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Abstract

This paper offers the TRAM-FPV Racing open
database. It results from indoor flights with five
(5) racing drones at Cranfield University (UK).
Strictly, at the Flight Arena. It is one of the
largest indoor flight fields in the world for research
goals. The flight data were recorded using an opti-
cal measurement system (OMS). The position and
orientation info in the vector space of the drone
models can be found in the database. It has read-
ings from accelerometers and gyroscopes. Besides
this, the heading angles recorded by inertial unit
(IMU) sensors are in it. The most frequent use
is to fit the data output by sensor fusion. At
the same time, those are used to develop sensors.
Also, those are embodied in the drones to estimate
their current state vector. However, their scope is
vast. It can be used, for example, to design non-
linear mathematical models or forge trajectories.
This paper was published in the Jornadas XLIII
de automática 2022/Spain. The author’s version,
translated into Spanish, can be found at the refer-
ences [77].

Keywords: Racing drones, Database, Trajec-
tory, Guidance, GPS-denied, IMU, Navigation,
Autonomous, Simulation.

1 Introduction

A wide variety of databases hold info from flight
tests of drones. They are often used for machine
learning. Strictly, the data is used to tune algo-
rithms. For example, to estimate vehicle states.
Also, for the guidance and control of the aircraft.

Table 1: Other datasets
Datasets BD1 BD2 BD3 BD4 BD5

Airframe type Quad SY130 Hexa SY300 Quad SY-MAV Quad SY Quad SY250
Quantity of models 1 1 1 1 1

Sequences 186 11 1 4 27
Indoor/sensors IMU/OMS IMU/OMS NO NO IMU/OMS
Outdoor/sensors GPS NO GPS/IMU GPS/IMU GPS/IMU

Video/image capture Yes Yes Yes Yes YES
Size room 11, 0X11, 0 M2 1, 5x1, 0 m2 Urban place Outdoor 3, 0x1.5 m2

Table 1 shows multiple databases. These have sev-
eral discerning features. The Blackbird database

(BD1) [2] stores details on aircraft with medium
speeds of close to 7.0 (m/s). The EuRoC data
(BD2) [7] makes unique use of a laser system for
vehicle tracking. The Urban Mav (BD3) [44] data
comes from flights in urban areas. At the same
time, the KumarRobotics data (BD4) [68] holds a
Matlab file that aligns its GPS measures with an
odometry system. Finally, the UZH-FPV (BD5)
[15] data stores info from FPV cameras built into
racing drones.

The flight records in these databases are usually
made with only one kind of drone. It mainly
holds data from satellite signals. Also, it has read-
ings from inertial sensors and systems outer to
the drone [8, 26, 30]. The drones are often for
general goals. It means they are not designed
for a clearly defined application. However, this
kind of racing drone has burst onto the scientific
scene. Nowadays could find multiple studies fo-
cus on their fast motion [9, 41]. These studies
have linked the shape of the airframe. Also, flight
dynamics, in general, are pretty attractive to re-
searchers. In addition, this leads to autonomous
control and machine learning approach: Situa-
tions with static or dynamic obstacles. Thus,
new sorts of databases have started to be worked.
Those take into account data on a racing drone.
Their fast and aggressive motion [58] makes them
distinct from classic drones.

This paper presents the open database TRAM-
FPV Racing. It is created to study the motion
of racing drones. Section 2 briefly explains the
vision system used to capture motion. Also, to
obtain the 3D orientation of the body. Section 3
defines the calibration of the Flight Arena. The
racing drones used for testing flight are presented.
In addition, basic control methods that combine
these drones are shown. Section 4 details the flight
process to record the data. Section 5 describes the
database structure. Finally, section 6 presents the
most relevant conclusions of the work.

https://github.com/mit-aera/Blackbird-Dataset
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://rpg.ifi.uzh.ch/zurichmavdataset.html
https://github.com/KumarRobotics/msckf_vio/wiki/Dataset
https://fpv.ifi.uzh.ch/
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2 Sensor systems for 3D
positioning and orientation of
drones.

An autonomous aerial vehicle can: Plan its flight
path. Handle it later without human action. It
must act under clear safety rules [10]. In addi-
tion, it must guide itself in some instances. It
means, on trajectories, it must be able to: Detect
objects. Avoid likely collisions. Recalculate them
when doing so and assess them in the flight plan
[4]. In this way, mixing info from multiple sen-
sors is crucial. That is to mix the data between
sensors to estimate their states constantly[21, 69].
In addition, this sensor fusion is vital for training
vehicle control and aircraft guidance [34, 61].

The databases hold info from the Global Position-
ing System (GNSS). It occurs when flights have
been made in open space. In addition, they hold
records from the inertial navigation system (IMU)
sensors. Images or videos on board attend these
flight tests to guide the aircraft [17, 29, 49]. They
also cover info from other kinds of sensors. For ex-
ample, when flights are made in GPS-denied areas.
Also, laser or ultrasonic sensors are included to
detect objects or markers around the flight space
[46]. Some of the sensors used are listed below:

• The Global Positioning Systems (GNSS) send
radio signals (EMS) [45]. It estimates the
time it takes for the wave to reach an open re-
ceiver. Thus, it is doable to define a position
of an object [42, 45, 72]. However, the reli-
ability of the data is faked by some factors.
Signal noise affects the precision of the read-
ing [27, 35, 52]. NAVSTAR-GPS, GLONASS,
IRNSS, GALILEO and BEI-DUO are sam-
ples of these systems.

• The inertial navigation systems (INS) are on
board the vehicle. It uses inertial units or sen-
sors (IMU) to report angles rate [16, 53, 59].
Also, it reports some forces. In addition,
it could be reported body position. An ac-
celerometer forms it to compute the change
in speeds. Also, it has gyroscopes to define
object orientation. In addition, it has mag-
netometers to specify the strength of the sig-
nals. However, they must be fused with other
algorithms to resolve the position of a body.

• Data from image processing systems (IMS)
are on board the vehicle. It uses cameras to
provide the position of the object. It can also
predict the orientation. The sensors sense
both motions through a series of filtered im-
ages. Thus, they are handled in digital form
using a mix of methods [5, 28, 73]. Thus, real-

time images ought robust and high-quality
cameras.

• Data from acoustical systems (UMS) has two
pieces: The receiver is on board the vehi-
cle. The transmitter is fixed at any point in
the navigation area. It defines the object’s
location via ultrasonic waves [19, 63]. The
waves travel through the air until they find
the transmitter.

• Data from systems combining optical and
electronic sensors (OMS) have two pieces.
The cameras are in the flight arena. The
marker is on board the vehicle. In addition,
they are coated with luminescent textiles. In
this way, the cameras can catch the light.
Two cameras are needed to rebuild the vehi-
cle’s location [20, 25]. The number of cameras
defines the trustworthiness of the data. Also,
their height in the place and the light power
inside it are essential factors [12, 31].

OMS systems are used in pressing cases. An ex-
ample of this is in places without GPS access
[1, 11, 40]. Also, in those where high dynamic
motion is the guide of research [14, 60, 67]. Like-
wise, it offers high measurement accuracy due to
the fast dynamics of racing drones [37, 50].

3 Configuration of measurement
systems for the TRAM-FPV
RACING database.

Three vital factors for a proper flight series: The
test room must be prepared. The related mea-
suring tools must be calibrated. In addition, the
drone models must fit the sizes of the flight arena.

Figure 1: Flight Arena. Cranfield University

The test room is the Flight Arena at Cranfield



University in the UK. The plan dimensions of the
arena are shown in figure 1, with a maximum
height of 10 m throughout the enclosure. On the
other hand, the flight arena has 30 Vicon cameras
[75]. The set of cameras is located at a height of
10 meters. In addition, they are 1.5 metres apart
from each other. The data are transmitted via
Ethernet. This way, the software tracker uses the
TCP/IP communication protocol [74].

3.1 Description and configuration of the
flight arena.

Figure 2: Cameras Vicon. Vantage and Vero

The cameras are Vicon Vantage and Vero (see fig
2). They can capture motion between 250 and
1070 FPS. Also, the field of view is around 40
and 57 degrees. On the other hand, the resolution
ranges between 1.3 and 5.0 megapixels. It depends
on the volume calibration, the proper flight area
and the number of frames per second needed for
the flight test.

Figure 3: Effective flight area for the flight test.

Figure 3 shows the proper flight area. It is after a
successful calibration. The ASTM E3064 relates
to the ability of the cameras to process the images.
They are without filtering mainly. Also, without
post-processing the data. Suppose this is the case

and the test values match the reference values of
the standard. In that case, the Tracker software
can capture data at 41993 FPS with an accuracy
of 0.017 mm. In addition, it sets the accordance
between different test results acquired by the stan-
dard test method. They must be under defined
states. In this way, it levies the performance of
optical tracking systems. These systems gauge six
degrees of freedom of position and orientation.

The relative error between the position of the cam-
eras and the origin of the effective flight area relies
on two factors. The first factor is the calibration
process. It is done by catching the light by moving
a rod in front of the camera. The second factor is
the intensity of the ambient light. A space with-
out reflective lights and darker is preferred. Based
on these factors, an error of 0.1 millimetres is suf-
ficient for each axe (X, Y, Z).

3.2 Description and configuration of the
racing drones used.

In this database, five kinds of racing drones have
been used. The main distinction between them
is their geometric shape. Thus, they develop dy-
namic behaviours based on their shape [9]. It is
called a symmetric (SY) airframe, non-symmetric
(NSY) or hybrid (HS).

Figure 4: Kinds of airframe for racing drones

In figure 4, the SY airframe has angular distances
equal to 90 degrees. In addition, the wheelbase of
210 and 250 mm. The NSY airframe has a range
of 80 and 65 degrees. Also, a wheelbase of around
210 and 230 mm. The HS airframe has an angu-
lar distance between the upper arms equal to 80
degrees and lower arms of 90, while the wheelbase
is 250 mm.

Table 2: Component Descriptions
Components Description
Airframe geometry SY, NSY, HS
ESC 55 mA - Tmotor
Flight controller F7 - Tmotor
Video transmitter VTX Viva FPV - Tbs
Radio receiver R-XSR - FrSKY
Antennas Linear Emax
Battery 6s - 4s
Propellers 5147 - Tmotor
Motors - Tmotor F60PRO 1950-2550 Kv
Firmware Betaflight

On the other hand, all racing drones were fitted



with the same electronic parts, motor group and
power supply, as shown in Table 2. In addition,
the control gain values are the same for all air-
frames. Also, the stability control aids were left
as default[9].

Figure 5: Hybrid structure - HS.

Figure 6: Symmetrical Structure - SY.

Figure 7: Non-Symmetrical Structure - NSY.

Figures 5, 6 and 7 show the kinds of drones used
for the flight test. It should be noted that the geo-
metric settings of these model racing drones were
written on the firmware of each flight controller.
In addition, the settings linked to the travel of
the radio-control levers were set to their default
values.

Figure 6 also shows the position of the markers.
Each ball has 14 mm in diameter. Also, they are
dressed in fluorescent textiles. In addition, they
are placed in non-symmetrical locations with a
gap of 10 mm. It is so that the OMS system can
more quickly rebuild the position of the markers
during motion.

3.3 Control scheme of the drones used

TRAM-FPV Racing are integrated between the
control levels. It is to merge with the other sensor
readings. Thus, it could be to train the motions of
racing drones. Also, to test a motion in confined
spaces under certain safety conditions. [23, 32,
36].

Figure 8: Alternatives with Vicon system

Figure 8 shows a basic control scheme of two rac-
ing drones. They are in a safe area with a Vicon
control system. It shows how the OMS data re-
place the GPS data for autonomous navigation. In
addition, the blue arrows show this data’s feasible
relations in the control loop. Mainly, the green
ones are to detect or avoid collisions. In the case
of racing drones, they could pass through obsta-
cles and evade them.

On the other hand, using direct data from OMS is
regular use [51, 70, 71]. Some of the algorithms are
to manage obstacles. Other uses take into acound
precise and simultaneous localisation. The most
classic can be SLAM, LiDAR or odometry [39,



55, 56]. Other kinds include tagging and dragging
images. They are preloaded in databases to place
the motion of objects. The latest progress has to
do with the machine learning app.

4 Flight sequences.

There are three essential parts before starting the
flight tests. The first is to adapt the sampling fre-
quencies of the Vicon camera. Secondly, the IMU
has to be also set. It is preferred that those set-
tings are according to the flight arena (see figure
3)). Finally, relative size errors are vital to be
known.

In the case of the Vicon cameras, the flight se-
quences were captured at 250 FPS. In contrast,
the IMU was performed at 500 Hz. This calibra-
tion of the cams was performed every ten flights.
Also, the calibration error of less than 0.1% was
allowed. Thus, flight sequences were synchronised
with video recordings for each test.

Figure 9: Software - Vicon Tracker.

The Tracker software (see Figure 9) matched the
frame systems. It is the object origin with a frame
system of the flight arena. The origin of the object
is according to NED coordinates. So, NED has to
match the frame system of the cameras.

Recording of the data can start after the calibra-
tion of the flight area. It depends on the light
conditions. Also, the camera positions are essen-
tial to catch the motion. It is ready when the
software tracker records acceptable error margins.
Later, the pilot will start the IMU sensors of the
drone to start the flight test.

Each test lasted between 2.5 and 3.0 minutes of
flight time. 30 tests were performed for each drone
used, for a total of 150 tests, equating to a range
between 75 and 90 hours of flight time for each
drone used. These data are stored in the TRAM-
FPV database.

All cameras pointed(see figure 10) toward the tra-

Figure 10: Distances and trajectories covered.

jectories performed by the racing drone. They
must be positioned in such a way that they cover
the dead spots of the turns. Thus, at least three of
them could detect a marker. This way, rotations
on turns are captured. These special cares are due
to the ends of the trajectory.

5 Structure of the TRAM-FPV
dataset.

The database is kept in a storage repository at
Cranfield University. It is open and can be ac-
cessed through the bibliographic link [76].

Figure 11: TRAM-FPV files.

The TRAM-FPV Racing database consists of
three folders. These have been labelled according
to the geometry of the racing drones (SY, NSY
and HS). In addition, a fourth folder has been in-
cluded. It is about each model’s mass distribu-
tions and moments of inertia. It is also tagged



into three sub-folders according to the names of
the airframes (see figure 11).

Within the SY, NSY and HS folders, there are
three subfolders. These have been named test1,
test2 and test3. However, the SY folder has been
added to a fourth 4 test. Thus, an extra sub-
folder (test4) will be found there. Also, within
each test subfolder, there are three files: a video
file in WEBM format and two excel - CSV files.
The CSV files labelled with the battery number
(from zero to nine) are the data from the OMS
system. So the CSV data from the IMU is also
called by the battery number plus the acronym
bbl.

Table 3: Dataset - IMU
Row Description Magnitude Error (%)
1 loopIteration < 1.284.656
2 Local Time µs
3 Roll axis rotation deg/s < 0, 01
4 Pitch axis rotation deg/s < 0, 01
5 Yaw axis rotation deg/s < 0, 01
6 X-axis acceleration raw < 0, 1
7 Y-axis acceleration raw < 0, 1
8 Z-axis acceleration raw < 0, 1
9 Roll-Heading raw < 0, 09
10 Pitch-Heading raw < 0, 09
11 Yaw-Heading raw < 0, 09

The CSV-IMU files hold 11 columns by 90.000
rows. They are sorted as in table 3. Mainly, it
describes three rotations, three accelerations and
3 heading angles. The frame reference for the mo-
tion is X, Y, and Z. The data values of the ac-
celerations and the heading angle are raw values
(RAW). Also, they are based on the stick’s travel.
The equivalences are: 2048 units of acceleration is
equal to one unit of gravity (1g). In addition, the
data is smoothed by a low-pass filter. Thus, one
unit of Heading is equal to 58.1 degrees.

Table 4: Dataset OMS-Vicon
Row Description Magnitude Error (%)
1 Frames fps < 0, 017
2 Subframes 0 NA
3 RX X-axis rotation rad 0, 397− 0, 79
4 RY Y-axis rotation rad 0, 397− 0, 79
5 RZ Z-axis rotation rad 0, 397− 0, 79
6 TX X-axis translation mm < 0, 149
7 TY Y-axis translation mm < 0, 149
8 TZ Z-axis translation mm < 0, 149

The CSV-Vicon files hold eight columns by 50000
rows. They are sorted as shown in table 4. Mainly,
it has three rotations and translations. Also, it
has the rate of data capture or FPS. The rota-
tion order is helical. It means that the rotation
is relative to the position of the marker at various
time instants. It is also called roto-translation.

These kinds can be transformed into any other
type of non-instantaneous rotation, such as Euler
or quaternion terms. The errors in the table are
ratio coefficients of variations. The tracker soft-
ware gives them. For more exact measures, please
consult [48].

Figure 12: IMU readings synchronized with video

Figure 12 shows the WEBM video files. In-flight
on the screen, it is feasible to watch the motion
of the gyroscopes at the top. Also, the motion of
accelerometers is at the bottom. The video im-
ages have been matched with the behaviour of the
sensors. Thus, varied sorts of comparisons are pos-
sible.

6 Conclusions

This paper presents the TRAM-FPV racing
database. It stores dynamic flight data for the
study of racing drones. In this way, the position
and rotation motion is in it. Also, it holds the
mass distribution of the models. This mix of data
makes it unique (see table 5). It incorporates 30
flight sequences for each model used. It means a
total of 150 flight tests.

Table 5: Database features
Base de datos TRAM-FPV Racing
Kind of airframe SY, NSY, HS

Quantity of models 5
Flight sequences 150
Indoor/sensors IMU/OMS
Outdoor/sensors NO
Video cam/image Yes

Rffective flight area. 20x20 meters

The database holds details on five kinds of racing
drones. This range of choices makes it the only
one of its class. It is made to study the motion
of racing drones. However, other types of studies
could be done with it. The aerodynamic models
based on the database are highly relevant. Also,
studying cross-modal performance by analysing
big data is an exciting topic. Specific uses like
machine learning training are feasible yet.

http://figshare.com/s/24642072abc29b8f1535


On the other hand, the database aims to continue
the growing interest in designing sensors. Mainly
for the field of autonomous racing drones. They
will have to sense the usual motion of a radio-
controlled racing drone.
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