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Abstract

We analyse the uncertainty present at the structural-sizing stage of aircraft design

due to interactions between aeroelastic loading and incomplete structural definition.

In particular, we look at critical load case identification: the process of identifying

the flight conditions at which the maximum loading conditions occur from sparse,

expensive to obtain data. To address this challenge, we investigate the construction

of robust emulators : probabilistic models of computer code outputs, which explicitly

and reliably model their predictive uncertainty. Using Gaussian process regression,

we show how such models can be derived from simple and intuitive considerations

about the interactions between parameter inference and data, and via state-of-the-

art statistical software, develop a generally applicable and easy to use method for

constructing them. The effectiveness of these models is demonstrated on a range of

synthetic and engineering test functions. We then use them to approach two facets

of critical load case identification: sample efficient searching for the critical cases

via Bayesian optimisation, and probabilistic assessment of possible locations for the

critical cases from a given sample; the latter facilitating quantitative downselection

of candidate load cases by ruling out regions of the search space with a low prob-

ability of containing the critical cases, potentially saving a designer many hours of

simulation time. Finally, we show how the presence of design variability in the loads

analysis implies a stochastic process, and attempt to construct a model for this by

parametrisation of its marginal distributions.
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1.1. On Data Chapter 1. Introduction

1.1 On Data

Modern engineering design is experiencing a rapid shift towards digitisation. The

complete lifecycle of product development – whether this be aircraft, turbomachin-

ery, automobiles or household appliances – is increasingly simulated, with complex

simulations of real world physics used to assess, predict and/or monitor various per-

formance characteristics under a wide range of operating conditions. This digital

transformation has occurred to such an extent that some researchers have adopted

the term Industry 4.0 [1].

Means of acquiring performance information for each and every subsystem of the

product has spurred substantial interest in utilising it. The opportunity to anal-

yse the interaction between subsystems previously analysed in isolation has not

been overlooked, and industry and academic interest in multidisciplinary design has

surged in recent years, encouraged by (relatively) recent capability to acquire and

process larger and larger amounts of data via increasingly realistic and affordable

simulation.

Simultaneously, advances in the fields of computer science and computational statis-

tics have provided scientists and engineers with increasingly sophisticated tools to

process and analyse larger quantities of increasingly complicated types of data. In

particular, the potential to analyse complex systems of many interacting variables at

the lowest level – made possible by the capability to both acquire and load this data

into memory (crucially, on relatively inexpensive hardware) – has attracted consid-

erable interest from the engineering design community due to potential applications

in multidisciplinary design.

There are, however, obstacles towards adoption of many Machine-Learning (ML)

derived methods seamlessly into the industrial engineering design process: born pri-

marily of increasingly affordable means of generating and storing information, many

modern ML algorithms function most effectively on either large volumes of data

(high dimensional regression and/or classification, deep learning) or in situations

permitting relatively inexpensive data acquisition (many-objective heuristic opti-
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misation in general). In engineering design applications, and certainly within the

context of high-value manufacturing – which in particular requires high precision,

detailed calculations of complex physics – such acquisition rates and/or volumes of

data are unprecedented, even after accounting for algorithmic improvements and

advances in computational power. A significant barrier towards effective, industri-

alised Multidisciplinary Design Optimisation (MDO) – which by its nature requires

cross-disciplinary correlations between design variables to be digested and under-

stood – is consequently the provision of data at sufficient speeds and/or quantities

to make this possible.

1.2 On Surrogate Models

The current generation of physics models are often referred to as “expensive” due to

the relative amount of resources required to query them. This cost can be expressed

in any number of ways, usually in terms of clock-time, but is in general “fixed”

by that particular model: for example, while provision of faster clock time is often

possible through purchase of more powerful hardware or via cloud based services,

the cost of the model then manifests as a monetary expense associated with the rent

and/or upkeep of these resources instead.

A physics based simulation – herein a simulator – can be considered more generally

as a means of collecting information, analogous to performing a physical experiment.

One can consider that testing a component in a wind-tunnel and carrying out a

Computational Fluid Dynamics (CFD) simulation of the same component might

seek to answer similar or identical questions about that component’s performance

characteristics. Indeed, the introduction of accurate simulation to engineering design

provided means of analysing a much larger number of design configurations, thus

permitting more rigorous exploration of a given design space by reducing the cost

associated with data acquisition relative to physical testing.

Current barriers towards multidisciplinary optimisation can be tackled in an analo-

gous fashion. Viewed as a “black-box” (that is, a function which we cannot “look
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inside”), all simulators act as functions, transforming some abstract “input” to

a set of quantities of interest (QOIs) or “outputs”. Assuming this input can be

parametrised, this input-output relationship can be expressed in a neat, mathemat-

ical expression:

y = f(x) (1.1)

The apparent simplicity of equation (1.1) is due to the abstraction of the context

surrounding the simulator, f ; its inputs, x; and its outputs, y. Of importance is

that nothing is necessarily absent from this expression, provided all we care about is

the value of y given a specific input x. It is this fact that provides a solution to the

data-dilemma facing current generation simulators: by suitable parametrisation of

the model inputs, one can consider learning the input-output relationship described

by (1.1), hence approximating it with a “purely mathematical” alternative:

y = f(x) ≈ ŷ = f̂(x) (1.2)

f̂ is usually referred to as a meta-model or surrogate. f̂ is assumed to have no

explicit knowledge of any physics, in that it does not solve or consider systems of

physics based equations: it simply seeks to represent the relationship between x

and y. In this sense, a surrogate model is simply a regression of y onto x, and is

“purely mathematical” in the sense that it is agnostic to both what goes on inside

the original black-box, f , and even what the original inputs and outputs actually

represent. Absence of such considerations make a surrogate significantly cheaper

to query than a simulator, as no effort needs to be spent ensuring large systems of

state equations or the like are satisfied.

Effort is required to construct a surrogate model in the first place, given the rela-

tionship between x and y must be “learned” from data. This requires samples from

the simulator, available either via some database of existing results, or – perhaps

more frequently – via running the simulator at a selection of chosen sample points
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by performing a Design Of Experiments (DOE). Given that this involves multiple

queries to a potentially expensive computer code, this represents the bulk of the

cost associated with the use of a surrogate model.

Given this description, surrogate modelling may seem like a canonical supervised

learning problem – and in many respects it is. However, given that we require a

surrogate model precisely because the target function is expensive, this problem is

often “data sparse”. The outputs of surrogate models are also frequently fed into

other “downstream” processes, meaning it is critically important to understand the

performance of the model, and in particular the effect of any differences between the

surrogate and the target function on other components in the analysis process.

1.3 On Predictive Uncertainty

The task of identifying the relationship between inputs, x, and outputs, y, using

a finite number of samples, is one of inference, and it is extremely rare that this

functional relationship can be identified exactly outside of trivial examples.

This has two important consequences. The first, and most obvious, is that equiv-

alence between f and f̂ can only be obtained in artificially contrived examples.

Practically, this implies that we should not expect f(x) = f̂(x) for all possible x,

unless f is a very simple function (in which case we do not require a surrogate!).

The second, and perhaps more subtle point, is that it may not be possible to iden-

tify a unique model for f from a finite number of samples. Both of these points

contribute to uncertainty associated with the use of the surrogate in place of f , i.e.,

there will be an unknown error associated with the use of a surrogate model. This

is typically referred to as predictive uncertainty, so called because predictions made

by the model ought not to be considered deterministic, but rather distributions of

possible outcomes.

To expand on this further, consider a surrogate model, f̂ , for a simulator, f . The
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relationship between the two can be expressed as follows:

f(x) = f̂(x) + εx (1.3)

where εx is the error (or residual) between the surrogate and the simulator at x.

For a set of N points {x1 . . .xN}, it follows that we have a corresponding set of

N residuals. The distribution of residuals is a summary of errors on a particular

dataset. However, what we are interested in is the performance of the surrogate at

points at which f(x) is not available, and thus exhibit an error that is presently

unknown. The best way we can accomplish this is by reasoning with the possible

distribution of error, i.e., to assign some measure of confidence to all values of error

we view as plausible. There are a multitude of frameworks for accomplishing this,

the most widely applied and understood being the theory of probability. A brief

introduction to probabilistic modelling is provided in appendix A.

1.4 On Aircraft Flight Loads

Detailed structural optimisation (or sizing) is amongst the most important stages

of industrial aircraft design, and can contribute significantly to design performance

and program time. This is a challenging and time consuming task: Iorga et al. [2]

put the number of design variables at well over 2,000 and the number of individual

structural constraints at over 100,000 for just the design of a wing-box. Accurate

prediction of the loads, which are responsible for determining the stresses against

which the structure is sized, is consequently of paramount importance.

Precise calculation of such loads is a computationally intensive procedure, and may

require several different analysis procedures depending on the type of loading [2].

The design process has historically been progressed from early stages by using fast,

coarse approximations, with full, detailed loads calculations reserved for resolving

the finer details of the design and for certification. However, relatively recent inter-

est in making robust design decisions earlier in the design process – motivated by the

potential financial consequences of prematurely committing to certain configuration
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choices – has encouraged use of certification standard loads simulation early on in

the design cycle. While theoretically providing a reduction in uncertainty due to

providing considerably more accurate predictions of the loads, ability to query the

loads process only a relatively limited number of times due to computational ex-

penses leads to a set of different uncertainty quantification related challenges.

1.5 Aims and Objectives

The formal objectives of this work are stated as follows:

1. A demonstration of the use of surrogate models for providing rapid approx-

imations of the aircraft loads analysis process, with examples of industrially

relevant use-cases utilising such models.

2. A critical assessment of the uncertainties present at the loads-structural cou-

pling interface, investigating the consequences of the use of an expensive, de-

tailed model early in the design process at stages where the structure does not

have detailed definition.

3. Development of models capable of representing the uncertainties described by

item 2.

4. A robust, industrialisable method for constructing models of uncertainty, to

facilitate the above.

1.6 Outline of This Thesis

This work adopts a probabilistic view of surrogate modelling and by doing so, fa-

cilitates an intuitive understanding of many types of uncertainties implicit with the

process.

Through Gaussian Process regression, introduced in chapter 2, we frame surrogate

modelling as a task of inference over types of functions, and in chapter 3, discuss

different strategies for performing such inferences, along with their implied assump-

tions.
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Chapter 4 discusses loads-structural coupling, an industrial multidisciplinary mod-

elling problem applicable to aircraft design. A case study is presented which makes

use of considerations developed during chapters chapters 2 and 3, and also serves as

an introduction the applied problem of modelling aircraft loads. Chapter 4 concludes

with an analysis of uncertainty present in the procedure.

Motivated by the problems described at the end of chapter 4, chapter 5 discusses

development of an industrialisable method for constructing robust models of uncer-

tainty (or emulators) applicable to general, data sparse surrogate modelling prob-

lems, using considerations outlined in chapters 2 and 3. The performance of such

models is evaluated on a variety of test functions in chapter 6.

In chapters 7 and 8 we revisit the aircraft loads process and address a major source

of uncertainty: the selection of the so called “critical” aircraft load cases. Using the

methods for constructing emulators developed in chapter 5 and validated in chapter

6, we first approach two slightly simplified versions of the problem in chapter 7,

before attempting to tackle the full problem in chapter 8.

1.6.1 Contributions to Knowledge

This work contributes several developments, both in terms of methods and applica-

tion of theory.

The surrogate modelling techniques documented in the case study introduced in

chapter 4 have been applied to both preliminary sizing of an aircraft structure [2]

and for propagating correlated structural design uncertainties [3].

Application of the theory for constructing robust emulators introduced in chapter

5 for the purposes of surrogate modelling is novel, as are the comparisons between

maximum likelihood estimation and fully probabilistic treatments of the models

documented in chapter 6.

Both facets of the critical load case selection as presented in chapter (8) constitute

advancements in capability: the use of Bayesian Optimisation for critical case iden-

tification is novel; and the probabilistic load case downselection strategy provides
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previously unrealisable industrial capability.

Finally, the mathematical contextualisation of the loads process featuring design

variability as a stochastic process in chapter (8) is original, as is the attempt to

model it as such.

1.6.2 Appendices

Several appendices are provided to supplement the main text, and will be referenced

where necessary if a terse explanation of a method or concept is required in order

not to detract from a more salient point.

Optional preliminaries required to appreciate probabilistic modelling in an intuitive

manner are introduced in appendix A, and an introduction to the basic intuitions

behind GP regression can be found in appendix B, along with a mathematical de-

scriptions of the basic algebraic manipulations required for practical use. Several

useful extensions to the standard GP regression model are documented in appendix

C.

Supplementary material for the case studies in chapters 4 and 6 is contained in

appendices D and F, respectively, and Appendix G contains a more detailed overview

of Bayesian Optimisation strategies to supplement chapter 7.

Code

A fully featured python package implementing all of the methods discussed in this

document can be found online. Please contact the author for access, as the repository

is private.
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Chapter 2

Practical Gaussian Process

Regression

We discuss Gaussian Process regression in the context of applied problems, reviewing

the strengths of the method, the process of selecting a covariance kernel and mean

function, and the types assumptions such choices contribute to the model.
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2.1 An Introduction to GP Regression

Gaussian Processes (GPs) are a popular choice for performing non-parametric re-

gression as they invoke a mathematically convenient probability distribution over

functions. This chapter adopts a Bayesian view of this procedure, in which a GP

defines a prior distribution over different functions considered candidate explana-

tions for observed data. Readers unfamiliar with Bayesian statistics are advised to

read the brief introduction contained in appendix A.

By conditioning this distribution over functions on a particular set of data, the re-

sulting conditional distribution is said to describe a subset of “random functions”

which are capable of “explaining” (or are compatible with) these observations. GP

regression can thus be interpreted as a technique for attempting to infer the mech-

anism by which some “inputs”, x1,x2 . . . , are mapped to corresponding “outputs”,

y1, y2 . . . , given some assumptions. We may think of these different possible func-

tions as “(data) generating mechanisms”, “candidate explanations” or “models for

the data”.

GPs are probabilistic models of models, in the sense that one obtains a prediction

in the form of a probability distribution over different ways the observed data could

have been generated. Ignoring for the time being how this distribution comes about,

from a surrogate modelling perspective this is convenient as a GP can be said to

quantify its own predictive uncertainty: all the models that are compatible with

the data and the assumptions of the GP are used to formulate a prediction. GPs

used as predictive models are occasionally referred to as emulators for this reason

[4], as they are models of both what is and is not known about the function they

are intended to provide a representation of.

How good of a representation this is primarily depends on the choice of the GP’s pa-

rameters, and how the assumptions implied by these parameters align with those of

the simulator the GP should provide a model for. This chapter introduces standard

considerations applicable to most GP regression problems.

For an accessible introduction to the intuition behind GP regression, along with a
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more detailed description of the basic mathematical manipulations required to use

the method in practice, readers are encouraged to read appendix B. Rasmussen and

Williams [5] provide a detailed, technical reference. In engineering literature, GP

regression is often referred to as Kriging.

2.1.1 Basics

A GP is a probability distribution defined over a D-dimensional space of input vari-

ables referred to as the index. The index corresponds to the space of input variables

for the function one wishes to model as a GP. A single point in the index is a D-

dimensional vector, in this document denoted by x, unless specified otherwise.

All GPs have two parameters which influence their behaviour, both of which are

functions of the index: the mean function, m(·); and covariance kernel, k(·, ·).

Let y be a length N vector of responses from a function we wish to model, assumed

to have been observed at a set of N sample points which are arrange in an N ×D

array, X. To write y as being distributed according to a GP, one writes:

p(y|X) ∼ GP(m(X), k(X,X)) (2.1)

where the somewhat abusive (yet fully conventional) notation m(X) implies evalu-

ating m(·) for each of the N points in X to produces a length N vector, m; and

(again, somewhat abusively) k(X,X) implies evaluating k(·, ·) pairwise between the

same N points to produce an N ×N covariance matrix, K.

Equation (2.1) refers to an unconditional GP, as it simply expresses the probability

of observing the responses, y, for a given X, assuming the chosen mean function

and covariance kernel.

Predictions are made by conditioning a GP distribution on data, represented by a

tuple, D , {X,y}, which contains the sample points and responses. Intuitively,

this restricts the distribution of the GP to functions which are compatible with the

observations in D.

13
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The predictive distribution at a point of interest, x∗, conditional on D, is de-

noted:

p(y∗|x∗,D) ∼ GP(m∗(x∗|D), k∗(x∗|D)) (2.2)

where y∗ represents the (unknown) response at x; and m∗(x∗|D) and k∗(x∗|D) rep-

resent computation of the conditional mean, m∗, and covariance matrix, K∗, respec-

tively, where:

m∗ = m(x∗) + k(x∗,X) · [K]−1 · (y −m)

K∗ = k(x∗,x∗)− k(x∗,X) · [K]−1 · k(X,x∗)
(2.3)

For a more thorough explanation please see appendix B.

2.1.2 Assumptions

GP regression, in it’s standard implementation, assumes that the distribution of all

“possible explanations” for a dataset compatible with the GP’s parameters is jointly

Gaussian. In simple terms, this is equivalent to asserting that the data is a draw

from something which behaves like a multivariate Gaussian distribution.

Adopting a Bayesian view, this need not be interpreted as the true data generat-

ing mechanism (whatever it may be) definitely following a multivariate Gaussian

distribution: this assumption is simply a modelling decision used for the algebraic

convenience of invoking a prior probability distribution over functions that can be

conditioned on data. However, the strength to which this assumption applies can

have consequences on how the resulting model may be interpreted. The conse-

quences of how strongly this assumption holds in terms of predictive performance

are investigated by Scheuerer et al. [6], and described in [5, ch.2 sec.4]. In general,

the predictive mean of a GP is the best unbiased predictor in the mean-squared sense

if the loss function associated with an incorrect prediction is symmetrical, that is; if

the penalty associated with making a prediction that is either too large or too small

14
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by the same amount is equal.

We note critically that theoretical optimality is not required for the model to be

useful. Transformation of a GP to obtain a stochastic process with non-gaussian

marginals has merit in select applications and is discussed briefly in appendix

C.4.

Further assumptions about the properties of the data generating mechanism are

encoded by the GPs parameters, and are the subject of the remainder of this chap-

ter.

2.2 Mean Function

Choice of mean function (sometimes termed the “trend”) is less critical of a mod-

elling assumption relative to the kernel, but still confers several important assump-

tions.

Use of a zero mean function implies all of the variation observed in the data is mod-

elled by the GP. This is beneficial as it ensures all assumptions about the data are

encoded by the covariance kernel, and is canonical in the machine-learning literature

discussing GP regression [5, ch. 2] [7, ch.15].

Use of a parametrised mean function (i.e. some function of the index) implies a re-

gression of the inputs using the chosen mean function, with the GP used as a model

for the residuals. This can provide better behaviour concerning long-range predic-

tions but can be prone to introducing over-parametrisation for simple problems if

the choice of mean function is arbitrary [8].

In general, if the data exhibits a known mean, this is useful information to include,

though makes reasoning with the desired properties of the covariance kernel a more

nuanced and problem specific task: any overlap in the modelling properties of the

kernel and the mean potentially leads to over-parametrisation.
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2.3 Covariance Kernel

The choice of covariance kernel encapsulates the most important modelling assump-

tions made when performing GP regression. The choice of kernel determines the

subset of functions over which the GP invokes a probability distribution (see ap-

pendix B), and consequently the properties of the resulting regression model.

The ability to choose this subset of functions via the kernel is a powerful modelling

tool. Given that GP regression is a task of probabilistic inference (specifically, we

are seeking to infer candidate “explanations” for observed data), ability to restrict

candidate functions to those with properties the data is known or expected to ex-

hibit can significantly improve the quality of the model, both in terms of predictive

accuracy and reliable quantification of predictive uncertainty. This is especially im-

portant for sparse data and/or uncertainty quantification focused applications in

which the data alone may not reveal much (or anything) about the properties of the

data generating mechanism, and one might wish to impose structure on the space

of possible models that the data is incapable of revealing by itself. An important

example of such structure which we will explore shortly in section 2.3.6 is smooth-

ness. This is the principle advantage of GP regression relative to other forms of

non-linear regression such as neural-networks, which typically require significantly

larger quantities of data to function reliably.

It is worth noting that while the properties that the data generating mechanism

does exhibit may often be unknown or even unknowable, knowledge of properties

that it does not exhibit can often be deduced from specifics of the problem: this is

equivalently useful information.

2.3.1 Hyperparameters

Most covariance kernels, in addition to accepting a pair of points from the index,

contain extra parameters which influence the behaviour of the kernel. In the context

of GP regression, in which the covariance kernel is itself a parameter, these are

referred to as hyperparameters (literally, “parameters of parameters”).
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We assume the hyperparameters of an arbitrary kernel, k, are summarised by a vec-

tor, θ, which is assumed to contain all relevant hyperparameters for that particular

kernel. A specific kernel “given” a vector hyperparameters is denoted k(x,x′|θ), in

order to emphasise the dependency of k on θ.

Identifying the appropriate hyperparameters for a particular kernel and dataset is

one of the central tasks when performing GP regression, and is usually what is

implied when one discusses “fitting” a GP to a dataset. Selection of an appropriate

type of covariance kernel, however, is an essential first step, and can even determine

the most suitable manner in which the hyperparameters should be identified.

2.3.2 Marginal Standard Deviation

Almost all kernels are scaled by an amplitude (sometimes “bandwidth”) hyperpa-

rameter, α, which controls the (unconditional) marginal standard deviation of the

GP, roughly equating to the magnitude of the oscillations in the functions the GP

encodes a distribution over.

For example, if c(x,x′) is a function describing correlations (that is, normalised

covariances) between points, then one can obtain a covariance matrix by scaling by

α2:

k(x,x|θ) = α2c(x,x′) (2.4)

where θ is a vector containing the amplitude hyperparameter, α, along with any

other parameters used by c(x,x), i.e., θ , [α . . . ]. A visual demonstration of the

effect of α is shown for a 1D function in figure (2.1).

The marginal standard deviation hyperparameter is important as it influences the

sensible ranges of the other kernel hyperparameters, particularly the kernel length-

scale(s), which will be introduced shortly.
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Figure 2.1: Visualisation of changing the marginal standard deviation (“amplitude”) hyperparam-
eter. The shaded areas correspond to three standard deviations. Unscaled marginal distributions
are sketched at x = 0.5.

2.3.3 Stationary Kernels

The canonical class of kernels in the GP literature are those referred to as stationary.

A simple description of a stationary kernel is that the covariance designated by

such kernels is translation invariant over the index on which they are defined, such

that:

k(x,x′) = k(x + ∆,x′ + ∆) (2.5)

where ∆ is some perturbation.

This implies that the covariance between any two points in the index as determined

by a stationary kernel is a function of only the distance between those two points,

and that the abstract “properties” of the sample functions encoded by such a kernel

are constant over the index. An example of such a property might be the frequency

of a periodic function. In contrast, if the properties of these functions were to be

different depending on the absolute position in the index at which they are observed,

a kernel encoding such properties would not be stationary. A visual example is shown

in figure (2.2): the sample paths shown on the non-stationary plot can be observed

to become more oscillatory as x→ 1, while those on the stationary plot oscillate at

a fixed frequency regardless of where in the index one looks. A formal mathematical

description of the stationary property can be found in [5, ch. 4].
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Figure 2.2: Sample paths drawn from stationary (left) and non-stationary (right) kernels.

2.3.4 Lengthscales

Many popular stationary kernels are functions of a scaled euclidean distance:

k(x,x′) = α2c(r) (2.6)

where c(r) determines the correlation between two points as some function of the

scaled distance between them, given by:

r =
(x− x′)2

l2
(2.7)

The (strictly positive) parameter, l, is a hyperparameter known as a lengthscale. A

smaller lengthscale causes r to increase more rapidly with distance, which translates

to more quickly decaying covariance as a function of the absolute distance between

points. It is worth observing that l is a constant, and hence implies the assumption

that functions encoded by a particular stationary kernel have the same lengthscale

of l everywhere in the index.

In terms of the properties of functions encoded by a stationary kernel, the length-

scale can be interpreted to control the degree of nonlinearity over which the kernel

invokes a distribution [9]. Short lengthscale kernels are said to be more nonlinear,

as quickly decaying covariance between points implies more “local” variation (with

identical amounts of local variation assumed to be present elsewhere, as implied by

the stationary property). Functions drawn from long lengthscale kernels, on the

other hand, become asymptotically linear as l→∞, as points far from one another
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Figure 2.3: Sample paths drawn from stationary GPs with different lenghtscale kernels.

can retain high covariance. A visual example is provided by figure (2.3).

2.3.5 Isotropy and Automatic Relevance Determination

The scaled distance described by equation (2.7) is referred to as isotropic, since a

single lengthscale is shared for each dimension of the index. Intuitively, if k(r) is a

stationary, isotropic kernel defined over a D-dimensional index, then the subset of

functions over which k invokes a distribution will exhibit identical nonlinearity in

all D input dimensions. Since this is an unrealistic assumption for many practical

problems (particularly in engineering, where model inputs tend to represent quan-

tities which may have different units and/or scales) it is more common to use an

anisotropic scaled distance, τ :

τ =
d∑
i=1

(xi − x′i)2

ρ2
i

(2.8)

where xi represents the ith element of either x or x′. Anisotropic kernels are are

parametrised by a vector of D dimensionwise lengthscales, ρ , [ρ1 . . . ρD], controlling

the relative nonlinearity in each of the input dimensions independently. Kernels

which are functions of τ are occasionally referred to as implementing Automatic

Relevant Determination (ARD) [see 10], as some researchers interpret the magnitude

of ρi for a given dimension to correspond inversely to that dimension’s perceived

“importance”.

Finally, it deserves mentioning that there is some flexibility in terms of how one
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Name Notes
Exponentiated Quadratic Infinitely smooth
Matérn (full) Smoothness controlled by ν
Matérn (ν = 5/2) Twice differentiable functions
Matérn (ν = 3/2) Once differentiable functions

Table 2.1: Common stationary kernels and their corresponding smoothness proper-
ties.

parametrises the scaled distance described by equation (2.8), with some authors

preferring to use squared and/or inverted versions of the lengthscales, ρ.

Anisotropic kernels are canonical for almost all engineering surrogate modelling

applications using GP regression.

2.3.6 Encoding Smoothness

In many cases, we wish to model functions which are smooth. A somewhat informal

description of this property is that we expect f(x) to be close to f(x + δ), where

δ is a small perturbation: i.e., we do not anticipate that moving a short distance

anywhere in the index will produce a large change in the value of the function we

are interested in modelling. A function which is not smooth, for comparison, might

contain one or more discontinuities, such that the previous does not hold everywhere

in the index. A rigorous mathematical treatment of sample function smoothness can

be found in [11].

For applied problems, the “degree” of smoothness encoded by a given kernel is often

expressed in terms of the number of times a sample path from such a kernel can be

differentiated with respect to the index. This is convenient for practitioners, as it

is often a reasonably straightforward property to reason with: when building surro-

gate models of computer physics codes, for instance, the properties of the physical

quantities one wishes to create a model in terms of may bound the number of times

one might expect the output to be differentiable with respect to the index.

Table 2.1 contains the smoothness assumptions for several popular stationary covari-

ance kernels. The Exponentiated Quadratic (EQ; occasionally “squared exponen-

tial” or “gaussian”) kernel is ubiquitous in the scientific literature, despite encoding
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Figure 2.4: Posterior distributions for an infinitely smooth (left) and once differentiable (right)
kernel used to model a once differentiable 1D function (dashed line).

overly aggressive smoothness assumptions for many problems. This is due to its (rel-

ative) simplicity, and the fact that it is universal (see [12]), which in practical terms

implies the kernel can model any arbitrary continuous function given enough data.

This makes the EQ kernel a reasonable first choice for many modelling problems,

though the caveat of requiring a sufficient density of observed points to produce a

quality model of any continuous function should be emphasised.

Failure to sufficiently match the smoothness properties of the target function can

have important modelling consequences. Figure (2.4) provides a simple 1D example

on a synthetic function, demonstrating harmful overconfidence of the EQ model on

a target function which is only once differentiable (only the first derivative is finite).

In several regions of the index the infinitely smooth kernel exhibits pathological

overconfidence, manifesting as certain values of true function being designated im-

probable by the model. With reference to the previous paragraph, it is worth noting

that the EQ model is capable of approximating this synthetic function, but not

without a larger volume of data.

2.4 Limitations

The most significant disadvantage of GP regression relative to other surrogate mod-

elling techniques is the implied computational cost. Fitting a GP to data (to be

discussed in the next chapter) requires repeated inversion of the GP covariance ma-

22



Chapter 2. GP Regression 2.5. Summary

trix, which is a has a computational complexity of O(N3). The scalability of GP

regression in its standard implementation is consequently poor, and it is hard to rec-

ommend using a GP for over approximately a few hundred samples, depending on

hardware. However, due to the convenient theoretical advantages of GP regression,

recent attempts have been made to adapt it to large sample sizes. Wilson et al. [13]

reviewed some of these methods.

A further, under-recognised limitation with GP regression is scaling with respect to

the number of input dimensions. A GP covariance matrix can be considered to be

a function of the distance between points, and this distance increases exponentially

(all else remaining equal) with each additional dimension. High numbers of input

dimensions consequently imply larger distances between points, to the extent that

new points are “further away” from existing observations. While it depends on the

quantity of available data, this somewhat limits the effectiveness of GP regression in

its default implementation through interaction with its first and primary limitation:

beyond more than approximately 15 input dimensions, a large volume of data is

required to ensure sufficient coverage of the input space. Without addressing sample

size scalability, such sparse coverage will result in predictions that are almost always

distant from observed data (in the context of the kernel), thus exhibiting large

amounts of predictive uncertainty and tending towards the unconditional mean of

the model.

Finally, the effectiveness of GP regression for a given problem depends strongly

on how the assumptions encoded by the kernel align with those of the real data

generating mechanism.

2.5 Summary

We briefly introduce GP regression, a technique for performing inference over func-

tions. By conditioning this distribution on observations from some data generating

mechanism, one obtains a distribution over only those functions compatible with

the assumptions encoded by the GP and the supplied observations. This condi-
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tional distribution can be used to provide statistical predictions of the value of the

hypothesised data generating mechanism at new points.

The textbook of Rasmussen and Williams [5] is a valuable resource for any prac-

titioner using GP regression. Duvenaud [14, ch.2] presents a detailed exposition

on encoding structure with different kernels in the context of predictive modelling,

and Gelman et al. [15, ch.21] discusses GP regression in a probabilistic modelling

context.

Surrogate models such as GP regression are a mainstay of the modern engineering

design process, and are put to use for an increasingly diverse array of tasks. Viana

et al. [16] provide a comprehensive review of surrogate modelling since its inception.

Forrester and Keane [17] reviewed applications in the context of optimisation, and

Iooss and Lemâıtre [18] reviewed sensitivity analysis.
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Hyperparameter Inference for

Gaussian Processes

A key contribution to the uncertainty associated with the use of a surrogate model

is inference of the parameters which fit it the model to a particular set of data. In

this chapter, we introduce some different methods of fitting such models to data,

discuss their assumptions, and provide a basic theoretical justification for the robust

models to be introduced later.
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3.1 Fitting a GP to Data

Assuming that a set of simulator outputs can be modelled by a Gaussian Process

is equivalent to assuming that the vector of observations, y, is a draw from a spe-

cific “data generating mechanism” which can be modelled by a GP. Identification

of data generating mechanisms compatible with a given dataset and GP prior is

what is intuitively meant by “fitting” a GP. Given a choice of mean function and

kernel, as discussed in the previous chapter, this requires inference of the model

hyperparameters.

The hyperparameters for a given GP are seldom known in advance, and must be

inferred, given data. This implies, given a finite number of samples, that the hy-

perparameters are a random variable, described by some conditional probability

distribution describing the compatibility of the hyperparameters with the data and

any prior assumptions. An expression for this distribution can be obtained via

Bayes’ rule (see appendix A.3.1).

Let the hyperparameters of the GP be represented by θ, and the data by D. We

assume additional information about θ (which we will elaborate on in section 3.3.2) is

encoded by a prior distribution, πθ. The posterior distribution of θ is then described

by:

p(θ|D, πθ) =
p(D|θ)p(θ|πθ)

p(D)
(3.1)

Computing p(θ|D, πθ) via equation (3.1) analytically is not usually tractable, so

it must be approximated, and the chosen method of approximation contributes

different assumptions to the resulting model. This, in turn, influences the subset of

functions over which the GP invokes a distribution as a result. How one performs

hyperparameter inference should thus be considered carefully as it can significantly

influence the quality of the resulting model.

In this chapter, we will explicitly formulate hyperparameter identification as a prob-

abilistic model before introducing two classes of methods that can be used to approx-

26



Chapter 3. Hyperparameter Inference 3.2. Probabilistic Model

imate the posterior: point predictions, which summarise the posterior by a single

point; and approximations to the entire distribution, which take the entire shape of

the distribution into account.

3.2 Probabilistic Model

We wish to identify the posterior distribution of the hyperparameters, θ; given data

D , {X,y}; and a prior distribution, πθ, assuming that y is modelled as a draw

from a GP with kernel k and mean function m.

The likelihood of a specific vector of hyperparameters given the data is equivalent to

the probability of the data given those specific hyperparameters multiplied by the

probability of those hyperparameters as determined by their prior. Let p(y|X, θ)

be the probability of the data conditional on the hyperparameters and p(θ|πθ) be

the probability of the hyperparameters. The probability of the data given those

hyperparameters is:

p(y|X, θ, πθ) = p(y|X, θ)p(θ|πθ) (3.2)

Which is occasionally written as follows in order to emphasise that the expression

is a function of θ:

L(θ|X,y, πθ) = p(y|X, θ, πθ)

= p(y|X, θ)p(θ|πθ)
(3.3)

where L denotes a likelihood (see appendix A for additional details on this distinc-

tion).

We may now formulate a probabilistic model by including explicit expressions for

p(y|X, θ) and p(θ|πθ). Let:

• f : Rd → R be the function we are interested in creating a model for.

• X be an N ×D array of N samples from a D-dimensional index.
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• y be a length N vector of sample responses for the function of interest, such

that yi = f(xi) for i = 1 . . . n

• m(X|θ) be the desired mean function

• k(X,X′|θ) be the desired covariance kernel

• θ be the combined vector of hyperparameters for m and k

• πθ be the prior distribution for θ

Our probabilistic model is thus:

y ∼ MVN(mX, KXX|θ)

θ ∼ πθ

(3.4)

where MVN is the Multivariate Normal Distribution (MVN; since a GP is an infinite

dimensional analogue of the MVN distribution; see appendix B); mX is a length N

vector obtained by evaluating m(·|θ) at each of the N sample points, x ∈ X; and

KXX is an N ×N covariance matrix obtained by evaluating k(·, ·|θ) pairwise for all

x ∈ X.

The probability of the sample responses, y, given the sample points, X, and hyper-

parameters, θ, is given by the PDF of the multivariate normal distribution, with

mean vector, mX, and covariance matrix KXX, computed as above:

p(y|X, θ) =
exp

[
−1

2
(y −mX)ᵀ · Ω · (y −mX)

]√
(2π)N |KXX|

(3.5)

where |KXX| represents the determinant of the covariance matrix, and Ω = [KXX]−1

represents the inverse of the covariance matrix (sometimes referred to as the precision

matrix ).

The probability of the hyperparameters given their prior is obtained by evaluating

the appropriate (joint) probability distribution for θ:

p(θ|πθ) = πθ(θ) (3.6)
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It is often more convenient to work with the natural logarithm of the likelihood

function, since it simplifies obtaining derivatives with respect to θ, and remains a

monotonically increasing function:

log(L(θ|X,y, πθ)) = log(p(y|X, θ)) + log(p(θ|πθ)) (3.7)

This requires the MVN log PDF:

log(p(y|X, θ)) = −1

2

[
log(|KXX|) + (y −mX)ᵀ · Ω · (y −mX) +N log(2π)

]
(3.8)

and the log of the prior distribution for θ:

log(p(θ|π)) = log(πθ(θ)) (3.9)

3.3 Hyperparameter Inference

We seek the posterior distribution of the hyperparameters, θ; given a (GP) likelihood

function which describes the probability of some data, D; and a prior distribution for

θ, πθ. This prior distribution - when discussed in the context of GP hyperparameter

inference - is usually referred to as the hyperprior to emphasise it is a distribution

over model hyperparameters.

The posterior probability of the hyperparameters, p(θ|D, πθ) is obtained by applying

Bayes’ theorem:

p(θ|D, πθ) =
p(D|θ, πθ)p(θ|πθ)

p(D)

where the primary effort resides in computing the marginal likelihood, p(D|θ, πθ).

The probability of the data, p(D), is simply a normalisation constant, such that the

above relationship can be expressed proportionally:
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p(θ|D, πθ) ∝ p(D|θ, πθ)p(θ|πθ)

Equivalence between p(θ|D, πθ) and p(D|θ, πθ)p(θ|πθ) is only proportional due to

the absent denominator, p(D). The product p(D|θ, πθ)p(θ|πθ) consequently does not

represent a “real” probability distribution as it does not integrate to unity.

We will discuss methods of approximating this distribution with a single point in sec-

tion 3.4, and more general approximations to the overall shape in section 3.5.

The shape of the posterior is consequently determined by the interaction between

the data, the likelihood function (which, in the context of GP regression means the

kernel and the mean function), and the hyperprior.

The shape of the posterior marginals for any particular hyperparameter are difficult

to determine in advance. For a fixed amount of data, one trades expressive power

for identifiability, with the former referring to the number of possible functions the

model is capable of representing, and the latter to how uniquely the parameters of

that model can be determined given data (roughly, how “dispersed” the posterior

marginals are for the model hyperparameters). For GP models, this generally trans-

lates to the hyperparameters of kernels capable of modelling more functions being

more difficult to identify precisely, all other things remaining equal.

More flexible kernels (i.e., those making fewer assumptions about the target func-

tion, and thus invoking a distribution over a larger subset of possible explanations)

consequently tend to require more information in order for their hyperparameters to

be identified to a given tolerance. Information here refers to the somewhat abstract

notion of “something that tells us something” about that hyperparameter. This is

typically interpreted to be synonymous with observational data, but also includes

the model hyperprior and other sources. Potentially useful examples for engineering

applications include the derivatives of observed quantities [19], presence of symmetry

or invariances [14, section 2.7], or assumptions of monotonicity [20].

It is also worth noting that the amount of information provided by the data in terms

of ability to identify model hyperparameters is non-trivially related to the choice of
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kernel and mean function, the locations at which the target function is observed, and

the presence or not of any noise. Noisy data, for instance, carries less information

than noiseless data.

3.3.1 Model Fit Uncertainty

By understanding hyperparameter identification in terms of statistical inference,

we are able to recognise that attempting this procedure implies uncertainty: since

“true” values of the hyperparameters for the data generating process cannot be

observed from finite data (or, equivalently, do not actually exist), assuming the

hyperparameters take particular values introduces the possibility that these hyper-

parameters are consistent with the observed data but not necessarily data that is

out-of-sample. It is worth stressing that this is subtly different to overfitting, since

it is abstract properties of the data that are encapsulated by the hyperparameters

and not the data generating function itself.

As a result, the subset of functions encoded by the GP might not include the “true”

data generating mechanism, implying that the predictive distribution cannot be

guaranteed to provide either a good approximation to the real data generating pro-

cess or properly quantify its predictive uncertainty. This is somewhat colloquially

referred to as “model fit uncertainty”, or uncertainty associated with the inference

of model parameters from finite data. This phenomenon is not unique to GP mod-

els.

Appreciating that this uncertainty exists and understanding how such inference is

performed provides useful insight into how one might try to manipulate the posterior

distribution for a particular hyperparameter in order to make it “more identified”.

Since the posterior is a function of the likelihood (determined by the choice of

model), data and hyperprior, a reduction in posterior variance could be obtained by

using more informative data: implying either more samples, or samples featuring

less noise; a less flexible likelihood function, thus increasing the information content

of each sample; or a more informative hyperprior, which assigns prior mass across a

smaller region of the hyperparameter space.
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3.3.2 Hyperpriors

For GP regression, the joint hyperprior is usually defined in terms of independent

marginal prior distributions for each hyperparameter.

For example, supposing we define a GP model with hyperparameters θ = [α, ρ1, . . . , ρD],

to define a joint hyperprior, πθ, in terms of independent marginals, we need only

to come up with prior distributions for α and ρ1, . . . , ρD. The primary benefit of

this is that the marginals are much easier to reason with than their joint distribu-

tion. A hyperprior which is not explicitly defined for any particular hyperparameter

is equivalent to an implicitly defined uniform distribution over that hyperparam-

eter’s support: there is thus no loss of generality to assume the existence of the

hyperprior for any given hyperparameter (recognising that it is flat if not assumed

otherwise).

Uniform hyperparameter priors may have the unintended consequence of distribut-

ing large amounts of probability mass over unrealistic values for that variable, par-

ticularly for variables which feature unbounded or half-bounded support. Directly

relevant examples include the hyperparameters of most popular kernels, such as

the amplitude hyperparameter, α, and lengthscale-type parameters, l and ρ, all of

which have half-bounded support on [0,∞). Neglecting to properly consider the pri-

ors on such hyperparameters can have consequences on the quality of the resulting

model.

A particularly important observation is that in the case of lengthscales, a uniform

prior produces a linear bias due to an infinite amount of prior mass allocated beyond

the support of the target function. We will observe this in chapter 6.

Effective hyperpriors should also take the parametrisation of the kernel into account

(see, for example [21, Ch. 20]). This is noted to be considerably more important

when using methods which utilise sampling (such as MCMC), due to potential in-

teractions with the behaviour of the sampling algorithm.
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3.4 Point Estimates

Relative to methods which approximate the entire posterior distribution (to be in-

troduced in section 3.5), point estimates of the model hyperparameters are easier to

compute and are capable of providing predictions faster due to avoiding integration

over the model hyperparameters.

Summarising the posterior distribution with a single point implies the assumption

that this point is considered a suitable summary of the entire posterior: this is

reasonable if the posterior distribution is “well peaked” and symmetric, though this

is a difficult guideline to formalise due to what constitutes a “good summary” being

defined in the context of how sensitive important properties of the model are to

different hyperparameters.

3.4.1 Likelihood Optimisation

The most common approach to identifying θ is to maximise the log-likelihood, de-

scried by equation (3.8), with respect to θ; i.e. to maximise the probability of the

data as a function of the hyperparameters. This is occasionally referred to as a

modal approximation [15, ch.13], or a Maximum A-Posteriori (MAP) estimate if

the prior πθ is specified explicitly.

Let Θ represent the permissible search space for θ (i.e. a space respecting the con-

straints on the values that each hyperparameter may take).The Maximum Likelihood

Estimate (MLE) for θ, denoted θ∗max, is given by:

θ∗max = arg max
θ∈Θ

log(L(θ|X,y, πθ)) (3.10)

The optimisation described by equation (3.16) is often approached by making use

of the fact that the objective function is analytically differentiable. The derivative

of the log likelihood with respect to the ith element of θ is given by:

∂

∂θi
log(L(θ|X,y, πθ) =

∂

∂θi
log(p(y|X, θ)) +

∂

∂θi
log(p(θ)) (3.11)
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where the derivative of the MVN PDF is:

∂

∂θi
log(p(y|X, θ)) =

1

2
yᵀ · Ω · ∂KXX

∂θi
· Ω · yᵀ − 1

2
tr

(
Ω · ∂KXX

∂θi

)
(3.12)

where tr(·) represents the trace operation and we reiterate that Ω = [KXX]−1 is the

inverse of the covariance matrix.

Application of equation (3.11) to a specific problem requires the derivatives of the

kernel and the derivatives of the log PDF of the hyperprior with respect to each of

the kernel’s hyperparameters. Given these derivatives, a bounded Newton or quasi-

Newton algorithm can be used to attempt to solve the optimisation described by

equation (3.16) to obtain θ∗mle. In practice we find the former to be better behaved,

and the reduced memory usage of quasi-Newton methods – such as the popular L-

BFGS algorithm of Byrd et al. [22] – is not particularly important for the scale of

problems we consider. L-BFGS was also noted to exhibit inconsistent performance

in certain circumstances: if initiated from (very) flat regions of the log-likelihood

(such that observed changes in the log-likelihood when moving in any direction were

of the order of machine precision), then the line-search stage of the algorithm will

fail due to inability to identify a suitable search direction. This meant L-BFGS was

quite sensitive to where it was initialised in our experiments.

Since θ∗max estimated in this manner is not guaranteed to be a global optimum,

multiple restarts and/or a preliminary grid search (to identify an effective start

point) are encouraged.

3.4.2 Cross Validation

Rather than direct optimisation, one can also consider choosing the model hyperpa-

rameters that maximise the Leave-One-Out Cross-Validated (LOO-CV) predictive

density of the data, termed θ∗Loo. Unlike MLE or MAP estimates, cross-validation

does not seek to provide a summary of the posterior distribution, but rather at-

tempts to select a point from it which maximises the (perceived) predictive ability

of the model. More specifically, LOO-CV seeks to identify the hyperparameters
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which maximise the probability of observing each provided data-point, given the

others.

The leave-one-out density for the ith element of X with hyperparameters θ is ob-

tained by constructing a GP using the data minus the left-out point, denoted

D/i = {X/i,y/i}, and calculating the predictive density of this GP at the left out

point, {xi, yi}.

The predictive density is obtained by calculating the probability of the left-out-

point, yi, given the predictive marginal distribution at xi, which is univariate Gaus-

sian:

p(yi|xi,Dı, θ) = φ(yi|m∗θ,i, σ∗θ,i) (3.13)

where φ(·|µ, σ) represents the Gaussian PDF with mean µ and standard deviation

σ. The parameters m∗θ,i and σ∗θ,i are the predictive mean and marginal standard

deviation of the GP at xi (see equation (B.11) and equation (B.12)), with the

subscript θ used to emphasise these are for a given value of the hyperparameters,

θ.

LOO scores for a specific value of θ are then obtained by averaging the left-out

predictive densities for each of the training points, i = 1 . . . N :

LooCV(θ|D) =
1

n

n∑
i=1

p(yi|xi,D/i, θ) (3.14)

Computing equation (3.14) as above is noted to be intractably expensive for even

moderately large datasets, as it requires computation and subsequent inversion of a

total of N covariance matrices of size N−1 each time one assesses a hyperparameter

sample.

For zero-mean GPs, Sundararajan and Keerthi [23] provide an analytical version

which greatly alleviates this computational cost. Let ωθ = diag(Ωθ) and αθ =

Ωθ · (y), where Ωθ = [Kθ,XX ]−1. The LOO-CV score for hyperparameters θ is
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then:

LooCV(θ|D) =
1

N

N∑
i=1

−0.5log(2π) + 0.5log(ωθ,i)− 0.5(
α2
θ,i

ωθ,i
) (3.15)

Hyperparameters maximising the leave-one-out predictive density can consequently

be identified by maximising equation (3.15) over the space of hyperparameters,

Θ:

θ∗Loo = arg max
θ∈Θ

LooCV(θ|D) (3.16)

using analytical derivatives of equation (3.15), if necessary.

3.5 Approximating The Posterior

Rather than summarising the posterior distribution of the hyperparameters by a

single point, it is also possible to construct approximations to the entire posterior.

Different methods of accomplishing this construct approximations in different ways,

and may be more or less appropriate depending on the specifics of the problem.

An important difference relative to the case of a single value of the hyperparameters

is that functions of the GP posterior (such as predictions) must be integrated (or

marginalised) over the posterior distribution of the hyperparameters if one requires

a point estimate of that quantity. Let p(y∗|x∗,D, θ) be the predictive distribution

given a specific value of θ. To “marginalise” over the hyperparameters, one integrates

over the posterior distribution of θ:

p(y∗|x∗,D, πθ) =

∫
p(y|x∗,D, θ, πθ)p(θ|D, πθ)dθ (3.17)

The integrated predictive distribution described above is noted to be conditional no

longer on θ, rather its prior distribution, πθ, and the data. Since the integration

described by equation (3.18) is not usually analytically tractable, it tends to be

36



Chapter 3. Hyperparameter Inference 3.5. Approximating The Posterior

approximated numerically:

p(y∗|x∗,D, πθ) ≈
S∑
s=1

p(y∗|x∗,D, θs)ws (3.18)

where the summation is performed over a total of S (optionally) weighted sam-

ples of θ, with (possibly equal) weights w1, w2, . . . wS. Functions of the predictive

distribution can be marginalised analogously.

3.5.1 Markov-Chain Monte-Carlo

Markov-Chain Monte-Carlo (MCMC) simulation provides a scheme for sampling

from an approximation to the posterior distribution of the hyperparameters pro-

portionally to their probability. This yields a series of S equally weighted samples

θ1, θ2, . . . θS with w = 1/S, which asymptotically converge to an unbiased approxi-

mation of the true posterior [24].

MCMC is the most expensive but most flexible method of approximating the pos-

terior distribution of the hyperparameters, and is theoretically capable of providing

good approximations to arbitrarily complicated posterior densities, including those

that are multi-modal or ridge-shaped, if properly configured.

A large number of different MCMC algorithms can be applied to hyperparameter

inference for Gaussian Processes. While “classical” MCMC algorithms such as those

of Metropolis [25], Hastings [26], and Gibb’s sampling [27] exhibit prohibitively slow

rates of convergence (equivalently, effective samples per iteration) for all but the

most simple GP regression problems, modern algorithms such as slice sampling [28]

and Hamiltonian Monte-Carlo [29] offer considerably more efficient sampling be-

haviour to the extent that modern MCMC algorithms are feasible alternatives to

likelihood maximisation or cross validation. In particular, “parameterless” vari-

ants such as the No-U-Turn Sampler (NUTS) [30] eliminate the need for manual

tuning procedures, which have historically been an obstacle to deploying MCMC

algorithms in environments where (expert) guidance necessary for good tuning may

be inconvenient to obtain or even unavailable.
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3.5.2 Alternatives

Variational Inference (VI) (see [31, 32]) is a family of methods which approximate

the posterior distribution by assuming a parametric (“analytical”) representation

and aiming to minimise the information loss (in a formal sense) between the ap-

proximation and the target.

VI is noted to be more scalable than MCMC, potentially scaling Bayesian methods

of analysis to much larger datasets than is practical with MCMC: Hensman et al.

[33] used a variational re-parametrisation of GP regression which was able to handle

several million data points, and Gal et al. [34] showed variational GP regression

performed better than many other “highly scalable” models a dataset of 2 million

points.

Unlike MCMC, VI methods are generally incapable of producing arbitrarily high-

quality representations of the target distribution. Evaluating the quality of this

approximation is also not always straightforward, as even in the event that one can

be confident that a global minimum in the information loss has been achieved, this

value alone is an insufficient measure of the approximation’s quality [35].

MCMC is consequently preferable to VI in the situations that it is affordable, though

VI methods are emphasised to be a key component in the methodological toolchain

required to scale GP regression to larger problems.

3.6 Discussion

Both point estimates and marginalisation over the full posterior distribution of the

model hyperparameters have different merits.

Models using point estimates of θ are noted to be up to several orders of magni-

tude faster to query since they compute a single predictive distribution. However,

this distribution is conditional on the choice of θ and thus implies an unquanti-

fied source of uncertainty. If the posterior distribution of the hyperparameters is

sufficiently peaked, the difference between the marginalised predictive distribution
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and the conditional predictive distribution can be small enough such that this un-

certainty is negligible. This tends to be assumed implicitly in many engineering

focused surrogate modelling applications, but is in general a function of the model,

the data, and any prior information.

Using the entire posterior distribution of the hyperparameters in the predictive

model implies a more complete treatment of the uncertainty present during the

model fit procedure, though we reiterate that obtaining predictions from such models

is necessarily slower. This is a necessary alternative rather than merely beneficial

if any of the posterior marginals of the hyperparameters exhibit a ridge-shaped

or multi-modal distribution, since these distributions cannot ever be summarised

effectively by a single point.

Point estimates are consequently preferable when either rigorous quantification of

predictive uncertainty is not a priority, or very fast feedback from the model is

paramount, such as when using a the model to feed an interactive tool for live vi-

sualisation. On the other hand, when a model of the uncertainty associated with

a surrogate model is required, using the full posterior distribution confers a signifi-

cantly more complete – and thus robust – representation.

Martin and Simpson [36] reviewed a variant of GP regression as a tool for surrogate

modelling, and analysed variants fit using both likelihood maximisation and cross

validation for different mean functions. Likelihood maximisation was found to be su-

perior in terms of the Akaike Information Criterion [37]. Bachoc [38] also compared

point estimates of model hyperparameters for GP regression using MLE to those

using CV, finding MLE to be optimal in cases in which the covariance kernel is well

specified, reporting consistency with Martin and Simpson [36]. CV was reported to

provide more consistent predictive performance in cases of model miss-specification

by Bachoc, and the degraded performance of the CV models used by Martin and

Simpson was claimed to be due to CV being more susceptible over-parametrisation

on higher-dimensional test functions. This is at least intuitively verifiable, as one

can imagine maximising the predictive qualities of a more flexible model on a dataset

of finite size is more likely to lead to overfitting on that dataset.
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In practice, this means that if the properties of the target function are well under-

stood, MLE is the optimal means of representing the distribution of the hyperpa-

rameters by a single point. If the properties of the target function are not known,

CV may be a more robust alternative, providing the choice of kernel and mean

function do not permit over-parametrisation of the problem.

Comparing the performance of fully probabilistic models fit using MCMC to those

using point estimates of the hyperparameters is the subject of chapter 6.

3.7 Summary

Fitting a GP to data formally requires identification of the GP kernel’s hyperpa-

rameters, given that data. Since this data is of finite size, this inference implies a

distribution of hyperparameters. This can either be summarised by a single point,

or approximated in its entirety, with the former implying the assumption that the

selected point is a good representation of the total distribution.
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Chapter 4

Loads-Structural Coupling Using

Surrogate Models

This chapter documents novel use of surrogate models in an industrial aerospace

design environment, providing a practical use-case for the theory introduced in the

previous two chapters and an introduction to modelling aircraft loads. At the end of

the chapter, we assess an important source of uncertainty in the analysis, which will

be a primary motivation for the methods introduced in subsequent chapters.
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4.1 Aeroelastic Loads

Motion of an aircraft through the atmosphere implies an imbalance of forces. This

imbalance can either be induced intentionally, in which case we refer to a manoeuvre,

or due to an atmospheric disturbance, in which case we refer to a gust. Analysis

of these forces on the aircraft structure is referred to as an external load. External

loads result in internal stresses on the aircraft structure, which must be tolerated

for safe operation: put simply, this means that none of the (individual) components

which compromise the structure should be subject to stresses which could result in

their permanent deformation during operation. The structure must consequently

be designed with such stresses in mind, and to accomplish this, the loads which

produce them should be understood. It follows that calculation of external loads

is one of the most important phases of the aircraft design cycle, and performing

these calculations quickly and accurately can potentially provide benefits in terms

of either enhanced design space exploration or reduced design program time (and

consequently, reduced program cost).

Physically, external loads are composed of three continuously distributed forces (act-

ing in each of the three orthogonal 3D-Cartesian axes) and their corresponding mo-

ments, totalling six possible “degrees of freedom” (DOFs). For the purposes of

analysis, these continuous measurements tend to be discretised, such that one ex-

presses external loads as vector, y, which consists of 6 DOFs measured at a total

of M discrete locations or “nodes”. Each of the (total of) 6M individual elements

of y is referred to as an Interesting Quantity (IQ), and constitutes a particular

DOF measured at a particular node. Calculation of these IQs is synonymous with

calculation of the external loads.

In many cases, these loads are transient, such that y is a function of time. Not

only may the mechanism by which the forces are generated feature time-varying

properties (which can be easily imagined in the case of, for example, turbulence), but

since the structure of an aircraft is flexible, deformation of the aerodynamic surfaces

under load can produce a change in the distribution of pressure and consequently

the aerodynamic loads themselves. The activation of load-alleviation systems may
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also be an important consideration. Time-varying loads are denoted y(t).

Exactly how the aerodynamic surfaces of an aircraft deform under load is a func-

tion of the structure and the type of load, such that y(t) can be (somewhat ab-

stractly) expressed as a function, f , which accepts two vectors: z, which represents

a parametrisation of the structure; and x, which represents a parametrisation of the

loading “case”. A load case encapsulates a description of the conditions the aircraft

is subject to which are responsible for producing the load, and will be elaborated

on shortly.

A loads calculation can hence be abstracted as follows:

y(t) = f(z,x) (4.1)

4.1.1 Loads Process

The function, f , is a black-box which we will refer to as the loads process, and

calculates the loads acting on the aircraft as a function of a given load case and

aircraft design. Representing the loads process as a single function is stressed to be

an abstraction of the real process, which is better described as an “ecosystem” of dif-

ferent uni-disciplinary models such as CFD and both steady state and time-domain

structural solvers. We will, however, refer to the loads process as a single function

or model, as we are not concerned with precisely what goes on inside it, insofar as

this means “opening up” any of its constituent uni-disciplinary components.

In this document, we consider a certification-standard loads model of the full aircraft,

which incorporates a complete representation of the aircraft’s structure and control

surfaces. This is an expensive and time consuming model to query, but provides a

high degree of accuracy in the load calculations.

By default, f is assumed to return the time history of the loads, y(t). These quan-

tities are sometimes referred to as correlated loads as the evolution of each DOF

at each node through time is returned, hence preserving the relationships between

different IQs. For the purposes of a detailed structural analysis, the correlated loads
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are essential, as internal stresses are a function of all the IQs simultaneously: letting

t be the vector of internal forces acting on the structure, one obtains t via another

function, g, of y(t):

t = g(y(t)) (4.2)

It is t that is of interest to structural analysts.

In practice, the function g is expensive and cumbersome to work with. In this work

we consider an approximation to the correlated loads, such that y(t) is approximated

by a single vector y†. This approximation is as simple as taking the maximum

absolute value of each of the elements of y(t) over the duration of the load, noting

that the time at which the maximum of a particular IQ occurs may be different for

another:

y†i = max
t
|yi(t)| (4.3)

where the subscript i represents the ith element of the subscripted vector. We

summarise this operation by a function, h, such that y† = h(y(t)).

Replacing t with y† in this manner does not represent a truly realistic design sce-

nario, as the two quantities are not in any way equivalent. However, we assert that

this is sufficient for the experiments conducted in this work: the approximation de-

scribed by h is simply a black-box that could just as easily be replaced with the

real black-box g in a production environment, and we will treat the elements of y†

analogously to how we would those of t.

For notational simplicity we will represent the loads process, f , and subsequent

condensation of y(t) into y† via h as a single function, l, and consider it implicit

that y ≡ y† in the absence of a time argument, such that the loads process is
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represented as follows:

y = l(x, z) ≡ h(f(x, z)) (4.4)

4.1.2 Load Cases

A single load case, described by a vector, x, describes a situation in which forces

are applied to the aircraft, either as a result of pilot-induced motion or a temporary

disturbance in the atmosphere. This vector may include discrete, conditional and

continuous properties which together define a single load case. We offer a (non-

exhaustive) list of such parameters.

Discrete parameters: case type (Gust/Manoeuvre), presence of control laws, con-

trol surface configurations.

Continuous parameters: Mach number, altitude, aircraft mass, thrust level, cen-

tre of gravity position, fuel fill levels.

Conditional parameters: gust velocity (conditional on case type), manoeuvre

sub-type (conditional on case type), turn G-force (conditional on manoeuvre type

and subtype).

The space of all load cases will be denoted X , and a single load case by x.

Adopting this notation, a single load case defined in terms of case type, Mach num-

ber, altitude, aircraft total mass, and centre of gravity position could be described

as follows:

x = [Type,Mach,Altitude,Mass,CG]

We make note that for the purposes of this document this is restricted specifically

to flight loads: ground loads are not considered here.

45



4.2. Loads Structural Coupling Chapter 4. Loads Structural Coupling

4.1.3 Design Vectors

The design vector, z, contains a parametrised description of the aircraft. In principle,

this contains a complete aircraft design, though in practice only a subset of the total

number of potential design variables tend to be of interest at any given time. As

a simple example, adaptation of wing structural definition to accommodate a new

type of engine may not need to reconsider design of the fuselage.

In this manner, one can consider derivative designs, in which the majority of the

design is fixed, and only a (relatively) small number of parameters are considered

to be “active” design variables. This is necessary, as the techniques developed in

this document do not scale to the huge number of design variables required for

complete parametrisation of a full aircraft design. This document will consider

only the wing, with the significance of individual design variables clarified when

necessary. Analysis of different types of derivative designs using the techniques we

develop here is possible, though we stress again that the methods do not scale to

conceptual and very-early design phase situations in which either a much larger

number of variables can be considered free, or a suitable method of parametrisation

may not be obvious.

The space of all (derivative) designs currently under consideration (noted again to

be much smaller than the space of all designs) will be denoted Z, and a single design

by z.

4.2 Loads Structural Coupling

Aeroelastic modelling of flight loads is an important stage of aircraft design, as it is

a necessary pre-requisite to performing structural optimisation – a procedure that

is critical to meeting performance standards.

For the purposes of this work, such constraints are designated via a function of the

maximum absolute value for each IQ; that is, the structure is designed to a tolerance
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determined by the maximum loads it encounters across all possible load cases:

y = max
x∈X
|l(x, z)| (4.5)

where the max operator operates componentwise for each element of the vector

y = l(x, z) for all load cases x ∈ X . The resulting vector of maximum absolute loads,

y, is referred to as the envelope. This is again stressed to be an approximation, as

in a production environment it is the maximum internal stresses, t, that constrain

the structure, though this approximation also receives industrial use as a useful

approximation.

With reference to equation (4.5), identification of y requires the design, z, to be

designated: this is a problem, as structural definition requires the envelope, y. In

other words, the design process necessitates a feedback loop due to the coupling

between the envelope and the structural definition of the aircraft.

This feedback loop, sometimes referred to as a loads cycle, presents a difficulty, as

both querying the loads process and (particularly) structural optimisation are com-

putationally intensive procedures. Designers consequently have two options:

1. Iterating through the feedback loop until structural design convergence. This

is explored by Iorga et al. [2]: after each external loads calculation, the aircraft

structure is re-optimised in terms of mass while satisfying structural require-

ments calculated using the external loads calculated for the design obtained

at the end of the previous cycle (or the baseline design in the case of the first

iteration). The external loads are then re-calculated for the optimised struc-

ture, and the process repeated until the optimised structure does not change

(within some tolerance) between iterations.

2. Accepting design uncertainty and working with uncertain loads due to uncer-

tainty in the structural definition of the design. This necessitates a realistic

model of such design uncertainties, which is challenging. A facet of this prob-

lem is explored by Krupa et al. [3]: by constructing a surrogate model of the

loads as a function of derivative structural changes, the authors are able to
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propagate uncertain design vectors through the loads process using Monte-

Carlo simulation, modelling dependency between the constituent design vari-

ables using a copula.

In the first case, use of a surrogate model for the loads process can significantly

alleviate associated computational costs, and in the second it is essential in order to

feasibly perform the sample based simulation required to propagate correlated un-

certainties. We hence seek a model which is capable of approximating the envelope,

y, for an arbitrary derivative design, z ∈ Z.

Computing the envelope requires identification of the load cases at which the ab-

solute maximum values of each IQ occur. This subset of cases is referred to as the

critical load cases.

4.3 Critical Load Cases

An arbitrary load case, x∗, is critical if:

|l(x∗, z)| ≥ |l(x, z)| ∀x ∈ X (4.6)

holds for at least one element of y = l(x, z). The set of critical load cases, Xc
contains the critical load cases for all quantities of interest, such that the envelope,

y, is obtained by:

y = max
x∈Xc

|l(x, z)| (4.7)

Identification of the envelope, y, is thus synonymous with identifying the set of

critical cases, Xc.

4.3.1 Case Downselection

With reference to equation (7.2), it is clear that since the loads process, l(x, z), is

a function of the design, z, that the set of critical cases must be a function of that
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particular design, too. Identification of Xc outright implies performing the following

optimisation:

x∗ = arg max
x∈X

|l(x, z)| (4.8)

for each IQ.

This is intractably expensive: not only is the loads process an expensive function,

but the space of all load cases, X , is large and challenging to navigate; Cooper

et al. [39] put the number of individual load cases at around 10 million assuming

discretisation of the continuous parameters into 50 flight points.

However, Xc can often be reliably estimated using information from previous analy-

ses. This can take the form of either data from past studies, recommendations from

domain experts, or a combination of the two. Given the set of critical cases, one

can then consider building a model of the envelope as a function of z.

4.4 Data, Notation, and Problem Description

Our task is to provide rapid feedback of changes to the envelope, y, as a function

of potential design changes: We hence seek a model of the envelope as a function of

design changes under consideration z ∈ Z.

The design changes in these experiments correspond to 10 wing design parameters:

2 geometric twist variables (inner and outer), 4 bending stiffnesses (inner, mid,

outer, winglet), and 4 torsional stiffnesses (inner, mid, outer, winglet). The design

variables are scaled such that the design space is a 10-dimensional hypercube hence

z ∈ [0, 1]10.

To build a model of y as a function of z, a set of K critical load cases Xc ,

{x1,x2, . . . ,xK} is presumed to have been identified a-priori for the IQs under con-

sideration.

Conceptually, these load cases are then “partially applied” to l(x, z) such that the
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loads analysis process is rendered discrete over X :

lk(z) , l(xk, z), k = 1, . . . , K (4.9)

i.e., rather than a single function of both x and z, we consider K individual functions

of just z, corresponding to each of the critical load cases.

A model of the envelope hence involves constructing K individual models of y as

a function of z for specific values of x. This simplifies the problem considerably,

as we may consider K individual, independent approximations for lk, substantially

alleviating the curse of dimensionality and obviating the need to explicitly model

any coupling between x and z, which is a challenge.

This approach to constructing surrogate models of loads is used in industry fo-

cused studies [2] and by the majority of academic texts concerning models for flight

loads.

4.4.1 Design of Experiments

For the purposes of our experiments, we are granted a (slightly) arbitrary budget

of 200 * K runs of the loads process, corresponding to investigation of 200 different

design vectors at each of the pre-identified critical load cases. Though this is a

relatively large number of simulations, it is of a similar order of magnitude to the

quantities of data currently used in typical design programs for derivative designs,

though it should be noted that this does depend on the specifics of the design

program.

We use the min-max Latin-Hypercube Sample (LHS) design of Morris and Mitchell

[40] to draw Ntotal = 200 samples from the d = 10 dimensional vector design space,

then randomly permute and partition these into a 3:2 ratio train-test split, resulting

in N = 120 and Ntest = 80. Since the purpose of our experiments is to investigate the

performance of models constructed using this acquired data, a generous test split is

used to ensure the test points provide good coverage across the 10-dimensional space.

A more typical train-test split of 8:2 featuring a less generous test split would likely
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produce more accurate models due to increased “information” being available during

model fitting, though could have potentially compromised our ability to assess these

models with confidence. Likewise, a 1:1 split was seen as too unrepresentative of

a production environment in which the test split tends to be squeezed as much as

possible in order to provide the most amount of data possible for model fitting.

Let Ztrain , {z1, . . . zN} be the set of 120 training points generated via min-max

LHS. We evaluate lk(z) for the same set of sample points, Ztrain, for each of the K

load case functions.

Since each lk returns a vector, yk, for given z, we obtain a matrix of responses Yk

for each of the K load case functions. For an arbitrary dataset consisting of N

samples:

Yk ,


yk,1

...

yK,N

 ,


lk(z1)

...

lk(zN)

 (4.10)

Yk has M columns, equal to the number of IQs under consideration, and N rows,

corresponding to the number of sample points.

From here we omit the subscript k when it is implicit that the analysis is performed

separately for each load case function, except where necessary for clarity.

4.4.2 Calculating the Envelope

Given a total of M IQs, the envelope is a length M vector, y, defined for each design

as the maximum absolute value for each IQ across all load cases.

Following the notation introduced previously, and assuming we investigate a total of

N different derivative designs, each load case is assumed to return an N ×M array

of loads, Y.

To compute the envelope, Y is computed for each of the K load cases, and the

results aggregated into an N ×M ×K array, Ŷnmk. The envelope for each of the
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N designs is obtained by taking the coefficient-wise absolute maximum across the

third axis of Ŷnmk:

Y = max
k=1...K

|Ŷnmk| (4.11)

such that Y is equivalent to the N vertically stacked envelopes for each of the

considered designs:


y1

...

yN

 ≡ Y (4.12)

4.5 Preprocessing: Linear Dimension Reduction

A naiv̈e approach to modelling y as a function of z is to treat each of y’s M scalar

elements as independent, and construct a separate model for each of them. This

is inefficient and cumbersome, as M is typically large and the correlation informa-

tion present in y is discarded. The latter is especially problematic for downstream

processes, which compute quantities as functions of y, since assumed independence

can produce non-physical results if the mechanism by which y’s elements are cou-

pled is not properly respected (for instance, division of very small numbers by one

another).

To remedy this, we apply linear dimension reduction by means of Principal Com-

ponent Analysis (PCA; equivalently referred to as matrix factorisation via SVD or

“POD” for Proper Orthogonal Decomposition) on the data matrix Y. This permits

regression on an independent basis of significantly fewer variables and ensures linear

coupling between outputs is preserved. For an accessible introduction to PCA in

the context of dimension reduction, we direct the reader to [41]. This procedure is

described in detail for our problem in appendix D.1.

Suppose we multiply Y by a matrix P obtained via PCA to obtain a low rank

approximation Q = YP. The columns of Q correspond to R < M variables in a re-
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duced dimensional basis, which are (by definition) computed as linear combinations

of the original M variables. We assert that a strictly linear change of basis does not

compromise the method as significantly non-linear correlations between IQs are not

anticipated. This approach has been applied in the context of modelling correlated

loads in similar academic research, [42], and is also deployed in the industrial case

study of Iorga et al. [2].

Once again we stress that this is performed separately for each load case. This is

because the correlation structure between IQs is not anticipated to be equivalent

under different load cases: in other words, we expect that the way in which different

force measurements are correlated with one another as a function of small changes

to the design will be a function of the type of loading that is applied. Tensor

factorisation which includes the load case axis was explored by Tartaruga et al.

[43].

4.5.1 Selecting the Number of Basis Terms

An important decision when deploying PCA for the purposes of dimension reduction

is deciding an appropriate value for R, the number of compressed dimensions. By

definition, as R → M , one will recover all of the observed variation in the original

data, however this defeats the purposes of PCA as a tool for dimension reduction.

We select R via assessing the residual error on the resulting envelope associated with

compression and subsequent recompression from R dimensions. We choose R = 10.

This is documented in appendix D.3.

Finally, though the number of compressed dimensions, R, could be tailored to each

individual load case, we select R for all of them at the same time in the interest of

simplicity.

4.6 Regression Model

We perform GP regression on each of the R columns of the compressed training

data matrix, Qtrain = YtrainP, with respect to Ztrain, where P is a matrix of r PCA
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basis vectors.

Let a single column of Qtrain be a represented by a length N vector q., i.e:

Qtrain =
[
q1 . . . qR

]
(4.13)

The R regression targets, q1 . . .qR, are (linearly) independent by construction due to

the projection onto the PCA basis, and may thus be modelled independently.

4.6.1 Assumptions and Fit Procedure

Though it is intuitively difficult to interpret how the compressed loads, q, should

behave with respect to changes in the design, z, a number of general observations

are possible without knowledge of the physics of specific load cases.

Since the range of design changes under consideration are perturbations about a

baseline design, one can expect the resulting loads to experience locally linear varia-

tion with respect to the design variables under consideration. Since PCA is a linear

transformation, this implies that the behaviour of the compressed loads should be

approximately linear as a result.

We thus anticipate that the behaviour of q as a function of z ought to be at least

smooth over Z, and consider the EQ kernel as a reasonable choice. As we do not

expect the function to be complex and we have a sufficient density of points such

that long range predictions are not required, a zero-mean function is a simple and

effective choice, ensuring that all of the variation in the data is modelled by the GP

without risking over-parametrisation.

We fit the model using a maximum likelihood estimate via a multi-restart Newton

method. This is preferable to MCMC in this instance for three reasons:

1. There is a sufficient volume of training data such that point estimates of the

posterior distribution of the hyperparameters are effective summaries. This

can be validated by assessment of θ’s posterior distribution for different com-

ponents (i.e. columns of Q) and load cases.
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2. The procedure must be repeated RK times, thus inflating the difference in

clock-time between MCMC and MLE. This is less of a problem in production

(where only a single instance of each model needs to be trained), and is more

of an issue when prototyping different models.

3. The intended application does not make use of the posterior variance: the

models are used as response surfaces to produce point predictions only.

We thus fit a total of RK GP models: one model for each of the R independent

values in the compressed loads space, for all K load cases.

4.6.2 Point Prediction

A terse description of the process by which point predictions of the envelope for a

new design, z∗, is described by algorithm 1. A detailed description is documented

in appendix D.4.

Algorithm 1 Obtaining an envelope prediction for a new design vector

1: Given: new design vector, z∗; K sets of R GP emulators for each component
of the compressed loads for each load case, GP(·|·,D, θ); K PCA matrices, P;
K sets of R rescaling functions, φ−1(·).

2: for k = 1, . . . , K do
3: for r = 1, . . . , R do
4: q̂∗kr = φ−1

kr (E[p(q∗kr|z∗,Dkr, θkr)]) . GP rescaled predictive mean.
5: end for
6: q̂∗k = [q̂∗k1, . . . q̂

∗
kR]

7: ŷ∗k = [q̂∗k ·Pk]
ᵀ

8: end for
9: Vertically stack the row vectors [ŷ∗1 . . . ŷ

∗
K ] to obtain K ×M array Ŷ∗.

10: Compute the absolute maximum of each column of Ŷ to obtain y∗

11: Return: y∗

4.6.3 Predictive Uncertainty

A quantification of the uncertainty associated with a prediction can be obtained

by assessing the marginal variance of the predictive distribution at a particular
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point:

σ2(q∗) = V[p(q∗|z∗,D, θ)] (4.14)

This predictive uncertainty, however, occurs in the compressed space. To under-

stand the influence of this uncertainty in the loads space, the uncertainty in the

compressed loads must be propagated through algorithm 1. However, in the present

application, the marginal predictive variances are sufficiently small (of the order

1e−6, after rescaling) such that any uncertainty in the resulting loads is significantly

smaller than that due to the PCA basis. We are thus able to ignore the effect

of predictive uncertainty in predicting the compressed loads, since the decompres-

sion error associated with use of dimension reduction via PCA is several orders of

magnitude larger.

4.7 Results

Correlation plots of (normalised) predicted enveloping loads against actual envelop-

ing loads for the test partition are shown in figure (4.1). The linear correlation

coefficients for the three DOFs are all close to 1 (closer than 1e−3 in the case of the

shear and moment measurements). An anomalously poor prediction (in terms of ab-

solute error) can be observed for a single shear measurement. In general predictions

for the torsional envelope appear to exhibit the greatest residual error. Mean abso-

lute PCA reconstruction errorbars are present on the plot, but are not visible due

to being very small. Good agreement between the PCA-assisted surrogate models

and the loads-process generated data indicates the assumption of quasi-linearity in

the external loads (and their linearly transformed compressed representation) with

respect to the small, derivative design changes for the variables considered here is

sound.

Figure (4.2) shows the distribution of relative errors εrelative = (ypred− ytest)/ytest for

each of the shear, moment and torque measurements. We report the log cumulative

empirical density of the relative residual errors, taking the logarithm of the density
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Figure 4.1: Correlation plots for the predicted and test enveloping loads. Errorbars due to PCA
reconstruction error are shown but are small (less than 1e−2).
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Figure 4.2: Distribution of error for the test predictions. The solid lines represent cumulative
densities of 0.9 and 0.99.

in order to resolve the presence of outliers. The two solid lines across the x-axis

represent cumulative densities of 0.9 and 0.99, in ascending order, such that the

point at which the histogram crosses the line indicates the total fraction of the data

with a relative error less than that value. In all cases, around 90% of the data has a

relative error of less than 2.5%, and around 99% of the data has a relative error of

less than approximately 5% for the shear and bending measurements. For torsion,

99% of the data has a relative residual error of less than approximately 7%. The

highest observed relative error is of the order of 15%.

4.8 Analysis

The surrogate modelling technique described above is capable of producing high

quality approximations of the enveloping loads as a function of small changes to
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parametrised wing stiffness and geometric twist design variables, assuming the crit-

ical cases have been appropriate identified. Similar models were deployed directly

in a production environment in [2], and used to propagate correlated uncertainties

in wing stiffness variables in Krupa et al. [3].

Almost all the error in this analysis is due to use of a compressed representation of

the loads and associated loss in fidelity. Use of more basis terms in the compressed

representation could resolve this issue at the expense of a more expensive model

construction procedure. In a production environment, this is reasonably inconse-

quential, as the time taken to generate the data in the first place is several orders of

magnitude larger. We could thus anticipate increasing R to produce better quality

approximations if deploying such models to production.

4.9 Discussion

In this application, a set of critical load cases was presumed to have been identified

a-priori for the IQs under consideration. This is a strong assumption, as a direct

search for the critical cases is never actually performed for any specific design that

is not the baseline configuration.

In practice, this works well for designs which are derivatives about a baseline, as the

critical load cases are not expected to change significantly, and the estimated set of

critical cases can be assumed “close enough” to the actual critical cases. There is,

however, still uncertainty associated with this assumption, as the optimisation to

find the true critical cases is never actually performed.

A more serious issue is encountered when considering novel designs or more rad-

ical design reconfigurations. In these situations, expert recommendations may be

unreliable or vague, and large amounts of quantitative data will not exist. There

consequently exists no rationale to performing case downselection reliably without

first studying the load case space: this is an expensive and time consuming endeav-

our due to the size of the load case space, and can contribute significantly to design

program time and monetary expenditure on computational power.
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We will tackle the problem of critical load case identification in chapter 7, and mod-

elling uncertain loads due to design variability in chapter 8. We will discuss how

to perform qualitative load case downselection using data, along with methods for

acquiring this information in a sample efficient manner. Since both of these tech-

niques require high quality representations of model uncertainty to function reliably,

methods to construct robust models of predictive uncertainty will consequently be

the subject of the next two chapters as we develop necessary modelling tools to

tackle the industrial problem.

4.10 Summary

We have introduced the problem of loads structural coupling, along with the air-

craft loads process, and the concept of a critical load case. We studied a method

for constructing surrogate models of the enveloping loads as a function of small,

simplified design changes, under the assumption that the conditions at which these

critical loads occur are known. High agreement was observed with validation data.

Finally, we discussed the consequences of relaxing the assumption that the critical

cases are known, and identified situations in which this is a relevant concern, moti-

vating development of robust models of uncertainty to be introduced in the following

chapter.
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Chapter 5

Robust GP Emulation

In this chapter we discuss the construction of robust models of uncertainty which we

term robust emulators. We discuss some of the obstacles to fitting fully probabilistic

GP models in an industrial environment, and provide carefully considered techniques

for navigating them.
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5.1 Robustness for Surrogate Models

Surrogate models are deployed for a variety and increasingly diverse assortment of

different engineering purposes. For many of these, quantification of predictive un-

certainty is beneficial, while for others it is essential: If replacing a physics based

model with a surrogate, downstream analyses that are sensitive to the model outputs

may wish to assess the robustness of a given decision given potential uncertainty

associated with the use of a surrogate. Surrogate models used for uncertainty prop-

agation must account for their own predictive uncertainty in the resulting posterior

distribution.

An occasionally overlooked source of potential uncertainty associated with the use of

a surrogate model, particularly in industrial contexts, is the uncertainty associated

with inference of the model (hyper)parameters. Many surrogate models deployed in

production environments utilise point estimates, which – with reference to chapter 3

– assume that the distribution of the parameters given the data can be represented

by a single point. While this assumption is often satisfied, it is by no means a

guarantee, and if rigorous quantification of uncertainty is required, an important

source of uncertainty might be overlooked as a result. It is noted that this is not

unique to GP regression.

It follows that utilising the full distribution of the model parameters (occasionally

termed a “fully probabilistic” treatment) is attractive, though faces implementa-

tion challenges in practice: it is not always clear how to construct effective prior

distributions for the model parameters, and computing the posterior distribution

appropriately has historically been considered to be a temperamental, computation-

ally expensive task. Flexible methods capable of providing good quality approxima-

tions to the posterior distribution, such as Markov-Chain Monte-Carlo (MCMC), are

significantly more expensive than optimisation, require the model to be expressed

probabilistically, and (in the case of MCMC especially) might require time spent

tuning the sampling algorithm. Industry has historically been reluctant to engage

with such compromises except when absolutely necessary.
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This chapter introduces the theoretical conditions for robust GP regression [44].

We will explore construction of generally applicable prior distributions that are ef-

fective for most practical GP regression problems, and show that modern MCMC

algorithms can provide fast and effective “turnkey” sampling of model hyperparam-

eters. The next chapter then demonstrates these benefits.

5.2 Defining a Robust Emulator

Robustness from the perspective of a model implies it can be applied to a wide range

of potential problems with consistent performance. In the context of emulation

specifically, this means that the model should consistently provide good quality

statistical predictions, including quantification of predictive uncertainty.

There are also practical facets to robustness. The method should be transparent

in its assumptions, provide clear diagnostics in the cases it is unsuitable, and be

straightforward to apply and assess. Methods which do not adhere to this are

unlikely to be useful in practice.

5.3 Model Choice

As introduced in chapter 2, GP regression provides a fully probabilistic model of

supplied data conditional on a number of assumptions about the process by which

that data may have been generated. Since the data generating mechanism in surro-

gate modelling applications is usually a simulator (a computer model of a physical

phenomenon), “properties” of this function can often either be extracted from knowl-

edge about the underlying physical process, or – at the very least – evaluated against

expert understanding of the problem to assess their suitability.

Selecting a covariance kernel ought only to require context specific considerations.

Given the appropriate scripting tools, a GP prior can be “designed” by matching

various context-specific assumptions from a menu of available options to the ap-

propriate covariance kernel as described in chapter 2 and appendix C. Such models

can be realised by using relatively simple metaprogramming techniques: that is,
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by having a higher level program or scripting language seamlessly connect different

low-level code “blocks” representing different choices of prior distributions and co-

variance kernels together, to then be compiled in order to provide efficient run-time

performance.

In the following sections, we consider a stationary, anisotropic GP with hyperparam-

eters θ , [α, ρ1, . . . , ρd], where α is the marginal standard deviation and ρ1 . . . ρD

are D anisotropic lengthscale parameters. This covers the majority of GP regression

problems as encountered in surrogate modelling applications.

5.4 Generally Applicable Hyperpriors

It is often the case that only a limited amount of information is known about the

properties of the target function before the model is fit to data. Nevertheless, even

such limited information is useful and helps avoid use of flat (or equivalently, unde-

fined) prior distributions. We refer to these considerations as “generally applicable”

for the reason that they can be used in the absence of problem specific informa-

tion.

It should be stressed that “informative” hyperpriors produced by expert elicitation

and/or past studies are almost always preferable: these can significantly reduce the

effects of model fit uncertainty, though their availability is a relative luxury. While

we note and emphasise that synthesis of such information is possible using this frame-

work (one simply adjusts the prior distribution for the relevant hyperparameter(s)),

this is not the focus of this section.

5.4.1 Scaling

An important pre-requisite to defining generic prior distributions is appropriate scal-

ing of the observed data. Both the input and output data should be scaled appro-

priately, since this assists in “scale-free” treatment of the model hyperparameters,

which is significantly more generalisable.

Model inputs should be transformed onto the unit scale, such that the support
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of the target function is [0, 1]D (with D being the number of input dimensions).

Similarly, model outputs should be scaled such that they have approximately zero

mean and unit standard deviation. This is easily accomplished by subtracting the

sample mean and dividing by a robust measure of the dispersion, such as the Median

Absolute Deviation (MAD) [21]. Using the sample standard deviation is not advised

as it is sensitive to outliers, and obtaining a standard deviation of precisely 1 is not

necessary.

5.4.2 Priors for Marginal Standard Deviation

Ensuring the marginal standard deviation, α, is not too high reduces the tendency

of a GP model to “overfit” the data with short lengthscale functions. Given the

output data is pre-processed to have approximately unit standard deviation, we

can encode the belief that the marginal standard deviation is of approximately unit

magnitude by using a half standard-normal prior distribution centred at 0, following

recommendations in the Stan user manual [21]:

α ∼ Normal+(0, 1) (5.1)

where Normal+ refers to a (positive) half-normal distribution. In the context of a GP

likelihood, when compared to a flat or thick-tailed prior distribution this choice is

“weakly informative” in the sense that it constrains α to around approximately unit

magnitude, but otherwise lets the likelihood (the other component of the posterior)

“speak for itself”.

This choice is noted to be somewhat arbitrary, and one could also consider (for

example) a half student-t (4, 0, 1) distribution instead. More informative distri-

butions could be used for specific applications these though are significantly less

flexible.

Experimentation with the marginal standard deviation prior may produce (more)

effective bespoke options for specific use cases, though this prior distribution is signif-

icantly less important than that of the anisotropic lengthscales, and the half-normal
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distribution is simple, empirically robust, and effective for our applications.

5.4.3 Priors for Lengthscales

Constructing a generic lengthscale hyperprior is slightly more involved than for the

marginal standard deviation.

1. The lengthscale for any given dimension is not much larger than ap-

proximately the support of the target function. Beyond this, functions

encoded by the GP are asymptotically linear in that dimension.

2. The data carries no information about lengthscales smaller than

the minimum spacing between two points in any given dimension.

Lengthscales smaller than the minimum distance between two points are in-

distinguishable from one another in the context of their likelihood.

The first consideration can be encoded by selecting a distribution with a sharp

right tail, and minimising the probability mass beyond the support of the original

function. Since all inputs to our robust model are scaled onto [0, 1], this translates

to minimising the probability mass greater than 1.

The second consideration depends on the data. While it goes somewhat against

the principles of a “true” Bayesian analysis, an effective method of encoding this

consideration is to use the data to construct the prior – a practice sometimes referred

to as empirical Bayes : by computing the minimum separation of the data in each

dimension, we then aim to choose a distribution assigning minimal probability mass

less than this value.

Let ∆i be the minimum separation between any two points in dimension i, and

suppose the prior probability of the anisotropic lengthscale in the subscripted di-

mension, p(ρi|θi), is given by a parametric prior distribution, πρ,i, with parameters

θρ,i.

We omit the subscript i herein for clarity and consider it implicit that the analysis
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is carried out for each input dimension. We aim to select θρ,i such that:

∫ ∆

0

p(ρ|θρ)dρ ≤ u

1−
∫ ∞

1

p(ρ|θρ)dρ ≤ u

(5.2)

given p(ρ|θρ) = πρ(ρ|θρ), and u is a small number representing the proportion of

the probability mass which is permitted to be below and above the minimum and

maximum spacing of the data.

The system of equations (5.2) can be rearranged to construct a root finding problem

in terms of θρ. Letting Πρ(·|θρ) be the cumulative distribution function for πρ(·|θρ),

we hence seek to solve the following for θρ:

Πθ(∆|θρ)− u = 0

1− Πθ(1|θρ)− u = 0
(5.3)

An appropriate parametric form for πρ permits sharp left and right tails such that

the system of equations described by (5.3) can be adequately satisfied. An effective

choice for this purpose is the inverse gamma distribution. We assume the following

parametrisation:

p(y|a, b) =
ab

Γ(a)
(
1

y
)a+1exp[

−b
y

] (5.4)

which has parameters θρ , [a, b].

Including the inverse gamma distribution CDF (known in some mathematical pro-

gramming libraries as the “regularized gamma function”) explicitly in the system of

equations described by (5.3) results in:

Γ(a, b
∆

)

Γ(a)
− u = 0

1−
Γ(a, b

1
)

Γ(a)
− u = 0

(5.5)
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where Γ(·, ·) represents the incomplete gamma function and Γ(·) the regular gamma

function.

What remains is to select an appropriate values for u. Smaller values result in a more

strict adherence to the two conditions used to construct the prior, as a relatively

higher proportion of the prior mass is forced to be assigned between ∆ and 1. A

small amount of flexibility is usually beneficial in the interest of sampler stability,

and we find u = 0.02 to be performant in our experiments.

Equation (5.5) is solved for θ , [a, b] using a modified Powell method, initialised from

a preliminary grid search to locate a suitable starting location. We use MINPACK’s

hybrid solver [45], as implemented in the Python module SciPy.

Our lengthscale hyperprior is thus:

ρi ∼ InvGamma (ai, bi) i = 1, . . . , d (5.6)

where ai and bi are identified via the system of equations (5.5) for each input dimen-

sion, given ∆i is the minimum (non-zero) spacing between any two sample points

in that subscripted dimension.

5.5 Hyperparameter Inference

In order to satisfy the criteria of a robust model we require an approximation to the

full posterior distribution of the model hyperparameters, over which the predictive

distribution is to be marginalised.

Let πθ represent the hyperprior for θ , [α, ρ] discussed in the previous two sec-

tions. We use MCMC to sample θ from a distribution proportional to p(θ|D, πθ)

using Hamiltonian Monte-Carlo (HMC) [30] as implemented by the probabilistic

programming language Stan [46]. A short introduction to HMC can be found in

appendix E.

Stan is a probabilistic programming language facilitating turnkey MCMC sampling
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using an enhanced version of the No-U-Turn sampler (“NUTS”), and provides several

important advantages relative to other MCMC algorithms which make it suitable

for industrial emulation purposes. Most important of these is that the sampling

algorithm is parameterless, thus obviating the need for any tuning and safely ab-

stracting away any requirements to rigorously understand sampling behaviour. Slice

sampling [28] and methods derived from it are reasonable alternatives for the same

reason.

The implementation of NUTS in Stan is particularly convenient, as one need only

specify a probabilistic model to run the algorithm, since Stan’s automatic differentia-

tion library automatically provides the derivatives of the likelihood function required

by NUTS. The process of constructing a probabilistic model in Stan language can be

scripted for most relatively simple GP regression problems, which – combined with

the metaprogramming techniques mentioned briefly in section 5.3 for constructing

covariance kernels based on requested assumptions – means fully defined probabilis-

tic GP regression models can be built automatically for practitioners (critically, in

the Stan language) from only a few problem specific considerations.

Since Stan models are translated directly to efficiently programmed C++, compiled

Stan models also provide fast sampling via NUTS: on a mid-range laptop with a

2.3GHz Intel i5-6200U, we are capable of drawing 2000 samples of (anistotropic)

GP regression hyperparameters in a few seconds for smaller numbers of samples

(N / 100), and in slightly less than a minute for moderate numbers of samples.

These figures are even faster for low (D / 5) dimensional functions, such that

NUTS is competitive with likelihood maximisation by multi-restart gradient ascent

in terms of clock-time in these cases.

Identical models with larger numbers of samples (N ' 200) in low dimensions

(D / 15) are noted to be better served by different methods: in these cases there

is often sufficient information contained in the data such that point estimates of

the hyperparameters are acceptable even for complex likelihood functions, and the

clock-time difference between NUTS and alternatives such as likelihood optimisation

or cross-validation starts to become significant.
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5.5.1 Sampler Settings

In general, we use the (default) settings recommended by the Stan developers [21,

section 14]: we use 4 independently initialised Markov Chains and draw a total of

1000 samples from each chain, discarding the first half of each chain as “warmup”:

Since NUTS is an adaptive algorithm, the warmup phase is necessary both to ensure

the retained samples are drawn with sampling behaviour that is sufficiently adapted

to the geometry of the sampling distribution, and to reduce the influence of the

location from which the sample chains are initialised.

Unlike some other MCMC algorithms, the developers report that thinning of the

chains (that is, retaining only one every x samples, where x is the amount of thin-

ning) is not usually necessary due to the sampling efficiency of the algorithm, and

we follow this recommendation [see also 15, ch. 11 pp. 282-283]. This results in a

nominal sample size of 2000 (500 samples drawn from 4 independent chains, after

warmup).

By default, NUTS run without “configuration” in the sense that it provides stable

and effective sampling performance without requiring any decisions from the user

or other context specific information. It does, however, permit optional manual

tuning via several parameters, which can help in certain circumstances. Of these,

the most relevant in the applications discussed here are the max tree depth, and

adapt delta (which refers specifically to the target Metropolis acceptance rate) set-

tings. For the relatively simple GP regression problems we consider, there are good

diagnostics for determining when either adapt delta or max tree depth ought to

be changed. These are discussed in section 5.6.

5.5.2 Initialisation

By default, Stan initialises all model parameters randomly on their support [21, sec-

tion 12.2]. Very occasionally, this can cause issues: if the sampler for a certain chain

is initialised in a particularly extreme region of the parameter space, the sampler

may be unable to “escape” under its default configuration due to the likelihood in

these regions being very flat.
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This behaviour is usually indicative of model misspecification (i.e. a model that is

incompatible with the supplied data [21, section 21.5]), however can be observed

even for simple GP regression problems on occasion if the amplitude is initialised to

be small and one or more lengthscales are initialised to be very large. We consider

this behaviour in the specific context of GP regression to be innocuous, as it is easily

remedied by manual initialisation of the model parameters, and the first half of the

sample chains (where the effects of initialisation location ought to be most apparent)

are always discarded as warmup, anyway.

Hyperparameters are initialised as follows:

• the marginal standard deviation, α, is initialised to the sample standard

deviation of the function observations, y. This corresponds to the assuming

that the regression function explains all of the observed variation in the data

(assuming it has zero mean).

• anisotropic lengthscales, ρ1, . . . , ρd, are initialised to one third of the sample

standard deviation of the input data in the specified input dimension. This is

somewhat arbitrary, though experiments indicate this is a stable initialisation

value. In general, any values less than the support of the function of interest

and larger than the minimum spacing are usually acceptable.

• other parameters are typically initialised to either 0 or 1, depending on their

support. Regression coefficients, for instance, are initialised to 0.

We stress that manual initialisation in this manner produces posterior distributions

identical to those obtained using random initialisation, except in the rare minority

of randomly initialised cases where the sampler becomes stuck.

5.6 Postprocessing

When using MCMC to approximate a distribution, it is important to check the

quality of the resulting approximation to ensure that the sampler has run correctly.

Such postprocessing can also help to diagnose any incompatibilities between the
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model and the data: if the sampler fails to run as it should, this is a possible

indication that the model (implicitly, the assumptions used to construct it) and

the data are incompatible, and is thus a crude way of assessing the suitability of a

particular modelling assumption.

In the following, we follow the recommendations of the Stan developers [21]. Readers

are also directed to [15, ch. 11] for a more thorough exposition of sample chain

assessment in the context of applied modelling.

5.6.1 Potential Scale Reduction Factor

To assess the convergence of the sample chains, Stan reports an “improved” potential

scale reduction factor, R̂ [47], for each of the model’s parameters. Loosely speaking,

as R̂ → 1 for a particular parameter, this implies additional samples should not

contribute strongly to the shape of that parameter’s marginal distribution, thus

indicating that the distribution has “converged” to a stable shape.

Observing R̂ ≥ 1.01 is a reason to believe further simulations are necessary to resolve

the shape of the posterior (marginal) distribution for that particular parameter, so

the sampler should be run again with a higher number of iterations.

5.6.2 Divergences

The Stan implementation of NUTS reports several sampler diagnostics. Of particu-

lar interest is the possible presence of divergent transitions, which may indicate the

shape of the posterior distribution cannot be trusted.

In basic terms, divergent transitions are caused by highly curved posterior geometry

(i.e. areas where the likelihood function has steep gradients) that the sampler fails

to navigate reliably [48]. In some cases, this can be resolved by increasing the target

acceptance rate (the adapt delta parameter mentioned in section 5.5.1), while in

others a re-parametrisation of the model is necessary (See experiments with Neal’s

Funnel [49] and [21, section 20.2]).

For the relatively simple GP regression models considered here, experience suggests
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that divergent transitions are almost always be resolved by increasing adapt delta.

Our models do not appear to induce any particularly pathological posterior geom-

etry, and all encountered divergences during the later stages of development were

resolved by gradually increasing adapt delta.

Presence of any divergent transitions in the experiments considered in this work is

reason to slightly increase adapt delta (from it’s default value of 0.8→ 1, in small

increments) and restart the sampler. This is easily automated. If the value of adapt

delta becomes very close to 1 and divergences remain, this suggests an issue with

the parametrisation of the model or a problem with the data.

5.6.3 Tree Depth Saturation

NUTS also reports tree-depth saturations if the number of leapfrog steps (see ap-

pendix E) reaches a pre-specified limit (the max tree-depth), which has a slightly

increased tendency to occur if adapt delta is increased.

Unlike divergences, tree depth saturations indicate inefficient exploration of the

posterior rather than potentially incorrect exploration, though encountering tree-

depth saturation warnings is considered reason to increase the max tree depth

parameter and restart the sampler due to the potentially diminished effective sample

size.

5.7 Summary

We introduce the concept of a “robust emulator”: a statistical model providing con-

sistently reliable quantification of predictive uncertainty. To enable easy construc-

tion of these models, we discuss generally applicable prior distributions and the use

of parameterless MCMC sampling via the probabilistic programming language Stan

to provide a fully probabilistic treatment of the model hyperparameters and a more

complete representation of uncertainty implicit in the model fit procedure relative

to other methods.
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Chapter 6

Experiments for Robust

Emulators

We test the performance of the robust emulators introduced in the previous chapter

on a variety of synthetic and analytical engineering test functions against a range

of similar models, showing favourable performance of the robust models in terms of

their ability to consistently represent predictive uncertainty accurately, in addition

to competitive point predictive performance.
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6.1 Hypothesis

Our hypothesis is that by constructing a robust model, which includes a fully prob-

abilistic representation of any model fit uncertainty, we will obtain a more complete

and reliable representation of the uncertainty associated with the use of the emula-

tor.

In many industrial surrogate modelling applications, we anticipate that the infor-

mation supplied by the data alone is not sufficient to result in a hyperparameter

distribution that is always well summarised by a single point: this is due to the

cost of data acquisition associated with expensive physics simulators (such as the

loads process discussed earlier in this document), which place an upper limit on the

volume of data that can be obtained in practice. How “disperse” this hyperparam-

eter distribution is becomes more severe with increasing data “sparsity”, which in

the context of a specific model can be considered qualitatively to be a function of

the quantity of data, the number of dimensions across which it is spaced, and the

complexity of the model.

In this sense, many industrial surrogate modelling applications in aerospace engi-

neering are sparse to moderately sparse. We assert that robust models, which use

the full posterior distribution of the model hyperparameters, will exhibit more stable

predictive performance that is less prone to specifics of the data.

Quantifying the relationship between model complexity, data volume and hyperpa-

rameter “identifiability” is an interesting and challenging avenue for further inves-

tigation but is not considered in this document.

6.2 Method

We assess the performance of emulators fit using three different methods:

• A robust method, as discussed in chapter 5, fit using MCMC.

• A maximum likelihood estimate using flat hyperpriors (“no prior”). We will

refer to this method as MLE.
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• A maximum likelihood estimate of the hyperparameters using the hyperpriors

discussed in section. We will refer to this method as MLE-II.

We use the canonical GP regression model consisting of a zero-mean function and

an exponentiated quadratic (EQ) kernel which is a suitable first choice for the test

functions we consider for the reasons outlined briefly in chapter 2. Our covariance

kernel is:

k(x,x′|θ) = α2exp

[
−0.5

d∑
i=1

(xi − x′i)2

ρ2
i

]
(6.1)

with hyperparameters summarised by θ , [α, ρ1, . . . , ρd].

We also add stability jitter with magnitude σ2 = 1e−10 to the leading diagonal of the

covariance matrix for numerical stability. This value ensures the resulting covariance

matrix is always invertible (that is, it is positive definite), but is sufficiently small

so as not to have any influence on the models’ predictive performance.

For the optimisations, we maximise the log-likelihood (log marginal likelihood in

the case of the MLE-II method) using Stan’s implementation of Newton’s method,

which makes use of automatically computed derivatives of the chosen probabilistic

model. Convergence is assumed when the change in the objective function between

iterations is less than 1e−10, and the optimisations are repeated 5 times, with the

result with the highest log (marginal) likelihood returned.

Detailed documentation of the fit procedures for each of the three models, including

probabilistic models, is provided in appendix F.

6.3 Assessing Probabilistic Predictive Performance

Assessing a faithful representation of uncertainty is not as straightforward as assess-

ing predictive performance for point predictions. Measuring predictive accuracy for

probabilistic predictions is discussed in [15, ch. 7].
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6.3.1 Log Pointwise Predictive Density

We opt to use the Expected Log Pointwise Predictive Density (ELPPD). In simpli-

fied terms, the ELPPD rewards correct predictions proportionally to how confidently

they are made, and penalises incorrect predictions proportionally to how confidently

they are made.

Let y∗ represent a single response from the true data generating process, x∗, such

that y∗ = f(x∗). The Log Predictive Density (LPD) for a single point is:

lpd = log

(∫
p(y∗|x∗,D, θ)p(θ|D, πθ)dθ

)
(6.2)

where p(θ|D, πθ) is the posterior probability of the hyperparameters and p(y∗|x∗,D, θ)

represents the predictive distribution of the model (see appendix B).

The posterior distribution of the hyperparameters, p(θ|D, πθ), is unknown in practice

and is approximated either by sampling from an approximation to it (MCMC), or

condensation to a single point (MLE / MLE-II). The integral with respect to θ in

equation (6.2) can thus be replaced by the expectation over S samples:

lpd = log (E [p(y∗|x∗,D, θ)]θ) = log

(
1

S

S∑
s=1

p(y∗|x∗,D, θs)

)
(6.3)

The Log Pointwise Predictive Density (LPPD) for a dataset of size N involves

summing the log predictive densities described by equation (6.3) for each of the N

points:

lppd =
N∑
i=1

lpdi =
N∑
i=1

log

(
1

S

S∑
s=1

p(y∗j |x∗j ,D, θs)

)
(6.4)

In the case of the MLE and MLE-II models specifically, equation (6.4) collapses to

computing the sum of the log predictive densities of the observed data as only a
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single sample of θ is present:

lppd =
N∑
i=1

log
(
p(y∗j |x∗j ,D, θ)

)
(6.5)

We scale equation (6.4) and equation (6.5) by 1/N , which equates to computing the

Expected Log Pointwise Predictive Density (ELPPD) for an arbitrary point selected

at random from the dataset.

A high ELPPD score on a particular dataset shows that the emulator deems those

observations as having high probability, or more loosely, “was not surprised” by the

data: this is desirable as it is a good indication that the model has done a good

job of modelling uncertainty present in the dataset. Conversely, a low ELPPD score

indicates the emulator was “surprised” by the data, or more specifically that some

of the observations have low or very low probability according to the model.

6.3.2 Root Mean Square Error

A potential concern when using probabilistic measures of performance such as the

ELPPD is that the model may behave in an overly conservative fashion, with reason-

ably high ELPPD scores disguising poor point-predictive performance. To alleviate

such concerns, we also report the Root Mean Square Error (RMSE) for each of the

models via the expectation of the predictive distributions (i.e. the GP predictive

mean, see chapter (2) or appendix B).

6.3.3 Model Self Assessment

In many surrogate modelling applications, practitioners do not have the luxury

of a large test set of data on which to evaluate performance. A model which is

capable of evaluating its own performance reliably via (for example) cross validation

is consequently valuable, as a larger portion of the simulation budget can be allocated

for training.

In the case of GP emulators, this results not only in more information being available
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to identify the model hyperparameters, but also more observations on which to

condition the model, which provide a reduction in predictive uncertainty in their

vicinity.

Using the method of Sundararajan and Keerthi [23] introduced in chapter 3, we

compute the analytical leave-one-out predictive densities for our models, and take

the expectation of this quantity across Ntest training samples to provide an estimate

of the ELPPD score on the test set. We then report the absolute difference between

the cross validated ELPPD and the actual ELPPD on the test data. Restating 3.15

from section 3.4.2, the leave-one-out predictive densities for a zero-mean GP are

calculated by:

LooCV(θ|D) =
1

N

Ntrain∑
i=1

−0.5log(2π) + 0.5log(ωθ,i)− 0.5(
α2
θ,i

ωθ,i
)

where, Ωθ = [Kθ,XX]−1; ωθ = diag(Ωθ); and αθ = Ωθ · (y)

6.4 Analysis Procedure

Each model is fit to a variety of different test functions using datasets of gradually

increasing size. The performance of the models is then assessed on a large, randomly

generated test set. These experiments are repeated 50 times each to explore the

sensitivity of the fitting mechanisms to slightly different sets of training data and

the resulting effects on predictive performance.

6.4.1 Functions

It is critical that the test functions can be evaluated rapidly, as they are queried

many thousands of times over the testing procedure. We use a variety of synthetic

functions and analytical physical models commonly used as emulation test problems

sourced from The Virtual Library of Simulation Experiments [50]. This provides us

with “engineering like” test functions which are representative of industrial mod-

elling problems while being fast to evaluate.
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Name D Reference
Branin 2 [51]
Cosines 2 [52]
Hypersphere 4 See appendix F.4.2
6-hump Camel 2 [53]
Friedman 5 [54]
Piston 7 [55]
Borehole 8 [56]
Circuit 6 [55]
Wingweight 10 [57]

Table 6.1: Summary of test functions, corresponding input dimensions, and refer-
ences.

All test functions are adapted to take inputs on [0, 1]D and are summarised by table

6.1. Surface plots of the 2D functions – Branin, cosines, and 6-hump camel function

– are provided in appendix F.

6.4.2 Training Data

We analyse each test function at training sample sizes of varying sparsity. Training

samples of a given size are generated using the min-max Latin-Hypercube Sample

(LHS) design of Morris and Mitchell [40]. Since min-max LHS is widely used in

industrial surrogate modelling applications, it is representative of a realistic use

case, and is sufficiently “randomised” such that repeated realisations can be used to

probe different model’s sensitivities to specifics of the training sample.

In accordance with the rationale described in chapter 5, the test data is scaled to

approximately unit standard deviation and zero mean.

6.4.3 Test Data

We make use of large (Ntest = 600) test sets to evaluate the ELPPD and RMSE.

This is an arbitrarily large number of test points, used to provide dense coverage.

To ensure the points are uniformly distributed – thus ensuring our evaluations do

not inadvertently weight performance in certain regions of the input space over

others – we generate quasi-random space-filling sequences on [0, 1]D using the Sobol

sequence [58], which has been demonstrated both theoretically and empirically to
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exhibit strong multi-dimensional space-filling properties [59].

The test data is normalised using the same factors as the appropriate training sam-

ple.

6.5 Results

Values of ELPPD and RMSE are reported for each test function, for varying sample

sizes. Each type of model is fit and evaluated 50 times for each test function and

sample size. Results for the test functions are displayed in figures (6.1 - 6.4) for

the 5 synthetic functions (Branin, Cosines, Sphere, 6-hump Camel and Friedman)

and in figures (6.6 - 6.9) for the 4 engineering functions (Piston, Circuit, Borehole,

Wingweight).

We also report the log difference between the leave-one-out cross validated ELPPD

and the ELPPD computed on the test data for each test function in figure 6.10.

6.5.1 Branin

With reference to figure (6.1), ELPPD can be seen to increase, on average, with sam-

ple size, and rmse can be seen to decrease. MCMC and MLE-II perform favourably

in terms of ELPPD, with MLE experiencing a large amount of variation, particu-

larly at lower sample sizes. MLE-II can be observed to exhibit slightly inconsistent

ELPPD performance at higher N , though these points are in general outliers.

6.5.2 Cosines

With reference to figure (6.2), MLE is noted to suffer from strong overconfidence

to the extent that its ELPPD scores are infinitely low (thus not visible). MCMC

appears to exhibit superior ELPPD performance relative to MLE-II but exhibits

similar RMSE. Poor ELPPD performance of MLE, on average, is likely due to the

linear bias induced by a flat prior and the fact that the target function is highly

nonlinear.
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Figure 6.1: ELPPD and RMSE for the Branin function.
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Figure 6.2: ELPPD and RMSE for the Cosines function.
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Figure 6.3: ELPPD and RMSE for the 6-hump camel function.

6.5.3 6-Hump Camel Function

Referencing figure (6.3), MLE exhibits poor ELPPD performance, though only

slightly worse RMSE performance than MCMC at higher (N > 15) sample sizes, and

best average RMSE at low sample sizes. MCMC performs well in terms of ELPPD,

though somewhat more inconsistently than on other functions, and favourably in

terms of RMSE, except at low N . MLE-II performs only slightly worse than MCMC

in terms of ELPPD, on average, though with a large amount of variation between

samples, and similarly to MCMC in terms of RMSE.

6.5.4 Friedman Function

Figure (6.4) shows the results for the Friedman test function. Though MLE is unsta-

ble at low N , it performs well on this function in terms of RMSE, and well in terms

of ELPPD, except between N = 40 and N = 50 samples, at which point a spurious

reduction in ELPPD can be observed. MCMC performs similarly, on average, but

with much more consistency, and does not experience a drop in ELPPD performance

when moving from N = 40 to N = 50. MLE-II performs more favourably and with

more consistency than MLE in terms of ELPPD, but not RMSE, except at N = 50,

and in general has slightly inferior performance relative to MCMC in terms of both

ELPPD and RMSE.
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Figure 6.4: ELPPD and RMSE for the Friedman function.

6.5.5 4D Sphere

With reference to figure (6.5), MLE performs inconsistently on the 4D Sphere but

occasionally with the best performance in terms of both ELPPD and RMSE. MLE

appears to be consistently overconfident at higher sample sizes, characterised by

good RMSE performance but poor ELPPD performance. Notably, the distribution

of ELPPD results for MLE appears to be multi-modal at N = 30. MCMC and

MLE-II exhibit similar performance, with MCMC demonstrating slightly superior

performance in terms of ELPPD and RMSE at higher sample sizes.

6.5.6 Piston

The results for the piston function are shown on figure (6.6). MLE exhibits incon-

sistent ELPPD performance that increases in quality with sample size. The ELPPD

performance of MCMC is consistently superior and exhibits less sensitivity to dif-

ferent datasets. Both MLE and MCMC perform very well in terms of RMSE, with

MLE being superior at low sample sizes. MLE-II can be seen to perform poorly in

all cases: despite having higher ELPPD than MLE at low sample sizes, this is offset

by poor RMSE performance.
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Figure 6.5: ELPPD and RMSE for the 4D hypersphere function.
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Figure 6.6: ELPPD and RMSE for the piston function.
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Figure 6.7: ELPPD and RMSE for the borehole function.

6.5.7 Borehole Function

Figure (6.7) shows the results for the borehole test function. MLE-II can be seen

to exhibit inconsistent performance in terms of both ELPPD and RMSE, which is

on average worse than MLE and MCMC. MCMC offers consistently higher ELPPD

performance than MLE, though MLE offers slightly better RMSE performance, on

average. These differences appear to reduce with sample size.

6.5.8 Circuit Function

Figure (6.8) shows the results for the circuit test function. MLE exhibits poor

and inconsistent ELPPD performance, though good RMSE performance. MLE-II

fares slightly better than MLE in terms of ELPPD, but has inconsistent ELPPD

performance. MCMC consistently performs the best in terms of ELPPD and has

performance slightly worse than MLE in terms of RMSE.

6.5.9 Wing Weight Function

Figure (6.9) shows the results for the wing weight test function. MLE exhibits high

sensitivity to different realisations of the data in terms of ELPPD, though performs

well in terms of RMSE, with one notable outlier at a sample size of 30. The MLE
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Figure 6.8: ELPPD and RMSE for the circuit function.

models also exhibit unusual ELPPD behaviour, in which average ELPPD decreases

with sample size between N = 30 and N = 50. MCMC performs consistently well

in terms of ELPPD and RMSE, exhibiting the best performance in both except

in terms of RMSE at high sample sizes, in which case the median performance

of MLE is superior. MLE-II appears to encounter difficulties with this function,

exhibiting multi-modal performance characteristics in terms of ELPPD, and highly

inconsistent RMSE (with box plots not shown at N < 60 due to being outside the

figure axis).

6.5.10 Model Self Assessment Scores

Figure (6.10) shows the log absolute differences between the Leave-one-out cross

validated ELPPD scores and the ELPPD scores obtained using test data. The log

difference is reported so that very small and very large differences can be reported

using the same axis. MLE-II quite consistently exhibits the lowest differences be-

tween the two criteria, though MCMC is comparable on some test functions (branin,

circuit, wingweight), and the differences tend to be small. MLE consistently demon-

strates the largest differences.
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Figure 6.9: ELPPD and RMSE for the wing weight function.

6.6 Analysis

On balance, the robust models fit using MCMC perform favourably, exhibiting good

though not necessarily best) ELPPD and RMSE performance on both the synthetic

(Branin, Cosines, Hypersphere, 6-hump Camel, Friedman) and engineering (Piston,

Circuit, Borehole, Wingweight) test functions. The MCMC method also appears to

be significantly less sensitive in terms of ELPPD to different initial random samples,

which we consider to be due to the extra stability introduced by our choice of

hyperprior distributions and the fact that the models are integrated over uncertainty

in the hyperparameters. These observations confirm our initial hypothesis that

the MCMC method should perform more consistently and provide a more reliable

representation of uncertainty associated with use of the model.

The MLE method exhibits inconsistent ELPPD, indicating heightened sensitivity

to the initial sample points relative to MCMC in terms of the method’s ability to

represent uncertainty in its predictions. The method exhibits good, and often best,

RMSE performance, particularly on the engineering functions, figures (6.6-6.9); and

for the synthetic functions (6.1-6.4) at larger sample sizes, though poor ELPPD,

especially on the engineering functions. Low RMSE and low ELPPD is characteristic

of model overconfidence, occurring when the target is almost but not quite linear
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Figure 6.10: Log absolute differences between the leave-one-out cross validated ELPPD scores and
the ELPPD scores obtained on the test data.
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across its support, perhaps lacking information from the data such that this slight

nonlinearity can be considered by the likelihood function. This appears to be the

case concerning the engineering functions, and inspecting the kernel lengthscales for

the models reveals many are linear (ρ > 2) in most of their input dimensions.

This same behaviour partially explains the degraded RMSE of the MLE-II model

on the engineering functions relative to MLE, as the chosen hyperprior shifts the

maximum likelihood estimate (as regularized by the prior, in this case) towards more

nonlinear lengthscales; and why MLE-II performs more favourably on the synthetic

functions in figures (6.1-6.4), since these tend to be more nonlinear with respect to

their inputs. The low RMSE observed by the MLE-II models on the engineering

functions in figures (6.6-6.9) is likely due to the more nonlinear models being a poorer

prediction for the data, as indicted by the observed ELPPD scores being low but

occasionally better than those for the MLE models, which otherwise have superior

RMSE scores. This behaviour is not exhibited by the MCMC models, which despite

receiving identical prior distributions to the MLE-II models, are integrated over the

full hyperparameter distribution, shifting the resulting integrated model away from

an overly nonlinear representation for the data.

There are occasions where the point estimate models (MLE and MLE-II) exhibit

“multi-modal” performance characteristics, visualised as dense clusters of outlying

points on the box plots. This can be observed particularly for MLE model ELPPD on

the sphere function, figure (6.5), and MLE-II ELPPD on the wing weight function,

figure (6.9). The fact that this behaviour is never seen for MCMC suggests this could

be due to a multi-modal or ridge shaped distribution of one or more important

hyperparameters, such that point estimates are not effective summaries in these

cases.

All of the methods generally improve in quality with more data – as expected –

though this is occasionally more dramatic in certain circumstances: in particular,

the average ELPPD scores of the MLE method on the Branin function between 20

and 25 samples, observed in figure (6.1); and on the wing weight function between 50

and 60 samples, observed in figure (6.9), appear to experience significant improve-
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ment. This may suggest some kind of sample-size threshold over which the data

is capable of providing enough information such that the model hyperparameters

are well identified, in particular providing enough information that the overly linear

lengthscales of the MLE models (represented by good RMSE but poor ELPPD) can

be shifted to more appropriate nonlinear values.

A notable exception occurs in the case of MLE model ELPPD scores, which on

several occasions become worse with more data: notable instances of such behaviour

are the Friedman function between N = 40 and N = 50, shown in figure (6.4);

the circuit function at all sample sizes, shown in figure (6.8); and the wingweight

function between N = 30 and N = 50, shown in figure (6.9). In each of these

cases, reductions in average ELPPD are coupled with increased average RMSE,

indicating this phenomenon is to do with poorly quantified predictive uncertainty

rather than predictive performance more generally. This is indicative of unsuitable

model hyperparameters. As this behaviour is not apparent for either the MCMC

or MLE-II models, one possible explanation is that the linear bias originating from

use of a flat lengthscale prior results in insufficiently generous predictive uncertainty,

with this overconfidence apparently exacerbated by certain datasets: if one (or more)

samples do not lie in particular (problematic) regions of the input space, an increased

volume of data which otherwise may be consistent with an overly linear model

will increase confidence in such overly linear hyperparameters. This explanation is

consistent with the fact that though average ELPPD decreases, maximum ELPPD

tended to either improve or remain the same.

MCMC and MLE-II appear to be the best at evaluating their predictive performance

via LOO-CV, as seen on figure (6.10), having the lowest absolute differences between

the ELPPD scores on the test data and the analytically computed ELPPD estimates

via leave-one-out cross validation.
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6.7 Summary

Robust emulators, as introduced in the previous chapter, have been rigorously

tested against models fit using both Maximum Likelihood Estimation and prior-

regularized Maximum Likelihood Estimation (MLE-II), with the robust models ex-

hibiting favourable performance. In particular, the robust models exhibited signif-

icantly less sensitivity in terms of predictive performance to specifics of the data

used to train them.
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Chapter 7

Critical Load Case Selection

Revisiting the loads process, we investigate uncertainty associated with the choice

of critical load cases. In this chapter, we approach a slightly simplified problem ap-

plicable to situations in which anticipated changes to the design are small. We show

how Bayesian Optimisation can be used as a simulation-efficient means of identifying

the critical load cases, and how to construct a probability distribution over possibly-

critical cases such that a quantitative load case downselection is feasible.
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7.1 Problem Description

In chapter 4, we introduced the loads process as a black-box function, l(x, z); used

to calculate aircraft loads as a function of a load case, x; and a design vector, z,

returning a vector, y, of forces and moments at locations of interest (or “nodes”)

on the airframe:

y = l(x, z) (7.1)

A particular load case, x, was determined to be critical (denoted by superscript ∗),

if:

l(x∗, z) ≥ l(x, z) ∀x ∈ X (7.2)

holds for at least a single IQ y ∈ y.

This can be posed neatly as a maximisation problem over the load case space:

x∗ = arg max
x∈X

l(x, z) (7.3)

where x∗ is a critical load case.

The optimisation described by equation (7.3) is noted to be challenging, due to the

size of the load case space, X , and the cost associated with querying the objec-

tive function. This is to the extent that X tends to be discretised using domain

expert knowledge and/or past data, and the critical cases estimated from a dis-

crete set. This, however, produces uncertainty in the computed enveloping loads,

since the location of the true critical cases for any given design is never directly

investigated.

This chapter aims to provide tools to investigate this uncertainty, first proposing

a strategy for approaching a simplified version of the optimisation problem in a

sample efficient manner given relatively mild but assumptions, and then proposing
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a method for representing uncertainty in the location of the critical cases.

7.2 Critical Case Identification for a Fixed De-

sign

We first approach a slightly simplified version of the full problem by assuming z

is fixed. This is equivalent to assuming the design vector either does not change,

or experiences only small changes in the context of the resulting loads. This is

neither an unrealistic assumption nor a toy problem: the same rationale is used to

justify discretisation of the load case space when performing case downselection as

discussed in [2], and the critical cases of designs close to a baseline configuration

ought not to change much. Additionally, such an analysis can be used to investigate

the uncertainty associated with a particular choice of critical cases, albeit only for

a single design.

Critical case identification for a fixed design is described by the following optimisa-

tion over the load case space:

x∗ = arg max
x∈X

lz(x) (7.4)

where the subscript z is used to note that the objective function is conditional on

the choice of design.

The optimisation described by equation (7.4) is still challenging: The load case space

is difficult to navigate, the objective function is expensive, and the optimisation must

be repeated (in principle) for each IQ.

Our strategy for approaching this problem involves the use of a data-sparse emulator

to provide a model lz(x), followed by subsequent adaptive sampling of the load case

space only in regions that are informative about the critical cases. Such a strategy

is functionally equivalent to performing Bayesian optimisation (BO).

97



7.3. Bayesian Optimisation Chapter 7. Critical Load Cases

7.3 Bayesian Optimisation For Loads

Use of a GP as an emulator offers the possibility of deploying an adaptive data ac-

quisition strategy to the construction of the model. This is useful from an industrial

perspective as it ensures expensive simulation resources are allocated only where

they are useful (in some formal sense) and necessary. The intuition behind BO is

introduced in appendix G and an accessible technical review can be found in [60].

Since BO is a function of the predictive distribution of the emulator, a model which

confers a good representation of predictive uncertainty is advantageous. This asser-

tion is confirmed by experiments conducted by Hernández-Lobato et al. [61]. We

consequently make effective use of the robust GP regression techniques introduced

in chapter 5.

In the context of critical load case identification, we wish to use BO as a strategy

for (sequentially) investigating only those load cases which contribute knowledge

about the location of the critical cases. Practically, this involves first constructing

an emulator using a low number of initial load cases, then sequentially investigating

more load cases deemed to be “useful” via an acquisition function.

7.3.1 Mock Loads Process

Testing this procedure on the real loads process is impractical due to the amount

of time required to perform a query: in order to marginalise how much the ini-

tial, random sample influences the results of our BO procedure, the experiments

must be repeated a considerable number of times. Given the loads process is ex-

pensive to work with (in the sense that each query requires a large amount of time

to be evaluated), repeating this procedure even several times is prohibitively time

consuming if a reasonable number of repeats are to be achieved. We consequently

test our methods on a simplified version as a proof-of-concept. This allows choice

facets of the real problem to be reflected in a convenient approximation that can

be used for rapid prototyping. In particular, uncertainty in the critical cases with

respect to continuous parameters such as Mach number and altitude, which tend to

be discretised, is of interest.
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Variable Type Notes
Case Type Discrete Manoeuvre or Gust
Mach Number Continuous
Altitude Continuous
Aircraft Total Mass Continuous
Centre of Gravity Position Continuous As a fraction of the chord

Table 7.1: Input variables to the approximate loads process.

Our simplified loads process is defined over 1 discrete and 4 continuous inputs, shown

in table 7.1. The two discrete case types considered are a 2.5g turn (“manoeuvre”)

and a 1-cosine gust (“gust”).

Additionally, rather than the full list of IQs, we perform the analysis on a small

subset. We retrieve bending and torsion measurements at 6 choice nodes: 3 along

the span of the wing, and 3 along the span of the horizontal tailplane, correspond-

ing roughly to regions referred to as “inner” “mid” and “outer” locations on the

respective surfaces.

All values in this document are normalised.

7.4 Problem Formalisation

We analyse two closely related problems:

1. Actively searching for the critical load cases using Bayesian opti-

misation. This involves approaching the optimisation described by equation

(7.4) directly.

2. Probabilistic load case downselection. Given a probabilistic model of the

load case space exhibiting uncertainty, we aim to identify candidate regions of

the space for further analysis.

Using BO, item 1 concerns efficient construction of an emulator capable of finding

potentially critical cases, while item 2 is associated with using this emulator to select

potentially critical cases from those considered.
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7.4.1 Modelling the Loads Process

In both cases we use robust GP models fit using MCMC as described in chapter

5. To handle the discrete case type variable we use a “piecewise” GP, which in

practice simply involves constructing a separate emulator over the 4 continuous

parameters for each of the discrete variables. Sharing hyperparameters between the

two piecewise GPs is possible though not recommended in this case: the physics

responsible for producing the loads are not consistent between case types, and there

are not convincing arguments for why any particular input variable should have

similar effects on gust loads as it does on manoeuvre loads. This can be verified by

comparing distributions of the hyperparameters for the gust and manoeuvre models,

which confirms this assertion.

We first approach a simplified problem where we consider 1 IQ at a time. This is

significantly less unattractive than the apparent need to repeat the analysis for all

IQs might imply: though we only optimise a single IQ at a time, results are returned

for all of them each time the loads process is queried, thus still indirectly providing

(non-optimal) utility for identifying the critical cases for other IQs. Nevertheless,

this is less efficient than considering the IQs simultaneously.

7.5 Bayesian Optimisation Procedure

Given an initial sample of data, one constructs an emulator and uses an acquisition

function given this emulator to determine the next “most useful” point to query. One

then queries the (expensive) target function at this point and augments the available

data with this new point and the corresponding response. This procedure is repeated

iteratively, usually until a certain number of queries to the target function have been

performed, but could also be terminated when the expected utility as predicted by

the acquisition function falls below a predetermined threshold.
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7.5.1 Case Type Variable

Values of individual IQs between the two case types were discovered to be on different

scales to the extent that it was immediately clear from the initial sample if a given

IQ was maximised by either the gust case or the manoeuvre case.

The case variable was dropped from the optimisation, with the analysis over the

four continuous variables simply repeated for that case type to investigate potential

differences behaviour between the manoeuvre and gust case types.

7.5.2 Acquisition Function Optimisation

We take the expectation of the chosen acquisition function (see appendix G) over

the posterior distribution of the model hyperparameters. Letting a(x|y∗, θ) be an

arbitrary acquisition function for a GP emulator with posterior predictive distribu-

tion y∗ and hyperparameters θ, and assuming we have access to a total of S samples

of θ drawn from p(θ|D, πθ) using MCMC, the expected utility of a point, x, as

determined by a is:

E[a(x|GP)]θ =
1

S

s∑
i=1

a(x|y∗, θs) (7.5)

The above is taken to be negative in this work, such that the point with the most

utility is obtained by minimising equation (7.5) over X . Letting x̂ be the “most

useful point” as determined by the acquisition function, one finds x̂ by:

x̂ = arg min
x∈X

E[a(x|y∗)]θ (7.6)

which we approach using the Sequential Linear Least Squares Programming (SLSQP)

algorithm of Kraft [62], as implemented in the python module Scipy. Since the

objective function described by equation (7.6) is cheap to compute, a reasonably

dense preliminary grid search of 200 points is used to locate a suitable initialisation

point.
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7.5.3 Initial Sample

Due to the simplifications made to the loads process model, we use a particularly

sparse initial sample of 7 initial load cases across the 4 continuous load case param-

eters, which are scaled to accept input on [0, 1]. Like the experiments conducted in

chapter 6, we sample the hypercube [0, 1]4 using a min-max LHS design [40], which

is cheap to compute, offers good space filling properties at this number of dimen-

sions, and is more randomised than quasi-random alternatives such as the Sobol

sequence; the latter being important when sensitivity to this initial sample is being

assessed.

7.5.4 Acquisition Functions

We test two of the most simple acquisition functions: pure exploration (PX; see

appendix G.2.1) and expected improvement (EI; see appendix G.3.1). We initially

planned to use a third acquisition function – Hernández-Lobato et al. [61]’s Predic-

tive Entropy Search (PES) – though encountered difficulties applying the acquisition

function to our problem successfully which compromised the usability of the algo-

rithm. These issues are documented in appendix G.3.2.

7.5.5 Psuedocode

The pseudocode provided by algorithm 2 provides a description of BO as applied

to critical load case identification. Since use of a superscripted asterisk for both

a predicted quantity and a critical load case is notationally confusing, we use the

superscript ·max to denote a critical case in this short section.

7.5.6 Performance Evaluation

We report the absolute regret, defined as the absolute difference between the value

at the argmax predicted by the emulator, ŷmax, and the value of the true maximum,
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Algorithm 2 Bayesian Optimisation For Loads (single IQ)

1: Given: loads process, lz returning a specific IQ; initial data, D0 = {X,y};
GP prior (choice of mean function, covariance kernel); simulation budget, T ;
acquisition function a(·|·).

2: t = 0
3: while t < T do
4: Create empirical hyperprior πθ from Dt . see section 5.4
5: Use MCMC to obtain S samples of θ from p(θ|Dt, πθ)
6: (Optional) predict critical case xmax

t = arg maxx∈X E[p(y∗|x,Dt, πθ)]θ
7: Find the most informative case xnew = arg minx∈X E[a(x|y∗)]θ
8: Query lz at xnew to get ynew = lz(xnew)
9: Augment data with new points Dt+1 ← Dt

⋃
{xnew, ynew}

10: Increment iteration number: t = t+ 1
11: end while
12: Get final guess of critical case xmax

t = arg maxx∈X E[p(y∗|x,Dt, πθ)]θ
13: Return: guess critical load case, xmax

t

ymax:

AbsoluteRegret = |ŷmax − ymax| (7.7)

which is calculated after each iteration.

7.6 Results: Bayesian Optimisation

A low number of total iterations (10, in addition to the initial sample) are used as

we simply wish to indicate proof of concept.

Each optimisation is repeated 30 times on randomly generated initial grids. We

report the median absolute regret at each iteration, along with bounds corresponding

to the minimum and maximum absolute regret, indicating worst-case and best-case

performance, respectively.

7.6.1 Wing Bending

BO results for wing bending IQs are shown in figure (7.1). EI can be observed to

clearly outperform PX in all cases except for the outer-wing gust-induced bending
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Figure 7.1: Absolute regret for the Bayesian optimisation procedures treating wing bending IQs.

function, on which it performs comparably.

7.6.2 Wing Torsion

Figure (7.2) shows the BO results for wing torsion IQs. EI converges faster and to

values closer to the maximum than PX in all cases. Neither EI nor PX converge to

the true maximum for mid-wing manoeuvre induced torsion or outer-wing manoeu-

vre induced torsion within 10 iterations, though the regret is very small (less than

1% of the value at the maximum).

7.6.3 HTP Bending

Results for HTP bending IQs are shown in figure (7.3). EI can be observed to per-

form either better than or similarly to PX. Regret for the inner-HTP manoeuvre

induced bending function appears to exhibit a lot of variation, indicating perfor-

mance might be sensitive to specifics of the initial sample, though is consistently

reduced with more iterations. Regret for the mid and outer HTP manoeuvre-induced

bending functions is very small, despite never reaching 0 within 10 iterations.

104



Chapter 7. Critical Load Cases 7.6. Results (BO)

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.00

0.01

0.02

0.03

0.04

Ab
so

lu
te

 R
eg

re
t

inner-wing manoeuvre induced torsion
EI
PX

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.00

0.02

0.04

0.06

Ab
so

lu
te

 R
eg

re
t

mid-wing manoeuvre induced torsion
EI
PX

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.000

0.025

0.050

0.075

0.100

Ab
so

lu
te

 R
eg

re
t

outer-wing manoeuvre induced torsion
EI
PX

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.00

0.25

0.50

0.75

1.00

1.25

Ab
so

lu
te

 R
eg

re
t

inner-wing gust induced torsion
EI
PX

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.00

0.25

0.50

0.75

1.00

1.25

Ab
so

lu
te

 R
eg

re
t

mid-wing gust induced torsion
EI
PX

0 1 2 3 4 5 6 7 8 9 10
Iteration Number

0.0

0.2

0.4

0.6

0.8

1.0

Ab
so

lu
te

 R
eg

re
t

outer-wing gust induced torsion
EI
PX

Figure 7.2: Absolute regret for the Bayesian optimisation procedures treating wing torsion IQs.
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Figure 7.3: Absolute regret for the Bayesian optimisation procedures treating HTP bending IQs.
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Figure 7.4: Absolute regret for the Bayesian optimisation procedures treating HTP torsion IQs.

7.6.4 HTP Torsion

Figure (7.4) shows the BO results for HTP torsion IQs. EI once again consistently

outperforms PX, particularly on the gust-loading functions. Both algorithms strug-

gle to identify the true maximum within 10 iterations for mid-HTP manoeuvre

induced torsion, and though the regret is proportionally small, it is slightly larger

(approximately 1% of the value at the true maximum) than for other instances of

similar behaviour.

7.6.5 Analysis

As a proof of concept, our experiments show that BO is a sample efficient means

of exploring the load case space with respect to continuous parameters. Expected

Improvement is a simple and effective acquisition function for this purpose, per-

forming more efficiently than simply adding data at the points of greatest predictive

uncertainty in terms of ability to identify the maximum of the target function.
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7.7 Probabilistic Downselection

Given an emulator for the loads process, we can consider how to use it to estimate

the locations of possibly critical load cases. More precisely, this involves constructing

a distribution over possible locations of the maximum of a function modelled by a

Gaussian Process, then using this distribution to restrict further investigation into

this “subset” of points. This problem is approached as part of the Predictive Entropy

Search (PES) [61] algorithm.

Here, we use the same method as PES, and use random features to approximate

sample paths from the GP predictive distribution. These randomly generated sam-

ple paths permit a cheap, analytical representation which can be optimised quickly,

and aggregating the argmaxes of many of these randomised approximations pro-

vides a good representation of the distribution over locations for the true argmax.

The quality of this approximation is conditional on how well the emulator used to

generate the sample paths approximates uncertainty in the target function.

Given this distribution over possibly critical cases, a practitioner can then perform a

qualitative assessment on which load cases should be considered further, for example

by keeping only those with a certain probability of being critical. This type of

analysis offers potentially enormous savings in terms of simulation resources.

7.7.1 Assumptions

The intended method is valid only for stationary GPs (or more precisely, “shift in-

variant kernels”), due to the way the random feature approximations are generated.

For additional details, readers are directed to the paper of Hernández-Lobato et al.

[61].

7.7.2 Problem Formalisation

Given an emulator for a particular load measurement, we wish to invoke a distri-

bution over possible locations for the maximum over the load case space, using the

random feature approximation method described in [61, appendix A].
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Algorithm 3 Approximating p(x|D, πθ) using random feature approximations

1: Given: GP emulator, GP , given data D, S samples of hyperparameters from
posterior distribution, [θ1, . . . , θS]; requested number of samples, M ;

2: Initialise iteration number: m = 0
3: Initialise array of sampled maxima: X = {}
4: while m < M do
5: Select θ̂ uniformly at random from [θ1, . . . , θS]
6: Generate a random feature approximation, Φ(x∗), of GP(x∗|D, θ̂) . See [61]
7: Find xm = arg maxx∈X Φ(x)
8: Add xm to X
9: Increment iteration number: m = m+ 1

10: end while
11: Return: X

Let y = lz(x) represent the true loads process for the IQ under consideration, and

let y = lz(x) represent the maximum absolute load, y at the critical load case, x.

By constructing an emulator for lz, we wish to obtain a probabilistic representation

of possible locations for the critical case in the form of a probability distribution

p(x∗|D, πθ).

This distribution is conditional on the hyperprior, πθ, rather than θ itself, as we

marginalise over p(θ|D, πθ). We construct an empirical approximation by sampling

a total of M function maximisers from randomly constructed feature approxima-

tions to the emulator representing lz using randomly selected hyperparameters from

p(θ|D, πθ). A pseudocode is provided in algorithm 3.

7.7.3 Experiments

We sample approximated function maximisers for three IQS: outer wing bending

and torsion during a gust case, and inner wing bending during a turn manoeuvre.

Of the 6 combinations of IQs and load cases introduced earlier in this chapter (inner,

mid and outer nodes on the wing and HTP, for both bending and torsion), these

three are selected due to being the most interesting for designers, with manoeuvre

loading being a strong candidate for being critical for inner-wing bending, and gust

loading being a strong candidate for being critical for outer wing bending and outer

wing torsion.
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We use robust GP emulators, constructed as described in chapter (5), by sampling

the space of load cases, X , using the Sobol sequence [58] with varying sample sizes

N = [20, 30, 40, 50], in order to demonstrate the effect of reducing emulator un-

certainty on the ability of the procedure to accurately predict the location of the

argmax.

To visualise the resulting 4D distributions, we use parallel co-ordinates [63], such

that each line on the figure represents a point in 4D space. To communicate a proba-

bility distribution on this plot, a single line is configured to feature low transparency,

such that darker regions of the plot correspond to higher probability regions.

We also plot the marginal histograms for each input variable across its support,

indicating the relative counts for the number of times a sampled maximum falls

within that bin.

7.8 Results: Probabilistic Downselection

Distribution over possible critical cases for inner wing bending during manoeu-

vre loading are shown in figure (7.5) and distributions over possible critical cases

for outer wing bending and torsion are shown in figures (7.6) and (7.7), respec-

tively.

In all cases, the number of greyed-out bins on the histograms – which correspond to

regions of the load-case space containing less than 1% of the total argmax sample

count for that dimension – can be seen to shrink with increasing sample size, as the

model becomes more confident in predicting the location of the critical case.

7.8.1 Analysis

The visualisations shown in figures (7.5-7.7) are a potentially invaluable tool for per-

forming qualitative, probabilistic load case downselection, possibly providing large

savings in terms of simulation resources if large regions of the search space can be

confidently ruled out.
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min

max
inner-wing manoeuvre bending (n=20) Mach Mass Altitude CG

min

max
inner-wing manoeuvre bending (n=30) Mach Mass Altitude CG

min

max
inner-wing manoeuvre bending (n=40) Mach Mass Altitude CG

Mach Mass Altitude CG
min

max
inner-wing manoeuvre bending (n=50) Mach Mass Altitude CG

Figure 7.5: Distribution over possible critical cases for inner wing bending during manoeuvre
loading as a function of Mach number, total mass, altitude and CG position, for sample sizes
N = [20, 30, 40, 50]. The left side of each row shows a parallel co-ordinate representation of the 4D
probability distribution, with black crosses showing the location of the true critical case. The right
side shows the marginal histograms of each input variable, indicating the number of critical case
samples occurring within each bin. Bins with less than 1% of the total sample count are shaded
out, corresponding to regions of the load case space estimated to having less than a 1% chance of
containing the critical case.
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min

max
outer-wing gust bending (n=20) Mach Mass Altitude CG

min

max
outer-wing gust bending (n=30) Mach Mass Altitude CG

min

max
outer-wing gust bending (n=40) Mach Mass Altitude CG

Mach Mass Altitude CG
min

max
outer-wing gust bending (n=50) Mach Mass Altitude CG

Figure 7.6: Distribution over possible critical cases for outer wing bending during gust loading as a
function of Mach number, total mass, altitude and CG position, for sample sizesN = [20, 30, 40, 50].
The left side of each row shows a parallel co-ordinate representation of the 4D probability distri-
bution, with black crosses showing the location of the true critical case. The right side shows the
marginal histograms of each input variable, indicating the number of critical case samples occurring
within each bin. Bins with less than 1% of the total sample count are shaded out, corresponding to
regions of the load case space estimated to having less than a 1% chance of containing the critical
case.
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min

max
outer-wing gust torsion (n=20) Mach Mass Altitude CG

min

max
outer-wing gust torsion (n=30) Mach Mass Altitude CG

min

max
outer-wing gust torsion (n=40) Mach Mass Altitude CG

Mach Mass Altitude CG
min

max
outer-wing gust torsion (n=50) Mach Mass Altitude CG

Figure 7.7: Distribution over possible critical cases for outer wing torsion during gust loading as a
function of Mach number, total mass, altitude and CG position, for sample sizesN = [20, 30, 40, 50].
The left side of each row shows a parallel co-ordinate representation of the 4D probability distri-
bution, with black crosses showing the location of the true critical case. The right side shows the
marginal histograms of each input variable, indicating the number of critical case samples occurring
within each bin. Bins with less than 1% of the total sample count are shaded out, corresponding to
regions of the load case space estimated to having less than a 1% chance of containing the critical
case.
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In principle, such a tool could also be configured for multiple IQs at once: this is

a trivial extension, as one could simply concatenate samples of the critical cases

for multiple IQs together an perform a joint analysis, invoking a distribution over

locations which potentially maximise any of the considered IQs.

7.9 Extensions

A number of extensions can be considered to the critical case search problem.

The Max-value Entropy Search (MES) [64] and Fast Information-Theoretic Bayesian

Optimisation (FITBO) [65] algorithms approach similar problems, but are concerned

with predicting the value of maximum rather than its location: this is potentially

as useful if rather than the critical cases one seeks a probabilistic representation of

the envelope.

Simultaneous optimisation of more than one (assumed) independent IQs can be con-

sidered by a multi-task optimisation framework, as discussed in appendix G.5. This

is relatively trivial, though does depend on appropriate scaling of the individual

tasks. Accounting for the correlation between IQs is even more realistic, though

extending BO to a multiobjective objective function is a challenging problem, par-

ticularly for large numbers of objectives. This is discussed in appendix G.6.

Batch acquisition of points is potentially both more effective for finite simulation

budgets (see, for example, [66]) and more practically suited to industrial use cases

than the sequential (“one-at-a-time”) acquisition methods used in this chapter, how-

ever brings about additional and often complex implementation challenges. These

are discussed briefly in appendix G.4.

The PES acquisition function is – in principle – conceptually ideal for the critical

load case identification problem, and can be configured to run in multiobjective

[67] and/or batch [68] implementations. Unfortunately, both modifications suffer

from the same practical limitations as PES (documented in appendix G.3.2), and

further research is required if the acquisition function can be stabilised enough for

production-grade work.
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Extending the method to handle discrete input parameters is another interesting

avenue for further work, potentially accomplished using a piecewise Gaussian Process

[69].

7.10 Summary

We have introduced the problem of critical load case identification, and discussed

a sample-efficient means of approaching it using Bayesian Optimisation. Proof-

of-concept experiments on a simplified model indicate the method is performant,

and suitable for optimising the loads process over continuous parameters that are

usually discretised. Further work could enhance the efficiency of this procedure by

considering multiple IQs at once.

We have also investigated a method for analysing uncertainty in the location of the

critical cases. Access to this information permits probabilistic load case downselec-

tion: a quantitative procedure for reducing the number of load cases one may wish

to consider in subsequent analysis by using an explicit model of critical load case

uncertainty. This potentially offers huge savings in simulation resources by allowing

a practitioner to confidently rule out large regions of the load case space.

Related methods are capable of predicting the value of the critical loads, if a prob-

abilistic representation of the envelope is required, rather than the critical cases

themselves.

Since both of these methods make use of GP emulators to model uncertainty, they are

subject to scaling limitations of up to (approximately) 15 input dimensions, beyond

which an prohibitively large amount of data begins to be required for sufficient

input-space coverage. Additionally, neither method accounts for uncertainty in the

loads due to design variability, which is the subject of the next chapter.
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Chapter 8

Design Variability Induced

Random Loads

The first stage to approaching the ultimate problem of critical load case identification

featuring design variability is a capable model of the loads process which includes the

influence of the design vector. In this chapter, we provide an original interpretation

of the problem as a stochastic process, and attempt to model it by parametrising

the marginal distributions.
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8.1 Joint Modelling of the Loads-Design Space

In the previous chapter, the loads process was assumed to receive a fixed design

vector in order to make the optimisation problem tractable. This is necessary to

navigate difficulties associated with the fact that at the stage of the design process

at which the critical load identification problem is considered the design does not

have full definition, and one would have to repeat the optimisation each time the

design changes, which is expensive.

A conceptually straightforward solution to this problem is to construct a surrogate

model for the loads process which takes into account potential design variability.

This would, in principle, make repeating the optimisation problem for each change

to the design vector tractable by reducing the cost of the objective function.

In simple terms, we would seek to create a surrogate model, l̂ usable in place of the

real load process, l, on which to perform optimisation over the load case space, X ,

for different design vectors, z:

l(x, z) ≈ l̂(x, z) (8.1)

The surrogate, l̂, is constructed by sampling the tensor product space, X ⊗ Z, and

performing a regression on the input-output pairs for each IQ.

The tensor product space, X ⊗ Z, however, is large – particularly given the cost

of data acquisition – to the extent that building an acceptably accurate model

over such a space is infeasible due to the curse of dimensionality. Additionally,

parametrisation of z (a “design”) in the first place is a highly non-trivial endeavour

due to difficulties in parametrisation of fundamentally continuous quantities such

as structural stiffness: the design vectors considered in this section, for instance,

contain a total of 64 wing stiffness parameters.

Explicit dimension reduction (such as, for example, PCA as applied in chapter 4)

over X ⊗ Z also fails to mitigate this difficulty, as provision of a dataset on which

to perform this analysis to a suitable level of accuracy in the first place is also
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expensive. The type of design changes under consideration can also have influence

over the choice of design parametrisation, meaning investing simulation resources in

such a dataset is not necessarily “reusable” for subsequent analyses.

8.2 Loads As a Stochastic Process

Recall that the design vector, z, behaves like a random variable: since we are unable

to fix the design, it is permitted to take any value from the set of feasible designs

(the design space), Z, with some probability, p(z).

A simple way of reasoning with the distribution of probability over Z is to assume

that each design variable in the vector, z, is independent and has uniform probability

over it’s support, or in other words, that each possible design change is equally

likely. In this case, a simple model for the probability of a design vector of length

D, z , [z1 . . . zD], is as follows:

p(z) ∼
D∏
i=1

p(zi), p(zi) ∼ Uniform(ai, bi) (8.2)

with ai and bi representing dimensionwise lower and upper bounds on each con-

stituent design variable contained in the design vector. We note that more complex

(and indeed, realistic) models of p(z) could be introduced by using different marginal

distributions and/or introducing correlations between different design variables us-

ing a copula. This is approached by Krupa et al. [3].

We summarise the choice of probability distribution for z by πz, and represent the

design as a random variable Z ∼ πz.

Any function of Z is thus stochastic, in the sense that its output must be a proba-

bility distribution, too. It follows that the probability of a particular vector of loads

y = l(x, z), for some nominal load case, x, is equivalent to the probability of that

specific design vector, z, given πz:

p(l(x, Z = z)|πz) = p(Z = z|πz) (8.3)
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By interpreting x as an index, equation (8.3) can be observed to represent the

marginal distribution of a stochastic process defined over X ; that is, each different

design, z, encodes a “random function”, l(x|Z), defined over X , occurring with

probability p(Z|πz).

8.3 Probabilistic Loads

Analysing the loads process in this fashion provides several potential benefits.

First, issues associated with the curse of dimensionality are largely obviated, as the

design vector, z, is never directly utilised (other than implicitly deciding the joint

distribution from which it is generated). This also somewhat relaxes the difficulties

associated with parametrisation of z, as one can use a copula to model potential

correlations between individual design variables, possibly marginalising the model

over different correlation structures if they are themselves uncertain [3].

Second, such a model is still theoretically capable of supplying the information re-

quired to progress the design. By identifying load cases with a sufficiently high prob-

ability of being critical, one is able to perform a quantitative load case downselection,

and a corresponding quantification of uncertainty associated with the discretisation

of the load case space in the desired manner. Detailed analysis of individual designs

may then be performed on this critical subset, perhaps utilising similar techniques

as described in chapter 4.

We will create a stochastic process model of the loads process by first reasoning

with the marginal distributions of the stochastic process, and then by constructing

a model for these marginals as a function of the index.

8.3.1 Notation

We briefly recap some of the potentially confusing notation for this problem, partic-

ularly to distinguish between specific, deterministic inputs, and hypothetical, ran-

dom inputs (that is, inputs that represent “possible” design decisions yet to be

made):
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• x : vector describing a load case

• X : space of all load cases

• z : a specific design vector

• Z : a random (uncertain) design vector

• y : a specific vector of loads

• Y : a random (uncertain) vector of loads

• l(x, z) loads process (with deterministic inputs)

• l(x, Z) stochastic loads process: a random function defined over X ; accepts x

as an input, and is random due to Z.

• l(Z|x) uncertain output of the loads process at a specific load case, returning

a vector of random loads; i.e. Y = l(Z|x).

8.3.2 Marginal Distributions

The marginal distributions of the loads process represent the distribution of loads

for a particular load case due to design variability. We denote the marginals at

x by l(Z|x), noting that Z ∼ πz. Since the output of l(x, z) is a vector of IQs,

l(Z|x) describes a D-dimensional multivariate distribution over a random variable

representing the loads, Y :

Y = [Y1 . . . YD] ∼ l(Z|x) (8.4)

with D being the number of individual IQs, y ∈ y = l(x, z). In other words,

equation (8.4) describes a (potentially correlated) joint distribution of loads due to

design variability at a particular load case, x, due to variability in the design vector,

Z.

8.4 Independent Loads

The most simple model for l(x, Z) assumes that the marginals are independent.

Though this is unrealistic in practice, it permits a model for the marginal distribu-

tions without considering any correlation between them, which simplifies the prob-
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lem considerably. This is similar to assuming the variation in loads due to design

variability at a particular load case behaves as noise.

One way of approaching this is to parametrise the marginal distributions, and then

perform a regression on their parameters over the index, X .

Let an arbitrary marginal distribution, Y = l(Z|x), be parametrised by a parametric

distribution h(ϑ). More explicitly, this equates to assuming the probability of the

loads at a load case, x, is distributed according to some probability distribution, h,

which has parameters ϑ:

p(y|x, Z) ∼ h(ϑ) (8.5)

Since the marginal distributions depend on the position in the index at which they

are observed, this implies that the value of ϑ is conditional on x. We can hence

consider modelling ϑ as a function of x, thus providing the capability to estimate the

marginal distribution of the loads for arbitrary load cases via ϑ, given the parametric

assumption(s) encoded by h.

8.4.1 Parametric Assumptions

In addition to the model of the parameters of the marginal distributions across the

index, the quality of an (independent) parametric marginals representation depends

on the suitability of the choice of parametric marginal distribution.

We choose to use a normal distribution as a first approximation to the parametric

form of the marginal IQ distributions. The justification for this assumption proceeds

in two stages.

We first assert that the “size” of design changes implied by the design space, Z,

are small (i.e., they represent perturbations about some baseline design). For the

range of designs considered, such changes should have an approximately linear effect

on the loads: this same reasoning is used to justify the use of principal component

analysis for linear dimension reduction in chapter 4.
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Next, since the design space is of high dimension, we assert that the central limit

theorem applies. As a result of a linearisation approximation on the loads process

discussed above, it can be represented as a sum of scaled inputs, and the result-

ing loads – given independent and identically distribution random inputs – should

asymptotically approach a normal distribution for a large number of design variables

as a result of the central limit theorem: since the random variables in this case are

design variables, they are bounded by definition, and a simple model assumes they

are all uniformly probable on their support. While we do not offer a rigorous proof

of this assertion, it can be validated to an extent via visual inspection, as will be

shown shortly.

8.4.2 Probabilistic Model

Let the data be represented by an N ×M matrix, Y, who’s N rows correspond to

different load cases, x, and M columns correspond to samples from the marginal

distribution l(Z|x). In other words, the ith row of Y contains M samples of y at

load case xi due to variability in Z.

Our analysis proceeds in two stages: construction of parametric models for each

of the N marginal distributions implied by each of Y’s rows, and subsequently

regression of the parameters of these distributions over the load case parameters, x,

corresponding to each row.

Let Yi be a length M vector of samples of y, corresponding to be the ith row of Y.

We assume that Yi is normally distributed, and is hence parametrised by a mean,

µi, and standard deviation, σi, i.e. Yi ∼ N(µi, σi).

Assuming we use GP regression to model µi and σi for i = 1, . . . , N as a func-

tion of their corresponding load case parameters X = x1 . . .xN , we have a model

functionally equivalent to a heteroscedastic Gaussian Process : a GP featuring in-

put dependent Gaussian noise. A simple statement of our probabilistic model is as
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follows:

Yi ∼ N(µi, σi) i = 1, . . . , N

µ ∼ GP(0, kµ(X,X|θµ))

σ ∼ GP(0, kσ(X,X|θσ))

θµ ∼ πµ

θσ ∼ πσ

(8.6)

where the subscripts µ and σ imply separate hyperpriors, hyperparameters and

kernels are considered for the regression models of µ and σ as a function of X:

we perform two separate GP regressions over the inferred parameters of a normal

distribution fit to each row of the N ×M array, Y.

Since µ and σ are not observed directly (rather they are inferred from a finite

sample), they are predicted quantities and thus exhibit uncertainty. We estimate

the variance of the posterior distributions for p(µ|Yi) and p(σ|Yi) using MCMC first,

then fit GPs featuring a noise variance hyperparameter, ε, (see appendix C.2) to the

sample mean of these distributions. The noise of the GP models is deterministically

designated to be the median standard deviation of the standard deviations calculated

for the N posterior distributions, i.e.:

εµ = Md(V[µ1|Y1], . . . ,V[µN |YN ])

εσ = Md(V[σN |Y1], . . . ,V[σN |YN ])
(8.7)

where V[·|·] represents the sample variance of the argument. We then perform GP

regression with deterministic noise on the expectations of the parameter distribu-

tions (equivalent to their sample means), with noise variances set to εµ and εσ for

the respectively subscripted model.

µ = [E[µ1|Y1], . . . ,E[µN |YN ]]

σ = [E[σ1|Y1], . . . ,E[σN |YN ]]
(8.8)
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Inference of θ for µ and σ can thus be performed separately:

µ ∼ GP(0, kµ(X,X|θµ, εµ))

θµ ∼ πµ

(8.9)

σ ∼ GP(0, kσ(X,X|θσ, εσ))

θσ ∼ πσ

(8.10)

where the hyperpriors πµ and πσ are designated as described in chapter 5, and the

length N vectors µ and σ are calculated as described by equation (8.8).

8.4.3 Predictions

In the interest of clarity, we restate that a superscripted asterisk is used to denote a

predicted quantity, except in the case of x, where it represents the point in the load

case space at which a prediction is made.

For a load case of interest, x∗, we predict the parameters of the corresponding

marginal distribution of loads, N(µ∗, σ∗), via the predictive distributions of our GP

models: p(µ∗|x∗,D) and p(σ∗|x∗,D), as described in chapter 2.

Point predictions are possible by taking expectations, though this ignores uncer-

tainty in both prediction of the parameters using a GP and uncertainty associated

with inference of the parameters in the first place. Probabilistic predictions of a

single IQ, y∗, should consequently be integrated over the predictive distributions of

µ∗ and σ∗. Dropping the data argument in the predictive distributions for µ and σ

for legibility, we have:

p(y∗|x∗) =

∫∫
p(y∗|µ∗, σ∗) p(µ∗|x∗) p(σ∗|x∗) dµ dσ (8.11)

In practice, this corresponds to predicting y∗ using a mixture of normal distribu-

tions. The above integration can be performed numerically by sampling µ∗ and

σ∗ from their predictive distributions, thus constructing a Monte-Carlo estimate of
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p(y∗|µ∗, σ∗). Assuming S samples of µ∗ and σ∗ are available, we can approximate

the distribution of y∗ as follows:

p(y∗|x∗) ≈ 1

S

S∑
i=1

p(y∗|µ∗i , σ∗i ) (8.12)

In other words, a prediction consists of a weighted sum of many different normal

distributions.

8.4.4 Data

With reference to the previous section, we observe an N ×M matrix of loads, Y.

Noting that the loads process is expensive, neither N nor M are usually particularly

large. In the following experiments we have access to M = 60 different realisations

of the stochastic loads process l(x, Z).

Each realisation is selected at random from a 64-dimensional design space, Z, con-

sisting of different bending and torsional wing stiffness parameters:

Z = [Z1, . . . , Z64] Zi ∼ Uniform(mini,maxi), i = 1, . . . , 64

where min and max represent dimensionwise lower and upper bounds on that par-

ticular design variable. This distribution may not be realistic in practice, as design

variables tend not to vary independently, though modelling this dependency is a

challenge.

When sampling the load case space, we set N = 50 and use the Sobol sequence to

sample the continuous parameters, such that the resulting array of loads, Y, is of

size 50× 60, and corresponds to an array of load cases, X, of size 50× 4.

Visualisations of the data for two load case types – inner wing manoeuvre induced

bending and outer wing gust induced bending – are shown in figures (8.1) and (8.2).

These case types and IQs are selected due to being highly relevant for the design

of the inner and outer wing structure, respectively. Additional (arbitrary) case
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types could be considered using this framework, but are not analysed here in these

proof-of-concept experiments in the interest of brevity.

Figure 8.1 shows the loads for inner wing manoeuvre induced bending at 50 random

combinations of Mach, mass, altitude and CG position as a fraction of the chord. The

assumption of normally distributed marginals appearing to be reasonable visually,

though it is difficult to assess given the sparsity of the data. Figure 8.2 shows the

loads for outer wing gust induced bending at another 50 points in the load case

space. The assumption of normally distributed marginals is less effective than for

the manoeuvre induced loads in figure (8.1), but is regardless acceptable for most

of the load cases.

8.5 Experiments

We construct models for Y as described in section (8.4.2). Predictions of the distri-

butions of load for that particular IQ are then made at 50 new load cases, X∗.

8.5.1 Results

Figure (8.3) shows the predicted stochastic loads for inner wing manoeuvre-induced

bending at 50 new random combinations of Mach, mass, altitude and CG. Each

subplot represents a single marginal distribution. We show many superimposed

predictions with low transparency, such that darker regions correspond to higher

probability. While many of the predicted densities are acceptable, some are clearly

overly diffuse, represented by the data histograms being barely visible on the plot.

The means of the marginal distributions are in general well predicted, which can be

confirmed by inspection of figure 8.5.

Figure (8.4) shows the predicted stochastic loads for outer wing gust-induced bend-

ing at 50 new random combinations of Mach, mass, altitude and CG. Identically

to figure (8.3), each subplot represents a single marginal distribution, and we show

many superimposed predictions with low transparency. The model can be seen to

perform poorly for this case type, as the validation data histograms are not visible
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Figure 8.1: Stochastic loads for inner wing manoeuvre induced bending at 50 random combinations
of Mach, mass, altitude and CG. Each subplot represents a single marginal distribution. Maximum
likelihood normal distributions are also shown to visually demonstrate the parametric assumption
discussed in section (8.4.1).
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Figure 8.2: Stochastic loads for outer wing gust induced bending at 50 random combinations of
Mach, mass, altitude and CG. Each subplot represents a single marginal distribution. Maximum
likelihood normal distributions are also shown to visually demonstrate the parametric assumption
discussed in section (8.4.1).
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at the scale of the plots required to resolve the overly diffuse predictive distributions,

and low individual probability means many of these are not visible, either.

Figure (8.5) shows correlation plots of data-inferred and predicted parameters for

the marginal distributions of the test data for the manoeuvre case. Errorbars on

both axes correspond to 0.05 and 0.95 quantiles for that quantity: the vertical error-

bars indicate the predictive uncertainty of the model, while the horizontal errorbars

indicate uncertainty in the inferred value of the predicted parameter given the data.

The predictions appear to align well for the µ model, indicating the means of the

marginal distributions are relatively well predicted. Predictions align slightly less

well for the σ model, though most of the incorrect predictions for the latter fall well

within reasonable bounds of uncertainty for either prediction (vertical) or inference

from finite data (horizontal).

Figure (8.6) shows correlation plots of data-inferred and predicted parameters for the

marginal distributions of the test data for the gust case. The marginal distribution

means are well predicted (left), with almost all of the data-inferred values for µ falling

within reasonable bounds of predictive uncertainty (vertical errorbars) designated

by the predictive model. Since there is a serious outlier for which the predicted

standard deviation (right) is significantly below the data-inferred value, a zoomed

in view of the bottom left of the marginal standard deviation correlation subplot

is provided in figure (8.7). Most of the predictions for σ are inaccurate, though do

exhibit large amounts of predictive uncertainty.

Kernel lengthscales for the GPs predicting the marginal distribution parameters are

shown for both the manoeuvre and gust cases in figure (8.8). The darker histogram

represents the manoeuvre case. The plots show the empirical log density of the

kernel lengthscales for each dimension, and is cut at 2: since we are interested in the

“more nonlinear” behaviour at short (< 1) lengthscales, the asymptotically linear

behaviour beyond a lengthscale of approximately 2 is not of interest. The gust case

can be seen to behave more nonlinearly with respect to Mach and CG in the case of

the µ models, and almost universally more nonlinearly in the case of the σ models.

A greater amount of predictive uncertainty can thus be anticipated at points away
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from the training data in the gust case than in the manoeuvre case.

8.6 Analysis

Gauging the usefulness of these models is difficult, as there is no currently-implemented

method of approaching the problem they seek to solve.

Regardless, it is difficult to recommend use of these models in their current state:

while the manoeuvre-induced inner wing bending appears reasonably well repre-

sented both visually, as can be seen in figure (8.3), and in terms of predicted pa-

rameters, as in figure (8.5), there are still several predicted distributions which are

extremely diffuse (specifically, predictions indexed (8), (29), (40) and (47) on figure

(8.3)).

The outer wing gust-induced bending distributions are even more difficult to model,

with the majority of the predicted distributions exhibiting far too much variance

to be useful in any way, as can be observed on figure (8.4). With reference to

figure (8.6), this appears to be entirely due to difficulties in predicting the marginal

standard deviations, as the means of the marginal distributions are relatively well

modelled.

One interpretation of the differences between the results for the two considered cases

is that outer-wing gust loading may behave more nonlinearly with respect to the

continuous load case parameters than inner-wing manoeuvre loading. This can be

confirmed by inspecting the kernel lengthscales for the models of the marginal dis-

tribution parameters, shown in figure (8.8). The kernel lengthscales for the gust

model are almost universally smaller than those for the manoeuvre model, particu-

larly with respect to Mach number and CG, suggesting the behaviour of the loads

with respect to these parameters is more complex for the gust cases, and thus more

difficult to model. This is also reflected in figures (8.6) and (8.7) to an extent, too,

since large amounts of predictive uncertainty when using a GP model is indicative of

predictions being made “far away” from training data in terms of kernel-lengthscale

adjusted distance.
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Figure 8.3: Predicted stochastic loads for inner wing manoeuvre-induced bending at 50 new ran-
dom combinations of Mach, mass, altitude and CG. Each subplot represents a single marginal
distribution. We show many superimposed predictions with low transparency, such that darker
regions correspond to higher probability.
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Figure 8.4: Predicted stochastic loads for outer wing gust-induced bending at 50 new random
combinations of Mach, mass, altitude and CG. Each subplot represents a single marginal distri-
bution. We show many superimposed predictions with low transparency, such that darker regions
correspond to higher probability.
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Figure 8.5: Predicted and data-inferred marginal distribution parameters (µ, σ) for the test data
for manoeuvre-induced inner wing bending. The errorbars on both axes correspond to the 0.05
and 0.95 quantiles for that quantity, with the central point corresponding to the mean.
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Figure 8.6: Predicted and data-inferred marginal distribution parameters (µ, σ) for the test data
for gust-induced outer wing bending. The errorbars on both axes correspond to the 0.05 and 0.95
quantiles for that quantity, with the central point corresponding to the mean. The shaded area on
the plot for σ (right) is shown up close in figure 8.7.
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Figure 8.7: Zoomed-in predicted and data-inferred marginal standard deviation (σ) for gust-
induced outer wing bending. The plot shows a zoomed-in picture of the shaded area on figure
8.6.
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Figure 8.8: Anisotropic lengthscale distributions for the GPs modelling µ and σ for both gust-
induced outer wing bending and manoeuvre-induced inner wing bending. The darker histogram
represents the manoeuvre case. The plots show the empirical log density of the kernel lengthscales
for each dimension.

133



8.7. Further Work Chapter 8. Stochastic Loads Process

It is also possible that presence of the outlier visible on figure (8.6), combined with

the relatively large amounts of predictive uncertainty visible on both figures (8.6) and

(8.7) indicates that the assumptions used to construct the predictive model for this

marginal distribution parameter may be unsuitable. The most likely candidate for

this is an underestimation in the amount of statistical uncertainty present in inferring

the marginal standard deviation from a finite amount of samples, which manifests as

sample noise as far as the predictive model for σ is concerned. Such “unrecognised”

noise has the potential to introduce overfitting in the kernel lenghtscales (manifesting

as a bias in the lengthscales towards zero, which is visible on figure (8.8) for the

Mach, Mass and CG axes), since the model is forced to accommodate sharp corners

in one or more dimensions that might not be present in a noiseless signal.

The assumption of normally distributed loads is acceptable as a first approximation,

as seen on figures (8.1) and (8.2). More realistic models of design variability have

the potential to invalidate this assumption, due to introducing correlations between

design variables, thus implying the central limit theorem does not apply.

Finally, utilising such probabilistic predictions is not straightforward. While one

could imagine using the models to assess the probability that loads above a partic-

ular threshold are observed for that load case, computing this probability requires

sampling, and is thus not as convenient as using the Expected Improvement acquisi-

tion function as in the previous chapter. Approximate locations of the critical cases

also cannot be sampled as in chapter (7), since the stationary condition required for

the method of Hernández-Lobato et al. [61] is violated.

8.7 Further Work

Two primary directions for further work in modelling design variability as an un-

certainty are immediately recognisable: modelling of correlations between indi-

vidual IQs, and relaxing the parametric assumption on the distributions of the

marginals.
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8.7.1 Correlated IQs

Modelling correlations between IQs is of interest, since individual IQs are almost

surely correlated in reality: one can easily imagine that force measurements at two

adjacent nodes on the same wing ought to change in similar ways as the conditions

responsible for producing such forces are changed. Similarly, quantities which are

obtained as functions of such forces – such as moments – will exhibit at least some

degree of correlation, too.

Modelling multiple IQs at once also has practical benefits, as access to a single model

capable of producing predictions for all (or, at least, multiple) IQs simultaneously

is more convenient for practitioners.

We can model correlation between the IQs implicitly by supposing the loads are a

function of a latent variable, u; with which we compute the Kronecker product with

some (scaled) correlation matrix, Σy, which designates the correlation between each

of the marginal IQs.

Assuming there are R IQs of interest:

Y = [Y1 . . . YR] ∼ (diag(α) � Σy)⊗ u (8.13)

where diag(a) is an R×R diagonal matrix, whose leading diagonal, a, is a length R

vector of scaling factors; ⊗ represents a Kronecker product; and � an elementwise

product.

Modelling the correlations between the marginal IQs in such a way is equivalent

to assuming the same (unobserved) physical process is responsible for the changes

in the IQs as the load case parameters are changed. This is a more palatable

assumption than independence between the IQs, but still requires one to assume a

parametric distribution for the correlated distributions.

Since the correlation matrix, Σy, is unknown in practice, either the matrix itself or

(perhaps more appropriately) its Cholesky factor must be inferred from data. Σy

consequently behaves as a matrix-valued hyperparameter, and an effective hyper-
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prior in this instance is the vine-based method of Lewandowski et al. [70] (sometimes

the termed the “LKJ” prior).

8.7.2 Non-Parametric Marginal Distributions

One way of relaxing the parametric assumption on the marginal IQs is by modelling

the influence of the design on the loads as a latent covariate (input variable) intro-

duced as an additional (fictitious) input variable to a GP defined over the load case

space, X . We stress that this latent covariate formulation is different to that in the

preceding section, and is equivalent to performing nonlinear dimension reduction

over the design space, Z, using a GP [71]. Latent covariate GP regression for the

purposes of modelling non-parametric, non-stationary noise is described in detail by

Wang and Neal [72].

Such a latent covariate regression model assumes that the variation observed be-

tween samples of the loads for each load case is due to presence of unobserved

variables (one for each “random design”), interpreted in context to summarise the

“missing information” associated with not considering the design vector explicitly.

This extra variable introduces additional variability to the model without assuming

it has a particular type, as was implied by use of a parametrised marginal distribu-

tions earlier. Such a formulation naturally models correlation between the marginal

load distributions as a function of the load case parameters, too. This is useful since

the way in which derivative changes to the design influence the loads is expected

to be similar for similar load cases: changing the altitude at which a manoeuvre is

performed, for example, ought not to radically change the physics of the resulting

load case.

It follows that such techniques are a promising avenue for further investigation in

modelling the influence of design variability on the loads process.
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8.8 Summary

In this chapter, we consider the loads process featuring structural design variabil-

ity, and model it as a stochastic process. We propose a simple model for random

structural design variability, and via some assumptions, use a normal distribution

to parametrise the resulting marginal distributions of the stochastic loads process.

Assuming these distributions are independent for simplicity, we attempt to model

the parameters over the index using GP regression with mixed success: while the

means of the distributions can be relatively well predicted, the standard deviations

tend to be overly diffuse, leading to predictions exhibiting very high variance. This

is particularly severe for gust-induced outer wing bending loads, which investigation

suggests may be due to relatively increased nonlinearity with respect to Mach num-

ber when compared to a manoeuvre-induced inner wing bending case, as indicated

by the kernel lengthscales of the model.

Such models are consequently of questionable utility in an industrial context in their

current state, but are a potential starting point for further investigation.
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9.1 Summary

As set out in chapter 1, this work set out with 4 major objectives, which we restate

below.

1. A demonstration of the use of surrogate models for providing rapid approx-

imations of the aircraft loads analysis process, with examples of industrially

relevant use-cases utilising such models.

2. A critical assessment of the uncertainties present at the loads-structural cou-

pling interface, investigating the consequences of the use of an expensive, de-

tailed model early in the design process at stages where the structure does not

have detailed definition.

3. Development of a models capable of representing the uncertainties described

by item 2.

4. A robust, industrialisable method for constructing models of uncertainty, to

facilitate the above.

Each objective will be addressed in turn:

9.1.1 Objective 1: Surrogate Models For Loads

Chapter 4 documented the development of surrogate models for the loads process

given a discrete selection of pre-selected critical cases. These models are capable

of representing the real loads process to a high degree of accuracy for the IQs con-

sidered. Example applications using similar models to feed back changes to the

structural optimiser are documented in [2], and to propagate correlated design un-

certainties in [3].

9.1.2 Objective 2: Assessing Loads-Structural Coupling Un-

certainties

At the end of chapter 4 we introduced problems associated with discretisation and

downselection of the load case space. Due to the cost associated with querying the
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loads process, critical case identification is not currently performed directly: this

implies uncertainty both in the value of the critical loads, and the precise locations

of the critical cases in the load case space.

As described in chapter 8, this issue is exacerbated when including the effects of

design variability, which implies the loads process is stochastic: as one is unable to

fix the design, it behaves as a random variable, thus making the resulting loads for

any given load case uncertain. We provide a rationale for assuming the marginal

distributions of this stochastic loads process are normally distributed, and observe

this to be a reasonable approximation in practice.

9.1.3 Objective 3: Development of Models for Loads-Structural

Coupling Uncertainties

In chapter 7, we proposed a method for modelling uncertainty in the critical load

cases. Using this model we are able to invoke a probability distribution over possible

locations for the critical cases, which provides a powerful means of probabilistic

load case downselection: given a sample of load cases, one can use the method to

confidently rule out the presence of critical cases in certain regions of the search

space, potentially saving many hours of simulation time

We also propose an explicit model for design variability induced uncertainty in the

value of the loads in chapter 8, though further research is required to make the

method useful in practice: since predictions of the marginal distribution parameters

are imprecise, this results in overly diffuse predictive distributions, which compro-

mises the utility of the method.

9.1.4 Objective 4: Robust Models of Uncertainty

In chapter 5 we outlined a method for constructing robust GP regression models

which integrate over uncertainty in their hyperparameters, using considerations de-

rived from theory in chapters 2 and 3. We hypothesised that this formulation of

the models would yield reduced sensitivity to specifics of the data due to the use of
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generalisable prior distributions, and more reliable quantification of predictive un-

certainty by utilising a fully probabilistic treatment of the model hyperparameters.

Chapter 6 shows this hypothesis to be true, and demonstrates effective performance

of the models on a wide range of different synthetic and analytic engineering test

functions.

9.2 Further Work

This work prompts a multitude of potential follow-up studies and questions.

Concerning the use of Bayesian Optimisation for critical case identification, a key

limitation with the procedure demonstrated briefly in chapter 7 is that only a single

IQ was considered at a time. A multi-objective Bayesian Optimisation framework

would be ideal for approaching this problem. In particular, the multi-objective

formulation of the PES [61] acquisition function, PESMO [67], is conceptually well

suited to the problem, and can also be run in batches with some adjustments [68].

This relies on resolving the difficulties associated with implementing the original

PES acquisition function, documented in appendix G.3.2.

Probabilistic representations of the envelope, rather than the critical cases them-

selves, could be considered by attempting to predict the value of the maximum of

a GP model defined over the load case space rather than its location. Potential

techniques to accomplish this are documented by Wang and Jegelka [64] and Ru

et al. [65].

More research is required to understand the potential benefits of analysing the loads

process as stochastic as described in chapter 8. Use of a latent covariate model such

as that used by Wang and Neal [72] to model non-parametric non-stationary residu-

als may allow relaxation of the parametric assumption on the marginal distributions,

and provide a way of correlating the marginals together.

Testing the models described in this document on larger and more complex load

case spaces would be an interesting test of their capabilities. Extension of the

optimisation search space to include more closely related discrete subspaces, such
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as, for example, several different types of manoeuvre would be a highly relevant

extension to the problem.

Finally, scaling the GP-regression derived methods in this document to larger,

higher-dimensional datasets would significantly increase their industrial applicabil-

ity. Wilson et al. [13] reviewed some of potential methods.
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Appendix A

Probabilistic Modelling

Preliminaries

This appendix introduces Bayesian statistics as a language of uncertainty, along

with several fundamental concepts required for a solid understanding of the models

discussed later in this document.
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A.1 Probability as a Language of Uncertainty

There are a multitude of frameworks for quantifying uncertainties, with perhaps the

most widely known of these being the theory of probability.

Probabilities are classically interpreted as frequencies; the number of times in a long

chain of events that a particular thing occurs relative to other things. This is intu-

itive, but presents conceptual difficulties when discussing the probability associated

with events which are fundamentally not repeatable but clearly permit some kind

of “degree of belief”, such as the behaviour of the weather.

The uncertainty of repeatable events is sometimes referred to as randomness or

aleatory uncertainty. Such uncertainties arise from processes which feature “nat-

ural” or – perhaps more specifically – irreducible sources of variation. Relevant

engineering examples include small manufacturing variations or the velocity at a

particular point in a turbulent flow, and in either case it is easy to imagine tak-

ing repeated measurements of the same quantities and obtaining slightly different

results each time.

The uncertainty of deterministic events we have yet to observe, such as the weather

tomorrow, is occasionally said to be due to ignorance, and is sometimes classified

epistemic. The majority of uncertainties encountered in the analysis of computer

codes epistemic in nature, for example the difference in performance between a simu-

lated component and a realisation of the same component, or indeed the discrepancy

between a simulator and a surrogate at a previously unvisited point.

By representing probability as a degree of belief rather than a frequency, Bayesian

statistics is able to reconcile the apparent conceptual differences between aleatory

and epistemic uncertainties. Conditional probability provides the mathematical ma-

chinery to make probabilistic statements about epistemic uncertainties given a cur-

rent (and possibly limited) state of knowledge, along with the mathematical machin-

ery to update and refine such statements as new information becomes available.

The ability to synthesise different types of information in a statistically consistent

fashion in particular makes Bayesian statistics a powerful addition to the engineering
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design toolbox, and permits past data and expert knowledge to be used together

with data to construct more reliable models.

A complete, rigorous introduction to the theory of probability warrants its own text-

book, and is outside the scope of this document. Readers are directed to Betancourt

[73] for an excellent, self-contained theoretical introduction, and Gelman et al. [15,

ch. 1] for an introduction in the context of applied modelling.

A.2 Probability Distributions and Random Vari-

ables

A probability distribution is a mathematical function which assigns a positive, scalar

weighting to a set of “events”, and integrates to unity over the space of all possible

events. An event can be interpreted in context to be a possible “outcome” of an

uncertain process. To “quantify an uncertainty” in the context of probabilistic mod-

elling is hence to assign to it an appropriate probability distribution, thus implicitly

designating the probability of all possible events.

Such events could include the toss of a coin, the roll of a die, the weather tomorrow,

or whether a realised engineering design satisfies a certain performance target or

not.

A.2.1 Probability of an Event

Let f be an arbitrary probability distribution, Ω be the space of all possible events,

and ω be a single event. The probability, p, that an event, ω, occurs is denoted:

p(ω) = f(ω) (A.1)

where p(ω) is a strictly positive scalar representing the probability (or “degree of

belief”) that the event represented by ω happens. Hence, f is a mapping between
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the event space, Ω, and the positive numbers, R+:

f : Ω→ R+ (A.2)

We stress again that ω need not necessarily be the realisation of some inherently

random process, and that it is perfectly acceptable to assign a probability to the

outcome of a deterministic processes that we have yet to observe, such as the current

temperature in a far away place.

A.2.2 Probability Mass Function

If Ω contains only discrete events, then f is a probability mass function (PMF),

if:

∑
ω∈Ω

f(ω) = 1 (A.3)

A.2.3 Probability Density Function

If Ω is continuous, then f is a probability density function (PDF), if:

∫
Ω

f(ω)dω = 1 (A.4)

A.2.4 Random Variables

A random variable is a quantity which is permitted to take any value from a set

of values. In the context of probability theory, a random variable represents pos-

sible realisations of an event, the relative “chance” of each of those events being

determined by their probability. Random variables can be said to be “distributed

according to” a (possibly unknown) probability distribution function, which desig-

nates the probability of all possible values the variable may take.

Let f be an arbitrary probability distribution and X be a random variable. To write
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that X is distributed according to f , we write:

X ∼ f (A.5)

which is to imply that the probability of X being in some specific “state”, ω, is given

by the probability of that state as determined by f , i.e., p(X = ω) = f(ω).

A.2.5 Random Vectors

A random variable is not restricted to be strictly univariate, and a single “event”

may refer to a combination of two or more other events. Flipping two coins and

observing that they both land heads up, for instance, may still refer to a single

event.

A random vector is a random variable which is composed of two or more other

univariate random variables. A d-dimensional random vector, X, can be represented

by:

X , [X1, X2, . . . , Xd] (A.6)

where X1, X2, . . . , Xd are univariate random variables each possessing their own

marginal distribution:

Xi ∼ fi i = 1 . . . d (A.7)

where fi is the marginal distribution for constituent variable i. In other words, if one

were to draw many samples of X, and then look only at element Xi, the distribution

of those observations would be modelled by fi.

A random vector, X, is distributed according to a a joint distribution F :

X ∼ FX1,X2,...,Xd
(A.8)
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which dictates how likely any particular combination of it’s elements is. This is a

function of the constituent marginal distributions and any interaction that occurs

between them. Returning to the example of two coin flips, this could be considered

a random vector composed of two constituent random variables representing the two

individual coins.

A.3 Conditional Probability

Often, we are interested in the probability of one event given the occurrence of

another. For example, suppose we have a 2 correlated random variables, X1 and

X2, that can be modelled by the joint distribution X ∼ FX1X2 . If we are able to

observe X2, we are often interested in analysing the conditional distribution for X1,

i.e. the marginal probability of X1 given a specific value of X2.

The probability of X given Y is denoted p(X|Y ). Betancourt [74] provides a short

theoretical introduction to understanding some of the more nuanced properties con-

ditional probability.

A.3.1 Bayes’ Theorem

The joint probability of X and Y , p(X, Y ), is related to the conditional probability

of X given Y , p(X|Y ), by multiplying the conditional probability by the marginal

probability of observing Y , p(Y ):

p(X, Y ) = p(X|Y )p(Y ) (A.9)

This applies identically in reverse i.e., to the probability of Y given X:

p(X, Y ) = p(Y |X)p(X) (A.10)
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Combining equations (A.9) and (A.10) yields:

p(X|Y )p(Y ) = p(Y |X)p(X) (A.11)

which can be rearranged as desired to recover any conditional distribution given a

joint distribution and the appropriate marginals. For example, given the probability

of X given Y , p(X|Y ); the marginal distribution of X, p(X); and the marginal

distribution of Y , p(Y ), we are able to compute the probability of Y given X as

follows:

p(Y |X) =
p(X|Y )p(Y )

p(X)
(A.12)

Equation (A.12) is known as Bayes’ theorem, and is core to performing Bayesian

inference, which will be revisited shortly.

A.4 Parameters and Probabilistic Models

Probability distributions are often functions of a fixed number of variables that

influence the behaviour of the function. These are referred to as parameters, and

are usually denoted by a vector, θ.

If X is a random variable distributed according to f with parameters θ, we emphasise

that the distribution, f , is a function of θ:

X ∼ f(θ) (A.13)

in which case the probability distribution, f , is said to be parametric. Non-parametric

distributions, by contrast, are functions of a variable (possibly infinite) number of

parameters.

The probability of observing X given it is distributed by a parametric model with

parameters θ is expressed as p(X|θ), i.e. the probability of X is conditional on θ.
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This notation is observed to be consistent with θ itself being a random variable, and

is in fact one of the central tenets of Bayesian statistics: while the parameters of a

model may not be random in the sense that they are realisations of some uncertain

process, they can (and should) be modelled as random variables given we are unable

to observe them directly. This includes assignment of their own (possibly unknown)

probability distribution.

A.4.1 Types of Parametric Distribution

Parametric distributions are mathematically convenient as they permit a neat alge-

braic description of an uncertainty (that is, they can be analysed without sampling).

Such distributions also tend to originate from models of a particular phenomenon

(for example, the number of events occurring with fixed rate in a particular time is

modelled by a Poisson distribution), giving them an intuitive (physical) interpreta-

tion, and often providing a rationale for their usage in certain contexts.

The Stan language functions reference [75] provides a comprehensive reference to

many discrete (sections 10-14) and continuous (sections 15-25) parametric distribu-

tions.

A.4.2 Likelihood Functions

Let X be a random variable distributed according to some probability distribution

function f with parameters θ. The probability of observing X = ω is given by:

p(X = ω|θ) = f(ω|θ)p(θ) (A.14)

where p(θ) is the probability of the parameters.

In many cases, observation of a random variable, X, represents a sample from a

population (a “piece of data”). With reference to equation (A.14), the probability

of observing X = ω (given we assume a probability distribution of form f) is a

function of ω, conditional on θ.
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It is also useful to think of the probability of some data, ω, as a function of θ. This

is termed the likelihood of θ, denoted as follows:

L(θ|ω) = p(X = ω|θ) = f(ω|θ) (A.15)

It is important to distinguish the likelihood from probability. While the two are

sometimes synonymous in non-specialist literature, the likelihood of a parameter

refers specifically to the probability of the data given the parameter, while probability

of a parameter refers to the probability of that parameter given the data.

A likelihood function (i.e. a means of expressing the probability of some observed

data) is essential to constructing a probabilistic model, and the choice of likelihood

function contributes major modelling assumptions upon which subsequent analysis

is conditional.

A.5 Inference

Given a parametric model for the random behaviour of a system, we often wish to

fit it to a particular set of data. This implies inference of the parameters governing

such behaviour, using available observations as evidence. For example, supposing

one is able to appeal to the central limit theorem to assert that a quantity is normally

distributed, the parameters of this distribution must still be identified for it to be

useful.

Let x represent n samples of some random variable, X, which is assumed to be

distributed according to some probability distribution function f , with parameters

θ, i.e. X ∼ f(θ). Since θ cannot be observed directly, it must be inferred, using x

as evidence. This is equivalent to identifying the distribution of p(θ|x).

Recalling Bayes’ theorem, described by equation (A.12), this conditional probability
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can be expressed as:

p(θ|x) =
p(θ|x)p(θ)

p(x)
(A.16)

which can be broken down as follows:

• p(x|θ) - the marginal likelihood or evidence denotes the probability of the

data given the parameters. With reference to section (A.4.2), this is obtained

by evaluating the likelihood function for the chosen model given specific values

of the parameters, and is equivalently denoted L(θ|x).

• p(θ) - the prior expresses the probability of the parameters in the absence

of any other information. In other words, the prior encapsulates any beliefs

about the value of θ before any data is considered.

• p(x) - the probability of the data expresses the probability of observing the

data which used as evidence for θ.

• p(θ|x) - the posterior expresses the probability of the parameters, given the

data, for that particular likelihood function. This is what we aim to identify.

In many applications, the probability of the data is simply a normalisation con-

stant (ensuring p(θ|x)p(θ) integrates to 1), since the observations can be considered

deterministic. Equation (A.16) is often written as:

p(θ|x) ∝ p(θ|x)p(θ) (A.17)

which is to say that p(θ|x) is equivalent to p(θ|x)p(θ) up to a multiplicative con-

stant.

Identification of the posterior distribution for θ given x consequently requires com-

putation of the marginal likelihood and the prior.

The most important point to note at this stage is that θ can only ever be approxi-

mated as a consequence of inferring it from a finite amount of data.
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A.5.1 Computation

In general, the posterior distribution does not permit an analytical representation,

except in the case of specific conjugate prior and likelihood functions. Such par-

ticularities can be limiting for many practical problems, as they tend to force the

use of specific combinations of likelihood and/or prior distributions for algebraic

convenience, rather than encoding problem specific information.

A less elegant but considerably more powerful approach is to approximate the poste-

rior using sampling, drawing samples from a distribution proportional to p(θ|x)p(θ)

using Markov-Chain Monte-Carlo (MCMC). Gelman et al. [15, ch. 10-11] provide

detailed and accessible exposition on the use of MCMC to accomplish this. Such

methods allow more arbitrary choices of likelihood functions and/or prior distribu-

tions, permitting a practitioner to tailor these important assumptions to the specifics

of the problem without worrying about satisfying conjugacy requirements.

157



A.5. Inference Appendix A. Probabilistic Modelling

158



Appendix B

Basics of Gaussian Process

Regression

This appendix provides a verbose introduction to Gaussian Process regression as

a technique for surrogate modelling. We provide a high-level, intuitive description

of the method and describe the basic computational steps required to perform GP

regression in practice.
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B.1 Introduction

For the purposes of example, let f be some scalar-output function we are interested

in constructing a model for. The function maps a D-dimensional vector of real

numbers, x, onto a single, real number, y:

f : RD → R (B.1)

The “support” of a GP – that is, the range of permissible inputs to the function

one wishes to model – is referred to as the index. In the majority of cases this is a

subset of the real numbers. For the case of a function defined over a D-dimensional

index, as above, the index is denoted X (sometimes emphasising that it is a subset

of the RD via explicitly stating X ⊆ RD, though this is often superfluous).

B.1.1 Distributions Over Random Functions

In practical terms, a GP is a probability distribution, and the functions over which

the GP invokes a distribution are controlled by its parameters. All GPs have two

parameters: the mean function, m(x), and the covariance kernel, k(x,x′). These

will be introduced in section B.2.

To describe a random function, f , observed at some points X, as “distributed as” a

GP, one writes:

p(f |X) ∼ GP (m(X), k(X,X)) (B.2)

which (literally) states that the probability of observing f at the points contained

in X is “distributed as” a GP.

A random function, f , behaves like a lazily-evaluated, “infinitely long” vector, lead-

ing GP distributions to be sometimes referred to as infinite-dimensional analogues

of the Multivariate Normal (MVN) distribution: while there is a computational

limit on how many points, x, at which we can “observe” the GP distribution at any
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given time, there are no limits on which points we could choose to observe from the

index.

A single sample from a GP (alternatively, a “realisation” or “sample path”) is thus

a Gaussian random vector, with mean vector, m, and covariance matrix, K, which

– by inspecting equation (B.2) – are noted to be functions of the points in the index

at which that particular sample is observed.

For example, if we observe a random function, f , at N points, X = [x1 . . .xN ], then

the observed distribution of f (at these points) will have an MVN distribution:

p(f |X) ∼ MVN(m,K) (B.3)

A single element of the random vector, f , is a univariate Gaussian random variable,

referred to as a marginal distribution (or just “marginal”). The marginals of a

random vector refer to the distributions of the vector’s constituent elements when

considered in isolation. For a GP, the marginals of an arbitrary random function

are univariate Gaussian, with mean and standard deviation corresponding to the

respective element of m and diag(K). For instance, the ith element of f , denoted fi,

describes the marginal distribution at xi, and has the following distribution:

fi ∼ N (mi,ki)

where mi represents the ith value of m and ki represents the ith element of K’s

leading diagonal.

A visualisation of a simple GP distribution and an arbitrary marginal for illustrative

purposes is shown in figure (B.1).

B.2 Parameters

With reference to equation (B.2), a GP has two parameters: m(x), the mean func-

tion; and k(x,x′), the covariance kernel. Both the mean function and covariance
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Figure B.1: Visualisation of GP sample paths (top row) and marginal distributions corresponding
to x = 0.5 (bottom row). The 1D marginal distributions can be interpreted as the distribution
at a “slice” corresponding to a particular value of x, indicated by the dashed line. The analyti-
cal marginals, which correspond to an infinite sample size, are also shown, and are obtained by
evaluating the mean function and covariance kernel of the GP at x = 0.5.
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kernel are functions of the index.

B.2.1 Mean Function

The mean function of a GP maps a point in the index to a scalar value:

m : RD → R (B.4)

m(x) describes the mean of the GP distribution at every point in the index: this can

be thought of as encoding the “best guess” (or more precisely, expectation) of the

value of the function one is modelling as a GP in the absence of any data. The mean

function is occasionally designated as “uninteresting”, as it can be subtracted from

the data prior to performing any analysis without loss of generality. Equivalently,

this implies GPs with parametrised mean functions are in fact zero-mean models of

the residuals obtained by subtracting the mean function from the data:

p(f(X)−m(X)|X) ∼ GP(0, k(X,X′)) (B.5)

The mean function is still useful. For example, if one knows that the function

under consideration features perturbations about some unknown linear trend, a

linear mean function might be used to capture this prior information, with the

regression coefficients of the mean function included in the GP model. It is noted

that arbitrarily complex mean functions are theoretically possible.

Table B.1 includes several of the most common mean functions used for surrogate

modelling applications.

In general, a more simple mean function implies more properties of the data gener-

ating mechanism are left for the GP to “discover”. This can be important if only

“abstract” properties of the target function can be reasoned with, in which case

one might want to avoid imposing any parametric assumptions on functions one

considers for the data by using a zero mean function.
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m(x) = Type Notes
0 Zero
c Constant
βx̂ Linear x̂ := [1, x0, . . . xD]

Table B.1: Common mean functions for GPs used in surrogate modelling applica-
tions. For the linear and polynomial mean functions, x̂ is a vector of regression
variables, and β a vector of regression coefficients. x̂ can be tailored to include only
specific input dimensions if desired.

B.2.2 Covariance Kernel

The covariance kernel of a GP maps a pair of points from the index to a scalar value

(which is usually but not necessarily positive):

k : RD × RD → R (B.6)

The covariance kernel (often just “kernel”), k(x,x′), is responsible for designating

the covariance between any two points in the index. Intuitively, this can be thought

of as a function which describes the similarity between any two possible combinations

of points: more “similar” points can then be interpreted to vary together (i.e., to

exhibit greater correlation), such that some “structure” is imposed on functions

defined by the GP via the kernel. The kernel consequently controls which “types”

of functions a GP encodes a distribution over.

In order for an arbitrary function, g, to be classed as a covariance kernel, the distance

matrix obtained by applying g pairwise between a set of points must be a valid

covariance matrix : that is, the resulting matrix must be symmetric in it’s leading

diagonal and positive-definite, implying it is invertible.

B.3 Gaussian Process Regression

GPs are used for regression by conditioning a GP (prior) distribution on some ob-

served data, utilising the resulting posterior distribution for prediction. This condi-

tioning can be performed analytically due to assuming the distribution of functions

capable of representing the data is jointly Gaussian.

164



Appendix B. GPR Basics B.3. Gaussian Process Regression

0.0 0.2 0.4 0.6 0.8 1.0
x*

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
f(x

*)
Unconditional Distribution

±

0.0 0.2 0.4 0.6 0.8 1.0
x*

0.0

0.2

0.4

0.6

0.8

1.0

k(
x*

, 0
.5

)

Covariance between x* and x=0.5

0.0 0.2 0.4 0.6 0.8 1.0
x*

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f(x
* |

 d
at

a)

Conditional Distribution

data
±

Figure B.2: Visualisation of the process of conditioning an unconditional GP distribution (left),
given the cross-covariance with some observed data (middle), to produce a conditional (or “pre-
dictive”) distribution (right).

Let a dataset be represented by D. A dataset is assumed to consist of N tuples, each

consisting of a D-dimensional vector, x, representing an input (or sample point); and

a scalar value, y, representing the corresponding output of the function of interest

at x, i.e., yi = f(xi).

Vertically stacked arrays of x and y are represented by X , [x1 . . .xN ]ᵀ and y ,

[y1 . . . yN ]ᵀ, respectively, where X has size N ×D and y has size N .

Finally, let X∗ be a vertically stacked array of M new D-dimensional points from

the index, X∗ , [x∗1 . . .x
∗
M ]ᵀ, at which we are interested in making a prediction

conditional on (or “given”) the observed data, D.

A GP is used for prediction by first constructing an unconditional GP defined at

the points one is interested in making a prediction at, X∗, then conditioning this

distribution on the observed data using the unconditional GP defined at X. The

process of conditioning on the observed data is sometimes described as “explaining

away” a portion of the unconditional variance, the remaining “unexplained” variance

constituting the predictive distribution. A pedagogic visualisation for a 1D function

is shown in figure (B.2).

In the following sections we introduce arbitrary arrays of points, A and B, to more

clearly distinguish between which sets of points different covariances are to be com-

puted.
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B.3.1 Unconditional Gaussian Process

An unconditional GP distribution is obtained by evaluating the mean function, m(·),

and covariance matrix, k(·, ·), for each of the points under consideration.

To compute the parameters for an unconditional GP over an arbitrary N ×D array

of points A, we evaluate the mean function m(·) for each of the N points in A to

produce a length N mean vector mA:

mAi
= m(a), i = 1 . . . N (B.7)

and covariance kernel, k(·, ·), pairwise for each of the points in A to produce an

N ×N covariance matrix, KAA:

KAA,(ij) = k(ai, aj), i = 1 . . . N, j = 1 . . . N (B.8)

where a is a single row of A representing a D-dimensional point in the index.

B.3.2 Prediction

Predictions are made using a GP by conditioning the distribution over some points

of interest on observed data. This implies a prediction is a random variable. Let

X∗ be an array of M points at which we are interested in making a prediction. The

predictive distribution of a GP at X∗, conditional on data, D, is:

p(y∗|X∗,D) ∼ GP(m∗,K∗) (B.9)

where y∗ is a length M random vector representing a prediction, m∗ is the condi-

tional (or predictive) mean vector, and K∗ is the conditional covariance matrix.

Since a GP evaluated over a finite subset of points is a multivariate normal dis-

tribution, closed form expressions can be derived (see [76, p.116-117]) for both the

conditional mean and conditional covariance matrix, such that the predictive distri-
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bution described by equation (D.13) can be obtained analytically.

Let KAB represent the M×N cross-covariance matrix between two arrays of points,

A and B, obtained by evaluating k pairwise between the rows of the M ×D array

A and N ×D array B:

KAB,(ij) = k(ai,bj), i = 1 . . .M, j = 1 . . . N (B.10)

Similarly, let m(·) be the mean vector obtained by evaluating m(·) for each element

of the subscripted variable, and K(·,·) the covariance matrix obtained by evaluating

k(·, ·) pairwise between each element of the subscripted variables (noted to be square

and symmetrical if the two arguments are identical).

Representing the inverse of the data covariance matrix by Ω , [KXX]−1, the pre-

dictive mean vector, m∗ is given by:

m∗ = mX∗ +KX∗,X · Ω · (y −mX) (B.11)

and predictive covariance matrix, K∗, by:

K∗ = KX∗X∗ −KX∗,X · Ω ·KX,X∗ (B.12)

where it is noted that KX∗,X = Kᵀ
X,X∗ .

B.3.3 Computation In Practice

It is often beneficial to avoid explicit matrix inversions where possible. Even though

every valid covariance kernel, k, ensures that the resulting matrix obtained by evalu-

ating k pairwise between a set of points is an invertible matrix, numerical instabilities

are an issue when performing such computations in practice.

A more stable approach to computing equations (B.11) and (B.12) is to work with

the Cholesky factor of the data covariance matrix. The lower Cholesky factor is
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defined for an arbitrary, symmetric, positive-definite, real matrix, A, as:

A = L · Lᵀ (B.13)

from which the dot product of the inverse of A with an appropriately sized matrix

B can be obtained by solving the following linear system for C:

L ·C = B (B.14)

which we denote L\B.

It follows that given the lower Cholesky factor KXX = LXX ·Lᵀ
XX, we may reformu-

late equations (B.11) and (B.12) as:

m∗ = mX∗ + KX∗,X · (LXX\(y −mX)) (B.15)

and

K∗ = KX∗,X∗ −KX∗X · (LXX\KXX∗) (B.16)

respectively.
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Gaussian Process Regression

Extensions

This appendix contains a number of non-standard adaptations to the standard GP

regression model which may be useful for specific applications.
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C.1 Composite Kernels

Under certain circumstances, kernels can be combined to produce “composite” ker-

nels. Such kernels are capable of encoding distributions over functions which are

sums and/or products of constituent “base” functions, optionally only including cer-

tain orders of interaction. A “standard” kernel, for comparison, is equivalent to a

product kernel featuring all orders of interaction.

Encoding such structure a-priori (in contrast to attempting infer the properties of the

composite function) is often beneficial from a modelling perspective. If the function

of interest is known to be composed as sums or products of constituent functions,

including this structure explicitly in the kernel is advantageous. Even if such an

assumption cannot be made confidently, many practical benchmark problems can

be observed to exhibit some additive structure, provided a flexible enough method

can be deployed to infer it [77].

A detailed discussion of composite kernels can be found in [14, ch. 2]. Additive

Gaussian Processes (AGPs; see [77] and [14, ch. 6]) are a special type of composite

kernel, designed to infer and exploit additive structure automatically. This is par-

ticularly beneficial for higher dimensional problems as “long distance” covariances

can be more easily preserved: for product kernels, points must be “similar” (as

designated by the kernel) in all input dimensions to receive high covariance, while

for additive kernels, points may exhibit relatively high covariance if only some in-

put dimensions are designated as similar. A visual example is provided in figure

(C.1).

C.2 Encoding Noise

Sometimes, we wish to model functions which feature noise. This arises when the

function outputs that we observe are imprecise for some reason: an observed quantity

might be corrupted, or there may be an unknown residual error due to some missing

piece of information. The latter is more common in the context of surrogate mod-

elling, as physics-based computer models are usually considered deterministic.
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Figure C.1: Comparison of the covariance structures designated by product (left) and additive
(right) covariance kernels for a 2D index. Both plots show the covariance between a fixed point,
x∗ = [0.5, 0.5], and another (arbitrary) point in the index, x = [x1, x2]. The kernels have a marginal
standard deviation of 1 and an isotropic lengthscale of 0.1. The product kernel (left) is noted to
designate high covariance only if both x1 and x2 are close. The additive kernel (right), by contrast,
is able to designate higher covariance if either x1 or x2 are similar.

Gaussian (white) noise can be included on any “base” kernel by additively superim-

posing a kernel which models the desired noise. For example, to model homoscedas-

tic white noise of standard deviation σ, we can use the stationary white noise ker-

nel :

kwn(x,x′|θ) =

σ
2 if x ≡ x′

0 otherwise

(C.1)

kwn produces diagonal covariance matrices with σ2 along the leading diagonal, and

has a single hyperparameter θ , [σ].

To formulate a “noisy” implementation of an arbitrary base kernel, k, we combine

k and kwn additively to produce a noisy version of k, denoted knoisy:

knoisy(x,x′|θ) = k(x,x′|θ1) + kwn(x,x′|θ2) (C.2)

where the hyperparameters of knoisy obtained by concatenating the hyperparameters

of the base kernel and the hyperparameters of the noise kernel, i.e., θ , [θ1, θ2].

The noise modelled by the kernel described by equation (C.1) is Gaussian as we
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simply add extra variance of magnitude σ2 to the GP marginals (that is, the leading

diagonal of the covariance matrix), which are Gaussian by definition. Non-Gaussian

noise requires transformation of the marginals (such that the resulting stochastic

process is no longer a Gaussian process) and is discussed in section C.4.

C.3 Non-Stationary GP Regression

For a non-stationary GP, the abstract properties of the functions over which the

model invokes a distribution are not necessarily constant over the index. In practice,

this tends to mean that the hyperparameters of such a kernel are variable over the

index.

To perform non-stationary GP regression, one consequently requires a model for the

variation of these hyperparameters across the index. This model may even be a

GP itself, and inference of this model for variation implies a significantly more chal-

lenging problem than for stationary GP regression: models of such variation require

their own parameters, which must be inferred, in effect multiplying the total num-

ber of (hyper-)parameters the top model must consider. This can have important

consequences on the ability to uniquely identify suitable hyperparameters.

The most important non-stationary effects tend to be those induced by kernel length-

scales and input-dependent noise, as these have the most significant effects on the

predictive capabilities of the model; the latter due to influence on the ability to

identify the correct model hyperparameters. An effective method for modelling

lengthscale non-stationarity is using input warping [78], in which the model inputs

are transformed by a nonlinear warping function before interacting with the kernel.

This method permits a probabilistic implementation, such that different types of

non-stationarity can be integrated over; and is intuitive, straightforward to imple-

ment, and permits an implicit prior distribution over different types of warping,

should such information be available.

Input dependent (hetereoscedastic) noise can be modelled using a second GP deter-

mining the standard deviation of (Gaussian) noise as a function of the index [79],
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or by using a latent-variable formulation such as that described by Wang and Neal

[72], with the latter noted to permit non-Gaussian noise.

The inclusion of non-stationary effects has been shown to have benefits in terms

of performance. Toal and Keane [80] showed inclusion of non-stationary effects

provided enhanced performance on certain surrogate-based optimisation problems

relative to stationary models, though noted that their results were problem depen-

dent, perhaps due to difficulty identifying the correct non-stationary behaviour for

complex functions. The input warping strategy of Snoek et al. [78] was shown to

provide consistently superior performance relative to stationary models for several

Bayesian Optimisation problems, due to being able to navigate any identifiability

problems by integrating the predictive distribution over many types of potential

non-stationary effects.

C.4 Non-Gaussian Marginals

To produce non-Gaussian marginals, required when modelling non-Gaussian noise,

we must transform the GP marginals to the desired distribution, noting critically

that the transformed distribution will no longer be a Gaussian process. A simple

way of accomplishing this for (transformed) distributions which permit a probability

distribution function is to transform the GP marginals onto (0, 1) using the Gaussian

CDF, and then to transform this uniform distribution into the desired marginals

using the appropriate inverse CDF.

For the purposes of example, suppose we have a normally distributed random vari-

able, Y , with mean µ and standard deviation σ:

Y ∼ N (µ, σ)

we transform Y into a uniform random variable, U :

U = Φ(Y |µ, σ)
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given Φ(·|µ, σ) is the Gaussian CDF parametrised by µ and σ, respectively. Finally,

we transform U into a random variable, Z, with the desired parametric distribu-

tion:

Z = F−1(U |ω)

where F−1 is the inverse CDF of a probability distribution, F , with parameters ω.

It is noted that identification of ω is typically challenging.

C.5 Gradient Enhanced GP Regression

Since differentiation in a linear operator, the derivative of a GP is another GP (see,

for example, [81]). This can be utilised, in that derivative observations can provide

extra information about the target function at observed sample points. Conditioning

on this extra information when constructing the predictive distribution of the model

provides a reduction in posterior variance, thus conferring a more precise predictive

distribution relative to a model in which this information is not present.

Gradient enhanced GP regression was explored by Solak et al. [19] in the context of

modelling dynamic systems and by Dwight and Han [82] in surrogate modelling of

computational fluid dynamics simulators featuring adjoint gradients.
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Supplementary Material For

Loads Structural-Coupling

This appendix contains detailed documentation for technical procedures covered

only briefly in chapter 4.
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D.1 Principal Component Analysis via Singular

Value Decomposition

We perform PCA using singular value decomposition (SVD). The principal compo-

nents of the M × N data matrix, Y, are the eigenvectors of its sample covariance

matrix, denoted C:

C = YᵀY/(N − 1) (D.1)

Since C is (by definition) a covariance matrix, it is symmetrical and positive semi-

definite, and thus permits diagonalisation:

C = V · diag(λ) ·Vᵀ (D.2)

where V is an M ×M matrix of columnwise eigenvectors, and diag(λ) is an M ×M

diagonal matrix of eigenvalues. The SVD of Y is:

Y = USVᵀ (D.3)

where S is a diagonal matrix of singular values, and U is a unitary matrix (i.e.

UUᵀ = UᵀU = I). Combining equations (D.3) and (D.1) gives:

C = VSUᵀ ·USVᵀ/(N − 1) (D.4)

which with reference to equation (D.2) implies:

C = V
S2

N − 1
Vᵀ (D.5)

yielding the following relationship between the singular values, S, and eigenvalues
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of the sample covariance matrix, λ:

λ = diag(S)/(N − 1) (D.6)

One performs dimension reduction to R dimensions using PCA by retaining the

eigenvectors corresponding to only the first R eigenvalues (in descending order).

Stacking the eigenvectors corresponding to the remaining eigenvectors into an M×R

array yields a matrix, P. One can then transform an arbitrary set of points in the

original space, expressed as an Nnew×M matrix, Y∗, onto the PCA basis, by taking

their dot product with P:

Q∗ = Y∗P (D.7)

where Q∗ is a representation of the points Y∗ in the PCA basis described by P. It

follows that an approximation to Y∗ can be recovered from Q∗ by taking the dot

product with the transpose of P, i.e., Y∗ ≈ Q∗Pᵀ.

D.2 Scaling

PCA is sensitive to the scaling of the data. The method can be interpreted to

”identify the directions of maximum variation” in the data, and is consequently

biased towards recovering variation in high-variance columns of the data matrix if

no scaling is applied.

To help remedy this behaviour, it is common to apply a scaling function to the

columns of the data matrix first, such that all columns have approximately zero

mean and unit standard deviation. Let ym be the mth column of Y. The canonical

scaling technique is to subtract the column sample mean and divide by the column

sample standard deviation. However, the sample standard deviation is not a robust

statistic, and can thus be sensitive to outliers. We opt to use the Maximum Absolute
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Deviation (MAD) instead. Our scaling function is thus:

φ(ym) =
ym − ȳm

MAD(ym)
(D.8)

where ȳm is the sample mean of ym and MAD(ym) is the median of the absolute

deviations from the sample mean:

MAD(ym) = Md(|ym − ȳm|) (D.9)

given Md(·) represents the median of its argument.

It is worth noting that when “decompressing” values from the PCA basis space back

into the original data space, one must remember to properly rescale the resulting

transformed values using the same values that were used to compute the PCA basis.

A set of Nnew arbitrary points in the transformed basis of dimension R, represented

by an Nnew ×R array, Q∗, is transformed back into an Nnew ×M array of points in

the original data space, Y∗new, by taking the dot product with the transpose of the

PCA rotation matrix and applying the reverse of the desired scaling function (i.e.,

multiplication of each column by the MAD and addition of the sample mean):

Y∗new = φ−1(Q∗Pᵀ) (D.10)

where φ−1(·) represents application of the appropriate rescaling functions to the

columns of the argument. Assuming W = φ(Y), one recovers Y by:

Y = φ(W)−1 = Y ∗MAD(Y) + Y (D.11)

D.3 Selecting the Number of Basis Terms

A common strategy to choosing R is to propose a cut-off point for the desired pro-

portion of total variation in the data one seeks to explain using the compressed basis.
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This fraction is equivalent to the ratio between the sum of the first R eigenvalues and

the total sum of all of the eigenvalues of the data covariance matrix. This approach,

however, does not take into account subsequent rescaling of the data, and is thus

not necessarily guaranteed to distribute the residual variance in any particularly

predictable manner after rescaling.

Providing access to a test set, a more robust choice is to analyse the reconstructed

data for different values of R. In this case it is imperative that Ptest is constructed

using only the training data (including columnwise normalisation), and that the test

data is scaled and rescaled by the same functions as the training data.

Let Ytest be an Ntest ×M array of test points. To obtain the residuals associated

with compressing Ytest onto R basis terms, we first require the data as re-constructed

from the new basis (i.e., compression and subsequent recompression):

Y∗test = φ−1
((
φ(Ytest) ·P[:R]

)
·Pᵀ

[:R]

)
(D.12)

where P[:R] implies the R ×M matrix obtained by retaining only the first R rows

of the PCA matrix, P; φ(·) represents a scaling operation; and φ−1(·) a rescaling

operation (see section D.2).

Y∗test is computed for each load case, and the reconstructed envelope, Y
∗
test, is cal-

culated via equation (4.11).

A matrix of residuals, R, is obtained by comparing the reconstructed envelope to

the actual envelope: R = Ytest −Y
∗
test.

Mean residuals for the normalised envelope as a function of R are plotted in figure

D.1. The torque measurements can be seen to exhibit the greatest normalised mean

residual error (note the scales of the y-axes). Increasing the number of basis terms

reduces the mean residual error, as expected.
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Figure D.1: Mean residuals of the enveloping loads as a function of the number of components
used in a reduced dimensional PCA basis, separated for shear, moment and torque measurements.

D.4 Envelope Predictions

GP regression provides statistical predictions in terms of probability distributions.

Predictions of q at a particular point, z∗, are obtained by taking the expectation of

this predictive distribution:

q̂ = E[p(q∗|z∗D, θ)] (D.13)

where p(q∗|z∗,D, θ) is obtained as described in appendix B. Since the marginals of

the predictive distribution are Gaussian (by definition), this is equivalent to the

predictive mean, which can be calculated analytically.

Predictions of loads are obtained by retrieving predictions for q = [q1, . . . qR] from

each of the R independent models, and multiplying this vector by the transpose of

the PCA matrix, P, to obtain a length M vector of predictions in the loads space,

ŷ:

ŷ = q̂ ·Pᵀ (D.14)

This is performed for each of the K load cases to produce an M × K array of
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vertically stacked responses, Ŷ∗mk, for each load case:

Ŷ∗ =


q̂1 ·Pᵀ

1

...

q̂K ·Pᵀ
K

 =


ŷ∗1
...

ŷ∗K

 (D.15)

We finally obtain a prediction of the envelope, denoted y∗ by taking the coefficient-

wise maximum across the load case axis (equivalent to the maximum of each col-

umn).

y∗ = max
k=1...K

|Ŷmk| (D.16)
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Appendix E

Basics of Hamiltonian

Monte-Carlo

This appendix contains a brief introduction to the Hamiltonian Monte-Carlo simu-

lation algorithm used during the construction of the robust surrogate models intro-

duced in chapter 5.
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E.1 Preliminaries

A comprehensive introduction to Hamiltonian Monte-Carlo is beyond the scope of

this document, and we refer the curious reader to Betancourt [48] for an accessible

conceptual introduction, or Gelman et al. [15, ch. 11-12] for a practical description

of the algorithm.

A Markov chain is a sequence of points in D dimensional space, obtained from some

random, initial point through repeated application of a Markov transition at each

successive point. Markov transitions can be thought of as probability distributions,

which – conditional on the current point – determine the probability of moving from

that point to all other points in the space. By defining this probability distribution

in such a way that it “preserves” some target distribution, one is able to obtain a

sequence of points (a “chain”) which is distributed according to the desired target

distribution. This property is useful when it is either not possible or computationally

efficient to sample from a target distribution directly.

Before addressing Hamiltonian Monte-Carlo simulation, it is useful to first briefly

address the deficiencies of the Metropolis-Hastings algorithm, which is a more con-

ceptually straightforward alternative.

E.1.1 Metropolis-Hastings

Perhaps the most well known procedure for constructing Markov transitions which

preserve a target distribution is Metroplis-Hastings [25, 26]. The algorithm consists

of two stages:

1. The proposal step induces a random perturbation to the current point.

2. The correction step then “rejects” any proposal which is too improbable

(that is, if the probability of the new point given the target density is too

low).

Metroplis-Hastings is simple and easy to implement, though the proposal-correction

mechanism by which it operates is inefficient for high-dimensional spaces and/or
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complicated target densities [48]: one can intuitively verify that if “probable” re-

gions of the target density are small in comparison to the space to be explored,

the majority of proposals will end up being rejected due to their small acceptance

probability.

E.2 A Brief Conceptual Introduction to Hamilto-

nian Monte-Carlo Simulation

Hamiltonian Monte-Carlo simulation (HMC) [83, 84] is a technique which can be

used to sample from higher-dimensional and/or complicated target densities in a

considerably more efficient manner than the Metroplis-Hastings algorithm by ex-

ploiting the geometry of the target density. For continuous spaces, one way of

accomplishing this is by defining a vector field aligned with the target density. This

vector field can then be exploited to make informed proposals, which are able to

rapidly traverse “likely” regions of the target density in order to reach unexplored

regions of the space more efficiently.

Such a vector field is obtained by manipulating the gradients of the target density.

While a thorough explanation in terms of differential geometry is complex and be-

yond the scope of this document, an intuitive way to conceptualise this procedure is

to imagine an analogous (mathematically equivalent) physical system, in which each

proposal in the probabilistic space is designed to mimic the motion of a fictitious

particle through physical space in terms of conservative dynamics. Conservation of

the momentum of this fictitious particle then ensures that the corresponding pro-

posals in the probabilistic space remain “properly aligned” with the target density,

in the sense that “motion” of the sampler through space is guided into regions of

higher likelihood. HMC is sometimes referred to as Hybrid Monte-Carlo simulation

as it includes deterministic mechanics as part of its random sampling.
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E.2.1 Auxiliary Momentum Variable

Let θ represent a D dimensional point in the space, Θ, that we are interested in sam-

pling from, and let D be some arbitrary data used to formulate the likelihood p(D|θ),

and corresponding posterior distribution p(θ|D) ∝ p(D|θ). Since the algorithm only

requires p(θ|D) to be known up to a multiplicative constant (i.e, we only require a

distribution proportional to the target density), for the purposes of the algorithm,

we can work with the likelihood directly (that is, assuming p(θ|D) = p(D|θ)).

HMC adds an auxiliary momentum variable, φ, for each dimension of Θ. We can

thus conceptualise a joint distribution p(θ, φ|D) = p(φ)p(θ|D). HMC generates

proposals from this joint distribution, with φ being “auxiliary” in the sense that we

are only really interested in the samples of θ.

E.3 Algorithm

Each iteration of the HMC algorithm consists of three parts.

1. Randomly draw the momentum variable(s), φ.

2. Simultaneously update (θ, φ) over a total of L leapfrog steps.

3. Perform an accept/reject decision.

E.3.1 Drawing Momentum Variables

In most implementations, p(φ) is assigned a zero-mean multivariate normal distribu-

tion, with covariance matrix set to a diagonal “mass matrix”, M , thus designating

each auxiliary momentum variable as independent.

φ is consequently drawn randomly from, MVN(0,M), M being an appropriately

defined mass matrix.
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E.3.2 Simultaneous Update

Both θ and φ are changed together over a total of L iterations. These are referred

to as “leapfrog” steps due to splitting the updates for the momentum variables into

two half-updates.

In the following, let ε be a scaling parameter. At the beginning of each step the

gradient of the log density of θ is used to perform a “half-update” of the auxiliary

momentum variable, φ:

φ← φ+
1

2
ε
d log p(θ|D)

dθ
(E.1)

Next, φ is used to update θ:

θ ← θ + εM−1φ (E.2)

Finally, another half-update of φ is performed:

φ← φ+
1

2
ε
d log p(θ|D)

dθ
(E.3)

which completes a single leapfrog step.

This is performed a total of L times in order to jointly update θ and φ.

E.3.3 Accept/Reject Decision

Letting θold and φold be the values of θ and φ before the L leapfrog steps, and θnew

and φnew their updated counterparts, we compute:

r =
p(θnew|D)p(φnew)

p(θold|D)p(φold)
(E.4)
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Then set:

θ ←

θnew with probability min(r, 1)

θold otherwise

(E.5)

In other words, we move to a new position (implicitly collecting a sample) with

probability r, as defined by equation E.4.

E.4 Tuning Parameters

The HMC algorithm described in the preceding section can be tuned in four places:

the mass matrix, M ; the scaling factor, ε; and the number of leapfrog steps, L.

Gelman et al. [15, ch. 12] recommend setting the scale of the auxiliary momentum

variables to a “crude estimate” of the scale of the target distribution, defaulting to

setting M as the identity matrix of size D. Following this, tuning the scaling factor,

ε, and number of leapfrog steps, L, such that εL = 1, means that L steps of size ε

fully traverses the (assumed scale of the) target density. The authors recommended

a starting point of ε = 0.01 and L = 10.

E.4.1 Warmup and Adaptive Tuning

HMC is “optimally” efficient when the acceptance rate, r, is around 65% (see, for

example, [85, section 5.4]). Since adaptively changing the HMC tuning parameters

during sampling can produce transitions which do not necessarily preserve the target

density, adaptively tuned sampling is preceded with a warmup phase during which

the tuning parameters are adapted from their initial values to produce efficient

sampling behaviour but no samples are actually collected.

Letting r̄ be the average acceptance probability (computed from all of the iterations

performed up until that point), it is recommended that ε and L are adapted such

that r̄ ≈ 0.65. If r̄ � 0.65, one should decrease ε and increase L, and if r̄ � 0.65,

one should increase ε and decrease L, in both cases noting that the product εL = 1
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should be preserved.

E.5 Locally Adaptive HMC

Sample spaces for complicated models can feature geometry with regions of both

low and high curvature. In such instances, it is desirable for the sampler to adapt

to local properties of the target density, such that exploration is optimally efficient

throughout the sample space.

One algorithm which accomplishes this is the No-U-Turn Sampler (NUTS), which

is used throughout this document, as implemented in the probabilistic programming

language Stan [46]. As NUTS is considerably more complicated than (non-locally-

adapted) HMC, we refer the curious reader to the original work of Hoffman and

Gelman [30] for a description of the algorithm.
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Appendix F

Supplementary Material For

Robust Surrogates Experiments

This appendix provides detailed documentation of the model fit procedures used in

the experiments conducted in chapter 6.
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F.1 MCMC Model Fit Procedure

The robust model is formulated as described in chapter 5. With reference to chapter

3 section 3.2, this yields the following probabilistic model:

α ∼ Normal+(0, 1)

ρi ∼ InvGamma(ai, bi) i = 1 . . . D

y ∼ MVN(0,K)

(F.1)

where MVN is the multivariate normal distribution (recall chapter 3 for an explicit

description of the likelihood function), and we reiterate that K is an N ×N covari-

ance matrix obtained by evaluating equation (6.1) pairwise between the rows of the

N ×D array of sample points, X.

The hyperpriors for α and ρ are designated as described in chapter 5, with the

parameters ai and bi representing the solution to the root finding problem described

by the system of equations (5.5) in dimension i.

Given data, D, composed of an N ×D array of sample points, X; and a length N

vector of sample responses, y, the MCMC method samples θ from an approximation

to p(θ|D, πθ) using Stan’s implementation of NUTS, with settings as described in

chapter 5.

A sketch of the pseudocode for the MCMC model fit procedure is documented in

algorithm 4. We assume X and y have been normalised as described in section 5.4.1,

such that the rows of X correspond to N points in D-dimensions x ∈ [0, 1]D; and y

has approximately zero mean and unit standard deviation.

F.2 MLE Model Fit Procedure

The MLE model assumes flat hyperpriors. This results in a likelihood identical

to the MVN PDF described by equation (3.5). We make use of Stan’s automatic

differentiation capabilities and optimisation routines for the MLE model, too.
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Algorithm 4 MCMC Inference Pseudocode

1: Given: data: N ×D array, X; N vector y
2: for i = 1, . . . , D do
3: Compute ∆i; the minimum spacing for column i of X
4: Compute ai and bi by solving (5.5), given ∆i

5: end for
6: Initialise hyperprior πθ, using ai and bi for i = 1, . . . , d . see section (5.4)
7: Initialise sampler start points for θ . see section (5.5.2)
8: Initialise sampler settings . see section 5.5.1
9: while Not Satisfied do

10: Run sampler
11: Retrieve diagnostics: R̂, divergences, tree-depth saturations
12: if Any failed diagnostics then . see section 5.6
13: Restart sampler with adapted settings
14: else
15: Satisfied . the diagnostics indicate success
16: end if
17: end while
18: Return: samples of θ from p(θ|D, πθ)

The probabilistic model, implicitly due to the absence of any explicit prior distribu-

tion for α or ρ1, . . . , ρD, is:

α ∼ Uniform(0,∞)

ρi ∼ Uniform(0,∞) i = 1 . . . D

y ∼ MVN(0,K)

(F.2)

where K is (again) calculated via equation (6.1). The hyperpriors for α and ρ are

factored out since all values of θ receive the same prior probability.

The MLE method attempts to summarise p(θ|D) by a single point, θ∗, assumed to

be the point which globally maximises the log-likelihood:

θ∗ = arg max
θ∈Θ

log (L(θ|D)) (F.3)

given log(L(θ|D)) corresponds to the MVN log-likelihood function (see, for example,

section 3.2).
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We approach the optimisation described by equation (F.3) using Newton’s method as

implemented in Stan, which uses automatic differentiation of the likelihood function

to obtain the required derivatives. Convergence is determined by a change in the

log-likelihood of less than 1e−10, and the maximum number of allowable number of

iterations is set to 250. This limit was never reached during our experiments.

This procedure is repeated R = 5 times, and we keep the result with the highest log-

likelihood. The first repeat is initialised from the same initial values as the MCMC

algorithm (see section (5.5.2)), and the remaining 4 are initialised randomly.

The fit procedure for the MLE method is summarised by algorithm 5.

Algorithm 5 MLE Inference Pseudocode

1: Given: data: N ×D array, X; N vector y
2: set θ∗ = NaN, L(θ∗|D) = −∞
3: for r = 1, . . . , R do
4: Attempt to solve (F.3) using Newton’s method, to obtain θ∗prop

5: if L(θ∗prop|D) > L(θ∗|D) then
6: set θ∗ = θ∗prop

7: end if
8: end for
9: Return: θ∗

F.3 MLE-II Model Fit Procedure

The MLE-II model uses the same hyperpriors as the MCMC model, but summarises

the posterior distribution p(θ|D, πθ) by optimising the log-likelihood similarly to the

MLE method.

This results in a probabilistic identical to that of the MCMC model:

α ∼ Normal+(0, 1)

ρi ∼ InvGamma(ai, bi) i = 1 . . . d

y ∼ MVN(0,K)

(F.4)

with hyperpriors for α and ρ designated identically to the MCMC model.
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The objective function in this case is thus the following log marginal likelihood:

log (L(θ|D, πθ)) = log (p(y|X, θ)) + log (p(θ|πθ)) (F.5)

where log(p(y|X, θ)) is given by the log of the MVN PDF with zero mean and covari-

ance matrix K, and p(θ|πθ) is the log of the joint probability of α and ρ1, . . . , ρd as

determined by their respective prior distributions described by equation (F.4).

We seek:

θ∗ = arg max
θ∈Θ

log (L(θ|D, πθ)) (F.6)

and solve the optimisation problem described by equation (F.6) identically to the

MLE case.

The fit procedure for the MLE method is summarised by algorithm 6.

Algorithm 6 MLE-II Inference Pseudocode

1: Given: data: N ×D array, X; N vector y
2: for i = 1, . . . , D do
3: Compute ∆i; the minimum spacing for column i of X
4: Compute ai and bi by solving (5.5), given ∆i

5: end for
6: Initialise hyperprior πθ, using ai and bi for i = 1, . . . , D
7: set θ∗ = NaN, L(θ∗|D, πθ) = −∞
8: for r = 1, . . . , R do
9: Attempt to solve (F.6) using Newton’s method, to obtain θ∗prop

10: if L(θ∗prop|D, πθ) > L(θ∗|D, πθ) then
11: set θ∗ = θ∗prop

12: end if
13: end for
14: Return: θ∗

F.4 Test Functions

3D visualisations of the 2D test functions (Branin, mixture of cosines, and 6-hump

camel) are shown in figures (F.1), (F.2) and (F.3), respectively. To resolve the detail
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Figure F.1: Surface and contour plot for the Branin test function.

at the bottom of the central basin region in the case of the 6-hump camel function,

an additional plot of just this region is shown in figure (F.4).

Mathematical descriptions of the mixture of cosines and 4D sphere test functions

are provided in the following sections.

F.4.1 Mixture of Cosines

Our experiments use D = 2. See also figure (F.2).

f(x) = 0.1
D∑
i=1

cos 5πxi −
D∑
i=1

x2
i (F.7)

F.4.2 4D Hypersphere

Our experiments use D = 4.

f(x) =
D∑
i=1

x2
i (F.8)
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Figure F.2: Surface and contour plot for the mixture of cosines test function.
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Figure F.3: Surface and contour plot for the 6-hump camel test function. As the geometry of the
basin region is difficult to resolve on this scale, an additional plot of the basin is shown in figure
(F.4).
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Figure F.4: Surface and contour plot for the 6-hump camel test function basin region.
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Appendix G

Adaptive Data Acquisition and

Bayesian Optimisation

This appendix provides a brief introduction to adaptive data acquisition and Bayesian

optimisation, with a short review of extensions useful to industrial modelling appli-

cations.

199



G.1. Adaptive Data Acquisition Appendix G. Adaptive Acquisition

G.1 Adaptive Data Acquisition

We introduce Bayesian Optimisation (BO) by first formalising adaptive data acqui-

sition as follows.

Let Dt ≡ {X,y}t be the data available at time, t, which consists of a set of N

sample points, X = [x1 . . .xN ], and a corresponding vector of N scalar responses,

y, obtained by evaluating a simulator, f , at each of the points in X. We presume

at each t, Dt is used to construct a GP emulator.

Using this emulator, we can compute the distribution of a predicted quantity, y∗, at

any arbitrary point in the index, x∗, conditional on the observed data and model

hyperparameters. We denote the predictive distribution by p(y∗|x∗,Dt, θ). For GP

models, this distribution is fully defined by a predictive mean, m, and covariance

matrix, K, obtained as described in appendix 2.

An adaptive experimental design seeks to provide a strategy for selecting one (or

more) new points, xt+1, which along with the corresponding responses, yt+1, are

used to build a new emulator at time t+1. This typically involves maximising some

function of the predictive distribution.

G.2 Acquisition Strategies

Functions of the predictive distribution which are used to select points in the index

at which to acquire new samples are referred to as acquisition functions. Let a be

an arbitrary acquisition function. We write a as conditioned on a specific predictive

distribution as a(x∗|y∗,Dt, θ), noting that since y∗ is conditional on the data available

at time t, Dt, and model hyperparameters, θ, then the acquisition function must be,

too. To select the next point, one maximises (or minimises) a(x∗|y∗,Dt, θ) with

respect to x:

xt+1 = arg max
x∗∈X

a(x∗|y∗,Dt, θ) (G.1)
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An acquisition function can be consequently thought of as some means of quantify-

ing the “usefulness” of all the points x ∈ X , and hence provides some mechanism

of reasoning with their relative utility. Identifying the global optimum in equation

(G.1) can be challenging to accomplish efficiently as acquisition functions tend to be

multi-modal. They are, however, usually relatively inexpensive to compute and per-

mit analytical derivatives, such that multi-start Newton or quasi-Newton methods

are effective in low to moderate numbers of dimensions.

It is emphasised that how realistically an acquisition function represents the “useful-

ness” it defines (and consequently, how effective it is in that context) is conditional

on how well the GP model on which it is conditional represents predictive uncer-

tainty across the index. Emulators constructed using robust methods, such as those

described by chapter 5, are thus highly beneficial, despite implying extra computa-

tional effort is required as a result of marginalisation.

For GP models fit using MCMC, the objective function in equation (G.1) should

be marginalised over the posterior distribution of the hyperparameters. Assuming

S samples of θ have been drawn from p(θ|Dt, πθ) (where πθ is the prior distribution

for θ), the marginalised acquisition function is:

a(x∗|y∗,Dt) =
1

S

S∑
s=1

a(x∗|y∗,Dt, θs) (G.2)

which can be inserted directly into equation (G.1) in place of a(x∗|y∗,Dt, θ). From

here we will omit explicit statements of conditionality on the model hyperparame-

ters, removing θ from a(x∗|y∗,Dt, θt) in the interest of readability, and consider it

implicit that if MCMC is used then predictions are marginalised over p(θ|Dt, πθ) as

described by equation (G.2). Similarly, we will also drop the conditional variable

Dt, assuming it is implicit that the predictive distribution, p(y∗|x∗) obtained at time

t makes use of all of the available data at that time unless stated otherwise.
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G.2.1 Pure Exploration

Different acquisition functions formalise utility in different ways. This can range

from relatively simple measures to complex functions of the GP posterior. Perhaps

the most simple formulation of adaptive experimental design is to select the next

point at the location of maximum posterior variance:

a(x) = V[p(y∗|x∗] (G.3)

which is otherwise known as Pure Exploration (PX); the acquisition function simply

acquires data at the point of maximum predictive uncertainty.

Strictly speaking, PX does not require any responses from the simulator we are

seeking to optimise using BO, as the posterior predictive variance is a function of

only the separation between data points and the model hyperparameters (see chapter

2). However, feedback from the target function via observed data is still important,

as additional datapoints constitutes extra “evidence” in identifying suitable values

of the hyperparameters.

PX is cheap to compute and can be analytically differentiated, making it inexpensive

to optimise.

G.2.2 Other Global Design Criteria

Adaptive experimental design for Gaussian process emulators was studied by Busby

[86].

G.3 Bayesian Optimisation

Global design and pure exploration are inefficient if one requires accuracy in only

a specific region of the input space: a canonical example of such a requirement is

when using the surrogate to perform (global) optimisation. In these cases, use of an

acquisition function to adaptively construct a surrogate model which is then used

to predict the minimum of the original (expensive) function is known as Bayesian
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Optimisation. Readers are directed to Shahriari et al. [60] for an up-to-date re-

view.

G.3.1 Expected Improvement

A wide range of acquisition functions exist for performing BO.

Moćkus et al. [87] derived the now-ubiquitous Expected Improvement (EI) acquisition

function based on a quantification of the expected increase in the observed value of

the random variable defined by the GP posterior marginals relative to an incumbent

value, y∗. The incumbent is defined either as the largest observation so far, i.e.

y∗ = max(y); or as the maximum of the predictive mean of the GP, i.e. y∗ =

arg maxx∈X µ(x|D).

Given y∗, EI is defined as:

EI(x) = (y∗ − µ(x)) Φ (γ) + σ(x)φ (γ) (G.4)

where:

γ =
y∗ − µ(x)

σ(x)
(G.5)

Φ(·) and φ(·) are the normal (Gaussian) cumulative distribution function and prob-

ability density function, respectively.

EI is popular as it is simple to implement and offers reliable theoretical guarantees

of convergence under relatively mild assumptions, crucially including uncertainty in

the GP hyperparameters [88, 89], which is often the case in practice.

G.3.2 Predictive Entropy Search

Hernández-Lobato et al. [61] developed predictive entropy search (PES); an acqui-

sition function based on maximising the (estimated) information gain about the

location of the global optimum associated with retrieving a sample at a particular
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point.

Relative to EI, PES has a stronger preference for exploration, giving it a reduced

tendency to be stuck inside local minima during early iterations, and state-of-the-art

empirical performance when compared to other acquisition functions on a variety of

benchmarks (see also favourable comparisons in [66]).

PES also offers the possibility of being utilised for purposes other than optimisation.

By maximising the information gain with respect to, for example, regions of high

curvature, one could construct an acquisition function which maximises the infor-

mation retrieval at regions with high absolute gradients in the input space.

Unfortunately, PES suffers from some practical difficulties which make application

in industrial production environments tricky. First, the algorithm requires provision

and management of high (up to fourth) order derivatives of the GP kernel. This

is straightforward for simple kernels such as the exponentiated quadratic, but is

cumbersome for more complicated kernels. This could be remedied by using either

a spectral representation of the GP kernel, such as that deployed by [90] for similar

purposes, or the use of automatic differentiation to retrieve the high order derivatives

of the kernel without programming them analytically or resorting to finite difference

schemes.

Second, when predicting potential locations for the function minimum, the PES

algorithm makes several (necessary) assumptions about the derivatives at the min-

imum; namely that the Hessian matrix is negative definite and the first derivative

is zero. These assumptions are valid if the function minimum lies well within the

bounds of the search space, but are sometimes invalid if the minimum lies on any of

the boundaries of the input space. Should this occur, the expectation propagation

step (see [91]) of the algorithm may not converge, meaning the acquisition func-

tion cannot be evaluated. In our experiments, this occurs frequently enough that

the usability of the algorithm is compromised. This is perhaps less of a concern in

applications in which the search space can be arbitrarily extended.
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G.4 Batch Acquisition

In many cases it is convenient to sample a batch of points at once. This is especially

the case if the original function can be run in parallel, or if the function requires

time to be set up, such as if data acquisition involves a physical experiment. In

such situations, it is considerably more convenient to retrieve a batch of samples at

a time.

Batch acquisition has been explored by several authors in the Bayesian Optimisation

literature. González et al. [92] used a local penalisation method to emulate the effect

of an observation on the posterior distribution to provide a sequentially greedy

strategy for batch allocation using EI. This approach is fast and easy to implement,

but cannot guarantee an optimal solution to the batch design due to the greedy

nature of the acquisition function.

González et al. developed GLASSES [93], a non-greedy approach to batch alloca-

tion, which seeks to approximate an “ideal” look-ahead function with a surrogate.

GLASSES seeks to minimise an approximation to a long sight loss function (see

[94]), which involves successive optimisation and marginalisation of a sequential ac-

quisition function. Lam et al. [66] approached a similar problem using a dynamic

programming solution based on rollout (see [95, ch.4]), attempting to maximise the

cumulative utility of the batch given a fixed budget of simulation points, marginal-

ising over uncertainty in “virtual” observations using quadrature.

Shah and Ghahramani [68] extended PES to allocate a batch of points maximising

the joint information gain about possible locations for the function minimum. Batch

PES is non-greedy but suffers from the same implementation issues as single-point

PES, namely provision of high order kernel derivatives and instability of the acqui-

sition function when the function optimum resides on or around the support of the

target function.
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G.5 Multitask Acquisition

For applications in which different objectives are not necessarily conflicting, we refer

to multi-task optimisation. Here, one seeks to simultaneously search for the optima

of two or more objective functions which share an input space. A simple means

of accomplishing this is to take the expectation of the acquisition function across

the different tasks. Let at(x) be the acquisition function for task t, and presume T

tasks. A generic multi-task acquisition function, α(x), can be defined as:

α(x) =
1

T

T∑
t=1

at(x) (G.6)

Weights can optionally be added to the summands in equation (G.6) to force a

preference for certain tasks. It is important that the tasks should be expressed in

the same or similarly scaled units.

G.6 Multiobjective Acquisition

When faced with more than one objective, one can consider multiobjective acquisi-

tion. Objectives can come from either multiple independent GP models, or a single,

vector-output model. The acquisition function in this case seeks to identify the

pareto optimal set of points.

Emmerich [96] proposed Expected Hypervolume Improvement (EHVI) as a means

of applying Bayesian Optimisation to a multiobjective setting. A more computa-

tionally efficient version of the algorithm was later developed by Hupkens et al.

[97].

Hernández-Lobato et al. [67] extended PES to the multiobjective setting, using a

reformulation of the PES acquisition function to describe utility in terms of the

information gain about the pareto set.
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