotation rates should be included in the equations.

The distinction between the real and apparent fluid accelerations is important since in
some derivations [13], the use of the frozen turbulence approximation leads to them
being lumped together so that Z, =Z,-Z, . In the case of a moving sea or non

frozen turbulence the above treatment keeps them distinct.

More extensive gust or sea state models can be included at this point depending upon
the application.

14
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4.0 Small Perturbation Equations
The equations of motion are,
Mz = —(P+W)(M, - M, Jx+(M, + M, )x, + A{x—x"r} +F

xtf = [u :Vfawfapf’qf,rf]T
The braces {} indicating ‘function of’.

(48)

We will now consider small perturbations about a steady flight condition. Let the
vehicle state vector be given by,

X=X, +0x (49)
If we use stability axes the steady state is given by
x,=[U,, 0, 0, 0, 0, 0] (50)
The corresponding vectors for the fluid velocities are,

X; = Xq + X,

et &)
and the steady wind components are given by,
Xp =[uf0, Vies Wres 0, 0, 0] 2
X'n= [”fo’ Vros Wros Pro> 4roo rfO]
For small perturbations,
A{x—-x"t}=A{x,—-X'n}+A_ (Ox-0xr) (53)

where A, is the small perturbation (aerodynamic derivative) matrix for the steady state
flight condition.

X, X, X, X, X, X

Y, ¥ L L I %
NEE IR A .
L L L, L I L

M, M, M, M, M, M,

N, N, N, N, N, N,

It must be remembered that the A, matrix contains not only the ‘conventional’
aerodynamic derivatives but it also contains the small perturbation part of the perfect
fluid relative velocity terms that are given in equation (42) and were absorbed into the

15
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A matrix. If we take the added mass matrix to be diagonal for simplicity, these
components are,

[0 0 0 0 @+Zyw, ~(@+LW, |
' 0 0 0 ~7+ Z,)W, 0 7 + X,
0 0 0 (m+ T, ~( + X, 0
0 (L+Zywo (L+Z), W(wd+vd,)  —Hud, b,
(X, - Z,)w, 0 X, -Zyu, — -mvp,  mwprup) WP,
(X, + L), (X, +L)ug 0 W, T p, (e, +ud,)

Under steady state we can show that,
F=-A,{x,~xn) (55)
As a result the small perturbation equations become,

(M, +M,)3% = (M, +M,)5x, — (B, + W,)(M, ~ M,)5x (56)
— (8P +8W)(M, — M,)x,, + A ,5x — A 8xr +OF

and

—(B, + W, XM, — M,)5x — (8P + SW)(M, — M,)x, =

(57
0 0 0 0 0 0 T 6]
0000 0 (m-mU, |
0000 ~—(m-mU, 0 ow
0 0 00 —(ma,~mb)U, —(ma,—mb)U, | dp
0000 0 0 8q
0000 0 0 13
and if the other external forces and moments are due to just gravity
i 0 —(m-m)g |
(m—-m)g 0
sF=| O 0 "’J (3)
—(a,m-bm)g 0 0
0 ~(am —b.nm)g
| (am—bm)g 0 _

The equations become,

16
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00 00 0 0 [ Su
0 000 0 (m-m)U, v
(ML +M)oi =M + Moz, -0 0 00 ~m=ml 0 o
ro ro 0 0 0 0 —(ma,—mb)U, —(ma,—mb)U,|dp
0000 0 0 8q
0000 0 0 187 ] (59)
i 0 —(m-m)g ]
(m—m)g 0
. 0 0 K;
+A 5x — A Bxr + .
¢ ¢ —~(a,m—bm)g 0 _9}
0 —(a,m—bm)g
| (am—-bm)g 0 |

For conventional aircraft the displaced mass can be ignored, and making the usual
assumptions regarding the added masses and the stability derivatives the above
equations become the usual small perturbation equations used for aircraft.

Longitudinal Equations

0 0 m 0 am ||| u X110 0 O0)u
Z, 0|+ O m —amwl=|Z |+|0 -Z, 0w, |+ mU|q

w

0
0
0 M, Of |am -am [ q M| [0 -M, 0] O 0
X,

7 ) (60)
. X, X, |u-u; mg
HZ Z, Z |w-w,|—-| 0P
M, M, M .l 94 am
Lateral Equations

m -am am|V Y mU, ¥
—-am I, -L . \pl=|L|-|-maU,}r+|L, Lp , | P—Df|+|—am ¢ (61)
am -1 L, |F N 0 N, N, N |r-r am

zx zz v P r

V-V, mg

where the 6°s have been dropped and,

0=
"= (62)
b=p

These are the conventional aircraft equations for flight in gusts as used in [3].

5.0 Conclusions

A new formulation of the equations of motion of a rigid body in an unsteady non
uniform heavy fluid is given. This avoids the problems with an earlier set of equations
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[2] with regard to the unsteady case, and in addition clearly separates out the inertias,
the added masses and the relative velocity effects. In addition the small perturbation
equations revert to those that are normally used for both bouyant and lifting vehicles.
As a result the formulation provides a common derivation of the equations of motion
for underwater vehicles, airships, parafoils and aircraft.
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The previous sections contain a number of matrix computations who’s results are not

obvious, the details are given below,
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mb, + X,
-mb, -1,
Z;

%
mb +Z;

-7b, - X,

0
~I,

-q p

0
0
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Expanding the matrix products gives,
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0 -» g 0 0 0] f[-x, -X, -X, -X, -X, -X,
r 0 -p 0 0 0| |-% - -, -¥, - -L
¢ p 0 0 0 0| |-z -Z -2, -Z, -2, -Z |
To -w v 0 -r g¢|\-L -L ~L, -L, -L, ~-L, |
w 0 -2 r 0 -p| |-M, -M, -M, -M, -M, -M,
v u 0 —-g p O -N, -N, -N, -N, -N; -N,
( -rY, +9Z, -rY, +qZ,
rX, - pZ, rX,; - pZ,
_q-X:a +pYa —qu +PY‘-,
-w, Y, +v,Z, —-rM,+qN, -w Y, +v Z —rM, +gN,
wX,-uZ,+rL,—pN, wX, —uZ,+rL,—pN,
L_vaﬂ +u, Y, —qL, +pM, —v X, +ulY;—-ql, +pM,
-rY, +9Z, -rY, +q9Z,
rX,-pZ, rX,-pZ,
—gX, +pY, —¢X,; +pl,

-w, Y, +v,Z,-rM, +gN,

-w. Y, +v,Z,—rM; +gN,

-rY,+qZ.,
rX, -pZ,
-gX, +pY,
-w Y, +v Z ~rM,+gN,,
wX,—uZ,+rL,—pN,
—vaw +urYw _qu +pr
-rY, +qZ, )
rX,-pZ,
"qu' +PYr'
~w, Y. +v, Z,~rM; +gN,

——

wX,-uZ,+rL,-pN, wX, 6 —ulZ,+rL;~pN, wX. -uZ +rL,-pN,
-v,X!., +u,Y,—qL, +pM, -v, X, +u Y, -qL, +pM, -v X, +u, Y. ~qL, +pM,.‘
[0 -r ¢ 0 0 0] [ m 0 0 0 ma, -ma,]
r 0 -p 0 0 O 0 m 0 ~ma, O ma,
-4 p 0 0 0 O 0 0 m ma, -ma, 0
0 -w v 0 —r gl 0 -ma, ma, I, -I, -I |
w 0 -u r 0 =-p ma, 0 -ma -I, I, -1,
I-v # 0 -g 0| |-ma, ma, 0 -1, -1 I |
[ 0 —rm qm rma, +qma, —~qma,
m 0 —-pm -pma, rma, + pma,
—qm pm 0 —pma, ~qma;
—-rma, -qma, —wm+qma, v - rma, wma, +vma, —rl, +ql ~vma_ —rl,, +ql,
wm+ pma, ~—rma,—pma,  —um-+rma, ~uma, +vl, — pl, wma, +uma, +rl_ ~pl
| —vm+ pma, um+gma,  —qma,+ pma, ~uma, —-ql,. +pl, vma, ~-ql,, + pl,,
[0 -r ¢ 0 0 O] [m 0 0]
0 -p 0 0 O 0 m 0
-4 p 0 0 O 0 0 m
0 -w 0 -r q|°| 0 -mb mb|
w 0 -u r 0 -p| {mb 0 mb,
-v w 0 -g 0 |mb, mb C |
i 0 ~ri g ]
¥ 0 -~ pin
—qm pm 0
~rmb, —gqmb, —wim +qmb, Vit — v b,
wm +pmb, -rmb,— pmb,  —um-+rmb,
| —vim + pmb, um +qmb,  —qmb, + pmb,

-ma,
~ma,
gma, + pma,
-wma, -1l +ql,
~wma, -l —pl,
vma, +uma, —ql. + pl |
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