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Abstract

This paper describes the development of a simple theory of the longitudinal controls
fixed static stability of tailless aeroplanes. The classical theory, as developed for the
conventional aircraft, is modified to accommodate the particular features of the tailless
aeroplanes. The theory was then applied to a particular blended-wing-body tailless civil

transport aircraft, BWB-98.
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Nomenclature

a, = o =C, Lift curve slope

a, = afL ¢, Elevator lift curve slope

cn "
a, = (;C[; -c, Elevator tab lift curve slope
ac Aerodynamic center
AoA Angle of attack
b, Basic elevator hinge moment
aC"Yh . . . .
b, = ——5-— Elevator hinge moment derivative with respect to «
a
oC, _ . .
b, = 6_ Elevator hinge moment derivative with respect to 7
n
oC, , oL :
b, = 8,8[' Elevator hinge moment derivative with respect to S
BWB-98 Blended-Wing-Body 98
c Aerodynamic chord
Cp Drag coefficient
(Cp), Drag coefticient due to angle of attack
(Cp). Drag coefficient due to camber
Cp, Drag coefficient for zero lift
CG Center of Gravity
Cy, Hinge moment coefficient
C, Lift coefficient
@), Lift coefficient due to angle of attack
). Lift coefficient due to camber
(C L )wb Lift coefficient for the wing-body-nacelles configuration
Cr Lift coefficient for zero angle of attack



C, = 8; Lift coefficient derivative wrt to the no-dimensional pitch rate
’ q
Cp Lift coefficient to trim
Cos Cory Pitch moment coefficient at the center of gravity
C,. Pitch moment coefficient at the ac
(Cmo )wb Pitch moment coefficient at the ac for the wing-body-nacelles
configuration
C m Basic pitch moment for a == =0
C, Pitch moment due to the power units
oC . o . . .
- = a[” Pitch moment derivative wrt the no-dimensional pitch rate
’ q
oC :
C, = 3 ” Angle of attack pitch moment curve slope
‘ a
oC :
C, = 8/; Elevator tab pitch moment curve slope
oC .
o = 5 ™ Elevator pitch moment curve slope
! n
Cy Weight coefficient
D Drag
D, Drag due to angle of attack
D, Drag due to camber
g Acceleration due to gravity
h CG position on &
h, Location of the aerodynamic forces due to camber on ¢
H, Hinge moment
h, Controls fixed maneuver point on &
m Controls fixed maneuver margin
h, Controls fixed neutral point on ¢



m

M

ac

M

M

=0

S

V

Controls free neutral point on ¢

o

Aerodynamic center location on
Aerodynamic center location on ¢ for the wing-body-nacelles

configuration

Drag polar constant

Controls fixed static stability margin
Controls free static stability margin
Lift

Lift due to angle of attack

Lift due to camber

Mass

Pitch moment about ac

Pitch moment about CG

Basic pitch moment about CG
No-dimensional pitch moment rate
Wing area

Airspeed

CG position perpendicular to ¢ , along the z axis

Angle of attack

Angle of attack to trim
Elevator tab angle

Elevator tab angle to trim
Elevator angle

Elevator angle for controls free
Elevator angle to trim

Mass ratio or longitudinal relative density factor .



1. INTRODUCTION

Aircraft development over the last sixty years, or so, has focused on improving the
performance and utility of conventional configurations comprising wing, fuselage and
tail. Moreover, all design, aerodynamic and flight dynamic tools have been developed to
apply primarily to this class of aircraft configuration. However, today, new
configurations continue to evolve and the concept of a large tailless, or flying wing,
passenger carrying transport aircraft seems to be a possible successor to the conventional
aeroplane. Although during the past 60 years, or so, a variety of tailless aircraft have been
constructed and flown in the world, it seems that many notable designs were radical
departures from the normal and were experimental. The exception, of course, is the large
variety of low aspect ratio tailless delta wing aircraft, which have seen operational service

over the years.

The omission of the horizontal tail is the principal physical difference between the
conventional aircraft and a tailless configuration. Its omission introduces more
differences in the flight characteristics, sufficient to warrant deeper research into the
development of the equations of motion directly relevant to the high aspect ratio civil

transport configuration.

Thus, in a tailless configuration all acrodynamic controls are situated in the wing and the
usual assumptions regarding aerodynamic forces and zero-lift pitch moment no longer
apply. An elevon is a control surface, which functions as both as an elevator and an
aileron, and in the tailless configuration it is universally applied in the wing trailing edge.
However, the elevon is no more than a flap, which when deflected changes the effective
wing camber and hence changes the lift, drag and pitch moment due to camber.

Properties that are usually regarded as “constant” in a conventional aeroplane.



2. AERODYNAMIC MODEL

2.1 Aerodynamic forces and moment

The aircraft configuration in its simplest form may be represented by an airfoil as shown

in Fig. 1. The aerodynamic forces are split into two components, Fig. 1, corresponding to,

i) Aerodynamic force due to the angle of attack

i1) Aerodynamic force due to camber

The former is assumed to act at the aerodynamic center and the latter at a point half of the

mean aerodynamic chord.
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Fig 1 — Section of the wing

The subscript @ and ¢ meaning the terms are due either to AoA or due to the camber.

With reference to Fig. 1, the expressions for lift and drag coefficients are as follows;



Lift due to AoA,

ac,

a=a,c 1
oo l M)

(CL )a =

Lift due to camber,

oc,  oC,

(c,).=c, +—57]—77+—52715=CL0 +ta,n+a,p )
Total lift,

¢, =(CL )a +(CL )c (3)
CL=CLU+a,a+a277+a3,H 4

Total drag may be expressed,

C, =(Cp), +(C,). (5)

The total drag can also be represented as a function of C,, usually known as “drag

polar”. The drag polar usually is parabolic and can be approximated by one of the

following equations,

C,=C, +kC,’ (6)
Cp = CD,v[ + ﬂ(CL - CL,L:[>2 (7N
Cp,=Cp, +kC, + k,C,° (8)

The lift and drag due to camber are independent of AoA, and often they are moved to the

aerodynamic center, being summed up with the lift and drag due solely to AoA,



generating the total lift and drag, L and D, and a pitch moment, M, . From Fig.1

follows,

M, = (LL_ cosa+ D, sin a)(ho -h, )? ©®)
Dividing the forces this way was made clear where the aerodynamic pitching moment
around the aecrodynamic center comes from. Now it is clear that the pitching moment
around the ac is independent of the CG position, dependent of the AoA and dependent of
the camber through the values of lift and drag (and therefore dependent on the same
variables as the later).

The total aerodynamic lift and drag forces, the pitching moment around the ac, together
with the CG position and the total pitching moment around the CG are presented in Fig.

2.
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Fig. 2 — Section of the wing
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Bearing in mind that the pitch moment equation is the basic equation for the static
stability analysis, with reference to Fig. 2, and supposing the airfoil is subjected to an

angle of attack, «, follows,
Myg=M, —(Lcosa+ Dsina)(h, —h)¢ —(Lsina@ - Dcosa)z (10)

Usually the CG position does not lay in the chord, therefore the appearance of the term in

z. In terms of aerodynamic coefficients equation (10) reduces to,

Cc. =C, —(C,cosa+C,sina)h, —h)-(C,sina—C, cosa)= (11)
CG u el

where, Cmv =C, .

c, =((c,) cosa+(C,), sina)h,-h,) (12)

When pitching moment has no indices to indicate the application point, this is assumed to
be the CG.

Equation (11) takes into account only the effects of the wing. However, it can also
include the cffects of body and nacelles, in the case when a body and/or nacelles are

present, as long as the values C,, , &, and C, are interpreted as those for the wing-body-
nacelles configuration, (Cmd )Wb , (n,),, and (C, ).,, - The indices “wb” will be used to

differentiate between the values for the complete aircraft and those for the wing alone,
when both values are used.

Usually (C - ).‘-a is more negative than C, , the wing-body-nacelles aerodynamic center,

(h,),, is forward of h,, and, the total lift coefficient for the total aircraft is higher than

for a wing alone.

11



Finally, another important term is the contribution of the propulsive system, which can be

split in two parts:

)

ii)

the pitch moment coming from the interaction of the propulsive slipstream
with the others parts of the airplane, and

that coming from the forces acting on the unit itself, for example, the plane of
the acting thrust. The former is assumed to be included in the moments
already given for the wing-body-nacelles. The remaining moment from the

propulsion units are supposed to be included in a term denoted by Cm’ :

Thus, the equation for the total pitching moment for tailless aircraft is given by,

Cm = Cnrb

—(C, coser+C, sina)h, —h)—(C, sina - C, cosa)=+C, (13)
c P

2.2 Assumptions

It should be noted that so far, no assumptions have been made about thrust,

compressibility or aeroelastic effects. However, for a simple analysis some assumptions

need to be made. Thus, for the remainder of this report, the following simplifications are

assumed.

(1)
(i1)
(iii)
(iv)
(v)
(vi)
(vii)

Trimmed equilibrium flight

Constant mass

Quasi-steady flight

Normal atmosphere

The structure does not distort
Compressibility effects can be ignored

The wing aerodynamic coefficients a,, a,, a,, b,, b,, b, and b, are

constants independent of forward speed

12



Additionally, for small angles of attack follows thatcosa =1 and sina ~ @ . Substituting

these values in equation (13), it reduces to,

6. =0, =€ [ ~k)-(C.a=E)=4C, (14)
o C P

Z " ;
Moreover, the term (C,a—C, )= may be considered small comparatively to the others,
c

therefore, a further simplification follows,
C,=C, —C.(h,-1)+C, 15)
Finally, in case the thrust moment is also negligible a linear equation in C, is found,

C,=C, =C,\h, ~h) (16)

Equation (16) is much simpler and may represent well the reality in some situations.
However, even in cruise condition, where commercial aircrafts are most of their time, the

effects of thrust may not be negligible. Moreover, in the case of tailless aircraft where the

; 5 ; z ..
CG travel is smaller than for conventional aircrafts, = may not be negligible when
c

compared to /. Nevertheless, equation (14) resulting just from the assumption of small

angle of attack is very simple and is valid in many situations.

13



3. STATIC STABILITY
3.1 General

Why do a static stability analysis?

Usually when designing a new aircraft some or all of the following questions may arise:

i) Will it be possible to trim the aircraft?

ii) What is the aircraft behavior when externally upset from its trim state?

1i1) What is the aircraft behavior when the pilot changes the trim through the
controls?

iv) How much control deflection will be necessary to change the trim condition or

to correct a gust upset?

Sufficient insight may be gained when these questions are answered with simple theory,
without needing large calculations. This may be achieved through a static stability
analysis. A static stability theory is mainly applicable to cruise conditions or to quasi
steady maneuvers, where the main concern is the longitudinal motion. Thus, this report is

concerned only with the longitudinal static stability analysis.

An aircraft, or any other body, will be in equilibrium, or trim, when the resultant forces
and moments acting on it are zero. In a cruise condition the thrust force will balance the
drag force along the axial axis. In the normal axis, the lift will balance the weight force.
The only variable to be checked is the pitch moment around the CG, which has to be

zero. Thus, the condition for trim ability will be dictated by the equation C, =0.

Supposing now that, it is possible to trim the aircraft and it is flying in a cruise condition
when it is upset by a vertical gust. The wind velocity will have a normal component,
which is seen by the wing as a change in «.

This change will modify the lift and drag forces as well as the pitch moment. Over the
action of this pitch moment the aircraft will rotate. If this rotation will be in the direction

to oppose the upsetting gust the aircraft is said to be statically stable, otherwise it will be

14



unstable. Therefore, a way to know whether an aircraft possesses stability or not, is

through the change of pitch moment with C, . And for a stable aircraft this derivative has

to be negative, ot <0.
dcC,

The change of pitch moment is made relatively to C, because it is more general. The
disturbance could also be in the forward speed not affecting the AoA, but only C, .

Especially when C, has a dependency on Mach number or velocity. However in some

. . D oC oy
cases, and under the assumptions stated above, using the derivative in «, 8—"‘ , will give
a

oc, : . .
the same results. — can be used when C, vs « are linearly related with no velocity
a

dependency, i.e., C, is given by equation (1) and the lift curve slope, a,, can be assumed

constant.

To change an established equilibrium or to restore an upset equilibrium, the pilot or the
automatic control system may adjust thrust, change the aerodynamic configuration, by
operating controls, such as elevators, wing flaps or spoilers, or by moving the CG

position.

Now, the questions to be answered are, whether the control source is sufficient to correct
the aircraft, and how the aircraft will respond to control deflection. Whether the control

power is sufficient or not, will be determined by the change of pitch moment with control

deflection, actually oC, )
oo

From this brief discussion, one can see that the pitch moment is the key to the static

stability analysis, equation (10) in the previous paragraph.

13



A measure of the static stability of an aircraft, the static margin, is given by the pitch

moment derivative with respect to lift coefficient. Thus, differentiating equation (13) with

respect to C,,

dC
dCp _Eom _ cosa-C, 22 Gna+9Cnging + C, 22 osa (h, —h)—
dc, dC, . L dcC,
dc,
~|sina+C, da cosa—dCD cosa-i—CDd—asina é+ Lo (17)
dc, L ac, ¢ L
. .. Oa 1 .
Using the equality = —, equation (17) becomes,
oC, a
dC
ACp _Tom 11150 |cosa+ ac, & sina |(h, — h)-
dc, dC, a, ic, a
dC
- 1+£9— siner + G 46 cosa é—+ e (18)
a a, dC, ¢ dC,
Assuming constant AoA, a = «,, equation (17) reduces simply to,
dc dc,
aCp _m cosa, + dC, sina, |(h, —h)—|sina, - qC,y cosa, 2y (19
dc, dc, dc, dc, ¢ dC,

As said before, in static stability analysis just trim conditions and quasi-steady maneuvers
are of interest, thus, equation (19) holds a good approximation and it will be used in the
remaining derivation.

In classical static stability analysis, to proceed further it is necessary to distinguish
between controls fixed, or controls free. In this report the same approach will apply, in
the case of military or large commercial aircraft today, it does not make literal sense to
talk about controls free conditions, as all of them possess irreversible powered flight

controls.

16



3.2 Controls fixed static stability

When the stick is fixed the pilot “holds” the elevator and tab angles constant. Thus

n=const and f=const or,

on
=0 20
oC, (20)
op

=( 21
%, 1)

As the elevator is fixed, the camber of the wing will not change, therefore, C,, , which is

due to the lift due to camber, will not change.

Then equation (17) reduces to,

oC,
9C, __ cosa, + oCp sina, |(h, —h)—|sine, ~ oCp COSQ, |2 +—t (22)
dcC, oc, oC, c oC,
By definition, the controls fixed static margin is given by,
dC
K, =-%n (23)
dcC,
Thus, it follows that,
oC
K, =|cosa, + oCp sina, [(h, —h)+| sine, - oC) cosa, |=——u (24)
oC, ocC, c 0C,

If equation (14) were used instead of equation (13) in the differentiation, or assuming the

small angles approximation of equation (24), the controls-fixed static margin 1s as follow,

17



oC
K =(1+Z€D aej(h —h)+[ae———a&Ji— " (25)

If all simplifications were considered and equation (16) used instead, the following result

would appear,
K, =(h, —h) (26)

Equation (26) is a known result for tailless aeroplanes, and enables to conclude that for a
stable aeroplane the CG position has to be forward of the aerodynamic center, as the

static margin for a stable aeroplane has to be positive.
K,>0(h,—h)>0h >h (27)

However, as suggested before, the assumed simplifications may not always apply,
oC

Mp

principally with respect to the thrust moments. Therefore, if the term is negative,

L

the power units will contribute to a more stable aircraft. Moreover, in the case when the

CG is very near the aerodynamic center, the term -i— may not be negligible. In that case,
C

oCp | . e . . . .
and as ( L j is always positive, if z is made negative this term will also contribute to a
L

more stable aeroplane.

In these two cases, it would be possible to have a stable aeroplane with the CG aft of the

aerodynamic center.

18



3.2.1 Controls fixed neutral point, 4,

The CG location on the aerodynamic chord where, for controls fixed, the aircraft is
neutrally stable, and aft of which it is unstable, is called the controls fixed neutral point,

h.c . It is the CG position where the controls fixed static margin is null. The controls

fixed neutral point is related to the controls fixed static margin through the following

equation,

When K, =0, h=4h, or,

K, =h —h=-"2n (28)

Thus, from equation (22) or equation (24) it follows,

oC

0=|cosa, + oC, sine, [(h, —h,)—|sina, + oCp cosa, CA—.

ac, ac, z oC,

oC
h,=h, + ! sine, — oC, cosa, | = ——t (29)
( aC, . J ac, c ac,
cosa, + sine,
L

where £, defines the neutral point controls fixed.

Thus, for a stable aircraft the CG has to be forward of the controls fixed neutral point, 4, ,

or the controls fixed static margin has to be positive,

K,=h,—-h>0

19



h<h,+

oC, cosaeJé— m"} (30)
c

sina, —
( ac, . ]{( oC,
cosa, + p sine,

CD

For small angles of attack and considering that @, <<1, equation (30) reduces to,

L

- (D

If equation (15) had been used instead, and differentiated with respect to «, a rather

simpler but equally valid within the assumptions made, result would appear as follow,

el
X _ D (g, —py (32)
o oa o

. e oC .
Now, to find the neutral point the derivative is made null, —a——”‘— =0, and it comes,
a

ac, oc,
ho=h - | T Oy D (33)
C, | ac, b ac,

Substituting equation (33) again in equation (32), it follows,

Co _Lsyop ), =C, (1-h,) | (34)
oo oo “ “

20



Equation (34) is a classical result, which is valid whether C, and Cmp vary with & or

not. This equation makes it possible to find 4, from flight tests, by measuring C, and

C, with o changes. Moreover, integrating the above equation,
Cm =Cmo +CL(h—hn) (35)

Which shows a linear C vs. C, relation dependent on the static margin and CG

position. This equation shows that it is possible to change the equilibrium by changing
the CG position. Comparing equation (35) with equation (16) follows that the neutral
point only coincide with the aerodynamic center when considering all assumptions as for

derivation of equation (16).

3.2.2 Elevator angle to trim

The elevator angle to trim is the elevator angle deflection that makes C,, = 0. Thus, from
equation (13), together with equation (4) and letting C,, =0, the elevator angle to trim

may be calculated.

0=C, -(C,cosa,, +C,sina,, \h, —h)-(C,sina,,, —C,cosa,,, )—i— +C, (36)
o c P

and,

CL = CLO + alatrim + D rim + a}ﬂ (37)

These two equations show non-linearity in &,

rim *

and to calculate the elevator angle to
trim, 7, , a numerical solution is necessary. If equation (14) is used instead, together

with equation (37), the elevator angle to trim is given by,

21



C, +Cp=+C,

1 »
irim = ‘aj (ho _C‘h) —(CL,, +a,2,, +a, ) (38)

However, equation (38) is dependent on «,,, . Substituting this result again in equation

(37) leads to,

z
C"’o + CD ? + Cmp

G, )

C, =

which is independent of «,,,, . Thus, to calculate «,,, and 7,, both equation (13) and

equation (37) have to be calculated numerically and simultaneously.

An alternative method can be used to calculate «,,, and 7,,,, by using a different

definition of C, . Thus, if C,, is defined using stability derivatives as follow,

— 0
C,=C, +Lng %, Gn g (40)
Y Y

where C, ., 18 the basic pitch moment for & =7 = £ =0, the derivatives are called

stability derivatives and may be written as,

Cp o Cu_ Xy, @)

da "’ ony moep

The convention is that a positive surface control deflection is when deflecting it down.

Thus, usually C;, is positive, as a down deflection increases the lift coefficient, and C,,

is negative, as that increase in lift induces a negative pitch moment.

22



The lift coefficient equation is given by equation (37) in terms of stability derivatives.

Rewriting equation (37) and equation (40), isolating the angle of attack and elevator

terms in the first member, it follows that,

C,,a+C,n=C,=C, ~C,, 8 (42)

C,a+C,n=C~C, ~C p (43)

For equilibrium, C, =0, and in matrix format,

C, Co, [“} _| GG A (44)
CL,, CL,, 7 C, - CL,, - CLﬁﬂ

Solving the system of equations (44), the angle of attack and control surface deflection to

trim is given as follow,

Cm CL,] - CL C’m,]
atrim = (45)
det
éL Cm —CL ém
e 46
77[7'1”1 det ( )
where
¢,=-C, -C, A8 (47)
C, = Cme = CLu -C, ﬁﬂ (48)
det=C, C, -C,C, (49)

Equation (49) may be simplified by calculating the value of Cm” from equation (35),

23



ac,
C, =—2o4+C, (h-h,) (50)
7 877 7

Substituting equation (50) and equation (34) in the expression for the denominator,

equation (49), it follows that,

oC,

det=C,C, -C,C, =-C, — (51
” a @ /] @ 877

The new trimmed lift equation may be obtained from equations (45), (48) and (49) as

follows,

m m

Cmo CL,, C'L”
CL,,,.,,, = CLO +CLﬂﬂ - C + CLa = C Cm,, L trim (52)

7 7

Using equation (34) the trimmed lift slope follows as,

dcC, C, C,
= l-——(h-h,)|=C, |1+K, — 53
(da' ]mm La{ Cm ( n)J La[ n Cm J ( )

7 7

From equation (53) it is seen that the lift curve slope for trimmed flight is different from

just C, for normal flight, and it is dependent on the static margin. Moreover, for an

aircraft usually C L, is positive and Cm” is negative, thus,

1) for a stable aircraft, K, >0 and C, is decreased

1) for an unstable aircraft, K, <0 and C, is increased

24



3.2.3 Variation of elevator angle to trim with lift coefficient

Assuming a stable aircraft in trim, the independent variable in controls fixed static
stability analysis is the elevator angle to trim. Allowing elevator angle to vary with trim,

it may be shown, that the variation of elevator angle to trim with C, is given by,

d77t i (h - h )
rim [ n 54
on

As it was expected, the change of angle to trim with C, is a function of the static margin

and varies with the CG location. This means that, the larger the static margin , the larger

the deflection of elevator angle to trim for a given C, .

3.2.4 Variation of elevator angle to trim with speed

In the absence of compressibility, aeroelastic effects, and propulsive system effects, the

aerodynamic coefficients of equation (46) are constant and the variation of 7,,, with
speed is simple. As 77,,, is a unique function of C, for each CG position, and C, is

in turn fixed by the speed for horizontal flight,

c, =—% (55)

then, 7, becomes a unique function of V.

25



(56)

The desirable variation of 7,,, with C, , or speed is, for any CG position, an increase in

downward deflection of the elevator with increasing speed. The “gradient” of the

on . ) . )
movement ——g— 1s seen to decrease with rearward movement of the CG until it vanishes

altogether at the neutral point. In this condition the pilot in effect has no control over the
trim speed, and control of the vehicle becomes very difficult. For even more rearward

positions of the CG the gradient reverses, and the controllability deteriorates still further.
When the aerodynamic coefficients vary with speed, which is the case for high Mach

numbers, this simple analysis is not possible and an account for the propulsive effects

should also be taken into account.

26



3.3 Controls free static stability

3.3.1 Hinge moment

A control force has to be applied to overcome the aerodynamic load that resists the
rotation of the aerodynamic control surface about its hinge. This force may be supplied
entirely by a human pilot, partly by a mechanical device, or the pilot may be altogether
mechanically disconnected from the control surface. In any case, the force that has to be
applied to the control surface must be known with precision to design the control system
and surface actuator that connects the primary control in the cockpit to the aerodynamic

surface.

However, first of all it is necessary to define the aerodynamic hinge moment. Therefore,

the elevator hinge moment, C, is defined by,

H
C, = (57)

= o
T 3pVS e,
where S, is the elevator area aft of the hinge line, and ¢, is the mean chord of the
surface. In many practical cases it is sufficient to assume that for finite surfaces, C, isa
7

linear function of «, 7 and /£ as follow,

G, =b +ba+b,n+bf (58)
oC, oC,
where b, is the basic hinge moment, for zero @, 77 and £, by = —=, b, =— and
o on
oC,,
3= op
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The force that the control system must exert to hold the elevator at the desired angle is in

direct proportion to the hinge moment. When the control is free, then Ch” =0, and the

elevator angle is given by,

1
”free =_;—(ba +b1a+b3ﬁ) (59)

2
And the corresponding lift and moment are,

CLfm, = CLU + CLna + CL,/ e T C, ﬂﬁ (60)

C ce = Ema +Cmaa+cm,,77free + Cmﬁﬂ (61)

™

Substituting equation (59) into equations (60) and (61) it follows,

CL/"CE = CLG '+CL11 'a (62)
le,.ee = C”la ‘+Cma 'a (63)
where
b b
C,'= CLO __OCL, __}-CL Vi (64)
b2 4 bz 7
C, '=C, ——bLCL (65)
o a b2 7
b b
C '=C —--—=2 -2C 66
m, m, b2 m,] b2 mvﬂ ( )
c,'=C —ﬂ (67)

Rearranging equation (65) as follows,
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C
c, '=cL{1—Z—' ) (68)

the free elevator factor is found, the value in parentheses which usually has a value less

than unity.

3.3.2 Controls-free neutral point, 7,

As for controls-fixed the following equation is also valid for controls free,

C,'=C, "(h—h,") (69)

@

Substituting equation (69) into equation (67) and rearranging,
(h-h,")= CL(C —b—‘cm”) (70)

Now, substituting equation (50) and equation (34) into equation (70), after some
rearranging and then substituting equation (65), it follows that,

b, oC

My

C,'b, 07

(h—n,)=(h=h,)- (71)

m,

oC
h'=h, + b
C.'b, 07

(72)

Rewriting equation (71) in terms of the controls fixed static margin, K, , and defining

K,'=h,'-h as the controls free static margin,
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- (73)

3.3.3 Trim tabs

In an aircraft where the pilot has to fly for long periods at a constant speed or C, , it is
very fatiguing to maintain the force to hold the elevator, which happens when the angle

Myim differs from the angle 7, .
The trim tab angle required is calculated for C,,” and C, both zero. Thus, from equation

(58) follows,

1
Iﬁtri = _z— {bo + bl atrim + b2 77trim } (74)

3

Substituting the values of «,,,, equation (45), and 7, , equation (46), into equation (74)

trim 2

and rearranging follows,

B = —é{ba ; %(b1 C, ~b,C, )+ %(b, C, -b.C,, )} (75)

Equation (75) shows a linear dependence on C, . Not so visible is a linear dependence
with the CG position, which is found from rearranging equation (70) as shown below,
-b,C

(bxc )-_— —C,,'b, (h —h, ') (76)

m,, my

Substituting equation (76) into equation (75) follows,
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1 ¢ C,'b .
ﬂ,,,-,,,=——{bo+d—;(blclv—bzqa)— “ 2 (h=h,) } @

where C , 1s given by equation (47), C’m by equation (48) and det by equation (49) or

equation (51).
3.3.4 Control force to trim

The forces that exert up the control surfaces are important whether the aircraft has
reversible or irreversible controls, as for reversible controls they need to be within certain
limits given by the authorities and for irreversible controls they will be related with the
synthetic feel. In the latter case, as now a days it is possible to design any desired
synthetic feel, it might seem that the control forces would not be important. However, the
controls surfaces have structural limits and the bigger the forces will be, the bigger the
requirements for power to move the surfaces, and thus increase in weight, even if the
pilot will have the correct feeling through a synthesized feel system.

Thus, the control force is related with the hinge moment through the expression,
1 _
P=GH, =G—é-pV2S,7c,7C,,” (78)

where G is the gearing function, dependent on the kind of control power used, S, and ¢,

are the control surface area and chord respectively. At trim the value of the hinge moment
when the tab angle is at an arbitrary position follows from equation (58) and equation
(74),

Chr] =b, +b,a,,, +b,7,,,,, + 535 =b, (ﬂ_ ﬂmm) (79)
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and, as said before, the hinge moment is zero when £ = £, . Thus, substituting equation

(77) in equation (79) follows,

~

C C,'b, A
C, =bf+b, +—=\bC, -b,C, |-—= h-h')C 80
h, 3/6 P det( 1~z 2 La) det ( n) L ( )
. . e . 2mg
For level flight the lift coefficient in trim equals the weight, C, = gl and

substituting this result in equation (80), the hinge moment follows then,

~

1

& C 'b C,'b
C, =bf+b, +d_;(b1CL,, -5,C,, )+ :et ~(=h, '>(CL" ¥ CLﬂﬂ)— :et 2

_p)2"E (81
(h hn ﬂsz ( )

The control force follows from substituting equation (81) in equation (78).
C.'b mg
P=-GS c, ——(h-h')—+
e G

A

t

C,'b
+%GpS”E,7V2 b3ﬂ+bo +%(b1CL _bch )+ e~ (h_hn')(CL +CL,;/B):' (82)
e 7 “ ’

det
or,
P:A+B%pV2 (83)
where
A=-GS,t, %(h —h -)ﬁséi (84)
B=GS,Z, {z% b, + %(b, C, -b,C, )+ Cz,e'tbz (h-h)C,, +C., ,b’)} (85)

If the set tab angle was initially zero, £ =0, expression for B will simplify as follow,

_ C,, ( ) CLa'bZ ,
B=GS,G, b, + "0 C, ~b:Cy, J+——=(h=h,)C,, (86)

32



4. MANEUVERABILITY
4.1 General

When the aircraft is brought out of trim by the pilot, or by the flight control system, the
disturbance may be not small and may be for a prolonged time. This condition is regarded
as manoeuvring flight and a different approach has to be made to analyse static stability.
In analytical terms, the manoeuvre is regarded as an increment in steady motion over and

above the initial trim state, in response to an increment in control angle.

The wing is the main device which produces the main aerodynamic force. In rotating the
airframe in roll, pitch and yaw, it will make the lift vector, which acts normal to the
direction of flight in the plane of symmetry, rotate to the desired direction of motion to

produce the acceleration to manoeuvre.

Therefore, manoeuvring flight is sometimes called “accelerated flight” and is defined as
the condition when the airframe is subject to temporary, or transient, out-of-trim linear
and angular accelerations, resulting from the displacement of controls relative to their

trim settings.

Moreover, manoeuvrability is mainly concerned with the ability to rotate about the
aircraft axes; the modulation of the normal, or lift force, and the modulation of the axial,
or thrust, force. However, it is essential that the changes do not impair the stability of the

aeroplane, or in other words, no tendency to diverge in manoeuvring flight.

The manoeuvrability of an airframe is a critical factor in its overall flying and handling
qualities. An aircraft should not be too manoeuvre stable, nor too few manoeuvre stable.
There should be the right balance between control power, manoeuvre stability, static

stability and dynamic stability over the entire flight envelope of the aeroplane.
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4.2 Controls fixed
4.2.1 Elevator angle per “g”

A pull-up manoeuvre will be analysed here, however the same results would be reached
using another steady manoeuvre. Thus, in a pull-up manoeuvre the normal acceleration in
the lower part of the path, while still in symmetric flight, following an elevator deflection

dnrelative to 7,,, will be proportional to the difference between the generated lift and

weight, and may be expressed as follow,

L-W =ma, (87)

a, = (n - l)g (88)

where g is the gravity acceleration, L =nW and n is the load factor. The angular

velocity responsible for the circular path is given by,

_a, _(n-lg
W=t = (89)

In reality this angular velocity for a longitudinal manoeuvre in the symmetrical plane is

the pitch velocity, w = g . Due to this angular velocity, the airflow field around the

aircraft will change, and the following increments appear,

&L, =C, 6a+C, q+C, oy (90)
X, =C, da+ Cch} +C, on (C2))
c oc,

o 0 . n .
Where g = gc ,C, =—and C, = CA'” . From equation (89) ¢ may be rewritten as,
L m

2V ¢ 0q ¢ 0q

§=(-1)2E ©2)
7
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(93)

94)

where C,, is the weight coefficient and 4 the mass ratio and are defined as above. The

increment in lift coefficient, JC, , may be related to the load factor, n, as follow,

&, = (n —1)CW

(95)

Assuming that the curved flight path is steady, that is, without angular acceleration, then

oC, =0. Therefore, making equation (91) equal to zero and equating equation (95) to

(90) follow, in matrix format,

5

L
CLa CL,, l{éaJ N7
m n é‘; C
C a 7 -C q(n"l) w

Solving for o and o7,

C on
=— ¢, -Cc r_c 21
(n—1) CL,,( YT Lv(n—l)j

C
1-—~|c,C, +C, gch
on 2u ‘ " 2u

(-1 c.C, -C.C

mg
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The ratio (é% 1s called the elevator angle per g. The denominator is equal to equation
n —_—

(49) and can be simplified, as shown before, to equation (51). Substituting equation (34)

in equation (98) and rearranging follows,

C,C, Qu-C C
577 —_ w La(/u Lq) h-—hn+ m, (99)
(n—l) det2u 2u-Cp,
or,
C,Ru-C C

N __ s ) h—h 4T (100)
(n—l) oC, " 2u-C,

2u—— ’

7

From both equations above it seems that the elevator angle per g is linear with 4.

However, in reality, C L, and Cmq are also dependent on the CG position, and this

dependence is even more important for tailless aeroplanes.

4.2.2 Controls-fixed manoeuvre point, /

€6 .7

The controls-fixed manoeuvre point, A, is the point where the elevator angle per “g” is

null, = 0. Thus, from equation (99) follows,

(n-1)

C (h
hm - hn _ mq( m)
2/1 - CLq (hm)

To find the controls-fixed manoeuvre point, the derivatives C, and C, have to be

(101)

evaluated for £ =4, . If these two derivatives can be assumed independent of the CG

position, then the controls-fixed manoeuvre point may be given by,
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h—h 102
(n-1) 21det (h=h,) (102)
Where
H,_=h, -h (103)

is known as the controls-fixed manoeuvre margin.

on Cy CLH (2/1 - CLq )
(n-1) - 2 pdet "

(104)

Also important is the relation between the controls-fixed manoeuvre margin and the
controls-fixed static margin. Introducing equation (101) into equation (103) and taking

account equation (28) follows that,

Cmq (hm )
H =K, ——" """ _ (105)
2# - CLq (hm )

As usually Cmq (hm) 1s negative and the denominator is always positive, then H, > K,

as it would be expected.

4.3 Controls free

4.3.1 Controls free manoeuvre point, 4, '

In a manoeuvre the hinge moment will be also influenced by the pitch rate, thus the

incremental hinge moment will be given by,
&, =boa+C, qG+bon (106)
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Dividing equation (106) by (n - 1), and introducing equation (92) and equation (97), after

some rearranging it follows that,

xhrz . CW
(n"l) 21UCL,1

[(2/‘ -C,, % + Ch,,q C., ]+ (bz —b, %J o7 (107)

In equation (107) the last bracket is equal to b, —Cfﬂ— , from comparing to equation (68).
La

Substituting the elevator angle per g, given by equation (101), in equation (107), follows

that,
&,  c, (2u-c,)
o= 2u—-C C C, |-bC,'———\h-h 108
(n—l) 2IUCLa ( H—ly, %] + i, La] 2L, 2 det ( m) (108)

The controls free manoeuvre point, 4,,', is the CG position when the hinge moment is
equal to zero. Therefore, making equation (108) equal to zero and & =h ', after some

rearrangement follows that,

c
hymhy S B e (109)
bC, '\ C,  u-C,)

Introducing equation (109) again in equation (108) follows that,
2u-C
C, ~——(h—h,") (110)

or, in terms of the controls free manoeuvre margin, H,'=h,'-h,
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&, u-c, )
—2e=b,C, 'C, ———H,' 111
( __1) b2CL,, w 2 udet m ( )

4.3.2 Control force per ‘g’

Similarly to equation (78), the incremental control force is given by,

&P = —;—GpS,IE”Vzé'Ch” (112)

Finally, substituting equation (111) into equation (112), the control force per g is given

by,
AP 1 _.hC G lu-C)
Q=m=EG,OS”C”V2 > d Hm (113)
feaet
or

AP 1 = bch,,'CW(z/"'CLq)
2udet

(h-n,") (114)
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5. APPLICATION TO THE COLLEGE OF AERONAUTICS BWB-98
TAILLESS CIVIL TRANSPORT CONCEPT

5.1 General information

BWB-98 is a blended-wing-body tailless civil transport aircraft designed by the
College of Aeronautics, Cranfield, to meet the same specifications as that for Airbus
A-3XX 2 As the name says, the body and wing are blended in a way that the aircraft
is classified as a high aspect ratio flying wing. General data for two typical flight

conditions cruise and approach are presented in Table 1.

Flight Condition Typical cruise | Approach
Altitude, i (m) 10059 0
Density, p (K% 3j 0.3921 1.225
Sound speed, @ /) 305.8 3403
Mach number, Ma 0.85 0.23
Speed, V, (m/) 260.0 77.
Mass, m (Kg) 443680 322599
Moment of inertia, [ , (Kg.m2 ) 42.702x10° -
Area, S (m?) 1390.6 1390.6
Mean aerodynamic chord, c (m) 27.28 27.28
CG position, X, (m) 31.9 31.23
Aerodynamic center, X (m) 3242 31.638
Static margin, K, 1.9% 1.5%

Table 1 — General characteristics of the BWB-98

Aerodynamic Characteristics | Cruise Approach
condition | condition
Lift coefficient, C,, 0.236 1.05
Lift curve slope, q, (rad—l ) 5.382 3.327
Drag coefficient for zero lift, C), 0.04163 0.013908
Drag polar constant, k 0.059153 0.056592
Basic pitch moment coefficient, C,, | 0.004403 0.004747

Table 2 — Aerodynamic data of the BWB-98 for a Cruise and Approach condition
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In Table 2 and Table 3 are presented some aerodynamic data for both flight

conditions. The lift coefficient due to camber, C, , is not given in the data and it is

assumed zero. Moreover, the BWB-98 has several trailing-edge surfaces %), and the

chosen pitch control elevon, control surface or flap number 6, possesses the largest

pitch moment increment per degree of deflection.

Cruise (Ma = 0.85) Approach (Ma = 0.23)
#Flaps | C,, (rad'l ) a, (rcza"1 ) Cn, ("ad—l ) a, (rad'I )
1 (in) -0.0728 0.2518 -0.0469 0.1797
2 -0.1058 0.3606 -0.0745 0.2754
3 -0.0911 0.3225 -0.0682 0.2595
4 -0.0733 0.3189 -0.0544 0.2447
5 -0.1030 0.4835 -0.0746 0.3369
6 -0.1394 0.4726 -0.1097 0.3405
7 {out) -0.0678 0.1528 -0.0581 0.1224

Table 3 — Elevator pitch moment slope, Cmq , elevator lift curve slope, a,, for two

different flight conditions.
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Fig. 1 — Aerodynamic characteristics of the BWB-98 in cruise and approach

conditions
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In Fig. 1 the aerodynamic data is plotted against AoA and lift coefficient. To plot the
lift coefficient it was used equation (4). The drag polar was plotted using equation (6).

For the pitch moment plots equation (40) was used.

5.2 Trim

To fly in a steady condition it is necessary to trim the aircraft. The AoA and elevator
angle to trim were calculated using equation (45) and equation (46) respectively,

supposing that no tab device is fitted, or £ =0. Results are presented in Table 4.

Moreover, due to the rather large AoA in the approach condition the AoA and
elevator angle to trim were calculated considering an equal deflection of all control
surfaces. The elevator pitch moment coefficient slope and the elevator lift curve slope

were calculated as the sum of each individual control surface as follows,

¢, =c, +C, +C, +.) (115)
¢, =lc, +¢, +C, +.) (116)
a, (deg) 7. (deg)
Cruise | Approach | Cruise | Approach
Flap 6 2.52 18.57 -0.04 -6.0
All flaps | 2.52 18.8 -0.008 -14

Table 4 — AoA and elevator angles to trim for cruise and approach conditions.

As it can be seen in Table 4, deflecting all control surfaces the elevator angle
necessary to trim is significantly reduced, but the AoA necessary to generate the trim
lift is still rather large. This is probably due to the low value of the lift slope curve,

a, . Hence, making a, for the approach condition of the same value as for cruise

condition, the necessary AoA to trim is now «,, =11.63deg for just one surface

deflected, and, «,, =11.56deg for all surfaces deflected the same angle.
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5.3 Controls fixed static stability

5.3.1 Static margin

In Table 1 the static margin is already given for controls fixed. From Table 5 it is

found that this data was obtained simply by using equation (26).

Using equation (25) it was calculated the influence of the CG normal position on the
static margin. This influence can be seen in Fig. 2. In this figure is also plotted the

h=Xo h=& K =h,~h
° T ¢
Cruise 1.188 1.169 1.9%
Approach 1.1598 1.1448 1.5%

Table 5 — Controls fixed static margin calculation

results using equation (24).
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Fig. 2 — Static margin, neutral point position and lift curve slope at trim for cruise and
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From the first plot of Fig. 2 two conclusions may be drawn,

Equation (24) for small angles is a rather good approximation and may be

used instead of equation (25).
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ii) In the approach condition a shift of CG about 2m in the positive side of the

normal axis increase the static margin of about 2%.

5.3.2 Neutral point

In the second plot of Fig. 2 the influence of the CG normal position, Z , in the neutral
point position, X, is shown. The complete equation used is equation (29), while for

small angles approximation was used equation (31). As before, the latter equation

held very good results and may be used instead of the complete equation.

5.3.3 Trimmed lift curve slope

In the last plot of Fig. 2 it is shown the decreasing in the lift curve slope, given by
equation (53), that it would be expected when increasing the static margin, due to the

aircraft being stable.

In case an unstable configuration is used the values expected are those shown in the

first plot of Fig. 3.
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Fig. 3 — Trimmed lift curve slope and elevator angle to trim versus static margin.
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The curve slopes in the first plot of Fig. 3, follow from equation (53),

dC
6( %a/) C,
oK

trim - CL n (1 17)

n m

In reality C, is also a function of the CG axial position. However, in case this

variation may be neglected, the elevator angle to trim as a function of static margin

follows from equation (46),

—@LKn + ém

-C,K -C (118)
L,] n m,

77 trim =

The results from this equation are presented in the second plot of Fig 3. Although the
elevator deflections for an unstable aircraft, or negative static margin, are now
positive, the elevator angle necessary to trim in the approach condition becomes

rather large and it may happen the control power not being enough.
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6. Conclusions

Firstly, it is assumed that the data for the approach condition is for a “clean”
configuration (without flaps and landing gear) due to the low values of lift and drag
curves comparative to the cruise condition.

Moreover, and as stated before, attention has to be paid to the validity of the theory
applied. Thus, the conclusions given take into account that, using data from Fig. 1, in
the cruise condition the maximum value for lift coefficient will be 1 or 1.2, while for
the approach condition the maximum value will be 0.8. This limitation avoids the
usual zone of non-linearity at angles of attack greater than 12-15 degrees.

Now, bearing in mind the limitations of the theory applied the following conclusions

can be made:

e Some modifications should be done in the approach condition to achieve the
lift coefficient required without having so large AoA.

e The approximation of small angles of attack holds good results and may be
used instead of the full equations.

¢ Some modifications should be done in the approach condition to achieve the
lift coefficient required without having so large AoA.

¢ The use of negative static margin, unstable aircraft, may be a way to improve
the trimmed lift curve slope, however, care has to be taken to be able to trim

the aircraft in all situations.

As the data used is for a large transport aircraft there is no need to analyze the
controls free stability as it is supposed to be controls fixed all the time by means of a
full flight control system. Moreover, at this stage of the design there was available no

pitch rate stability derivatives, C L and C my 3 thus, it was not possible to analyze the

maneuver case as well. Nevertheless, the theory was developed and may be used for

future applications.
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