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Abstract

Implicit methods for the calculation of unsteady flows require the solution of
large, sparse non-symmetric systems of linear equations. The size of such systems
makes their solution by direct methods impractical and consequently iterative
techniques are often used. A popular class of such methods are those based upon the
conjugate gradient method. In this paper we examine three such methods, CGS,
restarted GMRES and restarted GMRESR and compare their convergence properties.



1. Introduction

Implicit methods for the calculation of unsteady flows require the solution of
large, sparse systems of linear equations. While direct methods exist which can be used
to obtain the solution of such systems of equations they become increasingly expensive
with increasing grid size and are impractical for all but the most trivial of problems.
Iterative techniques based upon the conjugate gradient method are most commonly used
for the solution of systems of equations of this type. The basis of such methods is
summarised below.

For an initial guess, {x,}, to the system of equations,
[Al{x}={b} M
aresidual {r,} is obtained thus,

{1} = {b} - [Al{x,} )

conjugate gradient type methods begin by assuming that the correction to {x,} required
to set the residual to zero lies within a vector space (the Krylov subspace) constructed
from a series of direction vectors. Once this subspace has been constructed a unit vector
{p} is then formed which reduces the residual and the solution is updated by,

x U=y +afp™y 3)

There exist a large number of conjugate gradient type solvers which differ
mainly in the way in which the subspace is constructed and the update vector {p} is
calculated. In this paper the performance of three such schemes, CGS', restarted
GMRES? and restarted GMRESR?, is compared.



2. The linear solvers.
(i) CGS

The conjugate gradient method is only valid for symmetric matrices, but has
been extended for nonsymmetric matrices in Bi-CG. In this method two sets of
residuals and two sets of direction vectors are updated at each iteration thus,

{t} - oi[Al{p...}

{z} "ai[AT]{5i+1}

and 4
{Pia} = {5} +B:{p:}
{5i+1} = {i} +B; {51}

where o and B are chosen to ensure that the search directions are bi-orthogonal.

Sonneveld ' noted that the residual vectors {r} and {T } could be expressed by the same
polynomial in [A], that is,
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i} =P[Alfr,} and {7} =P[A}T} Q)
an it follows that { T } can be rewritten as a function of both {r} and [A],

{t} =P’[Alr,} ©)

Sonneveld suggested that if the contraction operator P[A] reduced the residual to some
~ smaller vector (Equation (5)) then carrying out the contraction operator twice (Equation
(6)) should be advantageous. Such an approach forms the basis of the CGS algorithm.

Unlike GMRES, CGS does not minimise the residual over the span of the subspace, this
has two important consequences firstly the scheme is not very robust and secondly CGS
can exhibit highly irregular convergence behaviour. Experience has shown that despite
these weaknesses CGS can be quicker than other conjugate gradient type methods with
the additional advantage that memory requirements are low as only one search direction
need be stored at each iteration. Pseudo code for CGS is given in Listing (1).

(ii) Restarted GMRES

In GMRES the initial direction in the Krylov subspace is obtained as,

fu) = 1) ™

=,

The remaining search directions are then computed using expressions of the form,
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The inner product coefficients are stored in the Hessenberg matrix, [H], which is
r,{e,} —[H{y}|. The coefficients of this
minimisation problem, {y}, may then be used to update the solution using,

x}={x.}+{y}lv] ©)

In exact arithmetic GMRES will reduce the residual to zero over the full Krylov
subspace, in practice it is not necessary to iterate for the full subspace and a truncation
strategy is employed. The most common truncation strategy limits the subspace to the
first m vectors, if the residual has not been reduced to an acceptable limit over this
subspace then the solution vector is updated and the new system of equations which
results is solved. This process is known as restarting.

used to solve the minimisation problem

While restarted GMRES(m) is more robust than CGS and has the desirable
property that convergence is monotonic it requires more storage than CGS because of
the need to store the Krylov subspace, m vectors each of length N (where N is the
number of unknowns). The choice of the parameter m in restarted GMRES is problem
dependant and is influenced heavily by the ‘stiffness’ of the problem and the overall
size of the system which must be solved, when a good preconditioner is employed the
number of vectors which must be stored can be relatively small (between 10 and 25).
For some values of the parameter m it is possible that the solution process may stall.
Pseudo code for GMRES is given in Listing (2).

(iii) Restarted GMRESR

GMRESR is a variant of GMRES proposed recently by Van der Vorst and Vuik®
in which GMRES is used to improve the condition of the matrix [A]. This
preconditioning is achieved by using a few iterations of GMRES to obtain an
approximate solution ,{y}, of the system of equations [A]{y}={r;}. This is equivalent to
stating that [A'l] {r;} can be approximated by the polynomial in [A] which is implicit in
the GMRES method.

The application of this method results in a two level scheme in which GMRES is
used for both the inner and outer iterations, although any alternate linear solver,
including GMRESR itself, could be used for the inner iteration. The outer iteration of
GMRESR can be easily truncated which coupled with the requirement for very few
vectors for the inner iteration offers the potential for large reductions in storage over
more conventional GMRES schemes. Pseudo code for GMRESR is given in Listing (3).



3. Numerical scheme.

The flow field around moving aerofoils can be calculated using the unsteady,
two dimensional thin layer Navier-Stokes equations which are written in generalised
moving co-ordinates as,

an N oF oG _ oS

ot o om  om (10)

Here Q is the vector of conservative variables, F and G are the inviscid flux
vectors in the streamwise and normal directions and S is the viscous flux vector in the
normal direction. Turbulent viscosity is calculated using the Baldwin-Lomax turbulence
model.

Equation (10) is solved using a Beam-Warming type implicit scheme in which
the inviscid flux vectors are discretised using Oshers method, with third order accuracy
provided by MUSCL interpolation and a flux limiter, while the viscous flux vector is
discretised using central differences. This discretisation results in a large, sparse system
of linear equations which can be written in the form of Equation (1). The condition of
this system of linear equations is improved using ADI preconditioning, see for example
Wigton et al 4 and Badcock®, and solved using a CG type linear solver.



4, Test Cases.

For the purposes of investigating and comparing the convergence behaviour of
the linear solvers under consideration calculations are performed for a symmetric
NACA 0012 aerofoil at zero degrees incidence undergoing inplane oscillations
described by,

M., = 0.536 + 0.61sin(0.1851) (11)

where 1 is the non-dimensional time. Calculations were performed for both the Euler
equations and the turbulent Navier-Stokes equations (Re = 1.75 million). Euler solutions
were obtained for the grid shown in Figure (11a) which has 153 nodes around the
aerofoil (100 nodes on the aerofoil surface) and 48 nodes normal to the surface. Navier-
Stokes solutions were obtained for the stretched grids shown in Figures (11b) and (11c¢),
which have 153 x 48 and 259 x 96 nodes respectively.

Calculations were performed with 250, 600 and 3000 iterations per cycle of the
aerofoil motion and the solution obtained by the linear solver was judged to be
converged when the ratio of the residual norm to the norm of the right hand side was
less than 0.005.

In Figures (12), (13) and (14) surface pressure coefficients, pressure contours
and Mach number contours are presented for the current Navier-Stokes calculation at
azimuth angles of 60, 90, 120 and 180 degrees. These Figures clearly illustrate the
unsteady nature of the flow (compare the surface pressure distributions obtained for
azimuth angles of 60 and 120 degrees which have the same incident Mach number) and
the wide variety of flow conditions which are encountered.



S. Numerical experiments.

In Figure (1) the convergence behaviour of CGS, GMRES (10) and
GMRESR(S,2) are compared for the first iteration of the inviscid calculation. This
Figure shows quite clearly that initially both GMRES(10) and GMRESR(5,2) converge
to the required tolerance in a shorter period of time than that taken by CGS. Experience
has shown, however, that over the course of a full cycle of the aerofoil motion fewer
iterations of all of the linear solvers are required. For the present calculation three
iterations of CGS are required compared to a single iteration of GMRES(10) and one or
two iterations of GMRESR(5,2). Consequently over the course of the full calculation
CGS performs more efficiently than either of the alternatives considered, although this
may not be the case for any individual timestep. This behaviour is demonstrated in
Figure (2) which shows a comparison of the total time required by both CGS and
GMRES(10) to calculate a full cycle of the aerofoil motion. The irregular convergence
behaviour associated with CGS is demonstrated quite clearly by the results presented in
Figure (1) and is in stark contrast to the smooth convergence of both GMRES(10) and
GMRESR(5,2).

When the average residual over each time step is considered it is generally the
case that GMRES is found to be more efficient than CGS. For the modest tolerances
which are imposed on the convergence of the linear solvers in the current calculations
the erratic convergence of CGS is of some benefit, allowing the required tolerance to be
achieved in a shorter time than that required by GMRES. When more stringent
conditions are placed upon the convergence of the linear solver the irregular
convergence of CGS becomes disadvantageous and causes the solution process to
become stalled at a much larger residual than is the case for GMRES.

For implicit calculations the size of the time step which is taken has important
consequences for the condition of the Jacobian matrix (because the time step appears in
the denominator term for the leading diagonal). For this reason the data presented in
Figure (2), which shows calculation time against number of iterations per cycle of the
aerofoil motion, also illustrates the comparative robustness of GMRES(10) and CGS for
the current Euler calculation. GMRES was found to be significantly more robust than
CGS for which convergence was unobtainable below 500 time steps per cycle.

In Figure (3) the convergence behaviour of CGS, GMRES(10) and
GMRESR(S,5) is shown for the first iteration of the Navier-Stokes calculation
performed using 600 time steps per iteration on the coarse, stretched grid shown in
Figure (11b). It was found that CGS did not converge which is thought to be as a
consequence of the poor condition of the Jacobian matrix. Converged results were
obtained using both GMRESR(10) and GMRESR(5,2) demonstrating again the
robustness of these two schemes.

The sensitivity of the convergence behaviour of GMRESR to the number of
inner and outer iterations performed was investigated and results are compared with
GMRES(10) in Figures (4) and (5) respectively for the first iteration of the Navier-



Stokes calculation (on the coarser grid). As the number of inner iterations is increased
the ability of GMRES to act as a preconditioner to [A] increases leading to
improvements in the efficiency of the outer iterations of GMRESR. This behaviour is
demonstrated by the results shown in Figure (4) which indicates that a modest increase
in the number of inner iterations from 2 to 5 has a dramatic impact on the rate of
convergence of GMRESR (reducing by about 20% the required amount of CPU time)
for this problem, while the increase from 5 to 10 inner iterations has a more limited
impact. For the present calculation GMRESR(5,10) is computationally more efficient
than GMRES(10), although this improvement is at the expense of an additional storage
requirement. The results presented in Figure (5) show that increasing the number of
outer iterations performed by GMRESR can lead to some small gains in performance.
GMRESR(5,5) was found to have very similar convergence properties to GMRES(10),
while for the current calculation GMRESR(10,5) was marginally quicker than
GMRES(10).

The size of the time step taken in the viscous calculation was reduced until the
condition of the Jacobian matrix, [A] became sufficiently good to allow CGS to
converge to the required tolerance. In Figure (6) the convergence behaviour of CGS,
GMRES(10) and GMRESR(3,5) are compared for a calculation performed with 3000
time steps per cycle. While CGS is now marginally quicker than both GMRES and
GMRESR the calculation of a full cycle is likely to be much less efficient than the
GMRES(10) calculation performed for 600 iterations per cycle.

These results suggest that the overall efficiency of the method depends very
heavily on the choice of a suitable time step, unfortunately this information is often not
available a priori. For this reason the size of time step is varied during the course of the
calculation based upon the convergence behaviour of the previous iteration. If for a
particular time step the residual does not meet the required convergence tolerance within
N iterations (where N is a user defined integer) of the linear solver then the time step is
reduced and that iteration is repeated. Conversely if the time step is considered to be too
small, i.e. if the method converges one order below that required in a single iteration of
the linear solver, then the time step is increased. In this way the timestep can be altered
until a more computationally efficient value is obtained. While such an approach will
eventually lead to a suitable size of time step the computation involved can be
expensive. For the Navier-Stokes calculation performed using CGS in the previous
paragraph fifty iterations of AF-CGS (each requiring 20 iterations of CGS) were
necessary for the calculation of a single time step before the most suitable time step size
was found.

The performance of GMRESR for the calculations detailed above is
disappointing, in Reference (3) Van der Vorst and Vuik suggest that GMRESR will
become increasingly competitive as the size of the GMRES subspace required to solve
the system of equations increases. For the surprisingly small GMRES subspace required
for the calculations detailed above it is therefore unlikely that GMRESR can ever be
competitive. In order to investigate the benefits of GMRESR for more difficult, ‘stiffer’,
systems of equations calculations were performed for the 259x96 node grid presented in



Figure (11c) with only 250 time steps per cycle. These changes have the combined
effect of increasing the size of the system of equations which must be solved , reducing
the effectiveness of the preconditioning and worsening the condition of the Jacobian
matrix. In Figure (8) the convergence behaviour of GMRES is presented for Krylov
subspace sizes of 10, 30 and 50 vectors. The results indicate that the convergence of
both GMRES(10) and GMRES(30) becomes stalled above the required tolerance
indicating that the present calculation requires a large subspace.

The convergence behaviours of several variants of GMRESR, all of which
require the same amount of memory, are presented in Figure (9). It is of interest to note
that all of these variants show very similar behaviour and become stalled close to the
required convergence tolerance. Further investigations have shown that it is only when
the memory requirement of GMRESR approaches that of GMRES(50) that the required
convergence tolerance is reached. In Figure (10) the convergence of GMRES(50) is
compared with GMRESR(10,26). Both of these schemes require the same amount of
memory and the results shown in Figure (10) show that their respective convergence
histories are very similar, both converging to the required tolerances in around the same
amount of time.

The amount of memory required by each of the three linear solvers considered
has been estimated by counting the occurrence of vectors and matrices which are of the
same order as the solution vector and is shown in Table (1) below. As expected the
storage cost of CGS is much smaller than both GMRES and GMRESR. It is apparent
that the storage requirement of GMRESR will only be smaller than that of GMRES
when the GMRES subspace is considerably larger than those used in GMRESR.

Linear Solver Memory required
CGS 11
GMRES(m) 5+m
GMRESR(n,m) 9+2n+m

Table (1) Memory requirements of CGS, GMRES and GMRESR.
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6. Conclusions.

An investigation has been carried out to determine the relative merits of three
linear solvers, CGS, GMRES and GMRESR, for the solution of the large, sparse, non-
symmetric system of equations which arise in the calculation of unsteady flows. No
clear ‘best’ linear solver has emerged from the calculations which have been performed.
It has been found that when convergence can be obtained using CGS it is generally
faster than both GMRES and GMRESR, however CGS exhibits irregular convergence
and does not appear to be very robust. It is thought that the utility of the CGS method ,
when compared with GMRES and GMRESR, will decrease as more stringent conditions
are placed on the convergence of the linear solver due to its erratic convergence
behaviour. For the current class of problems it has been found that the required solver
tolerance is modest and consequently CGS has emerged as the most efficient of the
methods when a suitable time step is selected.

Surprisingly the condition of the Jacobian for this class of problems appears, for
reasonable sized time steps, to be well behaved and only very small subspace sizes are
required for GMRES like methods. Both GMRES and GMRESR exhibit smooth
monotonic convergence and are more robust than CGS (as demonstrated by their ability
to obtain a solution for the viscous test case) with a considerably larger time step than
CGS. For the calculations which require a small GMRES subspace, for example the
current Navier-Stokes calculations performed with the grid shown in Figure (11b), there
is no clear benefit in using GMRESR and to do so would incur a storage penalty. For
problems which require larger GMRES subspace sizes, such as the current ill
conditioned Navier-Stokes calculation performed with the finer grid shown in Figure
(11c¢), the use of GMRESR becomes much more competitive, as was suggested by Van
der Vorst and Vuik. Despite the increased difficulty of this calculation we have still not
been able to demonstrate a clear case for using GMRESR instead of GMRES.

At the present time the selection of a suitable time step seems to be of great
importance in determining the overall efficiency of the method. Currently the most
efficient time step is found by considering the convergence behaviour of linear solver
over each time step, if the convergence behaviour does not meet the required criteria
then the size of the time step is altered and that iteration is repeated. For the Euler
calculations which have been presented the convergence behaviour of all three linear
solvers generally satisfied the required criteria and the time step was unchanged from
that which had been specified. Similar behaviour was noted for Navier-Stokes
calculations performed using GMRES and GMRESR, however for CGS it was found
that the most suitable time step varied dramatically (from 500 to 3000 steps per cycle).
Without an a priori knowledge of a suitable time step CGS was found to be inefficient
because of the additional computation which was necessary to find a time step to satisfy
all of the convergence criteria and consequently it is suggested that restarted GMRES
should be used instead of CGS for viscous calculations.
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Fork=1,2,......... until converged.

p1= (rosrk-l)

B=pi/Po

Uy = Iy + PP

Pk = U+ B(Qit * BPit)

v = [Alp
o, = py/(Te,Vi)
Jx = Ug - OV

Iy = I - W[A](utq)
Xy = X T o(utqy)

next k

{x}={xk}

Listing (1) : Pseudo code for CGS.

Forj=1,2,........ ,until converged.

w = Av;
Fori=1,2........ J
h;=(w.v)

W=W'hi’j Vi
next i

hj+1,j = \/(W,W)
Virt = Wi

Solve H,y,, = V(r,.1,)e;
next j

x= X0+ Vym

Listing (2) : Pseudo code for GMRES.
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Fori=0,1,2,........... until converged.
Use GMRES to solve for z,, in Az, =r;
c=Az,

Fork=0,1,.2,......... i-1

a= (ckac)
C=C-0c
Zm = Zy - Ol
next k
B =(c,c)
c;=c/p
u; = z,/B

Xirp = X; T (Cpry
Tisp = I - (CI)G

Listing (3) : Pseudo code for GMRESR.
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(c) Navier-Stokes grid (259x96)

Figure (11) Computational Grids.



(a) y = 60°

(b) vy =90°

(c) y = 120°

Figure (13) Instantaneous local
pressure contours.

65

6.0

<p 0.5

—
— o
0.0 03 02 03 04 05 os 07 o8 (.1 1.0
e
(b) y = 90°
—
—

T
03 04 os os a7 os o 10
e

() y = 120°

Figure (12) Surface pressure

distributions.






