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Abstract

We investigate the fully discrete methodology and establish a formula from which
two-level explicit fully discrete arbitrary-order (both in space and time) conservative
numerical schemes for a model hyperbolic conservation law can be derived. To illus-

trate this approach fully discrete second, third and fourth order numerical schemes
are presented.



1 Introduction

An important research subject in Computational Fluid Dynamics (CFD) is the de-
velopment. of high-order numerical schemes. One example of considerable interest
is Acoustics, which needs long time evolution of weak flow features. For this kind
of problems low-order methods will produce unacceptable dispersive and diffusive
errors in a very short time. Another example concerns problems containing weak
shocks in which the physical effects of diffusion and dispersion are important mech-
anisms. Low-order methods contain large numerical diffusion and dispersion and
are thus totally inaccurate for simulating the propagation of weak shocks. In large
computational problems low-order methods would require vast amounts of computer
memory (possibly not available in current computers) in order to attain a satisfac-
tory degree of accuracy. A high-order method would attain the same accuracy with

coarser meshes requiring less sophisticated hardware.

There are two different techniques which can be used to construct high-order numer-
ical schemes: semi-discrete and fully discrete methods. In the semi-discrete method
[1] one divides the discretization process into two separate stages. In the first stage
one discretizes in space only leaving the problem continuous in time; in the second
stage one has sets of Ordinary Differential Equations (ODE) in time, which can be
discretized appropriately. Often this technique is called the method of lines. The
MUSCL approach introduced by Van Leer [2] can be utilised in conjunction with
the method of lines. The most newly developed ENO schemes [3]-[5] belongs to this
category. The main idea of the ENO scheme is that the spacial high-order approxi-
mations to the flux at a cell interface can be defined using high-order interpolation
in space, and then the high-order temporal accuracy can be achieved by another
discretization applying a high-order ODE solver. To our knowledge most high-order

numerical schemes rely on the semi-discrete approach.

In this paper we investigate the fully discrete approach to obtain arbitrary -order
(in space and time) numerical methods. The analysis is carried out in the context
of a model hyperbolic conservation law. The resulting schemes are expressed in

conservative form, as it is this form the one required for computing discontinuous



solutions to non-linear hyperbolic systems of conservation laws.

This paper is organized as follows: section 2 establishes a formula from which 2-
level explicit fully discrete arbitrary-order non-conservative numerical schemes can
be derived. Section 3 develops a method to transform the non-conservative schemes
to conservative form. In section 4 we apply the technique to construct some high-
order fully discrete conservative numerical schemes and give the stability condition
for the schemes. Section 5 contains some numerical experiments and section 6 is

conclusions.

2 Fully Discrete Formula

We consider the initial value problem (IVP) for one dimensional linear scalar hyper-
bolic partial differential equation (PDE), namely

utau, =0 —oco<zr<oo,t>0 (1)
u(z,0) = uo(z)

Here, u(z,t) is the unknown function and a is a constant wave propagation speed.

We discretize the computational half plane by choosing a uniform mesh with a
mesh width & = Az and a time step k = At, and define the computational grid
z; = jh, t, =nk. We use U to denote the computed approximation to the exact
solution u(z;,t,) of equation (1).

In this section a fully discrete technique for the model equation is investigated. The
fully discrete approach is based on Taylor series expansion in both space and time

in a single stage.

Theorem 2.1 The fully discrete formula from which a two-level fully discrete ez-

plicit m-th order accurate finite difference method can be derived for the model hy-



perbolic equation, u; + au, = 0, is defined as
P
U = 3 Br, Upya, (2)
a=1
where « is the grid point number; p is the number of grid points used, p =m+1; m

is the order of accuracy; By, are constant coefficients determined by

4 Bka=0 = 1 — Z?:l,ka;éo Bka
-1

By, ki ky ... kn —c
B k2 k2 ... k2 2
: "= :1 :2 : :m c (3)
By, S R i (—c)™

| (ko #0)

where ¢ is Courant number, ¢c = EA%.

Proof

In order to prove the theorem, we first analyse the local truncation error of equation

(2) by Taylor series expansion of both sides of equation (2). This can be written as:

E(z,t) = u(z t)—}-Z

Ugn -+ O Atm-'—l)

- Z B, |u(z,t) + Z (ks A$ ———Uyn | + O(Az™1) (4)

a=]1

Aty 3%y

where m is the order of accuracy of the scheme, 1 < m < c0; upm = Sy Uan = 5o

= (At)". The relationship between m and p obviously is
p=m+1 (5)
For the scalar equation in (1), it is easy to obtain:
uer = (~0)"tn 6)

Substitution of equation (6) into equation (4) gives

E(z,t) = (1—inc.) M+Z[

P (k A:v)

_ZBka

At“

uzn

u} + O(A#™1) + O(Az™) (7)



In order to achieve m — th order of accuracy, it is sufficient to require that

P
1—> B, =0

a=1

Atn(—a) Ugn — E By,

(n=1,2,3,... )

(ko Am)”

anzo

Simplifying equation (8b), equations (8a) and (8b) can be rewritten as

L3

Bka—o = 1 - ZZL—I Jka#0 Bka

a_l kaqéok Bku ( )n (n: 1’25"'7777') )

Equations (9) can be transformed into the alternative forms

or

¢ Bku:O =1- E?:l,ka;ﬁo Bka
lekl + kZ-Bkg +-- kmBkm = —
) KB + KBy, + - + KBy, = &

k{"Bkl-}-kaan?-}----
| (ko #0)

+ ki Br, = (—c)”

¢ Bka=0 = 1 - EZL:Lku#O Bka )
Bk1 k‘l k2 N ]Cm —C
B | | KB .| |&
B, [ N i (—e)™

\ (ka #O)

which is the formula (3) and establishes the theorem.

(9)

(10)

(11)

The same result can be found in Roe [6] who derived it in a different manner and

utilised it for different purposes to those of this paper. Our ultimate aim is to utilise

this result to develop high-order schemes for CFD.

For an m — th order numerical method, according to equation (5), p coeflicients

By (a = 1,2,---

,p) are needed in equation (2). Equations (9), or

(10), or

(11),



having p equations, are therefore closed so that arbitrary-order numerical methods

for the linear scalar equation (1) can be obtained.

Some interesting observation can be made. The first one concerns the order of
accuracy; this depends on the number of nonlinearly related grid points used, that
is, the more grid points are involved the higher the order of accuracy achieved; see
equation (5). A second aspect relates to the stencil of the scheme. Using the same
number of grid points, but in different stencils, different numerical schemes can be
obtained. If only integer points are considered, the number of numerical methods
(N) which have the same order equal to the number of the points used, i.e. N = p.

For example, for four-integer-point schemes we can find four third-order numerical
methods.

In section 4 we will use some examples to illustrate these remarks and to show how

to apply the formula to derive high-order numerical methods.

3 Conservative Schemes

Using theorem 2.1 we can construct 2-level fully discrete explicit arbitrary-order
non-conservative numerical schemes. But these schemes are only suitable for linear
systems or non-linear systems with smooth solutions. When extending these meth-
ods to nonlinear conservation laws we expect to meet two new problems. First the
method might coverge to a wrong weak solution and second the method might suffer

nonlinear instability.

In this section we reformulate the arbitrary-order finite difference schemes of the
previous section in a conservative form. Following Leveque’s notation [1] a method
in conservation form reads
T T k M n . .
Uit = Up = - [F(U™5) = FUSi = 1]V (12)

where F(U™; 7) is a numerical flux function which satisfies the consistency condition

Fla,,...,a) = [(2) (13)



here u is constant.

Lemma 3.1 The conservative form of the scheme (2) is

K n k i
Urtt = Ur - < -—F Z Bka T (14)

where the vector By, is determined by equation (3).

Proof

By manipulating equation (2) we have

n+l
UJ - Z Bka J+ka

14
- U -U-B+ Y Bl
a=1,ka#0

. k 1
= Un Z CBka J+kq

which is equation (14).

From here we can derive the numerical flux by the following theorem.

Theorem 3.1 Scheme (2) written in conservative form (12) has numerical fluz

F(Un,]) 2 —2 +ka (15)
FU™j—1) =542 o 1 Bay1 Fly,
the coefficients B, are defined by |
B, = 4,
Bz = - (16)
Ba - Ba+1 = Aa

(¢=2,3,...,p—1)



Proof

If we rewrite the conservative scheme (14) as
Uit = U7 — Z AaFyi, (17)
a-—l

where « is the grid point number, A, are the coefficients and the p points are
arranged as
ky<ki<ks<...<k (18)

then

F(Un,])-—F( .7—'1 ZB _1+k ZBa+1 j+ka

a=2 a=1
-1
= By Fiy, — BoFiyy, + Z(B — Boy1)Fii,
a=2
From equation (17) we have
p—1
B, J+k BZFJ+k1 + 2 B, BO"H J+k Z Aa ]+ka (19)
a=2 a=1

Comparing the coeflicients on both sides of equation (19) we have the following

B, =4,
Bg = —A1
Ba - Ba+1 = Aoz

(a=2,3,...,p—1)

which is equation (16) and the proof is complete.

4 Conservative High-order Numerical Schemes

In this section, we use some examples to demonstrate how to apply the method

presented previously to derive high-order numerical schemes.



4.1 Fully Discrete Second-order Schemes

From equation (5) second-order schemes need at least three grid points. It will be
seen that some familiar numerical schemes such as the Lax-Wendroff and Beam-

Warming schemes can be derived using our approach.

4.1.1 Centered Scheme

Let us denote the 3-point centered scheme as Ut = FUP UL, URy).

Here, ky =0, k; = —1, k3 =1 in equation (10), which gives
—B_;+ By = —c
B_y+ B =¢
BO =1- B_1 - Bl

B_y=%(c+1) (20)

Therefore the non-conservative numerical scheme is

1 1
Uit = (1= U7 + 5(62 +Ui, + 5(62 — Uiy, (21)

which is the Lax-Wendroff (L-W) scheme [7].

The conservative form of L-W scheme according to equation (14), is

n n k 1 n I 1 n
Urt! = Uy - % [—5(1 +c)F7 ) + cF; + -2-(1 - C)Fj+1] (22)

Note that here, from equation (18), k; = —1, k; =0, k3 = 1.

From equation (17) we have
A1 = —%(1 -+ C)
A2 =c
A3 = %(1 - C)



and from equation (16) we have

B3=A3=%(1—C)
Bz-:—A1=%(1+C)
Bg—B3=A2=C

Therefore the numerical flux of the L-W scheme is

_ n - 1 n 1 n
FL W(U 7)) = 5(1 + ) F}' + 5(1 —o)F}y, (23)

Applying the stability analysis method introduced in [8], the amplification factor A
of the scheme is

A=1-2¢ (24)

For stability one requires |A| < 1 which is satisfied if

lef <1 (25)

4.1.2 Upwind-biased Scheme

We denote the scheme by Ut! = f(U},Ur,,U,) when we assume @ > 0 in
equation (1).
Here, ky = 0, ky = —1, k3 = —2 in equation (10), which gives

—B_y—2B ;= —c
B_1 + 4:B_2 = C2
B()Z].—B._l —B_2

By=1+1%~3¢

2 2
B_; =2c—¢c? (26)
B_2=%62—%C
Therefore
Urtt = (1 Lo 3U" 2 Hur L2 lU" 27
j —(+§C‘§C)j+(c“c)j—1+(50—‘2'c) -2 (27)

which is the Beam-Warming (B-W) scheme [9].
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The conservative form of B-W scheme according to equation (14) is
l@“zU}—Eb@~dﬂ—%2—@ﬂ4—5@—nﬂ4] (28)

where from equation (18), k; = =2, ky = —1, ks = 0.

From equation (17) we have

Ay =—X1-¢)
A2=C“2
A3=%‘(3‘—C)

and from equation (16) we have
B; = A; = %(3—c)
By =—A;=1(c-1)
By —B3=A;=c¢c—2
The numerical flux of B-W scheme is
FEY(U™5) = 5o~ DFLy — (e~ I)F (29)
The amplification factor of the scheme is
A=2—4c+1 (30)
For stability |A| <1 which is satisfied if
0<ec<L?2 (31)

4.2 Fully Discrete Third-order Schemes

From equation (5) third-order schemes use at least four grid points. Let us consider

. . nt+l __ n n n n
a scheme which is denoted as U7 = f(UP,Ur T Ula)-

Here, ky =0, ky = —1, k3 =1, and k4 = 2. From equation (10) we have
Bo=1-B_,—-B,— B,
—B_1+ B1+2B; = —c
B_y+ By +4B; = ¢ ‘
—B_1+ By +8B; = -
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or
Bo=1+43c—c—1c

- 13412, 1

By =g+ 3¢ + 3¢

Bi=3:l+1it-¢
_ 1. 13
Bz—GC 6C

(32)

Therefore the third-order (both in space and time) non-conservative numerical scheme
is

1 1 1 1 1

n+l Pl S A ¢ -3 -2 - n
U} (1+ 3¢~ ¢~ 3¢ YUT + (6c + 5¢ + 3c)UJ_l
1 1 n 1 1 "
+(§C3 + 562 — C)Uj+1 + (EC - EC3)Uj+2 » (33)
The conservative form of this scheme according to equation (12), is
k11 1 1 1 1
n+l n 2 n 2 n
U= gl e ) - GG e I
1 1 n 1 1 n
'—(562 + §C — 1)Fj+1 — (g - 662)Fj+2] (34)

where from equation (18), k& = —1, k2 =0, k3 =1, k4 = 2 and from equation (17)
we have

==+ et )

Ay = %62 +c— %

Ag=—(3+3c—1)

=1l.2_ 1
A4_GC 5

According to equation (16) we have

Bi=As=%*—-3%
By=—-A1=3+3c+3 (35)
By—B3=A;=3+c—3
B3—B4:A3=1~-;-c—-;-c2
Hence 51 |
B; = i §c2 - 5¢ (36)
and the numerical flux of the scheme is

P = (e 5o+ T+ G -5~ g9+ G~ (47
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Applying a stability analysis we have the condition
~-1<¢<0 (38)
which implies that a < 0 in equation (1).

For positive speed a in (1) the corresponding four point scheme has flux

4—P (PP - T 2 1 2 n

The stability condition for this scheme is

0<e<1 | (40)

By unifying the two previous schemes we obtain a five-point third-order method

which can accommodates arbitrary wave speeds and has flux

n. 1 irn o pm la] 1 |, ¢
a
+l—6"|“ (1 - Cz) AUj+L+1§ (41)
where
AUJ+L+I§ = Ujsz1 = UjrL (42)
=—1 3
L z-f a>10 (43)
L=1 if a<0
The stability condition of the method now is:
le] <1 (44)

4.3 Fully Discrete Fourth-order Centered Scheme

From equation (5) the fourth-order scheme needs at least five grid points. We denote
the fourth-order centered scheme as U }’H = f(U}o, Uy, UF U, U Ta)-
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By repeating the same procedure as before, the fourth-order centered scheme has
flux

|a]

FU™5) = ¢ (F7 + i) - 2

1 2 3
AUj+%+a<E+'2—4—-1—2—§Z)AU~ 1

1 7 . e 1
+a (5 sgn(a) — z¢ + %) AUj_,_% —a (C—- L2 + '—> AUJ’+-§ (45)

The stability condition of the scheme is:
] <1 (46)

For the reader’s benefit all other third and fourth-order schemes are included in the

appendix to this paper.

5 Numerical Experiments

In this section we use some numerical experiments to demonstrate the performance
of the fully discrete high-order numerical schemes. To this end we select a smooth
initial condition

u(z,0) = sin-g-ac (47)

We are interested in evolving the solution for long times. The chosen computational
domain is therefore large and varies according to the evolution time. We thus select

a fixed mesh width Az = 0.1 and a Courant number coeflicient 0.7.

Figure 1 shows a comparison between the numerical solution obtained by the Lax-
Wendroff method (boxes) and the exact solution (solid line) after 1000 time steps.
The dispersive errors of the method are evident and result in a trailing numerical
solution. Clearly second-order methods can be very inaccurate in modelling long

time behaviour.

Figure 2 shows a comparison between the numerical solution obtained by the third-
order method and the exact solution after 6000 time steps. Although the solution
looks more acceptable than the Lax-Wendroff solution evolved for only 1000 time
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steps, the numerical diffusion of the thir-order scheme produces the inaccuracy ob-

served.

Figure 3 shows a comparison between the numerical solution obtained by the fourth-
order method and the exact solution after 20000 time steps. The numerical solution
still looks accurate at the shown time. This indicates that the accuracy of numerical

solutions is improved dramatically by changing from second to fourth order methods.

Figure 4 shows a comparison between the numerical solution obtained by the 20th-
order centered method and the exact solution after 50000 time steps. As expected

the numerical solution looks very accurate.

To summarize the situation Figure 5 shows the comparison of the Lax-Wendroff
method (crosses), the fourth-order central scheme (boxes) and the exact solution
(solid line) after 10000 time steps. The effects of dispersion and diffusion have made
the solution of the Lax-Wendroff method meaningless. This justifies the necessity

for higher-order numerical schemes for problems which involve long time evolution.

6 Conclusions and Discussions

An approach for constructing two-level explicit fully discrete arbitrary-order conser-
vative numerical methods for one dimensional scalar hyperbolic equation has been
presented. To illustrate the technique fully discrete second, third and fourth-order
conservative numerical schemes are given. Numerical experiments indicate that the
second-order methods are not accurate for problems requiring long time evolution,
and a dramatic improvement of the numerical solution is seen when the accuracy

changes from second to fourth order.

In this paper we have laid the fundations for developing high-order methods that
are applicable to non-linear systems of hyperbolic conservation laws. There are two
major problems to be addressed. One is the problem of monotonicity of the schemes

near high gradients (e.g. shocks) and the other is the extension of the approach to
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non-linear systems. These issues are the subjects of current research.
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Figure 1: Numerical Solution by the Lax-Wendroff Method (symbol) and the Exact

Solution (line)
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order Method Solution (boxes)

APPENDIX

A  Fully Discrete Third-order and Fourth-order

Schemes

1. Seven-point Third-order Scheme
By unifying the pair of one-side four-point schemes

{ Urtt = f(Ups, U;_;,, Ur, UF)

Un+1 ha f( i+3 ]+27 _7+1? Uﬂ)
the numerical flux of the scheme can be written as
n - l T n | l 5 2

1 c
el (5 51+ G)AU+'=2+‘ )
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where
]C1='—1, k2=—2 Zf c>0 (49)
k1=1, k, =2 Zf c<0
The stability condition of the scheme is:
1< <2 (50)
2. Seven-point Fourth-order Scheme
Unifying the following pair of five-point schemes
{ Up*h = f(Us s, Uty Ul UF, URyy)
Un+1 = f( 432 ]+27U]n+17 7 7Un 1)
the numerical flux of the scheme
., 3\ 1 n n I l 11 1 2 1 3)
FU75) = 5(E7 + Fiy) DA, +1d ( Sl + 4c 24[c| AUj,y
tal (et - 2~ 14 L 1) ap, al (7lel® ~ ¢ - Sl + 2 ) Al 3(51)
12 3 12t bty T 12° ¢ itht}
where
kl = ""1, ]{,‘2 = -2 Zf c>0 (52)
klzl,k2:2 7,fC<0
The stability condition of the scheme is:
] <2 (53)

3. Nine-point Fourth-order Scheme

From the pair of five-point one-side upwind schemes

{ U = S}, U, U, U, U5)
Un+1—f( j+4> ]+37 _7+27 ]+1,Un)

we have the numerical flux of the scheme as

lon | |al 1
F(U™4) = 5(F} + Fiy) - K ot = e |)AU+k1+_

lcf? 2 17 1 11, 1 1
+|al ( 502 + 12| c| - 6 AU; Jtke+3 + laf (Z - ﬁl o+ ;1'02 - QM )AU +k3+1(54)

13
S AUy +lal (5~ aolel + =



where

by =—1, by = —2, ks = —3
ki=1, k=2 ky=3

The stability condition of the scheme is:

1< <3

ifc>0
tf c<0

20



