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Abstract

This report is an extension of the work carried out in [16].

In [16] we defined arbitrary-order numerical methods for model scalar hyperbolic
equation. In this report we extended these methods to linear hyperbolic systems

where waves can propagate in both directions.

First, we define a generalized numerical formula which can accommodate arbitrary
wave speeds for scalar advection equation. Then to illustrate its application, we

derive three, four, and five point generalized numerical schemes.

Finally, according to the theory of linear systems, we extend the generalized schemes

to linear hyperbolic systems in a straight forward manner.
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LINEAR SYSTEMS

1.1 Introduction

In [16] we defined arbitrary-order numerical methods for model scalar equations.
However, these methods are only valid for a single wave propagating in one direction,

i.e. either a > 0 or a < 0 for the scalar model hyperbolic equation.

For linear systems and nonlinear problems where waves can propagate in both di-

rections we need a generalized method suitable for arbitrary wave speeds.

The second order Lax-Wendroff method can be extended to linear system via several
different approaches, see [1]-[15]. For a method which is higher than second order,
more points are used, and hence more computing cells are involved in the high order
numerical flux. The new problem lies in that how can we deal with the multiple cell

numerical flux for linear systems.

In this chapter we are therefore going to investegate the issue indicated above, and
find a generalized formula to extend arbitrary-order numerical methods to linear

systems.
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1.2 Generalized Formula of Arbitrary Wave Speeds

for Scalar Equation

In this section we will consider the unified formula which is valid for arbitrary wave

direction for scalar cases. Before we do so, the following definition is required.

DEFINITION

Two schemes are called mirror schemes if the grid points used in these schemes

are symmetrical about the centre point.

For example, all up-wind schemes are mirror schemes of down-wind schemes. For

. n+l _ n n mn n 3 :
four points schemes, scheme U™ = fULL U ULy, * o) is mirror scheme of
] nt+l , , . - . .
U; = f(UL,, U Uy, Ufy,), since the points used in these two schemes are

symmtrically arranged about the centre point.

Based on the results of three, four, and five points schemes we can conclude that
mirror schemes have mirror stable regions. For example, Beam-Warming scheme
(2.20), and scheme 2.21 in [16] are mirror schemes. The stable region of B-W

scheme is 0 < ¢ < 2, and the mirror region is —2 < c <0 for 2.21.

Equiped with this definition we can write arbitrary-order numerical fluxes for ¢ > 0

as:

F(U";J) = a(U;l + ZDj-*'k-f-%AUj-{—k-*--;—) (1_1)
k

and the mirror numerical fluxes of 1.1 for ¢ < 0 are:

PﬂM(U’I";]’) = a((/]’-"H + ZDj+k+%AUj+k+%) (1,2)

—k

here: —oo < k < o0.
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AUjiisr = Uirrsr — Ut

and, Dj+k+% are coeflicients which are functions of Courant number, i.e. Dj+k+%(c).
k are integer numbers.

Obtaining a gereralized form for arbitrary wave speeds we can unify 1.1 and 1.2 into

a single formula (See [ |):

- n . 1 n n 1 =

L=~o00

where: .
k= )
L z'fc>0 (1.4)

k=-L 1fc<0

If Dj+k+’5(c) = Dj-k.‘_%(c), then

ap, = a
{ Dk(C) = Dj+k+12_(c) (15)

If Dj+k+;-(c) # D]‘_k+;_(c), then

w = o
{ Di(e) = Djppay(lel) (1.6)

In next section we will use some examples to illustrate the correction of equation
1.3.
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1.3 Applications of Generalized Formula

1.3.1 Three Point Schemes

1. UM = f(UR,,UF,UZ,) (L-W method)

| &

FEW(WU™5) = aUl +

<

N’

t

From 1.1 we know k =0, and D o1 = Djy1 = (1 =¢).

From 1.2, the mirror numerical flux of L-W method is:
i n N 7 a
f’V/(U ;]) = a j+1_§(1+c)AUj+1§

here, —k = =0, and D;_o,1 = D, 1= —3(1+¢).

Np—

Because D o,1 # D;j_o,1, from 1.6 we have:

A = !al
Dy = 3(1—|cl)

Therefore, from 1.3 the generalized formula of L-W method is:

W m. C— |a|
FAYUmg) = WU +Uja) = 5 AU
a
oo jeau,, (1.7

The stable region of the generalized scheme is:

lef <1 (1.8)
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2. UJ’.l+l = (UL, U, U (B-W method)

J=27 J

. -
FE-W(U™;5) = aUj +§(1—C)AU1—

L
2

from 1.1 we know k£ = =1, and D;_;,1 = D, = 1(1-o).

From 1.2, the mirror numerical flux of B-W method is:

a

here: —k =1and Dj;141 = Dj5 = —2(1+¢

Because D;_; 1 # Dj141, from 1.6 we have:

a_y = |af
{ D_y(c) = Dj—;—(lci) = %(l = lel)

Therefore according to 1.3, the unified formula of the two schemes is:

a a
U7+ 0 - Lot + B - Ay 09)

A-W n, s\ —

RS

where:

k=-1 1ifc>0
k=1 ife<O

The stable region of the generalized scheme is:

le| < 2 (1.10)
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1.3.2 Four Point Schemes

1. UMY = fur,,Ur,,ur,Ur,)

J 77+l

1 ¢ 2

. 1
F4_p(U";]) = a [U]" + (_ -+ E-) AUJ.+;_ + E(l - CZ)AUj_.

3 2 6

here, from 1.1 we have

Dj+o+;- = Dj+§
D;_

Direy = Dioy =

The mirror flux of 1.11 according to 1.2 is

Moirm - n 1 ¢ ¢ 1 9
FY(U™j) = a U= \|z+s+—= AUJ-+%+-6(1—C)AUJ~+%

3 2 6

here,

—ky =-0

—ky =1

1
DJ‘0+'§ :DJ+‘5 == §+"+-—-
1

DJ'+1+;— = Dj+% =—(1- c2)

Because

from 1.6 and 1.5 we have

1
2

(1.11)

(1.12)
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and
{04@>=éu—&)

Therefore, the generalized fomula of the two schemes is:

@ rm | gm |a|

1 |
tla |<——'7+ 6)Auj+%

+%(1—C)AU+H_
where:
k=-1 1fc>0
k=1 ife<0

The stable region of the generalized scheme is:

el <1

If introducing limiters into 1.13, we have:

— n, a n
FAW(WU™ ;) = E(U +U%,) - HAUH%
1 c
Hal (5= 5+ % )@AU
5 (1= ) AU
where:
¢; = ;(9;)
b - AUjtiss k=-1 ¢>0

(1.13)

(1.14)

(1.15)
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2. UM = f(UR,, Uy, Ury UY)

J=10"

N O

Py = a|Ur 4 (2 ¢ AU !
(U%3) = a|Uj + g‘*"G_—C i+~ \3~

here, from 1.1 we know

ki =-1
ky = —2
5 ¢
DJ_]+L = DJ'__7 = ’é"‘}“'é‘—c
1 ¢ ¢

The mirror flux of this scheme is:

M n,sY m 9 c2 1 C
FUUg) = aBin - (Grgte) At (3Tat

here
—k =1
~ky =2
Dj+1+§ = Dj+% = - %+%+C>
Djiz4r = Djpg = %'*‘%"“(g
Because

{ Dj 14y 7 Dit1sg
Dj-2+‘5 i Dj+2+;—

from 1.6 we have

c2
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and
a_y; = |a
Doe) = — (3~ el +1¢)

Therefore, the generalized scheme is:

W @ n i |al
F4 W(U 7)) = §(UJ‘ +Uj+1) ‘“"—AUM%
2

2
5 ¢
Hal (345 = 1) Al

1 e e
—|al (g -5t —6—) AUjyi+i (1.16)
"~ where
ki=-1, kg=-2 tf ¢>0
k]zl, k2=2 Zf c<0

The stable region of the generalized scheme is:

1< le| <2 (1.17)

1.3.3 Five Point Schemes

1. UJ’{%-H — f( " J+1’an’ Un "."_2)
Following the same procedure as above, we can get the generalized formula of this

scheme as:

i 1 |2I :2 |313
FA W U = =AU. + la —_— - — e — - — .1
( ’]) QA ]+% l l (12 24 12 24 AUJ_E
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2 1
~la ’C | _f___|C_|+_)AUj+§ (1.18)

The stable region of the generalized scheme is:

le] €1 (1.19)
2. Un“ = fUjLs, Uj s, Uiy, Uiy, UT)
The generalized formula of this scheme is:
- n, : n ¢
FAYm ) = S0+ ) - %A%#
13 35 5 , 1, 4
I 2 17
“”(§“§3+ﬁ” AU+
1 11 1 1
“H(ll (Z —_ ﬂ[cl + 162 - 24ICI3) AU +k3+— (120)
where
k]“—l,k2=—2,k3=—3 ifC>0
k=1, k=2, k3 =3 1fe<0
The stable region of the generalized scheme is:
(1.21)

1< <3

3. an+1 = f(U}s, Ul U, Ur Ur)

The generalized formula of the scheme is:

- n N a n n a
PN = SUF+ U - DA,
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1 1 1 1
—_ (‘(EICP _ 1—562 _— ‘-2—4-|C| + “1‘5) AUj-{-kg-!—% (1.22)
where
k1=°—l, k2=—2 ZfC>0
k1=1,k2=2 lfC<0

The stable region of the scheme is:

le] <2 (1.23)

1.4 Generalized Formula of Arbitrary Wave Speed

for Linear Systems
In this section we will extend the results of last section into linear hyperbolic systems.
In fact, this extension is very natural and straight forward.

Consider the linear system:

ur+ Auy, = 0 (1.24)
u(z,0) = uo(z)

where, u are vector functions of m conserved variables, and A is a m by m constant

matrix.

This is a system of conservation laws with the flux function f(u) = Au. This system
is hyperbolic if A is diagonalizable with real eigenvalues. In this case we can decouple
1.24 by letting
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A = RAR™ (1.25)

where, A = diag (A, A®), ... A™) is a diagnal matrix of eigenvalues and R =

(r®,r®, .. r(™) is the matrix of right eigenvectors.

From the theory of linear systems, we know

( )
Ukt 2 @ i)lc+% r§ik+’5 (1.26)
p=1
where, o'P) , is called wave strength accross the pth wave traveling at speed of

tk+L 2
(p)

kL is the pth eigenvector.

eigenvalue A® itk

1 in the (] +k+ )th computing cell. r

Substitution of 1.26 into 1.3 gives arbitrary-order general formula for linear hyper-

bolic systems:

FAW(rj) = (F +FJ+1)——Z|A§';1_| af), v
£ DY ol
k=—o00 p=1

where, F; and Fj.; are physical fluxes evaluated at the data states of j and j + 1.

Therefore, for examble, we can extend 1.9 into linear systems as:

pu— n o l
P = B B - S oy o)
>

(P) AW (») ".(P)
+3 Z( J+k+ ) A J+1c+‘I Xirktd Titk+l (1.28)
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where:
k= —1 if cg.’;j% >0
E=1  ifcd®, <o (1:29)
i+3
and »)
P
(P) — /\j+k+% At (1 30)
Gty T T Ag '

And 1.13 can be extended into linear systems as:

A-Worm. -\ _ 2 ® | o _e
FAYU™ ) = (F+FJ+1 ZI/\,+1_I af)y 7
p—l
—(1_1 ) » @
+3 (5 g1+ 500 DR el o2
-

(») (») (P) »
+Z ( .7+k+2)) /\J+k+2 Jtk+5 rj+k+15 (1'31)

where: »

k=-1 ifc?”, >0

\ W (1.32)

=1 of Cirl <0
Note, if C“;_)] C(?H < 0, this means that the waves travel in different directions
2 1)
in cells 3 + 5 and j +k+ 3 1. In this case, let AP =,
ikt

From these two examples above we know that all three, four, and five point scalar
generalized schemes obtained in last section can be extended to linear systems in

the same way.
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