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Abstract

In this paper we investigate fully discrete high-order accurate solutions for system
of hyperbolic conservation laws. Second-, third- and fourth-order high resolution
schemes are presented. Performance of the methods is assessed by solving test
problems for time-dependent Euler equations of Gas Dynamics in one and two space

dimensions. We use exact solutions and experimental data to validate the results.



1 Introduction

An important research subject in Computational Fluid Dynamics (CFD) concerns
the development of high-order numerical schemes. There are many application ar-
eas for which such research is of vital importance. One example of considerable
interest is Acoustics, which needs long time evolution of weak flow features. For
this kind of problems low-order methods will produce unacceptable dispersive and
diffusive errors in a very short time. Another example concerns problems containing
weak shocks in which the physical effects of diffusion and dispersion are important
mechanisms. Low-order methods contain large amounts of numerical diffusion and -
dispersion and are thus totally inaccurate for simulating the propagation of weak
shocks. In large computational problems low-order methods would require vast
amounts of computer memory (possibly not available in current computers) in or-
der to attain a satisfactory degree of accuracy. A high-order method would attain
the same accuracy with coarser meshes requiring less sophisticated hardware and
making it possible to actually run the problems.

Essentially, there are two different techniques to construct high-order numerical
schemes: semi-discrete and fully discrete methods. In the semi-discrete method (1]
one divides the discretization process into two separate stages. In the first stage
one discretizes in space only leaving the problem continuous in time; in the second
stage one has sets of Ordinary Differential Equations (ODE) in time, which can be
discretized appropriately. Often this technique is called the method of lines. The
MUSCL approach introduced by van Leer [2] can be utilised in conjunction with the
method of lines. The recently developed ENO schemes [3]-[5] belong to this category.
The main idea of the ENO scheme is that the spacial high-order approximations to
the flux at a cell interface can be defined using high-order interpolation in space,
and then the high-order temporal accuracy can be achieved by another discretization

applying a high-order ODE solver.

In [6] Shi and Toro proposed a fully discrete technique to construct schemes of
arbitrary accuracy and as examples presented fully discrete second-, third-, and

fourth-order schemes for a linear model hyperbolic conservation law. In order to



prevent the spurious oscillations of the high-order methods when computing discon-
tinuous solution, Total Variation Diminishing (TVD) constraints using flux limiters

for fully discrete second-, third- and fourth-order schemes were introduced in [7].

In this paper we extend the previous works to general system of conservation laws.
We first discuss linear systems and then extend the discussion to non-linear systems
of conservation laws. To illustrate the methodology we present second-order, third-
order and fourth-order schemes. Applications to the time-depent Euler equations in

one and two dimensions are presented.

The rest of the paper is organized as follows: section 2 briefly reviews the fully dis-
crete high-order schemes for the scalar case; section 3 extends the schemes to linear
systems; section 4 discusses nonlinear systems, discusses the time dependent Euler
equations of Gas Dynamics and present second-, third- and fourth-order solutions to

the Euler equations. sections 5 reports the numerical experiments; section 6 draws
conclusions.

2 Review of Fully Discrete Schemes

In this section we review the fully discrete second, third and fourth-order conserva-
tive schemes for the scalar initial-value problem (IVP)

0 —oo<z<oo, t>0 (1)
U($7O) = UO(‘T)

Here, U is a conserved variable and F(U) is the physical flux of the hyperbolic

conservation law.

We discretize the computational half plane by choosing a uniform cell with a cell
width » = Az and a time step k = Atf, and define the computational grid z; =
Jh, t, = nk. We use U} to denote the computed approximation to the exact
solution U(z;,1,) of equation (1).



The final form of our schemes can be written in a conservative form as

i T k
Uit = U5 = 5 (Fiag = Fio) @)

The high-order numerical fluxes Fj,/; are outlined in the following subsections.
The details can be found in [6] and [7].

2.1 Fully Discrete Second-order Scheme

Our second-order scheme for the scalar hyperbolic conservation law has numerical

- sl eyl
P — ajti AR
Fipg = §(Fj + Fia) - _22"AUJ'+§ + 9 =(1 - |cj+%l)AUj+% (3)
where a;41/; is the intercell wave speed and cjy1/2 is the corresponding Courant
number L
Ci+1/2 = ____(1]+;L/2 (4)
AUjsrs = Ujn = U; (5)

The stability condition of the scheme applied to the scalar equation is lci1/2| <
1 Vj.

The oscillation-free scheme satisfies a TVD constraint via flux limiter ¢; and is given
by

1 n n |a '+'1'| Ia +%|
Fioy = 5(F] + Fy) - __1_2_2_AU].+15 + =1 = e 1D AU 10 (6)
Here ¢; = ¢;(0;) is a function of a "local flow parameter” 6;

AUj-1/2
0; = —L= for cjy1/2>0 7
J AUJ'+1/2 f i+1/2 ( )

AU;

/J— J+3/2 ) 8
i __——AUJ'+1/2 for ¢jy12 <0 (8)

For convenience we repeat here two limiter functions. One is the FD2A (fully discrete

second-order A)

¢j(0j) = max [O,mz'n (1, aj ) ,min (0,-, L )] (9)
Mi+1/2 Ni+1/2




and the other is FD2B limiter
20, 2
$;(0;) = maz [O,min (1, . ) ,min (0]' —)J
Ti+1/2 Ti+1/2

Mi+1/2 =1 —|cipue| for 0 < |ejpape] < 3
Mi+1/2 = |Ci41/2] for 3 <lcjp10] <1

where

2.2 Fully Discrete Third-order Scheme

The five-point, third-order scheme has the numerical flux

Ly pm \_ %43
Py = 3 (Fr+ Tin) —5 AU+ (|“j+;-|Dj+§AUj+’§
+|aj+L+-;-|Dj+L+§AUj+L+§) ;i
Here
((Dan =t Houl i
Dj+L+1/2 = '(1;(1 - C_?+L+1/2)

AUjsrt12 = Ujppyr — Ujsr

L=—"1 Zf Cj+1/2 >0
L=1 Zf Cj+1/2 <0

Note that the stencil of this scheme is upwind biased.

Two third-order limiters are obtained from the following limiter

o (1~lc;41+1721)8; . . L
¢ = 77:‘+L+1/2(D11L+1/29:‘+D1+1/2) of 0<90;<6
¢;=1 if 6%<6;<6F

o (1=lejyr11/20) . . R
¢ = 154 241/2(Dj4 1417205+ Dj1/2) of 0;>0
$; =0 if 6;<0

For the FD3A limiter
ol — Ni+L+1/2 Dj+1/2
1= |ejeraase] = Mirr Ditrt1y2
or — L= lcitrrisel = Mirire Divgo

Nij+L+1/2 Dj+L+1 /2

(10)

(11)

(12)

(13)
(14)

(15)

(16)

(17)
(18)



and for the FD3B limiter

Of = 2.78 — 14n;i (20)

The stability condition of the unlimited scheme applied to the scalar equation is
lej41/2l 1 V5.

2.3 Fully Discrete Fourth-order Scheme

The five-point, fourth-order numerical flux has the following form

Py = Lmpmm - sy
ity T 5( it )~ 9 it}
+ (Iaj44] Djs3 AUy + lajyp4s] Djir130Uss141) 6
Hlojems] Dipns 1 AU pares ivm (21)
Here
— 1 4 1 . L3
Diyrry = 15 + 5aleisr41l 12%+L+4 24|cj+L+1§l
- 1_ 7 L3
Djy1 =3 12}|Cj+%| + 12lcj+%| (22)
= L2 L 1L _ 143
Diymey = 15Cmer T 24|Cj+M+§l 12 24|Cj+M+%l
L= —1, M=1 Zf Cit+1/2 >0 (23)
L=1, M=-1 Zf Cj+1/2<0
This scheme has a centered stencil.
Two fourth-order limiters are obtained from the following limiters
o (1=lcjp141/21) 85 . <f. L
$;i = Nj+L+41/2(Djsr4172 05+ Dj41/2=Djyrm41/2) tf 0<06;<0
$; =1 if 0L <6; <O 04
bi = i-lejyr41/214mi4 4172 Divmyaja/ 6] if 6;>6R (24)
7T mirna12Dja4a/2 95+Dj4102) I

¢; =0 if 0; or 0:<0



and

bivm = Njxmrjz Oianm for 0 <Opm <3
Givmr =1 for Oiim >3 (25)
_ Pi+m =0 for ¢;=0
where for FD4A limiter

oL — 77j+L+%(Dj+1/2 - Dj+M+1/2) (26)
1 = |ejrrv1/2l = Niwra1/2 Digrarye
oR _ 1- |0j+L+§| - 77j+L+;-(DJ'+1/2 — Djymias2/ 0;) 27)
Mi+L+1/2 Dj+L+1/2

for FD4B limiter

0" = iy (28)
gR — 1- lCJ'+L+;-| = Ni+p+3(Div1s2 = Divmsaye/ 05) (29)
Nj+L+1/2 Djvr41/2

the 07 = 6;0;,p we called upwind-downwind flow parameter” which is given by

AUj-1/2
0 = —==L2 for ¢; >0 30
IS AU 1 G (30)
AU;
0; = L : 0 31
B N for ¢jpay2 < (31)

The stability condition of the unlimited scheme applied to the scalar equation is

lciv12] <1 V5.

3 Linear Hyperbolic Systems

3.1 Introduction

In this section we extend the scalar schemes (6), (12) and (21) to solve the IVP
problem for linear hyperbolic systems with constant coefficients
Ui+ AU, = 0 (32)
U(z,0) = Us(z)



where U is a column vector of m conserved variables, and A is an m by m constant

matrix.

This is a system of conservation laws with the flux function F(u) = AU which is
hyperbolic if A is diagonalizable with real eigenvalues, i.e. the matrix A can be

written as

A = RAR™ (33)
where A= diag ()\(1) AR /\(’")) is the diagonal matrix of eigenvalues of A and
R= (r(l) @ r(m)) is the matrix of right eigenvectors of A.

Equation (33) means AR = RA, that is

Ar®D) = 2\ 19 g (34)

The natural way to extend the scalar schemes to linear systems is obtained by
defining expressions for the flux differences AFj,;/, = AAU; /2- This can be done
by diagonalizing the system, solving local Riemann problems with left and right
states U} and U7, i.e.

Ue,0)=4 V7 <0 (35)
1 >0
and letting
ajyajz = Byl AU (36)

here R,/ is the matrix of right eigenvectors at the interface j 4+ 1/2, which for the

linear constant coeflicient case is of course constant; Q4172 is called wave strength

vector with components a§?1 /2 (p =1,2,...,m) accross the p — th wave traveling
at speed )\g.’:_)l /2 10 the (j +1/2) — th intercell.

Then we have

AU;4

[ g

= Yoy (37)
r=1
Since F(U) = AU, this leads to

AFy = AAU;y

2



- Za(p) Ar(”)

p=1

- Z (20) )\(p) 51:_)L (38)

The single jump AFjy1/2 = [aj41/2|AUjy1/2 in the scalar schemes (6), (12) and
(21) with the appropriate interpretation for |a /2| is now substituted by a summa-
tion of jump (38), which gives a natural extension to linear systems with constant
coefficients. Next we discuss the extension of scheme (6), (12) and (21).

3.2 Second-order Scheme for Systems

The numerical flux of the second-order scheme for systems is now

1

— (p) @
Fiyg = '2'(F}'+Fj+1)——;|/\p oy
1 m
+§;(1—|c§7_’£%]> Nl el 0 g (39)
Here )
AF k
+1/2
.SI-)l-)l/Z_ A A (40)

The FD2A limiter applied to each wave p is now

) [ ' 0(?) ) 1
¢”) = maz |0, min |1, () ymin | 67, o) (41)

77]+1/2 Niv1/2

and the FD2B limiter is

[ 20(1’) 9
¢§~p) = maz |0, min (1 - ) ) min (ﬂgp), ®) (42)
U b
L J+1/2 J+1/2
where
a(x’)l/2 ®
0 = o if >0 (43)
]+1/2
a(z-;-)s/z )
8P = o if P <0 (44)

J+1/2



n§121/2 = | +1/2| for 0< I 51_’31/2| < % (45)
(p) 1< <1
Miy1/2 = 'cj+1/21 for  3<e J+1/2l
3.3 Third-order Scheme for Systems
The five-point, third-order scheme (12) for linear systems is
1 1
Fivg = (F+ Fia) - —,,Z P‘ﬁ?—] a(ﬁr)z ";i)%
[ D) [y )| o),
Bt o A
p=1
+D (i)L+ IA(?L#I aﬁ)ﬂl (i)L+ ] ¢(p) (46)
where
1 1
Dﬁm 3~ 2] (1-21/2] + ( 51)1/2)2 (47)
1
DE?L+1/2 6 (1 ( 51-)1-)L+1/2)2) (48)
¢(p) (- 'CJ+L+1/2I) o if 0< 0% < gL
412 (D& 412 0§p)+D(+1/2) -
¢ =1 if 6 <¢P) <o” (19)
» _ -1 o if 0P < gR
>0
% i O Laase 6P+, 1) I%
¢ =0 if 6% <0
For the FD3A
(r) (»)
oL — 77]1L+1/2 Dgil/z
= ) ® (50)
= e +L+1/2| 77]+L+1/2 D]+L+1/2
— () |- p®
gR — CivL+1/2 77]+L+1/2 j+1/2 (51)
RO
Nj+L+1/2 YijtrL+1/2
and for the FD3B
¢ = 119% ,—017 (52)
0F = 278—14907), , (53)



with

L=-1 if ;>0
L=1 4if P . <o

J+1/2

3.4 Fourth-order Scheme for Systems

10

(54)

Following the examples above, the scalar fourth-order scheme (21) can be extended

to linear hyperbolic systems in the same manner as

(p) (r)
Ti+L+l ) ¢

r® ¢(p)
Tirmel PitMm

1
= 571l

= 51 hriay)’

0< 6P < oL

oL < 6P < gR
<0F <

%) > gR

®) *(p)

0jp or 9jp§0

+M<

. 1 ) | 4@ )
Fiy = S+ Ff) - ZIIA,’;_I o)y 17,
2=
s~ (D®. 30| o) ®
+Z (DJ+" I/\ I Xirr Tivl
(») (») (»)
D N L+l Qi+l
+ D(p) I )‘(p) I a(p)
+M+y VieM+pl ZieMmel
where
(p) 1
D]:)-L+1/2 1 24’ _7+L+1/2| J+L+1/2)
1 7
D§ﬂ'.)1/2 = 9~ E gi)l/2| + l( 51-71-)1/2)3l
1
;?M+1/2 12( _SI-)I-)M-I-]./Z) 24l ]+M+1/2]
The FD4 limiters are now
(») _ (1 Ior 2D 67 i
¢ .Si)L+1/2( .’I+L+1/2 9§p)+D§i)1/2 D isas2) !
(]S(p) 1- ICJ+L+1/2I+T'J+L+1/2 D(Z)M+1/2/ Gt(p) zf
.(7:7')11'*'1/2 ( J-I-L'H/2 6(p)+D(+1,2)
¢ =0 if
‘75;1-’[-)M ﬂ;TM+1/2 H—M for 0<Z 8!
_7+M 1 fOT' B(IQM >
¢y =0 for ¢¥ = 0

(55)

(56)
(57)

(58)

(59)

(60)
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For the FD4A limiter we have

(r) (») (p)
oL — 7733.1:,+1/2 (Djil/z D3+M+1/2) (61)
=1l = 0y DY)
+L+1/2 77]+L+1/2 i+L+1/2
0B — —le +L+1/2I 77J+L+1/2 (DJ+1/2 D§+)M+1/2/0*(p)) (62)
ny—:-)L+l/2 D;i)LH/?
and for the FD4B limiter
or = ’71(1-;-)1/2 (63)
oF = |C_SI.)|.)L+1/2I 77]+L+1/2 (D;’fl/z D (:)M+1/2/ 0*(p)) (64)
n.gz-:-)L+1/2 D§'+)L+1/2
The upwind-downwind flow parameter is now
(») (p)1/2 (p)
07" = ZP) if cjz-)l-ll2 >0 (65)
J+3/2
(?) “('333/2 (?)
;= o if ¢l <0 (66)
_7 1/2
with »
L=-1, M=1 if J111/2>0 (67)
L=1, M=-1if ?,<0

4 Nonlinear Hyperbolic Systems

In this section we discuss the extension of the high-order schemes to nonlinear sys-
tems of conservation laws

U+ F(U), + GU), = 0 (68)

where, U(z,t) is column vector of m conserved variables; F(U) and G(U) are vector-

valued, physical flux function of m components in z and y directions respectively.
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The systems of equation (68) is assumed to be hyperbolic, that is all eigenvalues

AW, @), ..., A™)(U) of the m by m Jacobian matrix A(U) and B(U)
A(U) = F'(U), BU)=G'(U) (69)

are real for all U and there exists a complete set linearly independent corresponding
right eigenvectors.

We take the Euler equations as a typical nonlinear system of conservation laws to

develop the presentation on how to extend our schemes.

The two dimensional Euler equations of Gas Dynamics are

p pu pu
2
v=| "1, roy=| TP | cwy=| " (70)
pv puv pv’> +p
E u(E + p) v(E + p)
1
p=(1-1) (- 5oa® + %) (1)

here p, u, v, pu, pv, p, and E are the density, z and y direction velocitis, z and
y direction momenta, pressure, and total energy respectively; the v is the ratio of
specific heats.

For the split one dimensional problem the eigenvalues of the Jocabean matrix F'(U)
are

A(l) =u-—a, /\(2) = )\(3) =u, /\(4) =u+a (72)

The corresponding right eigenvectors are"

1 1 0 1
PO | YT | e | O e | vt
v v 1 v
h — ua 2(u? 4 v?) v h+ ua
(73)
where h is the specific enthalpy
= LEtp (74)
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The eigenvalues of the Jocabian matrix G'(U) has the same form but the roles of u
and v are interchanged.

There are essentially two ways of obtaining an intercell flux Fj,,/, utilising a Rie-
mann problem solution. One way is to obtain the flux function directely. For
nonlinear systems this is always an approximate procedure. We called this the flux
Riemann problem approach. Another way is to find the solution of the Riemann
problem for the state variables W; 1/, and then the intercell flux can be obtained by
evaluating the physical flux function, i.e. Fjy1/2 = F(W;4, /2)- The solution W, /2
can be approximate or exact. We call this the state Riemann problem approach.

4.1 Flux Riemann Solvers

A possible strategy for solving systems of nonlinear conservation laws is to linearize
the nonlinear system of equations (68) locally at each cell interface by an approx-
imate Riemann solver and then implement the methods of last section using the
linearized systems

Here A is a linearized constant matrix depending only on the local data UF and

UZ, that is A = AU, UR,,).

Popular examples of this approach are Roe’s Riemann solver [8] and Osher’s Rie-
mann solver [9]. Roe’s matrix A(U?, 1) is assumed to satisfy the following prop-
erties: (i) A AUjy1/2 = AFj115; (ii) A is diagonalizable with real eigenvalues; (iii)
A — f'(U) smoothly as Ur, U%, — U. denoting the Roe eigenvalues, eigenvec-
tors and wave strength as /—\gi)l /25 Fgﬁ_)l /2 and &5-’_’*_)1 ;2 (p=1,2,...,m) then applying
the high-order schemes of last section we solve the original nonlinear systems in a

straight-forward manner.

‘The Roe eigenvalues and eigenvectors are evaluated at the average state U which
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for the one-dimensional case takes the following form

U= (P;/zuj + P;ﬁuﬂl)/(/’;/z + P}f]), p = (pipip)'"? (76)
7 1/2 2 /2, 1/2y - 7 _
Ro=(pi"hi + pi3hsn) (0} + p}3), @ = ((v = 1)(h — Lu?))/2
The average wave strengths @™ are determined by
&) = L (Ap — palu)
a? = Ap— %f- (77)
a3 = -L(Ap + palu)
here
Ap = pjp1 = pj, Au=ujy1 —uj, Ap=pjy —p; (78)

However it is well known that under some circumstances Roe’s Riemann solver can
admite non-physical solutions, such as expansion shocks and negative densities. The
first failure is due to the fact that Roe’s Riemann solver does not satisfy an entropy
condition [10]. To remedy this a sonic fix is required. There are several entropy
fixes in the literature. In this paper we apply one introduced by Harten and Hyman
[11]. The second failure afflicts all linearized Riemann solvers. Possible cures to this
difficulty were studied by Roe etc. in [12].

A different approach to avoid compromising accuracy and robustness when using
approximate Riemann solvers was proposed by Toro [13]. He proposed a hybrid
approach in which a very simple linearised solver and an exact Riemann solver are

used adaptively.

4.2 State Riemann Solvers

These solvers include exact solvers and hybrid solver which solve the Riemann prob-
lem for the state variables. Taking Toro’s hybrid solver [13] for example. The hybrid
solver includes a linearized solver and an exact solver which are used adaptively. The
switch between the two solvers is governed by a simple mechanism. Applications of
the solver shows that about 98 percent of all Riemann problems are solved by the

fast linearized solver and only in the case of energetic flows the exact solver takes
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over. The structure of the solution of the Riemann problem contains two interme-
diate regions between the two nonlinear waves. They are separated by the contact
wave and we use the notation ¢ and ¢y for quantities to the left and right of the

contact respectively.

The ’star values’ obtained locally by the linearized solver in one dimension has the
following form

u* = 3(u; + uj1) — (pj+1 — p;)/2pa
p" = 3(ps + Pis1) = 3PA(uji1 — uj) (79)
P = p; + (u; —u*)p/a
PR = pix1 + (v — uj11)p/a
where 1 1
p=35pi+pin), @=5(a;+a4) i

are the average values of the desity and sound speed.

Once the ’star values’ at each cell interface are calculated the flux jump AFJ.(_"'?1 /2
for each wave can be easily defined. Then applying the high-order schemes of last
section we solve the nonlinear systems to high-order of accuracy. Note that in this
approach the flux jump AF j(f_)l /2 in the high order schemes is constructed directely,
that is

)\(P)] a(P) T(P) =AF.(p)1 (81)

i+y Tty i+ ith

5 Numerical Experiments

In this section we report numerical experiments with fully discrete second-order
scheme (39), third-order scheme (46) and fourth-order scheme (55). The test prob-
lems are considered here as the follows:
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5.1 Entropy Test Problem

Here we choose an entropy test problem with initial data

{ (o, u, p)= (1,075, 1)  0<z<05 (82)

(py u, p) =(0.125, 0, 0.1) 0.5 < z < 1.0

This problem is a modification of Sod’s problem and designed to produce a left
sonic rarefaction about z = 0.5. Therefore it is a good problem to test the entropy-
satifying property of a numerical scheme. Figure 1 and 2 show the performance of
these schemes. The computational domain is devided by 100 computational cells.
The Courant number used is 0.8. The solid line is the exact solution and the sym-
bol is the numerical result. Figures 1 (a) (b) and (c) show the results obtained by
the second-, third- and fourth-order schemes respectively with Roe’s solver without
entropy fix. As clearly shown the second-order scheme (a) automatically satisfies
the entropy condition, whereas the solutions of the third- and fourth-order schemes
(b) and (c) contain a rarefaction shock which is unphysical. Figure 2 shows the
corresponding results obtained with Harten and Hyman’s entropy fix [11]. The
entropy-satisfying condition of the third- and fourth-order schemes is obviously im-
proved.

(Fig. 1, 2 here)

5.2 Sod’s Problem

The Sod’s problem [16] is one of the most popular test problems for numerical
schemes. Therefore we chose this problem to test all of our limiters presented in the

previous sections. Sod’s problem consists of initial data:

{ (p, u, p)=(1, 0, 1) 0<z<05 (83)

(p, u, p) =(0.125, 0, 0.1) 05<z<1.0

Figures 3 to 8 show the comparison between the computed results (symbol) and the

exact solution (line) with Roe’s Riemann solver at time 0.2 units. Again we used
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100 cells and 0.8 for the Courant number. Figure 3 shows the performance of the
second-order scheme with the FD2A limiter. As seen in the figure the numerical
results look satisfactory in the smooth parts. The shocks are captured with 2-3
interior points but the contact discontinuities are smeared with 4-5 points. There

are no overshoots/undershoots.

Figure 4 shows the results of the second-order scheme with the FD2B limiter. Com-
paring with the resultd obtained by the FD2A (see Fig. 3) the FD2B has an obvious
improvement of capturing the contact with 2-3 points, however there are overshoots

and undershoots especially in internal energy plot (d).

Figure 5 shows the results obtained by the third-order scheme with the FD3A limiter.
The results look very satisfactory for both smooth parts and shocks. But the contact
has 4-5 points and there is a very little overshoots in the energy (d).

Figure 6 shows the performance of the third-order scheme with the FD3B limiter.
Except for a little overshoots and undershoots the results of the limiter are very
satisfactory. Both shocks and contacts are captured with only 2 points. The overall
performance of the third-order scheme is superior to that of the second-order scheme
(compare Fig. 5 and 6 with Fig. 3 and 4).

Figure 7 shows the numerical results of the fourth-order scheme with the FD4A
limiter. The smooth part of the solution is good; shocks are captured with 3 points
and the contacts with 5 points. Very small oscillations can be seen. However, |
it is generally accepted that designing proper dissipation procedure for high-order
methods is a very difficulty tasks. We are satisfied with the performance observed.

Figure 8 shows the solution of the fourth-order scheme with the FD4B limiter. The
results are nearly identical to that obtained by the FD4A (see Fig. 7) but the FD4B
limiter is simpler than the FD4A.

(Fig. 3 to 8 here)
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5.3 Blast-wave Problem

The blast-wave problem introduced by Woodward and Collela [17] is a severe test
problem, therefore a good problem to test the robustness of numerical schemes. This

problem has initial data:

(p, u, p) = (1, 0, 1000) 0 <z < 0.1
(o, u, p)=(1, 0, 0.1) 0.1<z< 0.9 (84)
(p, u, p)=(1, 0, 100) 09<=z<1.0

Although there is no exact solution for this test problem there are several good
numerical results available. We discretize the domain with 3000 cells. The Courant
number used is 0.8. We applied a hybrid scheme involving Roe’s solver and an exact
solver used adaptively. We chose the second-order scheme with the FD2B, third-
order with the FD3B and fourth-order with the FD4B to test the robustness of the
high-order schemes. Figure 9 to 11 show the numerical results at time 0.028. The

results show that schemes reproduce accurately the known features of the solution.

(Fig. 9 to 11 here)

5.4 Shock Reflection Problem

To illustrate the capability of our schemes to solve multi-dimensional problems we
computed solutions to the time dependent, two-dimensional, Euler equations that
simulate the flow that results from the reflection of shock wave at Mach number
1.7 from a wedge at an angle of 25 degree to the incident flow. A hybrid scheme
involving the linearized solver and an exact solver used adaptively was applied.
Figure 12 shows a comparison between the numerical solutions obtained by second-
order with the FD2A limiter (a), third-order with the FD3A limiter (b), fourth-order
with the FD4A limiter (c) and the experimental result (d) (Courtesy of Professor
K. Takayama, Shock Wave Research Center, Tohoku University, Sendai, Japan).
These results show a good agreements between the numerical and the experimental
results.
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(Fig. 12 here)

6 Conclusions

In this paper we discussed the way to extend scalar fully discrete high-order schemes
to systems of conservation laws. Second-, third-, and fourth-order TVD schemes for
nonlinear systems are presented. These schemes are tested and validated by solving
the one and two dimensional Euler equations of Gas Dynamics for some well known
test problems. The computation was carried out using two different kinds of approx-
imate Riemann solvers which satisfy the entropy condition. The numerical solutions

show that these high resolution schemes can give very satisfactory performance.
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Figure 2: Entropy Test Problem with Entropy-fixing by the Second-, Third- and
Fourth-order Schemes
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Sod’s Problem by the Second-order Scheme with the FD2B Limiter: (a)
Density, (b) Pressure, (c) Velocity, (d) Energy
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Figure 5: Sod’s Problem by the third-order Scheme with the FD3A Limiter: (a)
Density, (b) Pressure, (c) Velocity, (d) Energy
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Sod’s Problem by the fourth-order Scheme with the FD4A Limiter: (a)
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Figure 12: Shock Reflection over 25 Degree Wedge: (a) Computed Result by the
Second-order Scheme with the FD2A Limiter, (b) Computed Result by the Third-
order Scheme with the FD3A Limiter, (c) Computed Result by the Fourth-order
Scheme with the FD4A Limiter, (d) The Experimental Result



