

1

An Empirical Evaluation of Generative Adversarial
Nets in Synthesizing X-ray Chest Images

Zakariae Belmekki, Jun Li, Karl Jenkins
Center for Computational Engineering Sciences

Cranfield University, School of Aerospace
Bedford, United Kingdom

{zakariae.belmekki}{jun.li}{k.w.jenkins}@cranfield.ac.uk

Patrick Reuter, David Antonio Gómez Jáuregui
University of Bordeaux, ESTIA Institute of Technology,

INRIA
Bidart, France

preuter@labri.fr, d.gomez@net.estia.fr

Abstract—In the last decade, Generative Adversarial Nets
(GAN) have become a subject of growing interest in multiple
research fields. In this paper, we focus on applications in the
medical field by attempting to generate realistic X-ray chest
images. A heuristic approach is adopted to perform an extensive
evaluation of different architecture configurations and
optimization algorithms and we propose an optimal configuration
of the baseline Deep Convolutional GAN (DCGAN) based on
empirical findings. Additionally, we highlight the technical
limitations of GAN and provide an analysis of the high memory
requirements, which we reduce by a range of 1.2-7 percent by
removing unnecessary layers. Finally, we verify that the loss of the
discriminator can be used as an assessment metric.

Keywords—Generative Adversarial Networks; Medical Imaging;
X-ray Chest Images

I. INTRODUCTION
Deep Learning (DL) has proven to be a powerful class of

tools in the last decade. It is divided into two categories:
discriminative models and generative models. Among the latter
are Generative Adversarial Networks (GAN) [1], which
emerged as a powerful generative framework in 2014. Since
then, a large number of works presenting impressive
improvements to the original framework have been published:
state-of-the-art GAN models could successfully generate
realistic images [2], [3].

GAN’s compelling synthetic capabilities encourage a
potential use in different applications. In this work, we focus on
medical imaging by generating X-ray chest images. This work
is motivated by the following issues that face DL applications in
medical imaging:

1) Medical privacy: training a reliable model requires a
huge amount of data, which is often not met by models to be
safe and ready to use in real-life clinical situations [4], [5]. A
major factor that contributes to this lack of data is medical
privacy: hospitals are not able to share their local datasets
without the explicit ongoing consent of their patients [6].
Furthermore, in a DL project that involves medical imaging,
data collection requires approval by institutional review boards
to ensure patients’ ongoing consent and information, and assess
the risks and benefits of the project [6]. Also, patients can

withdraw their consent, which leads to the destruction of their
data [6]. Therefore, alleviating the medical privacy problem
would make available a significant amount of data [7] and
potentially make possible a large public clinical database. The
latter, not only would it contribute to the reliability of DL
models, but would also accelerate clinical DL application
pipelines.
2) Models’ lack of validation: this issue is directly linked
to the previous one, as lack of validation can be mitigated by
access to more data. Despite the plethora of papers presenting
novel DL models as state-of-the-art exceeding their
predecessors in performance and accuracy, there should be a
certain degree of skepticism regarding researchers’ optimism.
The reason being DL studies tend to be retrospective and locally
validated [8]. It is undeniable that impressive progress has been
made; however, the lack of validation of DL models remains a
major problem. Employment of such models in real-life clinical
scenarios would not be desirable considering the high risks
involved. Most models are single-purpose and were tested and
validated using limited and single-institution datasets [5], [8].
3) High cost of data annotation: The tasks of clinical data
collection and labeling can prove to be heavy on radiologists
[8]. These tasks require human workforce and are not
automated. Training reliable DL models requires thousands of
images, hence the heavy nature of data annotation.
Additionally, it is safe to assume that annotation by expert
radiologists requires a significant amount of financial resources
and time [5]. Reducing the time and cost of this process would
help accelerate the DL solutions development workflow.

In this context, the present work contributes to the line of
research aiming to use GAN to alleviate the above-mentioned
problems. GAN has the potential of overcoming privacy issues
by generating synthetic samples containing features from real
datasets that otherwise would be publicly inaccessible. Thus
making more data accessible and improving existing and future
models’ validation process. Additionally, GAN can also
function in a semi-supervised way [9], which makes it usable
even with small annotated datasets. Our objective is to use GAN
in an X-ray imaging scenario: we build a model for generating
realistic chest X-ray images. Additionally, we provide an
empirical analysis of three aspects of GAN: (1) different

h.binning
Text Box
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

h.binning
Text Box
In: 2022 7th International Conference on Intelligent Informatics and Biomedical Science (ICIIBMS), 24-26 November 2022, Nara, JapanDOI: 10.1109/ICIIBMS55689.2022.9971542

2

implementation configurations, (2) memory requirements, and
(3) GAN assessment metrics. The paper is organized as follows:
we start with a general overview of the GAN framework,
providing some background and limitations of GAN.
Afterward, the model design is described in terms of
architectural constraints. We then present a memory
requirements analysis and explore the possibility of
compressing the conventional DCGAN convolution blocks.
Finally, an empirical comparison between different
configurations is presented.

II. METHODS

A. Generative Adversarial Nets
GAN consists of two models: a generator G and a

discriminator D. Both models engage in an adversarial minimax
game against one another wherein their weights are updated
simultaneously. G implicitly attempts to learn the input data
distribution 𝑝𝑑𝑎𝑡𝑎 by mapping a prior latent noise 𝑝𝑧 to data
space. G, fed with noise 𝑧 ∼ 𝑝𝑧, is updated by feedback from D,
which is a classifier trained to distinguish between real images x
from 𝑝𝑑𝑎𝑡𝑎 and synthetic samples G(z) from 𝑝𝐺 . Theoretically,
G is trained to minimize the probability that D correctly
classifies samples i.e. 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))), while D is trained
to maximize the probability of assigning the right classes to its
input, i.e. 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) . The objective
function is defined

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔 𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))].

(1)

Since GANs emerged, they became of central interest in the
generative models’ field. A plethora of GAN-based works have
been published and impressive progress has been made. Many
GAN variants exhibit high synthetic capabilities and have
succeeded in outperforming their predecessors (e.g. [10], [2]).
However, multiple challenges remain: (1) mode collapse, (2)
high memory requirements, and (3) lack of training stability.
Mode collapse refers to the scenario where G maps the latent
space to the same small number of outputs, thus the samples
would all look the same.

B. Fréchet Inception Distance
The original GAN paper [1] assessed sample quality based

on Parzen window-based log-likelihood estimates. Further work
by Salimans et al. [9] proposed the Inception Score, a more
reliable metric to assess sample quality and diversity. The
present work makes use of the Fréchet Inception Distance ´
(FID), proposed by Heusel et al. [11], which, to the best of our
knowledge, is the most reliable quantitative assessment metric
for GANs. The method computes the Fréchet Distance ́ between
the Gaussian with mean (𝑚, 𝐶) from the original data
distribution 𝑝𝑑𝑎𝑡𝑎 and the Gaussian with mean (𝑚𝑤,𝐶𝑤) from
𝑝𝐺 . It is defined as follows

𝑑2((𝑚,𝐶)) = ‖𝑚 − 𝑚𝑤‖2
2 + 𝑇𝑟 (𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)

1
2).

(2)

 FID computes the distance between feature vectors of both
real and synthetic samples. The computed score represents the
similarity of two sets of samples based on the Inception V3
model [12]. The lower the score is, the more similar the images
are and the better the quality.

C. Model Design
 The models presented in this work are all built using fully
convolutional layers, similarly to DCGAN (Radford et al. [13]),
which is also used as a baseline model. While DCGAN uses
LeakyReLU and ReLU nonlinearities, we implement our
models using Exponential Linear Units (ELU) nonlinearity,
proposed by Clevert et al. [14]. It is defined by

𝑓(𝑥) = {
 𝑥 𝑖𝑓 𝑥 > 0

 𝛼(𝑒𝑥𝑝(𝑥) − 1) 𝑖𝑓 𝑥 ≤ 0,

(3)

 with α > 0. The choice of ELU is justified by its superior
performance reported in [14] and its mitigating effect on
vanishing gradients, which happens to be a major issue in
GANs. It exhibited superior precision and learning speed in
fewer epochs of training on the ImageNet dataset [14].
Additionally, ELU fulfills the first convergence assumption for
the next implementation choice: the Two Time-Scale Update
Rule (TTUR) proposed by Heusel et al. [11], which requires
networks with smooth nonlinearities. TTUR consists in
choosing two different learning rates for G and D in a way that
allows D to train enough while G does not cause high
perturbations. Also, Heusel et al. [11] provide proof of
convergence to a local Nash equilibrium under some
assumptions that can be ensured technically.
 For optimization, the novel Adaptive Step-Size (AdaS)
optimizer [15] was used. AdaS relies on fine-tuning the step-
size 𝑠: given a differentiable convex function 𝐹(𝑥), minimizing
𝐹(𝑥 − 𝑠∇𝐹(𝑥)) leads to finding the optimal value for S,
leading to the following equation [15]

𝑠𝑛+1 = 𝑠𝑛 + ∇𝐹(𝑥) × ∇𝐹(𝑥 + ∇𝐹(𝑥) × 𝑠𝑛).
(4)

 The AdaS algorithm replaces the gradient of 𝐹(𝑥) with an
exponential moving average of the derivative of x and
∇𝐹(𝑥 + ∇𝐹(𝑥) × 𝑠𝑛) with the derivative of 𝑥 [15]. In the
author’s repository [15], it was reported that, on some datasets,
AdaS outperformed AdaM (Kingma & Ba [16]), one of the
widely used optimization algorithms. On the MNIST dataset
[17], training a shallow network using AdaS led to impressive
results compared to AdaM; training was more stable and faster.
 Although adaptive optimizers like AdaM are widely used in
the DL community, they still suffer from a major problem. As
compelling as the training outcomes may be, these adaptive
algorithms suffer from poor generalization compared to the
standard Stochastic Gradient Descent [18]. On this front, AdaS
has an advantage over AdaM when it comes to generalization.
Although experiments with this optimizer were not extensive,
the official repository provides a comparison between both

3

optimizers on the CIFAR-100 dataset [19]: the results showed
that AdaS surpasses AdaM in generalization [15].

III. EXPERIMENTS AND RESULTS
 In this work, unless stated otherwise, the models are built to
generate 64 × 64 images. The dataset used is a portion of the
VinBigData Chest X-ray Abnormalities Detection dataset [21].
For model assessment, both qualitative and quantitative metrics
were used. The latter consist of mere human eye observation of
texture details, blur, and apparent similarity to real X-ray chest
images. Quantitative measures are more emphasized and
include FID scores and the mean loss value of D, which we
explore and analyze to conclude whether it can be used as a
GAN performance metric.

A. Optimizers Comparison: AdaM vs AdaS
 Preliminary results showed that AdaS outperformed AdaM
when both are used to train the same model. Using AdaS, the
model could generate convincing images in the early stages of
training. This supports the claim of the author [15] about the
superior performance of AdaS. Also, it converged faster than
AdaM in our settings. Fig. 1 shows preliminary samples
generated after training two models for a few epochs.
 Generating 64 × 64 samples using the architecture built with
ELU non-linearity presented in Table II further confirmed the
preliminary results. AdaS exhibited faster convergence
characteristics than AdaM. Fig. 2 shows the results after
training both models for 150 epochs. The difference in quality
is apparent to the human eye.
 Fig. 3 shows both models’ discriminator’s loss during
training. For the loss function that we implemented for our

(a)

(b)

Fig. 2. 64×64 samples generated by models trained using AdaM (a) and AdaS
(b). (b) exhibits more realistic features than (a), which indicates faster training
as the model captured more features. Both models were trained for 150 epochs.

GAN models, which is the vanilla one, the higher its value is,
the better G captures 𝑝𝑑𝑎𝑡𝑎.
 We observed that the loss of D is low early in training. The
period is denoted as 𝑇0. It is due to vanishing gradients, already
documented in previous GAN literature [1], [20]. As stated in
the first GAN paper [1], in the initial stages of training, D
distinguishes easily between generated and real samples as G is
still not trained enough. The longer it is, the slower G starts
learning 𝑝𝑑𝑎𝑡𝑎 .from samples x. For the model trained using
AdaS, 𝑇0 is reduced by half compared to the one trained using
AdaM: for the former, it ends before 200 iterations, while for
the latter it ends around 400 iterations as shown in Fig. 3. This
gives the AdaS model a head start, which explains the higher
quality samples in fewer epochs.

(a)

(b)

Fig. 1. 32 × 32 samples generated using models trained using AdaM (a) and AdaS (b). (a) are blurry and lack definition while (b) show an impressive level of
detail. Both models were trained for the same number of epochs.

4

TABLE II. THE TOP-PERFORMING CONFIGURATION. BOTH THE GENERATOR
AND DISCRIMINATOR WERE BUILT WITH ELU NON-LINEARITY. BATCH

NORMALIZATION LAYERS ARE ONLY INTEGRATED INTO THE HIDDEN LAYERS
OF THE DISCRIMINATOR.

Generator Discriminator
ConvTranspose2d(100, 512, 4)
ELU()

Conv2D(1, 64, 4)
ELU()

ConvTranspose2d(512, 256, 4)
ELU()

Conv2D(64, 128, 4)
BatchNorm2d(128)
ELU()

ConvTranspose2d(256, 128, 4)
ELU()

Conv2D(128, 256, 4)
BatchNorm2d(256)
ELU()

ConvTranspose2d(128, 64, 4)
ELU()

Conv2D(256, 512, 4)
BatchNorm2d(512)
ELU()

ConvTranspose2d(64, 3, 4)
Tanh()

Conv2D(512, 1, 4)
Sigmoid()

 Although initial tests have shown AdaS to be more stable
during training, further experiments showed the opposite. The
variance and standard deviation of the discriminator’s loss
curve for AdaS were higher than AdaM’s (see Table 1). This
led us to dismiss our initial observation about the stability of
AdaS. Additionally, models trained using AdaM were more
challenging to fine-tune. Some models could not produce any
decent samples until AdaS was used. We tested multiple
architectures but most failed. Most of them did not achieve any
noteworthy results. We varied the learning rate mostly when

using AdaM. By setting the learning rate to 0.0001, we
observed that the training was stable and we could not see any
effect of vanishing gradients in the discriminator. However, the
model was too slow to converge and capture 𝑝𝑑𝑎𝑡𝑎. Even after
100 epochs, the model failed to produce any distinguishable
features.
 Following that, attempts to accelerate the convergence of the
model were made by increasing the learning rate tenfold.
Setting it to 0.001 caused high instability and the effect of
vanishing gradients was apparent. In this case, D was too good
and did not provide enough information for the generator to
train on. Additionally, we observe that increasing the batch size
increases 𝑇0 when using AdaM. The model built with ELU
could not make any progress in the first 10 epochs for a batch
size of 256. However, setting it to 128 reduced 𝑇0 and the model
could generate decent samples.

B. Impact of TTUR on Performance
 In this section, we explore the use of a rough implementation
of TTUR. We adopt two different learning rates for G and D in
a way to minimize the perturbations of the former on the latter.
However, we did not satisfy all the assumptions for
convergence in [11]. Fig. 4 shows the loss of D during training
with and without TTUR using AdaS. Not only 𝑇0 was
minimized, but also the loss of D increased in the initial phases.
The stability of the model was also increased after 𝑇0 . We
calculated the mean, variance, and standard deviation for this
new implementation and observed a higher mean value of the

Optimizer Activation TTUR Mean Variance Standard
Deviation

FID

AdaS ELU - 0.845 0.637 0.798 104.552
AdaM ELU - 0.418 0.209 0.458 238.254
AdaS ELU P 1.185 4.066 2.016 100.581
AdaS ReLU, LReLU - 1.135 0.970 0.985 111.882

TABLE I. STATISTICAL ANALYSIS OF THE LOSS OF D AND FID SCORES FOR THE FOUR CONFIGURATIONS. THREE ASPECTS WERE VARIED: OPTIMIZATION
ALGORITHM, NON-LINEARITY, AND TTUR. “P” REFERS TO THE PRESENCE OF TTUR CONSTRAINTS AND “-” ITS ABSENCE. THE CONFIGURATION WITH THE

HIGHEST LOSS MEAN VALUE IS THE ONE WITH THE HIGHEST FID SCORE, WHICH IS THE ONE IMPLEMENTED WITH ELU AND TTUR AND TRAINED USING ADAS.

Fig. 3. The evolution of the loss of D during training for (a) the model trained using AdaS (b) the model trained with AdaM. The init ial phase of (b) before 480
iterations is characterized by very low loss, during which G does not learn.

(a)

(b)

5

loss of D (see Table 1). The variance and standard deviation are
higher for the model implemented with TTUR because of the
initial phase that has high variance; however, it becomes more
stable after approximately 200 iterations. The reason behind the
high values of the variance and standard deviation compared to
the other two models is the significantly high loss values in 𝑇0.
Statistically, we can see that once the training stabilizes after
the initial phase, the model that implements TTUR appears to
be more stable.

Fig. 4. Loss curves of two models trained using AdaS, the red one is that of
the model implemented with TTUR while the blue one is that of the baseline
model. TTUR increases the loss of D in the initial stages of training, indicating
that G learns more.

C. Non-linearity Comparison: ELU vs LeakyReLU and
ReLU
 All models trained in the previous sections used ELU. In this
section, the performance of the conventional DCGAN
nonlinearities, i.e., ReLU and LeakyReLU, is compared to that
of ELU. Batch Normalization (BN) was only added to the
discriminator of the model with ELU. The statistical analysis of
the loss of D showed that the conventional DCGAN using AdaS
outperformed the ELU model without TTUR. Stability was
improved and 𝑇0 decreased. This is confirmed by the statistical
analysis. Results in Table 1 show that AdaS, LeakyReLU, and
ReLU non-linearities provide more training to G since the mean
value of the discriminator’s loss is higher than that of ELU. The
latter, on the other hand, provides more stable training as the
variance and standard deviation are lower. However, coupling
ELU with TTUR bore superior results when trained with AdaS.

D. Sample Quality Assessment
 In order to confirm the findings of the previous section, the
Fréchet Inception Scores were computed. The results are ´
presented in Table 1. It was further confirmed that the best
model was the one built with ELU, TTUR, and trained using
AdaS. Its score was nearly twice as better as the one trained
using AdaM.
 To confirm that our statistical analysis based on the mean
value of D is a valid metric to assess GAN, we calculated the
Pearson correlation coefficient for all the statistical results. We
find that FID and the mean loss value of D are highly inversely
correlated. This indicates that the higher the mean loss value of

D is, the higher the sample quality. Fig. 5 shows the correlation
matrix.

Fig. 5. Pearson correlation matrix between FID, the mean loss value of D, its
variance, and its standard deviation. Both FID and the mean loss value are
highly inversely correlated.

 Finally, we present samples from all the four trained models
in Fig. 6.

E. Memory Requirements Analysis
 DCGAN can be easily trained for low resolutions and
achieve impressive results without requiring much memory.
Preliminary experiments conducted on 32 × 32 images could
run on a GPU with less than 4 Gigabytes of memory; however,
once the model had been scaled up for higher resolutions, the
GPU was no longer usable. BigGan (Brock et al. [3]), which is
a state-of-the-art scaled-up GAN variant, benefited from a large
increase of certain hyper-parameters, one of which is the feature
map size of convolution layers. We varied the feature map size
from 32 to 320 in every convolutional block of the network and
reported the memory requirements in the graph in Fig. 7. Our
experiments showed that even with low-resolution images of 64
× 64 and 128 × 128, memory requirements are exponentially
proportional to feature maps size.
 In this analysis, memory requirements for processing one
image are provided using the in-built Pytorch function
summary(). The total batch memory requirements can be
obtained by multiplying the results for one image by the size of
the batch. e.g., a 64 batch of 64 × 64 images with a feature map
size of 64 would require (53.96 + 46.72) × 64 = 6443, 52 (MB).
That is nearly 6.5 GB for low-resolution images, which are of
no significant use in a real-life imaging application.
 In order to reduce the memory requirements of GAN, a first
attempt was to remove BN layers. Fig. 8 is a plot that compares
a generator model with and without BN. Removing BN reduces
memory consumption by 1.2-7% depending on the feature map
size. The higher it is, the lesser the benefit of removing BN.
This could be especially useful for scaled-up models, where a
trade-off between BN layers and the batch size could be
achieved, which is beneficial for GAN [3].

6

Fig. 7. Evolution of memory requirements of both G and D in terms of feature
map size for 64 × 64 and 128 × 128 images.

F. Model Compression
 The conventional DCGAN is built using convolutions with
strides for each twofold resolution up-sampling. Inversely,
deconvolutions use strides of two for each twofold resolution
down-sampling. Following the memory issues, attempts to
compress the model were made aiming to find a good balance
between performance and memory consumption. All tests
failed to produce any successful results. A first attempt was to
decrease the depth of the network. The kernel size of the
convolution layers had to be adapted according to the desired
output dimension. The values were changed according to
equation 5 that determines the dimension of the output of a

Fig. 8. Memory requirements for processing one image with and without
Batch Normalization in the model.

convolution layer
𝐷𝑖𝑚𝑜𝑢𝑡 =

𝐷𝑖𝑚𝑖𝑛+2×𝑃−𝐷×(𝐾−1)−1

𝑆
+ 1,

(5)

with 𝐷𝑖𝑚𝑜𝑢𝑡 the output dimension (can be either height or
width), 𝐷𝑖𝑚𝑖𝑛 the input dimension. We denote P, D, K, and S
respectively the padding, dilation, kernel size, and stride value.
Conventional DCGAN models use a stride value of 2 for up-
sampling and down-sampling in both convolutions and
transpose convolutions. We attempted to increase it in order to
have fewer layers. Extensive model building and parameter
tuning did not result in any positive results. We consistently
obtained unrecognizable features. The major problem with

(a)

(b)

(c)

(d)
Fig. 6. Samples generated by the four configurations: (a) ELU + TTUR trained using AdaM, (b) ELU trained using AdaS, (c) ELU + TTUR t rained
using AdaS, (d) DCGAN (LeakyReLU + ReLU) trained using AdaS.

7

compressing GAN models is the blurry squares with
homogeneous colors, presented in Fig. 9. The deeper the
network is, the less the phenomenon is observed.

Fig. 9. Blurry squares produced by the compressed GAN.

Attempts to mitigate this problem were made by adding fully-
connected layers to the input of D and the output of G. Previous
work suggests that combining convolutional and fully-
connected layers improves performance (Barua et al. [20]),
even though it is not ideal for a scaled-up model considering the
scope of our work, which is to use the least amount of memory
possible. Results showed that it had no effect on the observed
phenomenon. Therefore, a heuristic approach was adopted to
identify the source of the problem: configurations and hyper-
parameters were varied. Table III summarizes the experiments
and results. None of the changes addressed the issue. Increasing
the depth of the models was the only solution. Therefore, it was
concluded that, for the choice of configurations in this work, a
functional compressed GAN was out of reach. Despite failed
extensive experimenting, the possibility of a functional
compressed GAN is not categorically dismissed. Instead, the
observations provide a solid empirical argument for the highly
volatile aspect of GAN.

TABLE III. EXPERIMENTS TO IDENTIFY THE SOURCE OF THE BLURRY
SQUARES ON IMAGES. “V” STANDS FOR “VARIED” AND “F” STANDS FOR

“FAILED”. WE VARY ALL THE PARAMETERS IN THE TABLE AND OBSERVE THE
EFFECT ON THE PHENOMENON OBSERVED.

G. Generating High-Resolution Samples
 Prior to implementing models for generating 64 × 64 X-ray
chest images, attempts to generate 128×128 images were made.
Despite extensive fine-tuning, all attempts to generate any
recognizable features failed, except for the configuration
presented in Table II that could generate some high-level
features. Results after 400 epochs are presented in Fig. 12,

Fig. 11. 128 × 128 samples generated by preliminary a high-resolution model.

which took more than a day to train on Google Colaboratory
using an NVIDIA Tesla P100-PCIE-16GB GPU.
 After 400 epochs, training had to be stopped due to the
occurrence of mode collapse: the model kept producing the
same samples for a long range of epochs. In another experiment,

it was observed that this phenomenon was also reflected in the
loss curve, marked by a sudden exponential increase in both G
and D losses (see Fig. 11). Using AdaM in this configuration
did not produce any noteworthy samples. DCGAN, in its
conventional architecture, is hard to scale up unless the hyper-
parameters and networks depth are largely increased. Our effort
to reduce the memory costs was merely heuristic, we
recommend taking a more theoretical and low-level approach
in contrast to ours.

Fig. 11. G and D loss curves during mode collapse. It is marked by a sudden
exponential variation in the loss.

IV. DISCUSSIONS

A. GAN in Medical Imaging
 GANs have already been used in Medical Imaging in other
works. Most relevant to our work is [7], where the authors
propose GAN for data augmentation, which is related to the
issues we raised in Section I. In contrast to their work, this
paper focused on the performance of the GAN model itself,
not the consequences it would have on involved subsequent
processes (e.g., image segmentation). In the same context of
medical imaging, [22] used GAN for 3D images and proposed
an algorithmic solution to reduce the significant memory
requirements, by operating on a patch-based manner. In our
work, we only reduce the number of layers, which we deem a
good start before attempting more sophisticated potential
solutions.
 Despite the apparently realistic samples, a recent study
suggested that synthetic samples are not as rich in detail as the
real ones [23]. It is plausible that it is due to the recent claim
that GANs are biased against high frequencies in the spectral
domain [24], meaning low-level details would be missing. For
future work, we recommend exploring the bias against high
frequencies: alleviating this problem would make GAN-
generated synthetic samples more usable in real-life scenarios.

B. GAN Memory Optimization
 Prior works have attempted to reduce the memory
requirements of GAN; however, the amount of works published
on the matter is significantly low. The reviewed literature
adopted different approaches (e.g., [25] used ternary weights
thus achieving compression, [26] altered the GAN framework

 Stride Size FC Layers
Presence

Latent
Space

Dimension

Feature
Map Size

D V - V V - V V - V V - V
G - V V - V V - V V - V V

Results F F F F F F F F F F F F

8

by removing the generator), all achieving compelling results. In
this work, by only removing BN layers, we reduced memory
requirements by a range of 1.2-7%.

V. CONCLUSION
In this paper, we evaluated different configurations and
succeeded in improving the baseline DCGAN traditional
implementation by experimenting with different
configurations. The top-performing configuration, presented in
Table II, successfully generated realistic X-ray chest images.
Additionally, our results show that the loss value of D can be
used as a metric for assessing GAN. The aspect of high memory
requirements was also explored; we presented an analysis and
adopted a heuristic approach to reduce them by a range of 1.2 −
7%. While GANs exhibit high synthetic capabilities, there is
still a significant amount of progress required to make their
applications reliable and safe in real-life clinical scenarios.

REFERENCES

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Generative

adversarial nets, 2014. arXiv: 1406.2661 [stat.ML].
[2] T. Karras, S. Laine, and T. Aila, A style-based generator architecture for

generative adversarial networks, 2018. DOI: 10.48550 /
ARXIV.1812.04948. [Online]. Available:
https://arxiv.org/abs/1812.04948.

[3] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for
high fidelity natural image synthesis,” CoRR, vol. abs/1809.11096, 2018.
arXiv: 1809.11096. [Online]. Available: http://arxiv.org/abs/1809.11096.

[4] W. Ou, D. Polat, and B. Dogan, “Deep learning in breast radiology:
Current progress and future directions,” English (US), European
Radiology, vol. 31, no. 7, pp. 4872–4885, Jul. 2021, Publisher Copyright:
© 2021, European Society of Radiology., ISSN: 0938- 7994. DOI:
10.1007/s00330-020-07640-9.

[5] P. Chea and J. C. Mandell, “Current applications and future directions of
deep learning in musculoskeletal radiology,” Skeletal Radiology, vol. 49,
no. 2, pp. 183– 197, Aug. 2019. DOI: 10.1007/s00256- 019- 03284- z.
[Online]. Available: https://doi.org/10.1007/s00256- 019-03284-z.

[6] E. Montagnon, M. Cerny, A. Cadrin-Chenevert, ˆ et al., “Deep learning
workflow in radiology: A primer,” Insights into Imaging, vol. 11, no. 1,
Feb. 2020. DOI: 10.1186/s13244-019-0832-5. [Online]. Available:
https://doi.org/10.1186/s13244-019-0832-5.

[7] H.-C. Shin, N. A. Tenenholtz, J. K. Rogers, et al., Medical image
synthesis for data augmentation and anonymization using generative
adversarial networks, 2018. DOI: 10.48550/ARXIV.1807. 10225.
[Online]. Available: https://arxiv.org/abs/1807.10225.

[8] W. C. Ou, D. Polat, and B. E. Dogan, “Deep learning in breast radiology:
Current progress and future directions,” European Radiology, vol. 31, no.
7, pp. 4872– 4885, Jan. 2021. DOI: 10.1007/s00330-020-07640-9.
[Online]. Available: https://doi.org/10.1007/s00330- 020-07640-9.

[9] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” CoRR, vol.
abs/1606.03498, 2016. arXiv: 1606.03498. [Online]. Available:
http://arxiv.org/abs/ 1606.03498.

[10] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P.
Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” CoRR, vol. abs/1606.03657,
2016. a rXiv: 1606.03657. [Online]. Available: http://arxiv.org/
abs/1606.03657.

[11] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “Gans trained by a two time-scale update rule converge to
a nash equilibrium,” CoRR, vol. abs/1706.08500, 2017. arXiv:
1706.08500. [Online]. Available: http://arxiv.org/abs/1706.08500.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking
the inception architecture for computer vision, 2015. DOI:
10.48550/ARXIV.1512. 00567. [Online]. Available:
https://arxiv.org/abs/1512. 00567.

[13] A. Radford, L. Metz, and S. Chintala, Unsupervised representation
learning with deep convolutional generative adversarial networks, 2016.
arXiv: 1511 . 06434 [cs.LG].

[14] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” arXiv: Learning,
2016.

[15] Y. Eliyahu, ‘AdasOptimizer’, 2020. [Online]. Available:
https://github.com/YanaiEliyahu/AdasOptimizer. [Accessed: 24- Aug-
2022].

[16] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
2014. DOI: 10.48550/ARXIV.1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980.

[17] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun. com/exdb/mnist/.

[18] N. S. Keskar and R. Socher, “Improving generalization performance by
switching from adam to SGD,” CoRR, vol. abs/1712.07628, 2017. arXiv:
1712 . 07628. [Online]. Available: http://arxiv.org/abs/1712.07628.

[19] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[20] S. Barua, S. M. Erfani, and J. Bailey, “FCC-GAN: A fully connected and
convolutional net architecture for gans,” CoRR, vol. abs/1905.02417,
2019. arXiv: 1905. 02417. [Online]. Available: http://arxiv.org/abs/1905.
02417.

[21] Kaggle.com, ‘VinBigData Chest X-ray Abnormalities Detection’, 2021.
[Online]. Available: https://www.kaggle.com/c/vinbigdata -chest-xray-
abnormalities-detection/overview. [Accessed: 24- Aug- 2022]

[22] H. Uzunova, J. Ehrhardt, and H. Handels, “Memory-
efficient GAN-based domain translation of high res-
olution 3d medical images,” Computerized Medical
Imaging and Graphics, vol. 86, p. 101 801, Dec. 2020.
DOI: 10.1016/j.compmedimag.2020.101801. [Online].
Available:
https://doi.org/10.1016%5C%2Fj.compmedimag.2020.101801.

[23] Y. Skandarani, P.-M. Jodoin, and A. Lalande, Gans
for medical image synthesis: An empirical study, 2021.
DOI: 10.48550/ARXIV.2105.05318. [Online]. Avail-
able: https://arxiv.org/abs/2105.05318.

[24] M. Khayatkhoei and A. Elgammal, “Spatial frequency
bias in convolutional generative adversarial networks,”
in Proceedings of the AAAI Conference on Artificia l
Intelligence, vol. 36, 2022, pp. 7152–7159.

[25] A. S. Rakin, S. Angizi, Z. He, and D. Fan, “Pim-
tgan: A processing-in-memory accelerator for ternary
generative adversarial networks,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD),
2018, pp. 266–273. DOI: 10.1109/ICCD.2018.00048.

[26] S. Tuli, S. Tuli, G. Casale, and N. R. Jennings, Gen-
erative optimization networks for memory efficient data
generation, 2021. DOI: 10.48550/ARXIV.2110.02912.
[Online]. Available: https://arxiv.org/abs/2110.02912.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2022-12-12

An empirical evaluation of generative

adversarial nets in synthesizing X-ray

chest images

Belmekki, Zakariae

IEEE

Belmekki Z, Li J, Jenkins K, et al., (2022) An empirical evaluation of generative adversarial nets

in synthesizing X-ray chest images. In: 2022 7th International Conference on Intelligent

Informatics and Biomedical Science (ICIIBMS), 24-26 November 2022 Nara, Japan

https://doi.org/10.1109/ICIIBMS55689.2022.9971542

Downloaded from Cranfield Library Services E-Repository

