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Abstract—In the last decade, Generative Adversarial Nets 
(GAN) have become a subject of growing interest in multiple 
research fields. In this paper, we focus on applications in the 
medical field by attempting to generate realistic X-ray chest 
images. A heuristic approach is adopted to perform an extensive 
evaluation of different architecture configurations and 
optimization algorithms and we propose an optimal configuration 
of the baseline Deep Convolutional GAN (DCGAN) based on 
empirical findings. Additionally, we highlight the technical 
limitations of GAN and provide an analysis of the high memory 
requirements, which we reduce by a range of 1.2-7 percent by 
removing unnecessary layers. Finally, we verify that the loss of the 
discriminator can be used as an assessment metric. 

Keywords—Generative Adversarial Networks; Medical Imaging; 
X-ray Chest Images 

I.  INTRODUCTION  
Deep Learning (DL) has proven to be a powerful class of 

tools in the last decade. It is divided into two categories: 
discriminative models and generative models. Among the latter 
are Generative Adversarial Networks (GAN) [1], which 
emerged as a powerful generative framework in 2014. Since 
then, a large number of works presenting impressive 
improvements to the original framework have been published: 
state-of-the-art GAN models could successfully generate 
realistic images [2], [3]. 

GAN’s compelling synthetic capabilities encourage a 
potential use in different applications. In this work, we focus on 
medical imaging by generating X-ray chest images. This work 
is motivated by the following issues that face DL applications in 
medical imaging:  

1) Medical privacy: training a reliable model requires a 
huge amount of data, which is often not met by models to be 
safe and ready to use in real-life clinical situations [4], [5]. A 
major factor that contributes to this lack of data is medical 
privacy: hospitals are not able to share their local datasets 
without the explicit ongoing consent of their patients [6]. 
Furthermore, in a DL project that involves medical imaging, 
data collection requires approval by institutional review boards 
to ensure patients’ ongoing consent and information, and assess 
the risks and benefits of the project [6]. Also, patients can 

withdraw their consent, which leads to the destruction of their 
data [6]. Therefore, alleviating the medical privacy problem 
would make available a significant amount of data [7] and 
potentially make possible a large public clinical database. The 
latter, not only would it contribute to the reliability of DL 
models, but would also accelerate clinical DL application 
pipelines.  
2) Models’ lack of validation: this issue is directly linked 
to the previous one, as lack of validation can be mitigated by 
access to more data. Despite the plethora of papers presenting 
novel DL models as state-of-the-art exceeding their 
predecessors in performance and accuracy, there should be a 
certain degree of skepticism regarding researchers’ optimism. 
The reason being DL studies tend to be retrospective and locally 
validated [8]. It is undeniable that impressive progress has been 
made; however, the lack of validation of DL models remains a 
major problem. Employment of such models in real-life clinical 
scenarios would not be desirable considering the high risks 
involved. Most models are single-purpose and were tested and 
validated using limited and single-institution datasets [5], [8].  
3) High cost of data annotation: The tasks of clinical data 
collection and labeling can prove to be heavy on radiologists 
[8]. These tasks require human workforce and are not 
automated. Training reliable DL models requires thousands of 
images, hence the heavy nature of data annotation. 
Additionally, it is safe to assume that annotation by expert 
radiologists requires a significant amount of financial resources 
and time [5]. Reducing the time and cost of this process would 
help accelerate the DL solutions development workflow. 

In this context, the present work contributes to the line of 
research aiming to use GAN to alleviate the above-mentioned 
problems. GAN has the potential of overcoming privacy issues 
by generating synthetic samples containing features from real 
datasets that otherwise would be publicly inaccessible. Thus 
making more data accessible and improving existing and future 
models’ validation process. Additionally, GAN can also 
function in a semi-supervised way [9], which makes it usable 
even with small annotated datasets. Our objective is to use GAN 
in an X-ray imaging scenario: we build a model for generating 
realistic chest X-ray images. Additionally, we provide an 
empirical analysis of three aspects of GAN: (1) different 

h.binning
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

h.binning
Text Box
In: 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), 24-26 November 2022, Nara, JapanDOI: 10.1109/ICIIBMS55689.2022.9971542



 

2 
 

 

implementation configurations, (2) memory requirements, and 
(3) GAN assessment metrics. The paper is organized as follows: 
we start with a general overview of the GAN framework, 
providing some background and limitations of GAN. 
Afterward, the model design is described in terms of 
architectural constraints. We then present a memory 
requirements analysis and explore the possibility of 
compressing the conventional DCGAN convolution blocks. 
Finally, an empirical comparison between different 
configurations is presented. 

II. METHODS 

A. Generative Adversarial Nets 
GAN consists of two models: a generator G and a 

discriminator D. Both models engage in an adversarial minimax 
game against one another wherein their weights are updated 
simultaneously. G implicitly attempts to learn the input data 
distribution 𝑝𝑑𝑎𝑡𝑎  by mapping a prior latent noise 𝑝𝑧  to data 
space. G, fed with noise 𝑧 ∼ 𝑝𝑧, is updated by feedback from D, 
which is a classifier trained to distinguish between real images x 
from 𝑝𝑑𝑎𝑡𝑎 and synthetic samples G(z) from 𝑝𝐺 . Theoretically, 
G is trained to minimize the probability that D correctly 
classifies samples i.e.  𝑙𝑜𝑔 (1 −  𝐷(𝐺(𝑧))), while D is trained 
to maximize the probability of assigning the right classes to its 
input, i.e. 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) . The objective 
function is defined 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))].  

(1) 

Since GANs emerged, they became of central interest in the 
generative models’ field. A plethora of GAN-based works have 
been published and impressive progress has been made. Many 
GAN variants exhibit high synthetic capabilities and have 
succeeded in outperforming their predecessors (e.g. [10], [2]). 
However, multiple challenges remain: (1) mode collapse, (2) 
high memory requirements, and (3) lack of training stability. 
Mode collapse refers to the scenario where G maps the latent 
space to the same small number of outputs, thus the samples 
would all look the same. 

B. Fréchet Inception Distance 
The original GAN paper [1] assessed sample quality based 

on Parzen window-based log-likelihood estimates. Further work 
by Salimans et al. [9] proposed the Inception Score, a more 
reliable metric to assess sample quality and diversity. The 
present work makes use of the Fréchet Inception Distance ´ 
(FID), proposed by Heusel et al. [11], which, to the best of our 
knowledge, is the most reliable quantitative assessment metric 
for GANs. The method computes the Fréchet Distance ́  between 
the Gaussian with mean (𝑚, 𝐶)  from the original data 
distribution 𝑝𝑑𝑎𝑡𝑎 and the Gaussian with mean (𝑚𝑤,𝐶𝑤) from 
𝑝𝐺 . It is defined as follows 

𝑑2((𝑚,𝐶)) = ‖𝑚 − 𝑚𝑤‖2
2 + 𝑇𝑟 (𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)

1
2). 

(2) 

     FID computes the distance between feature vectors of both 
real and synthetic samples. The computed score represents the 
similarity of two sets of samples based on the Inception V3 
model [12]. The lower the score is, the more similar the images 
are and the better the quality. 

C. Model Design  
      The models presented in this work are all built using fully 
convolutional layers, similarly to DCGAN (Radford et al. [13]), 
which is also used as a baseline model. While DCGAN uses 
LeakyReLU and ReLU nonlinearities, we implement our 
models using Exponential Linear Units (ELU) nonlinearity, 
proposed by Clevert et al. [14]. It is defined by 
 

𝑓(𝑥)  =  {
 𝑥      𝑖𝑓 𝑥 > 0

   𝛼(𝑒𝑥𝑝(𝑥) − 1)     𝑖𝑓 𝑥 ≤  0,                    
 

(3) 

    with α > 0. The choice of ELU is justified by its superior 
performance reported in [14] and its mitigating effect on 
vanishing gradients, which happens to be a major issue in 
GANs. It exhibited superior precision and learning speed in 
fewer epochs of training on the ImageNet dataset [14]. 
Additionally, ELU fulfills the first convergence assumption for 
the next implementation choice: the Two Time-Scale Update 
Rule (TTUR) proposed by Heusel et al. [11], which requires 
networks with smooth nonlinearities. TTUR consists in 
choosing two different learning rates for G and D in a way that 
allows D to train enough while G does not cause high 
perturbations. Also, Heusel et al. [11] provide proof of 
convergence to a local Nash equilibrium under some 
assumptions that can be ensured technically.  
    For optimization, the novel Adaptive Step-Size (AdaS) 
optimizer [15] was used. AdaS relies on fine-tuning the step-
size 𝑠: given a differentiable convex function 𝐹(𝑥), minimizing 
𝐹(𝑥 − 𝑠∇𝐹(𝑥))  leads to finding the optimal value for S, 
leading to the following equation [15] 

𝑠𝑛+1 = 𝑠𝑛 + ∇𝐹(𝑥) × ∇𝐹(𝑥 + ∇𝐹(𝑥) × 𝑠𝑛). 
(4) 

    The AdaS algorithm replaces the gradient of 𝐹(𝑥) with an 
exponential moving average of the derivative of x and 
∇𝐹(𝑥 + ∇𝐹(𝑥) × 𝑠𝑛)  with the derivative of 𝑥  [15]. In the 
author’s repository [15], it was reported that, on some datasets, 
AdaS outperformed AdaM (Kingma & Ba [16]), one of the 
widely used optimization algorithms. On the MNIST dataset 
[17], training a shallow network using AdaS led to impressive 
results compared to AdaM; training was more stable and faster. 
    Although adaptive optimizers like AdaM are widely used in 
the DL community, they still suffer from a major problem. As 
compelling as the training outcomes may be, these adaptive 
algorithms suffer from poor generalization compared to the 
standard Stochastic Gradient Descent [18]. On this front, AdaS 
has an advantage over AdaM when it comes to generalization. 
Although experiments with this optimizer were not extensive, 
the official repository provides a comparison between both 
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optimizers on the CIFAR-100 dataset [19]: the results showed 
that AdaS surpasses AdaM in generalization [15]. 

III. EXPERIMENTS AND RESULTS 
    In this work, unless stated otherwise, the models are built to 
generate 64 × 64 images. The dataset used is a portion of the 
VinBigData Chest X-ray Abnormalities Detection dataset [21]. 
For model assessment, both qualitative and quantitative metrics 
were used. The latter consist of mere human eye observation of 
texture details, blur, and apparent similarity to real X-ray chest 
images. Quantitative measures are more emphasized and 
include FID scores and the mean loss value of D, which we 
explore and analyze to conclude whether it can be used as a 
GAN performance metric. 

A. Optimizers Comparison: AdaM vs AdaS 
    Preliminary results showed that AdaS outperformed AdaM 
when both are used to train the same model. Using AdaS, the 
model could generate convincing images in the early stages of 
training. This supports the claim of the author [15] about the 
superior performance of AdaS. Also, it converged faster than 
AdaM in our settings. Fig. 1 shows preliminary samples 
generated after training two models for a few epochs. 
    Generating 64 × 64 samples using the architecture built with 
ELU non-linearity presented in Table II further confirmed the 
preliminary results. AdaS exhibited faster convergence 
characteristics than AdaM. Fig. 2 shows the results after 
training both models for 150 epochs. The difference in quality 
is apparent to the human eye. 
    Fig. 3 shows both models’ discriminator’s loss during 
training. For the loss function that we implemented for our  
 
 

 
(a) 

 
(b) 

Fig. 2.    64×64 samples generated by models trained using AdaM (a) and AdaS 
(b). (b) exhibits more realistic features than (a), which indicates faster training 
as the model captured more features. Both models were trained for 150 epochs. 

GAN models, which is the vanilla one, the higher its value is, 
the better G captures 𝑝𝑑𝑎𝑡𝑎. 
    We observed that the loss of D is low early in training. The 
period is denoted as 𝑇0. It is due to vanishing gradients, already 
documented in previous GAN literature [1], [20]. As stated in 
the first GAN paper [1], in the initial stages of training, D 
distinguishes easily between generated and real samples as G is 
still not trained enough. The longer it is, the slower G starts 
learning 𝑝𝑑𝑎𝑡𝑎 .from samples x. For the model trained using 
AdaS, 𝑇0 is reduced by half compared to the one trained using 
AdaM: for the former, it ends before 200 iterations, while for 
the latter it ends around 400 iterations as shown in Fig. 3. This 
gives the AdaS model a head start, which explains the higher 
quality samples in fewer epochs. 

 
(a) 

  

 
(b)  

 
Fig. 1.    32 × 32 samples generated using models trained using AdaM (a) and AdaS (b). (a) are blurry and lack definition while (b) show an impressive level of 
detail. Both models were trained for the same number of epochs. 
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TABLE II.     THE TOP-PERFORMING CONFIGURATION. BOTH THE GENERATOR 
AND DISCRIMINATOR WERE BUILT WITH ELU NON-LINEARITY. BATCH 

NORMALIZATION LAYERS ARE ONLY INTEGRATED INTO THE HIDDEN LAYERS 
OF THE DISCRIMINATOR. 

Generator Discriminator 
ConvTranspose2d(100, 512, 4) 
ELU() 

Conv2D(1, 64, 4) 
ELU() 

ConvTranspose2d(512, 256, 4) 
ELU() 

Conv2D(64, 128, 4) 
BatchNorm2d(128) 
ELU() 

ConvTranspose2d(256, 128, 4) 
ELU() 

Conv2D(128, 256, 4) 
BatchNorm2d(256) 
ELU() 

ConvTranspose2d(128, 64, 4) 
ELU() 

Conv2D(256, 512, 4) 
BatchNorm2d(512) 
ELU() 

ConvTranspose2d(64, 3, 4) 
Tanh() 

Conv2D(512, 1, 4) 
Sigmoid() 

 
    Although initial tests have shown AdaS to be more stable 
during training, further experiments showed the opposite. The 
variance and standard deviation of the discriminator’s loss 
curve for AdaS were higher than AdaM’s (see Table 1). This 
led us to dismiss our initial observation about the stability of 
AdaS. Additionally, models trained using AdaM were more 
challenging to fine-tune. Some models could not produce any 
decent samples until AdaS was used. We tested multiple 
architectures but most failed. Most of them did not achieve any 
noteworthy results. We varied the learning rate mostly when  

 
 
 
 
 
 

using AdaM. By setting the learning rate to 0.0001, we 
observed that the training was stable and we could not see any 
effect of vanishing gradients in the discriminator. However, the 
model was too slow to converge and capture 𝑝𝑑𝑎𝑡𝑎. Even after 
100 epochs, the model failed to produce any distinguishable 
features. 
    Following that, attempts to accelerate the convergence of the 
model were made by increasing the learning rate tenfold. 
Setting it to 0.001 caused high instability and the effect of 
vanishing gradients was apparent. In this case, D was too good 
and did not provide enough information for the generator to 
train on. Additionally, we observe that increasing the batch size 
increases 𝑇0  when using AdaM. The model built with ELU 
could not make any progress in the first 10 epochs for a batch 
size of 256. However, setting it to 128 reduced 𝑇0 and the model 
could generate decent samples. 

B. Impact of TTUR on Performance 
    In this section, we explore the use of a rough implementation 
of TTUR. We adopt two different learning rates for G and D in 
a way to minimize the perturbations of the former on the latter. 
However, we did not satisfy all the assumptions for 
convergence in [11]. Fig. 4 shows the loss of D during training 
with and without TTUR using AdaS. Not only 𝑇0  was 
minimized, but also the loss of D increased in the initial phases. 
The stability of the model was also increased after 𝑇0 . We 
calculated the mean, variance, and standard deviation for this 
new implementation and observed a higher mean value of the 

Optimizer Activation TTUR Mean Variance Standard 
Deviation 

FID 

AdaS ELU - 0.845 0.637 0.798 104.552 
AdaM ELU - 0.418 0.209 0.458 238.254 
AdaS ELU P 1.185 4.066 2.016 100.581 
AdaS ReLU, LReLU - 1.135 0.970 0.985 111.882 

TABLE I.    STATISTICAL ANALYSIS OF THE LOSS OF D AND FID SCORES FOR THE FOUR CONFIGURATIONS. THREE ASPECTS WERE VARIED: OPTIMIZATION 
ALGORITHM, NON-LINEARITY, AND TTUR. “P” REFERS TO THE PRESENCE OF TTUR CONSTRAINTS AND “-” ITS ABSENCE. THE CONFIGURATION WITH THE 

HIGHEST LOSS MEAN VALUE IS THE ONE WITH THE HIGHEST FID SCORE, WHICH IS THE ONE IMPLEMENTED WITH ELU AND TTUR AND TRAINED USING ADAS.  

Fig. 3.    The evolution of the loss of D during training for (a) the model trained using AdaS (b) the model trained with AdaM. The init ial phase of (b) before 480 
iterations is characterized by very low loss, during which G does not learn. 

 
(a)  

(b) 
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loss of D (see Table 1). The variance and standard deviation are 
higher for the model implemented with TTUR because of the 
initial phase that has high variance; however, it becomes more 
stable after approximately 200 iterations. The reason behind the 
high values of the variance and standard deviation compared to 
the other two models is the significantly high loss values in 𝑇0. 
Statistically, we can see that once the training stabilizes after 
the initial phase, the model that implements TTUR appears to 
be more stable. 

 
Fig. 4.    Loss curves of two models trained using AdaS, the red one is that of 
the model implemented with TTUR while the blue one is that of the baseline 
model. TTUR increases the loss of D in the initial stages of training, indicating 
that G learns more.  

C. Non-linearity Comparison: ELU vs LeakyReLU and 
ReLU 
    All models trained in the previous sections used ELU. In this 
section, the performance of the conventional DCGAN 
nonlinearities, i.e., ReLU and LeakyReLU, is compared to that 
of ELU. Batch Normalization (BN) was only added to the 
discriminator of the model with ELU. The statistical analysis of 
the loss of D showed that the conventional DCGAN using AdaS 
outperformed the ELU model without TTUR. Stability was 
improved and 𝑇0 decreased. This is confirmed by the statistical 
analysis. Results in Table 1 show that AdaS, LeakyReLU, and 
ReLU non-linearities provide more training to G since the mean 
value of the discriminator’s loss is higher than that of ELU. The 
latter, on the other hand, provides more stable training as the 
variance and standard deviation are lower. However, coupling 
ELU with TTUR bore superior results when trained with AdaS. 

D. Sample Quality Assessment 
    In order to confirm the findings of the previous section, the 
Fréchet Inception Scores were computed. The results are ´ 
presented in Table 1. It was further confirmed that the best 
model was the one built with ELU, TTUR, and trained using 
AdaS. Its score was nearly twice as better as the one trained 
using AdaM. 
    To confirm that our statistical analysis based on the mean 
value of D is a valid metric to assess GAN, we calculated the 
Pearson correlation coefficient for all the statistical results. We 
find that FID and the mean loss value of D are highly inversely 
correlated. This indicates that the higher the mean loss value of 

D is, the higher the sample quality. Fig. 5 shows the correlation 
matrix. 
 

 
Fig. 5. Pearson correlation matrix between FID, the mean loss value of D, its 
variance, and its standard deviation. Both FID and the mean loss value are 
highly inversely correlated. 

    Finally, we present samples from all the four trained models 
in Fig. 6. 

E. Memory Requirements Analysis 
    DCGAN can be easily trained for low resolutions and 
achieve impressive results without requiring much memory. 
Preliminary experiments conducted on 32 × 32 images could 
run on a GPU with less than 4 Gigabytes of memory; however, 
once the model had been scaled up for higher resolutions, the 
GPU was no longer usable. BigGan (Brock et al. [3]), which is 
a state-of-the-art scaled-up GAN variant, benefited from a large 
increase of certain hyper-parameters, one of which is the feature 
map size of convolution layers. We varied the feature map size 
from 32 to 320 in every convolutional block of the network and 
reported the memory requirements in the graph in Fig. 7. Our 
experiments showed that even with low-resolution images of 64 
× 64 and 128 × 128, memory requirements are exponentially 
proportional to feature maps size. 
    In this analysis, memory requirements for processing one 
image are provided using the in-built Pytorch function 
summary(). The total batch memory requirements can be 
obtained by multiplying the results for one image by the size of 
the batch. e.g., a 64 batch of 64 × 64 images with a feature map 
size of 64 would require (53.96 + 46.72) × 64 = 6443, 52 (MB). 
That is nearly 6.5 GB for low-resolution images, which are of 
no significant use in a real-life imaging application. 
    In order to reduce the memory requirements of GAN, a first 
attempt was to remove BN layers. Fig. 8 is a plot that compares 
a generator model with and without BN. Removing BN reduces 
memory consumption by 1.2-7% depending on the feature map 
size. The higher it is, the lesser the benefit of removing BN. 
This could be especially useful for scaled-up models, where a 
trade-off between BN layers and the batch size could be 
achieved, which is beneficial for GAN [3]. 
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Fig. 7.    Evolution of memory requirements of both G and D in terms of feature 
map size for 64 × 64 and 128 × 128 images. 

F. Model Compression 
    The conventional DCGAN is built using convolutions with 
strides for each twofold resolution up-sampling. Inversely, 
deconvolutions use strides of two for each twofold resolution 
down-sampling. Following the memory issues, attempts to 
compress the model were made aiming to find a good balance 
between performance and memory consumption. All tests 
failed to produce any successful results. A first attempt was to 
decrease the depth of the network. The kernel size of the 
convolution layers had to be adapted according to the desired 
output dimension. The values were changed according to 
equation 5 that determines the dimension of the output of a 

 
 

 
Fig. 8.    Memory requirements for processing one image with and without 
Batch Normalization in the model. 

convolution layer 
𝐷𝑖𝑚𝑜𝑢𝑡 =

𝐷𝑖𝑚𝑖𝑛+2×𝑃−𝐷×(𝐾−1)−1

𝑆
+ 1, 

(5) 

with 𝐷𝑖𝑚𝑜𝑢𝑡  the output dimension (can be either height or 
width), 𝐷𝑖𝑚𝑖𝑛 the input dimension. We denote P, D, K, and S 
respectively the padding, dilation, kernel size, and stride value. 
Conventional DCGAN models use a stride value of 2 for up-
sampling and down-sampling in both convolutions and 
transpose convolutions. We attempted to increase it in order to 
have fewer layers. Extensive model building and parameter 
tuning did not result in any positive results. We consistently 
obtained unrecognizable features. The major problem with 

 
(a) 

 
(b) 

 
(c)  

(d) 
Fig. 6.    Samples generated by the four configurations: (a) ELU + TTUR trained using AdaM, (b) ELU trained using AdaS, (c) ELU + TTUR t rained 
using AdaS, (d) DCGAN (LeakyReLU + ReLU) trained using AdaS. 
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compressing GAN models is the blurry squares with 
homogeneous colors, presented in Fig. 9. The deeper the 
network is, the less the phenomenon is observed. 
 

 
Fig. 9.    Blurry squares produced by the compressed GAN. 

Attempts to mitigate this problem were made by adding fully-
connected layers to the input of D and the output of G. Previous 
work suggests that combining convolutional and fully-
connected layers improves performance (Barua et al. [20]), 
even though it is not ideal for a scaled-up model considering the 
scope of our work, which is to use the least amount of memory 
possible. Results showed that it had no effect on the observed 
phenomenon. Therefore, a heuristic approach was adopted to 
identify the source of the problem: configurations and hyper-
parameters were varied. Table III summarizes the experiments 
and results. None of the changes addressed the issue. Increasing 
the depth of the models was the only solution. Therefore, it was 
concluded that, for the choice of configurations in this work, a 
functional compressed GAN was out of reach. Despite failed 
extensive experimenting, the possibility of a functional 
compressed GAN is not categorically dismissed. Instead, the 
observations provide a solid empirical argument for the highly 
volatile aspect of GAN. 

TABLE III.   EXPERIMENTS TO IDENTIFY THE SOURCE OF THE BLURRY 
SQUARES ON IMAGES. “V” STANDS FOR “VARIED” AND “F” STANDS FOR 

“FAILED”. WE VARY ALL THE PARAMETERS IN THE TABLE AND OBSERVE THE 
EFFECT ON THE PHENOMENON OBSERVED. 

G. Generating High-Resolution Samples 
    Prior to implementing models for generating 64 × 64 X-ray 
chest images, attempts to generate 128×128 images were made. 
Despite extensive fine-tuning, all attempts to generate any 
recognizable features failed, except for the configuration 
presented in Table II that could generate some high-level 
features. Results after 400 epochs are presented in Fig. 12, 
 

 
Fig. 11.    128 × 128 samples generated by preliminary a high-resolution model. 

which took more than a day to train on Google Colaboratory 
using an NVIDIA Tesla P100-PCIE-16GB GPU. 
    After 400 epochs, training had to be stopped due to the 
occurrence of mode collapse: the model kept producing the 
same samples for a long range of epochs. In another experiment, 

it was observed that this phenomenon was also reflected in the 
loss curve, marked by a sudden exponential increase in both G 
and D losses (see Fig. 11). Using AdaM in this configuration 
did not produce any noteworthy samples. DCGAN, in its 
conventional architecture, is hard to scale up unless the hyper-
parameters and networks depth are largely increased. Our effort 
to reduce the memory costs was merely heuristic, we 
recommend taking a more theoretical and low-level approach 
in contrast to ours. 
 

 
Fig. 11.    G and D loss curves during mode collapse. It is marked by a sudden 
exponential variation in the loss. 

IV. DISCUSSIONS 

A. GAN in Medical Imaging 
    GANs have already been used in Medical Imaging in other 
works. Most relevant to our work is [7], where the authors 
propose GAN for data augmentation, which is related to the 
issues we raised in Section I. In contrast to their work, this 
paper focused on the performance of the GAN model itself, 
not the consequences it would have on involved subsequent 
processes (e.g., image segmentation). In the same context of 
medical imaging, [22] used GAN for 3D images and proposed 
an algorithmic solution to reduce the significant memory 
requirements, by operating on a patch-based manner. In our 
work, we only reduce the number of layers, which we deem a 
good start before attempting more sophisticated potential 
solutions. 
    Despite the apparently realistic samples, a recent study 
suggested that synthetic samples are not as rich in detail as the 
real ones [23]. It is plausible that it is due to the recent claim 
that GANs are biased against high frequencies in the spectral 
domain [24], meaning low-level details would be missing. For 
future work, we recommend exploring the bias against high 
frequencies: alleviating this problem would make GAN-
generated synthetic samples more usable in real-life scenarios. 

B. GAN Memory Optimization 
    Prior works have attempted to reduce the memory 
requirements of GAN; however, the amount of works published 
on the matter is significantly low. The reviewed literature 
adopted different approaches (e.g., [25] used ternary weights 
thus achieving compression, [26] altered the GAN framework 

 Stride Size FC Layers 
Presence 

Latent 
Space 

Dimension 

Feature 
Map Size 

D V - V V - V V - V V - V 
G - V V - V V - V V - V V 

Results F F F F F F F F F F F F 
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by removing the generator), all achieving compelling results. In 
this work, by only removing BN layers, we reduced memory 
requirements by a range of 1.2-7%.  

V. CONCLUSION 
In this paper, we evaluated different configurations and 
succeeded in improving the baseline DCGAN traditional 
implementation by experimenting with different 
configurations. The top-performing configuration, presented in 
Table II, successfully generated realistic X-ray chest images. 
Additionally, our results show that the loss value of D can be 
used as a metric for assessing GAN. The aspect of high memory 
requirements was also explored; we presented an analysis and 
adopted a heuristic approach to reduce them by a range of 1.2 − 
7%. While GANs exhibit high synthetic capabilities, there is 
still a significant amount of progress required to make their 
applications reliable and safe in real-life clinical scenarios. 
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