CU/CoA-2003/0205

Cranfield

Lunar South Pole Mission (LSPM) Summary of the Group Design Project MSc in Astronautics and Space Engineering 1996/97 Cranfield University

> Dr Stephen Hobbs Tom Bowling

COA report No. 0205 February 2003

College of Aeronautics Cranfield University Cranfield Bedford MK43 0AL England

College of Aeronautics Report No. 0205 February 2003

Lunar South Pole Mission (LSPM) Summary of the Group Design Project MSc in Astronautics and Space Engineering 1996/97, Cranfield University

Dr Stephen Hobbs, Tom Bowling College of Aeronautics Cranfield University Cranfield Bedford MK43 0AL

ISBN 1 861941 00 5

© Cranfield University 2003. All rights reserved. No part of this publication may be reproduced without the permission of the copyright holder

"The views expressed herein are those of the author/s alone and do not necessarily represent those of the University" Lunar South Pole Mission (LSPM), Summary of the Group Design Project, MSc in Astronautics and Space Engineering, 1996/97, Cranfield University

College of Aeronautics report 0205 ISBN 1 861941 00 5

S.E. Hobbs, T.S. Bowling

Abstract

This report is a summary of the group design project of the MSc in Astronautics and Space Engineering at Cranfield University for the year 1996/97. The project was a feasibility study of a European unmanned mission to the lunar south pole to carry out scientific study.

The mission proposed uses two spacecraft: (1) an orbiter to take images of the proposed landing site, to measure the Moon's gravitational field, and to act as a communications relay, and (2) a larger lander which carries a small rover and a crate probe. The orbiter is launched first (if gravity and image data are not already available) so that the lander's landing site can be selected. The main goal is scientific study of the permanently dark craters at the lunar south pole.

The baseline design (developed to the depth of a feasibility study) meets the stated requirements and is comparable to ESA's medium class missions (cost $\sim \in 300$ M).

© Copyright Cranfield University 2003. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.

Acknowledgements

A project like this depends on input from a wide range of people, who all deserve acknowledgement. The work presented here is primarily that of the Astronautics and Space Engineering students for 1996/97. Research students and staff (Susan Jason and others) have helped significantly, as have the many industry contacts around the world who responded to students' questions patiently, and often with enthusiasm; we gratefully acknowledge their input to the project.

Contents

Abstra	ct	i
Ackno	wledgements	iii
Conter	nts	v
List of	Tables	vi
1. INT	RODUCTION	1
Missio	n Objectives	1
Report	Structure	1
2. PR	OJECT ORGANISATION	3
Backg	round to the Project	4
3. DIS	CUSSION AND CONCLUSIONS	5
BIBLI	OGRAPHY AND REFERENCES	7
APPE	NDIX A. LUNAR SOUTH POLE MISSION PRESENTATION SLIDES	9
A.1	Mission Introduction	9
A.2	Scientific Background	9
A.3	Design overview	9
A.4	Launcher options	9
A.5	Transfer orbit options	10
A.6	System baseline tradeoff	10
A.7	Baseline power budgets	10
A.8	Communications link budgets	11
A.9	Crater descent options	11
A.10	Conclusions	11

List of Tables

Table 1 List of individual report titles showing the individual roles within the project3Table 2 Student responsibilities for the 1995/96 group project, European Lunar Initiative.4

1. Introduction

This report gives a brief summary of the MSc in Astronautics and Space Engineering group design project for 1996/97, the Lunar South Pole Mission (LSPM). It is based on presentations given during the project (see Appendix A). Detailed reports by each student describing their contribution to the project are available from the School of Engineering, Cranfield University.

The presentation slides (Appendix A) form the main part of this report and give a summary of the whole project, its background, some subsystems, and the main design decisions.

Mission Objectives

The primary mission goal is

• Scientific study of the lunar south pole region.

To enable this and to maximise the probability of success for the mission as a whole, the mission comprises a simple lunar orbiter for imaging the lunar surface and to act as a communications relay, and a lander (which includes a rover and a crater probe). The main lander mission is preceded by the small orbiter which has the task of imaging proposed landing areas in detail so that the best landing site can be chosen for the lander. The orbiter also has the task of carrying out gravity field measurements so that reliable long-term orbit predictions can be made.

The mission is sized as a medium-sized mission in current ESA terminology, i.e. a cost of ~ 300 MAU (= \leq 300 M).

Report Structure

Following this introduction, there are brief summaries of the project's organisation (chapter 2) and a discussion of the technical work of the project (chapter 3). A full list of all the report titles is in the Bibliography. Appendix A contains copies of the slides given at the project presentation, and contains a structured list of all the slides to act as an index.

2. Project Organisation

The group project runs from October to March and accounts for 25% of the MSc course. Each student contributes about 500 hours. The project is directed by staff (Tom Bowling, Stephen Hobbs) and supported by other staff and by research students. Educationally, the project is a key element of the MSc course in that it demonstrates in a relatively realistic environment much of the material taught on the course and gives students training in the sort of project work that, for many of them, will be their working experience on graduation. The project can also be very rewarding for the real progress that is made by the students on a realistic design task.

In broad terms, the period from October to December is used to determine the top level system design, and from January to March most of the detailed design work is carried out to refine the mission baseline. Students are given responsibility for particular work packages within the project as shown in the following table.

Student	Report title
Afonja, Ayo	Lunar South Pole Mission: Science requirements
Carta, Salv	Lunar South Pole Mission: Attitude and control system
Coletti, Emmanuel	Lunar South Pole Mission: Electrical power system
Fahy, Will	Lunar South Pole Mission: Crater descent
Giannoulis, Tim	Lunar South Pole Mission: Configuration and structure
Inoue, George	Lunar South Pole Mission: Mission operations
Jagger, Louise	Lunar South Pole Mission: Scientific payload definition
Larrauri, Teresa	Lunar South Pole Mission: Thermal control system
Lelong, Laurent	Lunar South Pole Mission: Lunar orbit analysis
Maroothynaden, Jason	Lunar South Pole Mission: Planetary robotic exploration of the lunar south pole region
Patterson, David	Lunar South Pole Mission: Descent strategy and landing site selection
Pearson, Chris	Lunar South Pole Mission: Mission requirements and Lander main propulsion system
Piffard, Sylvain	Lunar South Pole Mission: Communication and data handling
Russel, Nick	Lunar South Pole Mission: Launch vehicle strategy
Sides, Roger	Lunar South Pole Mission: Lunar transfer trajectory: analysis and evaluation
Watson, Robert	Lunar South Pole Mission: Systems analysis

Table 1. List of individual report titles showing the individual roles within the project.

Background to the Project

ı.

LSPM builds on previous work from several areas. The group project for Astronautics and Space Engineering in 1995/96 was ELI (European Lunar Initiative), and so in several ways LSPM builds on this project. Other projects which provided information were

- MORO (Moon Orbiting Observatory) ESA proposal
- LEDA (Lunar European Demonstration Approach) A proposal for an ESA programme of lunar research
- EPSPEX (European Lunar South Pole Expedition) Proposal developed at the 1996 Alpbach summer school sponsored by ESA

Student	Report
Anifantis, George	ELI Phase I: Descent Strategy and Landing
Bastin, Alec	ELI: Electrical Subsystems of a Lunar Rover
Bradford, Andrew	ELI Phase I: Lander Mechanical Subsystem: Structural Design, Landing Mechanism Design, Thermal Design
Ghafoor, Nadeem	<eli and="" eli="" guidance="" i:="" ii;="" imaging="" landing="" phase="" system=""></eli>
Kalsi, Nav	(ELI: Lunar Rover) Vision, Guidance, Navigation and Hazard Avoidance
Kingston, Jenny	ELI: Rover System Engineering, Rover and Lander Operations
Kondryn, Andrew	Propulsion and Reaction Control Subsystem for the ELI Lunar Lander
Loizou, John	ELI Phase I: Lander Systems Engineering
Medley, Alec	ELI Phase I: Lander Power Supply
Nejatbakhsh, Hoss	<eli and="" definition="" evaluation="" i:="" launch="" phase="" vehicle=""></eli>
Seynat, Cedric	ELI Phase I: Mission Requirements, Configuration Options, Trade-off Analysis
Smith, Richard	<eli and="" iii="" iv="" phases=""></eli>
Thomson, Laura	ELI Phase I: Data Handling and Telemetry Subsystem
Turner, Darren	ELI: Lunar Transfer and Orbit
Warwick, Steve	ELI Stage I: Mechanical and Thermal Subsystems of the Rover
Wu, Chih-Chen	ELI: Communications Subsystem

Table 2 lists the student reports available from the 1995/96 group project.

Table 2. Student responsibilities for the 1995/96 group project, European Lunar Initiative. Braces <> indicate the area of responsibility rather than formal report title.

3. Discussion and Conclusions

The project achieved a good solution for the initial project specification. The approach taken is on the whole conservative but could be simplified if other lunar missions have taken place by the time of LSPM to provide the necessary gravity field and surface image data.

The most challenging part of the project was the design of the crater probe. Many alternative solutions have been proposed to allow useful investigation of the contents of the permanently dark (and cold) craters at the lunar south pole without damaging what could be a unique record of the solar system's history. The crater probe is probably the most original part of the project and is worthy of further study so that the costs and benefits of the different options can be better understood.

The project's main conclusion is that a European, science-led mission to the lunar south pole region is feasible. The cost of the mission is expected to be comparable to that of other medium-sized ESA missions ($\sim \in 300 \text{ M}$).

Full details of the study are reported in the individual group project reports written by the students (available from the School of Engineering, Cranfield University). The presentation slides in Appendix A give an overview of the mission and show the various system-level options considered.

Bibliography and References

- Afonja, Ayo, Lunar South Pole Mission: <u>Science requirements</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Carta, Salv, Lunar South Pole Mission: <u>Attitude and control system</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Coletti, Emmanuel, Lunar South Pole Mission: <u>Electrical power system</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Fahy, Will, Lunar South Pole Mission: <u>Crater descent</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Giannoulis, Tim, Lunar South Pole Mission: <u>Configuration and structure</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Inoue, George, Lunar South Pole Mission: <u>Mission operations</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Jagger, Louise, Lunar South Pole Mission: <u>Scientific payload definition</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Larrauri, Teresa, Lunar South Pole Mission: <u>Thermal control system</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Lelong, Laurent, Lunar South Pole Mission: <u>Lunar orbit analysis</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Maroothynaden, Jason, Lunar South Pole Mission: <u>Planetary robotic exploration of the</u> <u>lunar south pole region</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Patterson, David, Lunar South Pole Mission: <u>Descent strategy and landing site</u> <u>selection</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Pearson, Chris, Lunar South Pole Mission: <u>Mission requirements and Lander main</u> <u>propulsion system</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Piffard, Sylvain, Lunar South Pole Mission: <u>Communication and data handling</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Russel, Nick, Lunar South Pole Mission: <u>Launch vehicle strategy</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Sides, Roger, Lunar South Pole Mission: <u>Lunar transfer trajectory: analysis and</u> <u>evaluation</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- Watson, Robert, Lunar South Pole Mission: <u>Systems analysis</u>. Group Design Project report, College of Aeronautics, Cranfield University, April 1997.
- ESA, LEDA Lunar European Demonstration Approach Assessment study final report. LEDA-RP-95-02, rev. 0, 12 June 1995.

- ESA, MORO Moon orbiting observatory Phase A study report. ESA document SCI(96) 1, March 1996.
- Spudis, P., et al, Physical environment of the lunar south pole from Clementine data: implications for future exploration of the Moon. Lunar and Planetary Science Congress, Houston, 1995.

All the individual student reports are available from the School of Engineering; contact Dr. Stephen Hobbs, Course Director, MSc in Astronautics and Space Engineering.

Ase\yr9697\GDP1996 Summary.doc, 03/02/03

Appendix A. Lunar South Pole Mission Presentation Slides

These slides were prepared for a presentation given at the end of the first phase of the project (system design) in December 1996. The remainder of the study period was largely devoted to development of the individual study areas and is documented in the individual group project reports submitted by the students.

A.1 Mission Introduction

- 1. TITLE PAGE
- 2. BACKGROUND
- 3. OBJECTIVES
- 4. MISSION OVERVIEW
- 5. PRESENTATION FORMAT

A.2 Scientific Background

- 6. SCIENTIFIC THEMES Origin of the Moon
- 7. SCIENTIFIC THEMES Origin and evolution of the lunar crust
- 8. SCIENTIFIC OBJECTIVES High resolution topographical and geochemical mapping
- 9. SCIENTIFIC OBJECTIVES Heat flow and temperature measurements

A.3 Design overview

- **10. ENGINEERING OBJECTIVES**
- **11. ORBITER**
- 12. LANDER
- 13. ROVER
- 14. CRATER PROBE
- **15. PRELIMINARY MASS BUDGET**
- 16. LANDER MASS BUDGET
- **17. ORBITER MASS BUDGET**

A.4 Launcher options

18. OPTIONS: ARIANE (AR44L)

- 19. COST \$90-110M
- 20. COST \$60M
- 21.COST \$50-70M
- 22. COST \$18-20M

A.5 Transfer orbit options

23. LUNAR TRANSFER24. HOHMAN TRANSFER25. BIELIPTIC TRANSFER26. WEAK STABILITY BOUNDARY27. LIMITED POWER ENGINE28. SUMMARY

A.6 System baseline tradeoff

- 29. SPACECRAFT CONFIGURATION
- **30. SYSTEM BASE LINE CONFIGURATION**
- **31. SUB-SYSTEM CONFIGURATION**
- 32. TRADE OFF ANALYSIS
- **33. TRADE OFF CONFIGURATION OPTION 1**
- 34. TRADE OFF CONFIGURATION OPTION2
- 35. TRADE OFF METHODOLOGY
- **36. REVIEW OF TRADE OFF CONFIGURATIONS**
- **37. TRADE OFF PARAMETERS**
- 38. SYSTEM TRADE OFF ANALYSIS
- **39. PARAMETERS/WEIGHTING**
- 40. SYSTEM LEVEL TRADE OFF ANALYSIS SPACECRAFT CONFIGURATION
- 41. SYSTEM LEVEL TRADE OFF ANALYSIS COST BIAS SPACECRAFT CONFIGURATION
- 42. SYSTEM LEVEL TRADE OFF ANALYSIS SPACECRAFT CONFIGURATION
- 43. SYSTEM LEVEL TRADE OFF ANALYSIS COST BIAS SPACECRAFT CONFIGURATION

A.7 Baseline power budgets

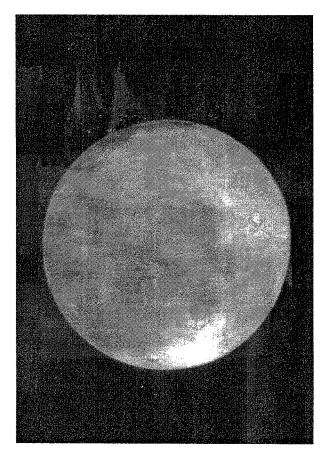
- 44. PRELIMINARY POWER BUDGET
- 45. 1/ORBITER POWER BUDGET

46. 2/SUB-SATELLITE POWER BUDGET47. 3/LANDER POWER BUDGET48. 4/ROVER POWER BUDGET49. 5/CRATER PROBE POWER BUDGET

A.8 Communications link budgets

50. PRELIMINARY LINK BUDGET 51. ORBITER-EARTH 52. LANDER-EARTH via ORBITER - 1 53. LANDER-EARTH via ORBITER - 2 54. LANDER-EARTH via ORBITER - 3 55. ROVER - LANDER 56. PROBE - LANDER 57. ROVER - ORBITER

A.9 Crater descent options


58. CRATER DESCENT 59. MICRO SPACECRAFT 60. CABLE ASSISTED DESCENT 61. DROP FROM ORBIT 62. PROJECTILE 63. PROBES 64. ABSEILING 65. METHOD INFLATABLE BALL

A.10 Conclusions

66. CONCLUSION

67. CONCLUSION – SINGLE SPACECRAFT 68. CONCLUSION – NEXT STAGE OF WORK TO BE DONE

Lunar South Polar Mission (MdSJ)

Astronautics and Space Engineering Group **Cranfield University**

Background

 Mission is the first stage of a phased ESA exploration of the moon.

Develop skills for further manned solar geology, life-sciences and astronomy. Opportunities for advancements in system exploration.

Objectives

 Detailed mapping around lunar south pole Develop various crater descent schemes Landing within reach of south pole crater Medium-sized mission (350 MAU)

Mission overview

 Orbiter and subsatellite obtain information for landing

 Lander lands within reach of largest Aitken Basin crater

 Lunar satellites continue mapping Roving vehicle to explore surface

Presentation format

Science group
Mission analysis

Spacecraft
 Configuration

Mass

Power

Communications

Crater descent

◆ Conclusion

SCIENTIFIC THEMES

 Thermal evolution and internal structure History of the formation of regolith and Distribution of the gravitational field Nature of local magnetic field Origin of the Moon its composition

SCIENTIFIC THEMES

 Impact processes over geological time Origin and evolution of the lunar crust Geomorphologic dichotomy between Presence of water/ice in the polar the Moon's near and far sides Earth - Moon formation model regions

SCIENTIFIC OBJECTIVES

 High resolution topographical and geochemical mapping Local and global gravitational mapping

Geology, morphology and mineralogy

SCIENTIFIC OBJECTIVES

 Heat flow and temperature measurements

In-situ soil sample testing

Seismic measurements

ENGINEERING OBJECTIVES

Soft-land on the Moon

Crater entry

Preservation of lunar environment

Slide 10

\mathbf{T}	
Ш	
\mathbf{m}	
()	

INSTRUMENT	POWER	MASS	DATA	PRODUCTION	TIME	
	(Watts)	(Kg)	(bit/s)	MISSION	(MONTHS)	
High Resolution Stereo Camera Ultra-violet/Visible CCD Camera Near-Infrared CCD Camera	5.4 154	9 0.41 1.92	9 550 Mb/orbit 1 2 98.3 kb/s	MORO Clementine Clementine	2 = =	
Neutron Detector	55	3.9	0.05 kb/s	0.05 kb/s Lunar Prospector		
Geodesy Subsatellite Subsat equipment on orbiter	2 0	4.7 5	.7 0 5 <10 Mb/orbit	OHOM	33 5	
TOTAL	30 30 30	19.93				
Preliminary Design Review	Cranfield Univ	ersity - ASE	Cranfield University - ASE - GDP - 96/97		9/12/96	

Slide 11

.

INSTRUMENT	POWER	MASS	DATA	PRODUCTION	TIME
	(Watts)	(Kg)	bit/s)	MISSION	SCALE
Dust Flux Analyser		2.5	0.1 Kb/s	ROSETTA	Continuous
Micrometerorite Flux Counter	6. -	5.3 5	0.1 Gb/s	GIOTTO	Continuous
Gamma-ray Spectrometer		0.9	8 Kb/sample	Marsnet	Marsnet 10 hrs/sample
Thermal Analysis/Evolved Gas Analy:	.5 1.5	R	1 Mb/sample	Intermarsnet	Intermarsnet 1 hour/sample
Fluxgate Magnetometer (x2)	0.3	0.3	200 Kb/day	Intermarsnet	Continuous
TOTAL	5.7	8			

Slide 12

salata a

ROVER

COMPANY/ MISSION
512 Kb/img Intermarsnet 6 images/stop
86 Mb/pan Intermarsnet Depends on available telemetry
32 Kb/smp Marsnet 10 hrs/sample
8 Kb/smp Marsnet 10 hrs/sample
0.2 Mb/smp Intermarsnet 10 hrs/sample

Slide 13

CRATER PROBE

INSTRUMENT	POWER	MASS	DATA		TIME SCALE
	(watts)	(Kg)	(bit/s)	WISSION	
Thermal Array Probes	-	0.35	50 b/s	Marsnet	Continuous
Neutron Detector	0.2	°.	32 b/smp	Marsnet	Marsnet 10 hrs/sample
Seismometer	0.0002	0.3	5 kbit/s	Intermarsnet	Continuous
Tiltmeter	0.08	0.07	0.07 16 bits/meas	Intermarsnet	Continuous
Mossbauer spectrometer	0.6	0.4	0.2 Mb/smp	Intermarsnet	Intermarsnet 10 hrs/sample
TOTAL	0.8802	1.07			

Slide 14

PRELIMINARY MASS BUDGE

Mass kg

% of s/c dry mass

F THE ORBITER

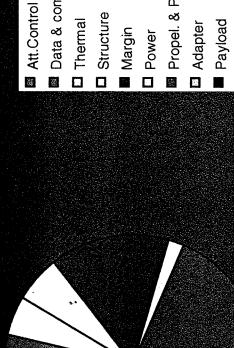
`	MASS OF THE LANDER	IDER		 MASS OI
.	Element % o dry	% of S/c dry mass	Mass kg	• Element
•				
•	Attitude Control	1.5	30	 Payload
¢	Data & commun.	2	40	 Stricture
•	Thermal	ە	100	Thermal
	Structure	9	120	
	Margin	15	300	 Data - CO
•	Power	2	40	
÷	Propel. & Propul.	50	1000	
•	Adapter	6	120	
•	Payload	10	200	 Total Marain
	Landing gears	2.5	50	 Total
	TOTAL (wet mass) 100	100	2000	 Subsatell
	TOTAL (dry mass)		1000	Total

20.5 15.4 3.3 3.3 3.3 3.3 4.4 4.4 4.4 4.4 4.4 73.2 14.6 87.9 87.9 87.9 33.9

ite

28 21 4.5 6 6 700 6 700 700 700

ommun. Control

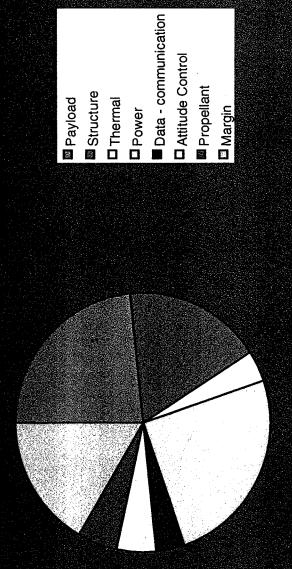

> Slide 15

9/12/96

CRANFIELD UNIVERSITY - ASE - GDP - 96/97

PRELIMINARY DESIGN REVIEW

ANDER MASS BUDGE


Data & communic Propei. & Propul. Landing gears. **D** Structure **D** Thermal Payload Adapter Dower Margin

 Mass estimates of each system as a % of S/C dry mass Considers the S/C at LLO only - no lunar transfer values included

Reference : AIAA 93-4743 and ELSPEX tables

CRANFIELD UNIVERSITY - ASE - GDP - 96/97 PRELIMINARY DESIGN REVIEW

ORBITER MASS BUDGET

 Mass estimates of each system as a % of S/C dry mass

Considered to be as a microsatellite

♦ Reference : Space Mission Analysis and Design

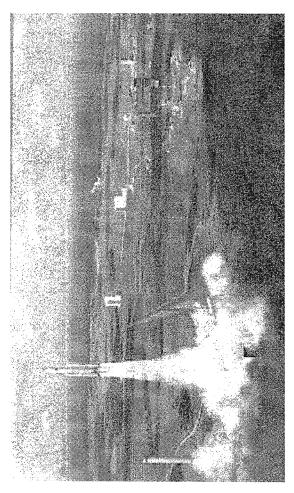
PRELIMINARY DESIGN REVIEW

CRANFIELD UNIVERSITY - ASE - GDP - 96/97

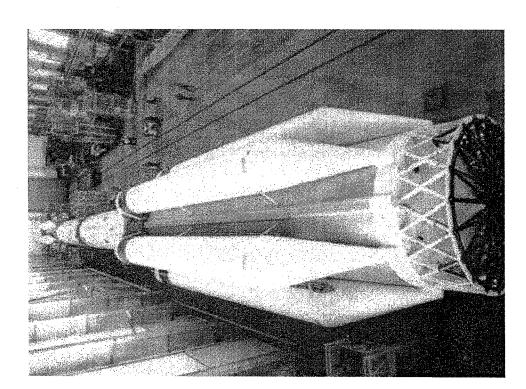

9/12/96

Launch Vehicle Options

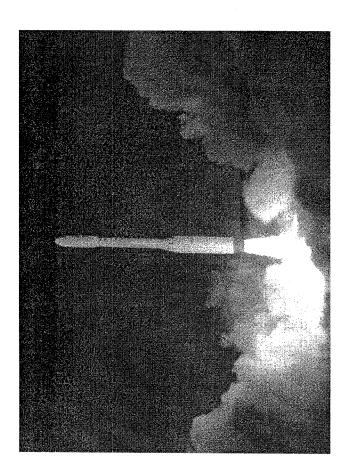
- Options
- Ariane (AR44L)
- Ariane 5 Shared Launch to GTO
- Proton
- Taurus combined with one of the above


Ariane 4 (AR44L)

- Cost \$90-110M
- ΔV required for LLO is
 6.32 km/s.
 - Final weight of spacecraft in LLO is 1280 kg.


Ariane 5 (Shared launch)

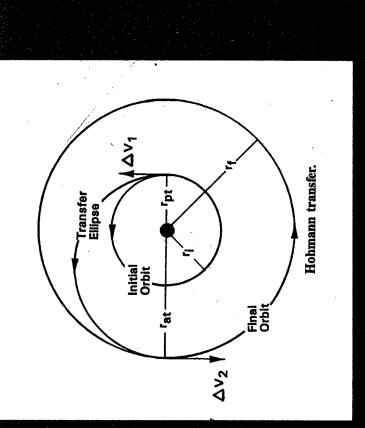
- Cost \$60M
- △V required to LLO
 is 2.58 km/s.
 Final weight of
 - Final weight of spacecraft in LLO is 1311 kg.


Proton

- Cost \$50-70M ΔV required to LLO is 0.82 km/s. Final weight of spacecraft in LLO is 3773 kg.

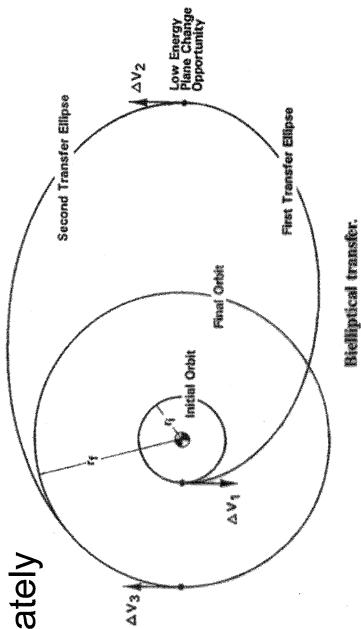
Taurus

- Cost \$18-20M
- ∆V required to LLO is 1.54 km/s.
- Final weight of spacecraft in LLO is 275 kg, payload size will depend on size of motor.



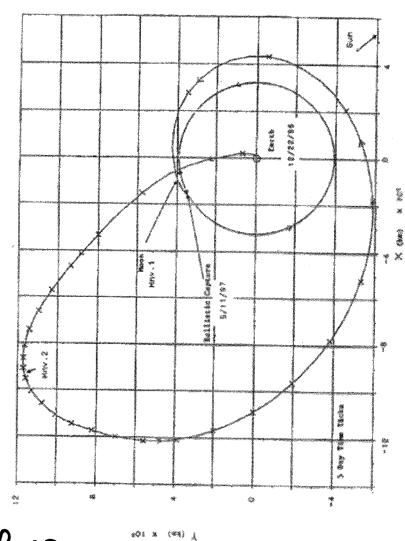
Lunar Transfer

Roger Sides


Standard Method
2 Body Model
ΔV=3.959 km/s
Transit time, 5 days

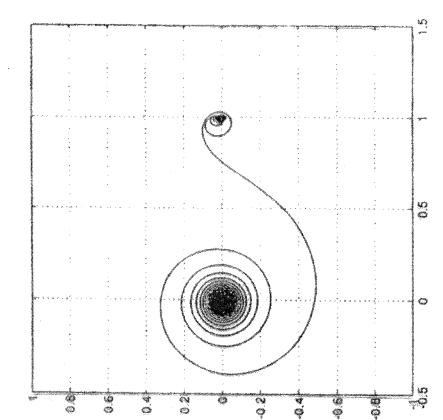
Bielliptic Transfer

- ◆ ∆V=4.148km/s
 - 2 Body Model
- Trip Time 4 months



Weak Stability Boundary

- New Approach
- Real World Model
- ∆V=3.838km/s
 - Trip Time, 4-5 months


401 X

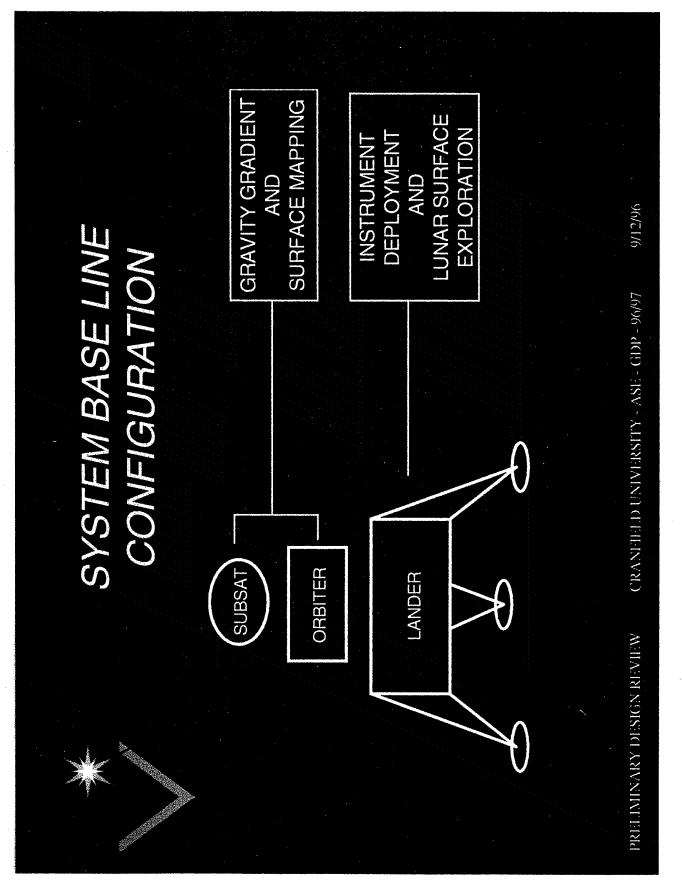
Limited Power Engine

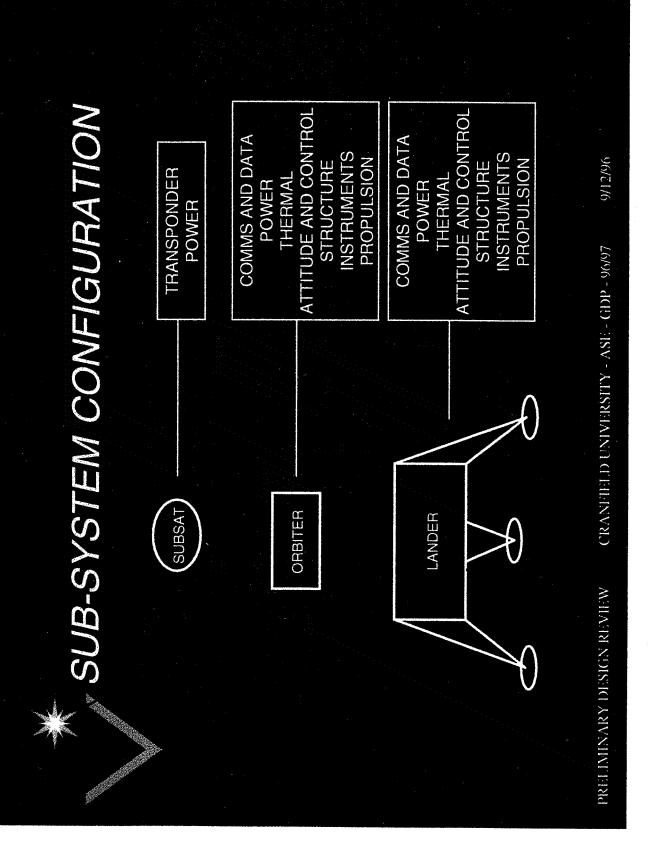
- Constant Thrust
- Uses Untested Technology
- Trip Time, 2 years

Summary

Type	Total ∆V	Trip Time
Hohmann	3.959 km/s	5 days
Bielliptic	4.148 km/s	4 months
WSB	3.838 km/s	4-5 months
Limited Power	Constant Thrust	2 years

er októr e

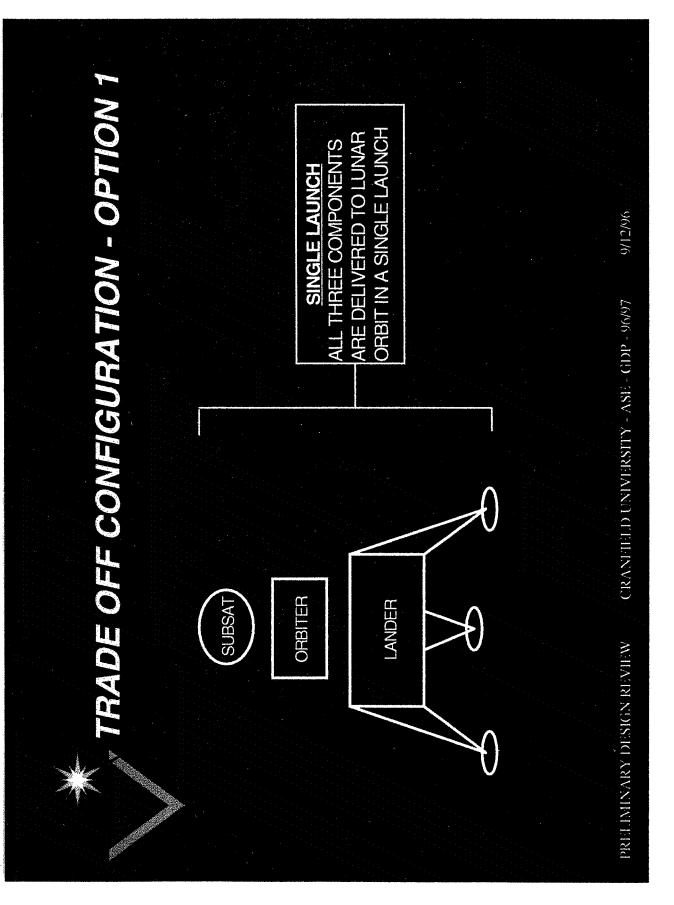

SPACECRAFT CONFIGURATION

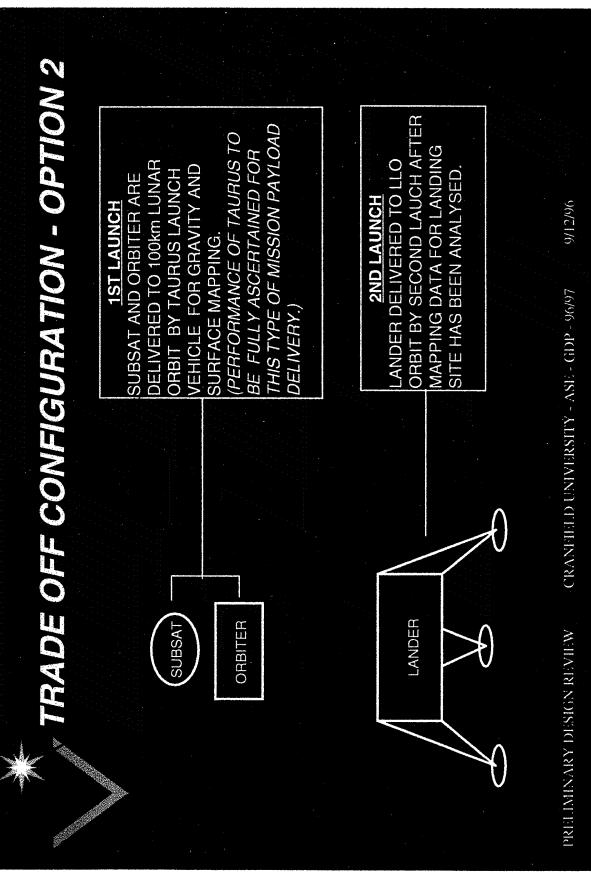

SYSTEM BASE LINE CONFIGURATION

SUB-SYSTEM BASE LINE CONFIGURATION

TRADE OFF ANALYSIS

CRANFIELD UNIVERSITY J ASE J GDP 2 96/97 PRETANINARY DESIGN REVIEW




RADE OFF ANAL YSIS

DEFINE TRADE OFF CONFIGURATIONS

9/12/96 CRANFHELD UNIVERSITY - ASE - GDP - 96/97 PRIJIMINARY DESIGN REVIEW

TRADE OFF METHODOLOGY

- REVIEW TRADE OFF CONFIGURATIONS IN GENERAL
 - IDENTIFY TRADE OFF PARAMETERS
- ASSIGN A SCORE FOR EACH CONFIGURATION FOR EACH PARAMETER
- APPLY AN APPROPIATE WEIGHTING TO EACH SCORE
- ADD THE SCORES TO DETERMINE THE RELATIVE TRADE OFF PERFORMANCE OF EACH OPTION

JMINARY DESIGN REVIEW

CRANFHELD UNIVERSITY - ASE - GDP - 96/97

REVIEW OF TRADE OFF CONFIGURATIONS

PARAMETER	OPTION 1	OPTION 2
COST		Increase in cost of ~\$20m for launch. 1 st launch: Taurus; 2 nd launch: Ariane ?
SCIENCE RETURN MAPPING		Reduced mapping capability (No CCD cameras).
SCIENCE RETURN SURFACE		Reduced capability of instruments on <i>Lander</i> , which work in conjunction with CCD cameras. Instruments on <i>Rover</i> not used to full capability.
SCIENCE RETURN CRATER	Not affected by options considered.	Not affected by options considered.
VERSATILITY		Last minute changes to <i>Lander.</i> Independent design of components. Public interest kept of <i>Lander.</i>
OPERATIONAL FACTORS	Dormant Lander to monitor – fuel requirements for orbit maintenance. High thermal protection – more power, degradation	Two launches and two transfers to the Moon.
RISK LAUNCH	1st launch failure, lose all equipment including critical Lander	1st launch failure doesn't cancel mission, lose min. equipment. Taurus Tested for lunar transfer. Two launches and transfers.
RISK MANOEUVRES	1st separation: 500 km 2 nd separation: 100 km	One separation. Two lunar transfers.
RISK DESCENT	Reactivating of <i>Lander</i> . Orbit lowering	Less mapping data, on IR&UV CCD. Placed into LLO by launch.

TRADE OFF PARAMETERS

COST

♦ HOW MUCH IS THE MISSION LIKELY TO COST

SCIENCE RETURNS

♦ HOW MUCH OF THE IDEAL MISSION REQUIREMENTS CAN BE SATISFIED

VARIABILITY / OPERATION CONSIDERATIONS

- WHAT LEVEL OF VARIABILITY (MISSION ADAPTABILITY) CAN
 - BE BUILT INTO THE MISSION AND SPACECRAFT DESIGN LEVEL OF ASSOCIATED COMPLEXITY OF MISSION **OPERATIONS CONTROI**
- RISK

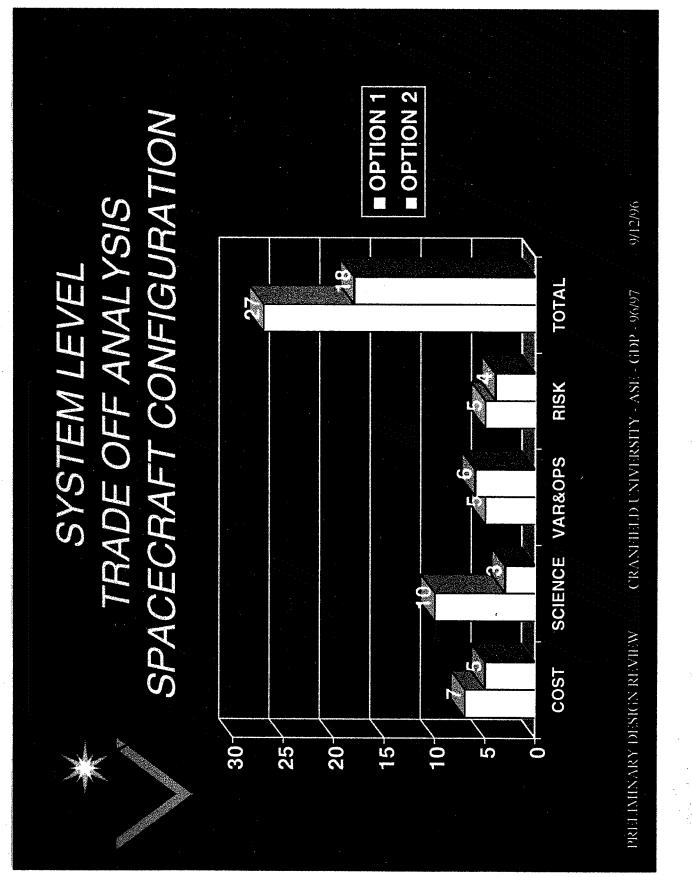
LIKELY LEVEL OF RISK DURING MISSION PHASES

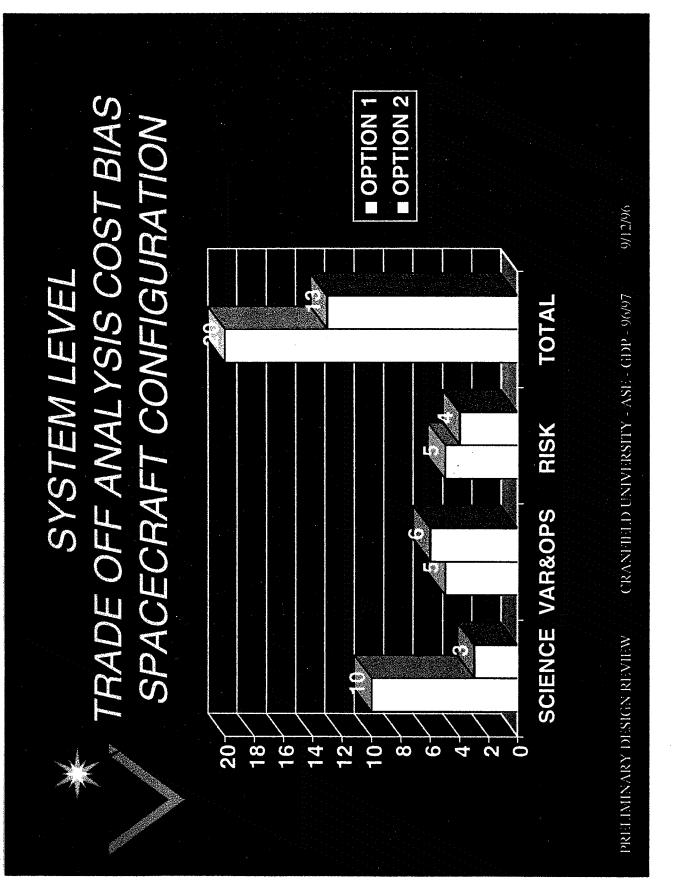
9/12/96

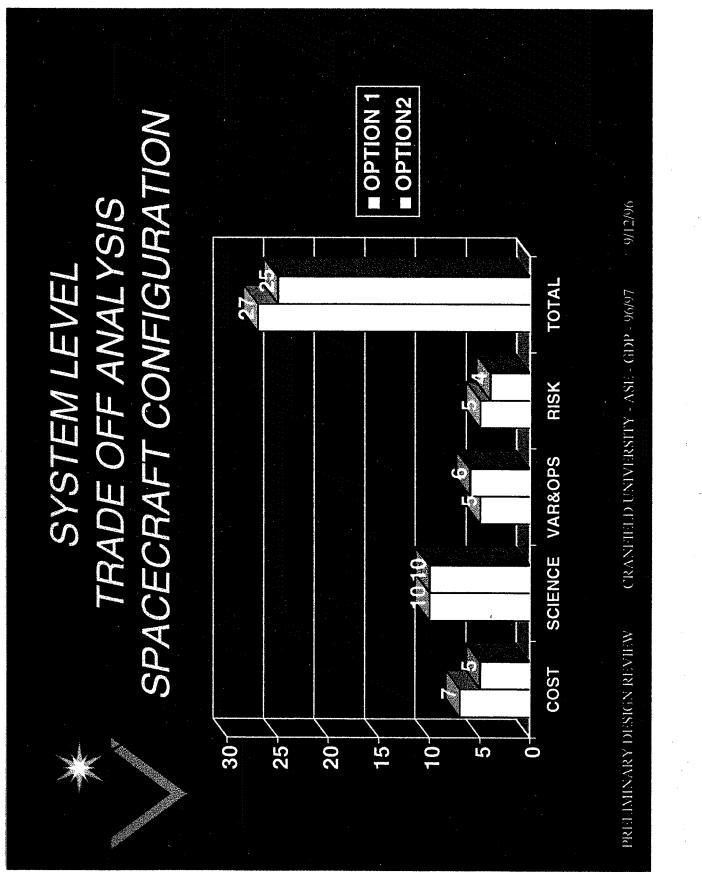
CRANFILLD UNIVERSITY - ASE - GDP - 96/97

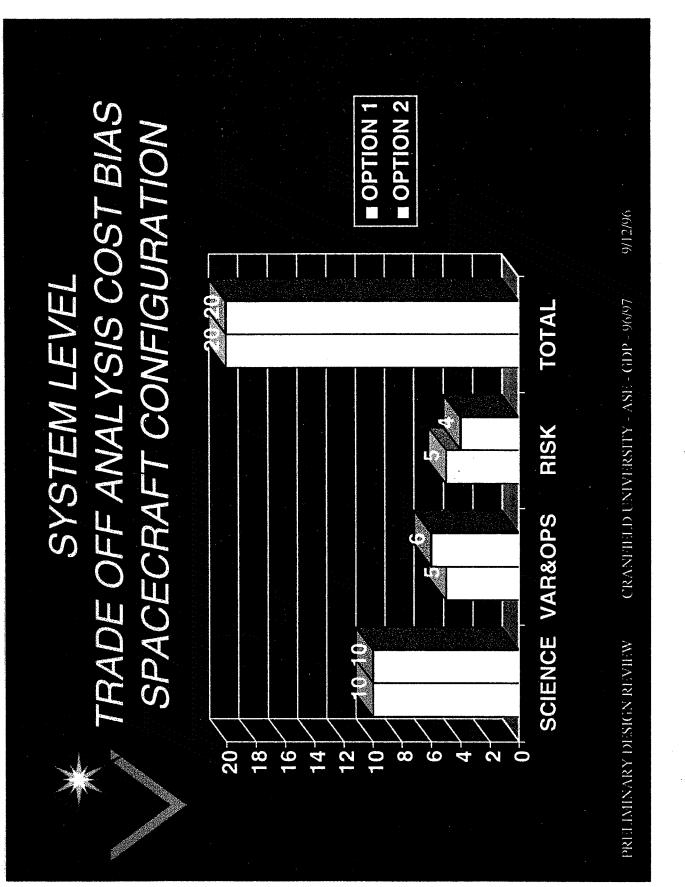
PRELIMINARY DESIGN REVIEW

Slie


SYSTEM TRADE OFF ANALYSIS


	PARAMETER	OPTION 1 SCORE	WEIGHTED	WEIGHTED TOTAL	WEIGHTING FACTOR	OPTION 2 SCORE	OPTION 1 WEIGHTED WEIGHTED WEIGHTED WEIGHTED WEIGHTED WEIGHTED SCORE RESULTS TOTAL FACTOR SCORE RESULTS TOTAL	WEIGHTED TOTAL
		OUT OF 10				OUT OF 10		
	COST	7	7	2	1	9	6	2
SCIENCE RETURNS MAPPING	©Nid _v a⁄vw	õ	ιΩ	ya	1/2		1.5	
	SURFACE	<u>•</u> •	LO C	10		е с С	1.5	Ø
		2	2					
VERSA AND OPS	VERSATIUTY	9	1.8		3/10	P P	e	
CONSIDERATIONS	CONSIDERATIONS OPERATIONAL FACTORS	9	n	4.8	3/10	0	2.7	5.7
RISK	LAUNCH	8	1.6		1/5		1.6	
	MANOEUVRES	8	1.6	ĩ	1/5	9	12	
	DESCENT	8	1.6	4.8		8	12	`_s 4
	101A			26.61				177
	SUMMARY OF TRADE OFF ANALYSIS		ſ					•


5	OPTION 1	OPTION 2
SI ENCE RETURNS	•	<u> </u>
ERSATILITY& OPERATIONAL CONSIDERATIONS	л Л	- 10
×		5
AL:	2	31 18


NOTE: A HIGHER SCORE IMPLIES A MORE FAVOURABLE RATING.

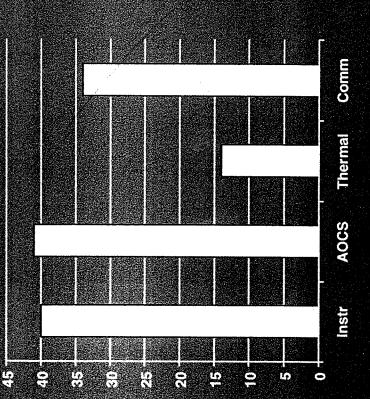
COST	WEIGHTING
LITTLE OR NO COMPROMISE	50%
SCIENCE RETURNS MAPPING SURFACE EXPLORATION SURFACE EXPLORATION CRATER EXPLORATION CRATER EXPLORATION COMPROMISE POSSIBLE ON CERTAIN ASPECTS OF IDEAL SCIENCE REQUIREMENTS.	25%
VARIABILITY / OPERATION CONSIDERATIONS COMPROMISE POSSIBLE ON VARIABILITY OF MISSION AND SPACECRAFT DESIGN. THIS CAN INFLUENCE COST AND SCIENCE RETURNS.	15%
RISK LAUNCH MANOEUVRES DESCENT RISK IS INHERENT TO ALL SPACE MISSIONS. RISK ASSOCIATED WITH EVERY ASPECT OF MISSION IS DIFFICULT TO QUANTIFY EXACTLY.	10%

Preliminary Power Budget

5 Components to be power supplied:

Orbitation
Sub-Satelite
Sub-Satelite</l

Slide 44

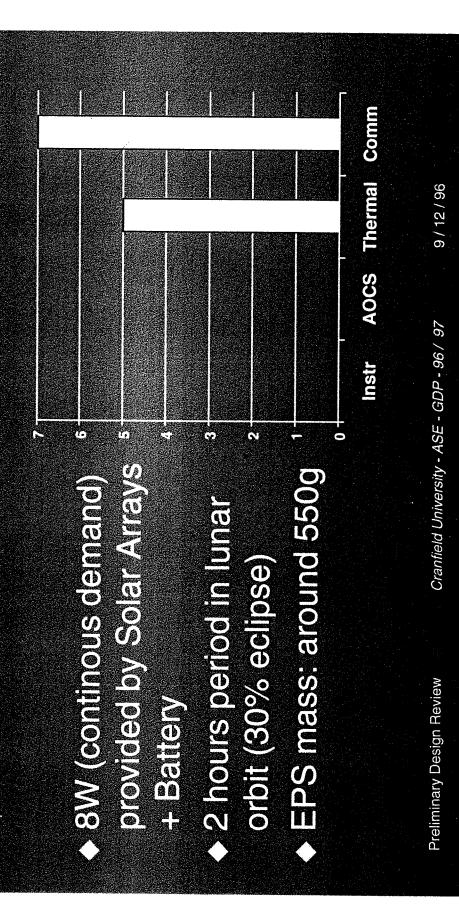

9/12/96

Cranfield University - ASE - GDP - 96 / 97

Preliminary Design Review

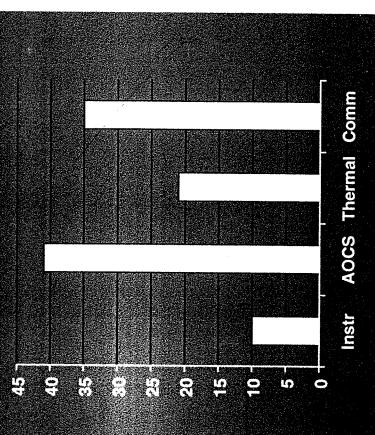
1/ Orbiter Power Budget

130W (continous demand) provided by Solar Arrays + Battery Solar Arrays + Battery
2 hours period in lunar orbit (30% eclipse)
EPS mass: around 10kg



Preliminary Design Review

9/12/96


Cranfield University - ASE - GDP - 96/97

3/ Lander power Budget

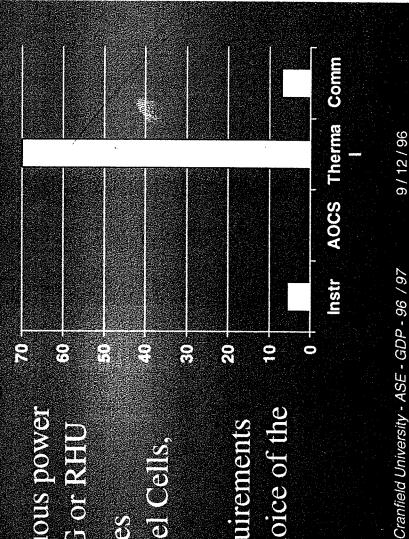
- 100W (continous demand) provided by Solar Array + Battery
 Permanent light in landing area assumed
- Lander might provide power to the rover
 EPS mass around 6kg

9 / 12 / 96

Cranfield University - ASE - GDP - 96 / 97

Preliminary Design Review

AOCS Thermal Comm 4/ Rover power Budget Instr 65 01 ŝ E C SA+Battery or Lander demand) provided by landing area assumed Instrumentation on Permanent light in 70W (continous) while stationary


9 / 12 / 96 Cranfield University - ASE - GDP - 96 / 97 Preliminary Design Review

5/ Crater Probe Power Budget

- Around 80W continuous power demand without RTG or RHU
 Various power sources
 - considered: RTG, Fuel Cells, Batteries...
- Mission duration requirements will determine the choice of the power source

Preliminary Design Review

PRELIMINARY LINK BUDGET COMMUNICATION LINKS

Orbiter - Earth
Lander - Earth via Orbiter
Lander - Earth via Orbiter
Rover - Lander
Probe - Lander
Probe - Orbiter

Preliminary Design Review

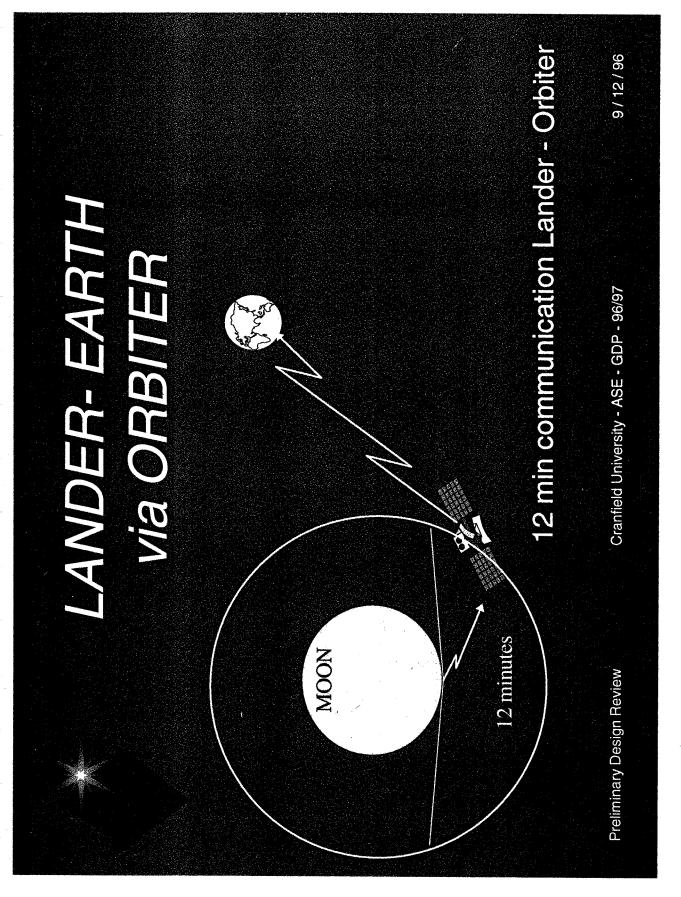
Cranfield University - ASE - GDP - 96/97

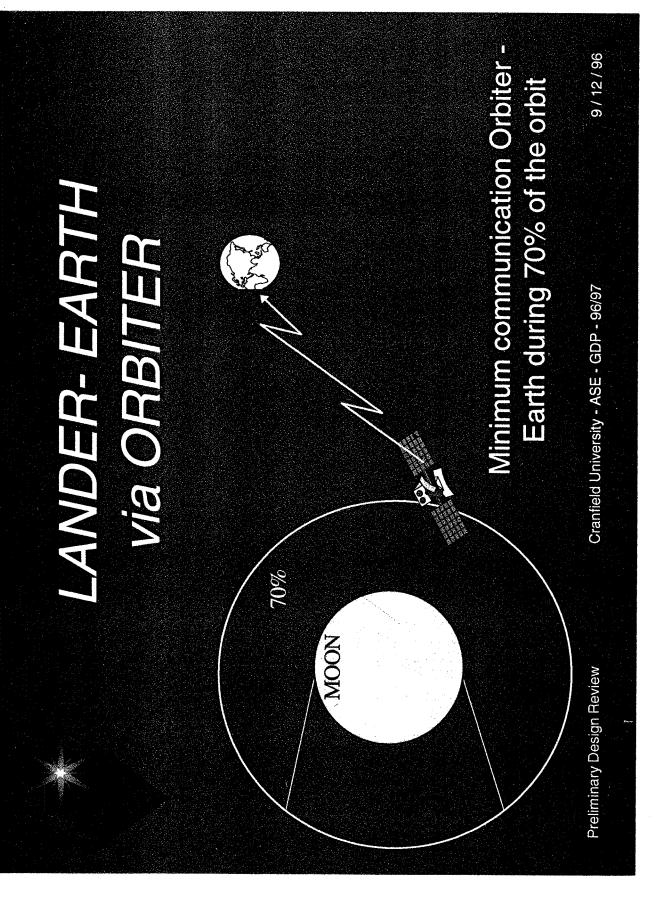
9/12/96

ORBITER- EARTH

(Receiver antenna diameter: 10m) Carrier Frequency : 2.255 GHz Antenna Beamwidth : 20 deg Antenna Diameter : 0.47 m Data Rate : 1.77235 Mbps Transmitter Power : 5 W MOON

LANDER- EARTH via ORBITER


 Next 14 days use of ORBITER as relay Assume 14 days direct communication LANDER - EARTH


Data rate have to be decreased

Preliminary Design Review

Cranfield University - ASE - GDP - 96/97

9/12/96

ROVER - LANDER

 Use of Electromagnetic Waves or Optical Rover in sight of the lander Fibre

Data Rate : 100093 bps

Preliminary Design Review

Cranfield University - ASE - GDP - 96/97

9/12/96

PROBE - LANDER

 Probe probably not in sight of the Lander ◆ Need to be linked to the Lander ◆ Low Data Rate : 5038 bps

Preliminary Design Review

Cranfield University - ASE - GDP - 96/97

9 / 12 / 96

ROVER - ORBITER

 Orbiter visible less than 12 min due to the sides of the crater

Need of data storage

Power required to send data

Preliminary Design Review

Cranfield University - ASE - GDP - 96/97

9/12/96

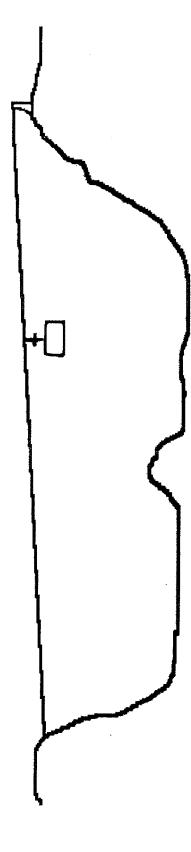
OPATER DESCEN

SNOITGO

6) INFLATABLE BALL METHOD 2) CABLE ASSISTED DESCENT 1) MICRO SPACECRAFI 4) DROP FROM ORBI **3) PROJECTILE** 5) ABSEILING

MICRO SPACECRAFT

constant height flight range(km) upto 30


10 kg payload

21 kg spacecraft

Ballistic trajectory

Cable Assisted Descent

- Kevlar cable
- Tensile strength 70,000kg/sq cm
 - \bullet ¹/₃₅th the weight of steel
- Simple penetrator anchor for far side of crater

DROPFRONORBIT

free fall penetrators
possible need for deceleration

airbags

crumple zone reverse trust rocket motor

> Slide 61

- fired from lander
- capable of penetration
- need for turning projectile

PROBES

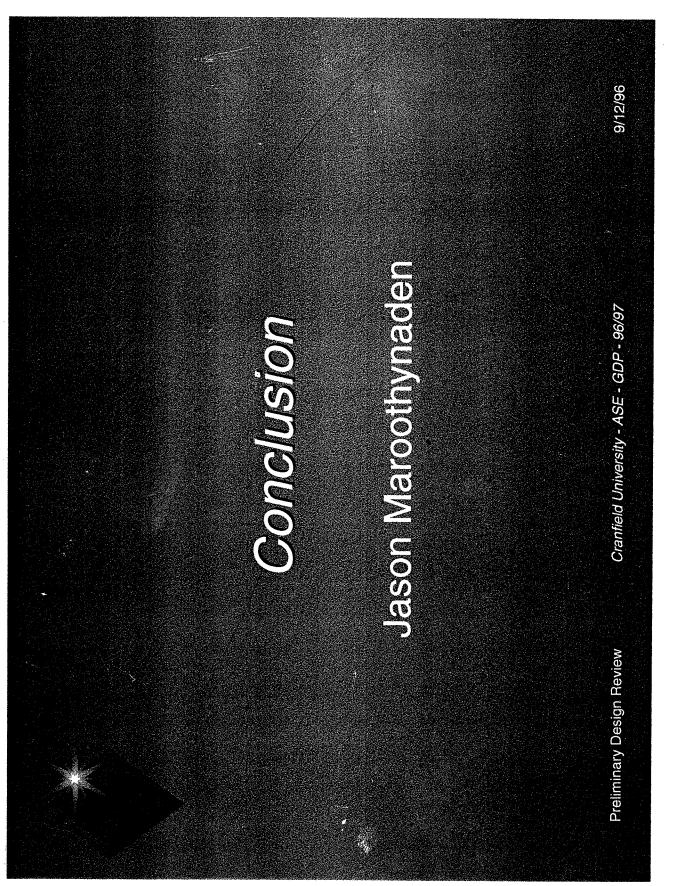
10-14kg 1 kg 1-3m 10,000g HARD LANDING PENETRATOR scientific package mass max penetration depth overloads on impact • penetrator mass

(numbers based on LUNAR-A)

very slow (1m/hr)

risk of land slides

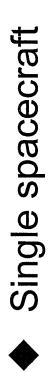
no penetration


Slide 64

VETANGO IN FALLATABLE

Uncontrolled descent

disturb environment


no penetration

Slide 66

بقديدار ببا بالتلقد

Conclusion

Spacecraft & precursor to the moon

- 2 scientific platforms
- i. Orbiter; Geodesy sub. sat.
- Lander; Rover; Crater descent probes. :=

Conclusion

Next stage of work to be done.

European soft-landing on the Moon.

European presence in Lunar South Pole.

Preliminary Design Review

Cranfiield University - ASE - GDP - 96/97

9/12//96