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A B S T R A C T   

Private investments are critical enablers to achieving energy access for over 770 million people worldwide. 
Despite decreasing capital costs, investments in renewable energy (RE) projects in developing countries are low 
due to unattractive risk-return profiles. Through understanding key risks drivers and their interactions, action
able insights can be drawn to mitigate investment risks, making energy more accessible. 

This paper reviews RE risks and methods used for risk assessment and mitigation for developed and developing 
countries with a focus on Sub-Saharan Africa countries (SSA). The review finds that while risk analysis and 
evaluation mainly employed semi-quantitative multicriteria decision analysis (MCDA) and system dynamics (SD) 
methods for developing countries, qualitative methods were used to identify mitigations. The methods assessed 
technical and economic risks at a minimum, while MCDA and SD methods can assess social, political, and policy 
risks. The efficacies of mitigations were tested using SD and quantitative methods such as agent-based modelling 
and Monte Carlo simulation. 

The paper further introduces a ‘holistic multi-dimensional investor risk management framework’ which can be 
used to identify actions to improve investment risks in a structured manner. The framework addresses four 
fundamental limitations observed in the existing literature, recognising that RE risks are complex and involve 
multidisciplinary perspectives having interactions and feedbacks with other risks, actors, and their actions. 

This review provides a valuable reference to investors, policymakers, and researchers, providing a catalogue of 
risks, methods deployed in literature, including a framework to identify impactful actions to improve risk levels.   

1. Introduction 

Affordable energy is vital to the socio-economic growth of any so
ciety. This is recognised by the United Nations Sustainable Development 
Goal (SDG) 7, which aims to ensure “universal access to affordable, 
reliable, sustainable and modern energy for all” by2030.1 In achieving 
this goal, SDG7 seeks to increase the share of renewable energy (RE) in 
the global energy mix substantially by 2030. About 75% of people 
without reliable energy access worldwide live within lower-income Sub- 
Sahara Africa (SSA). More than half of the unelectrified African popu
lation live in rural areas, typically low-density remote areas far from 
electricity grids, making decentralised energy systems a viable solution 
to bridge the energy access gap [1,2]. Consequently, some scholars 
argue that a mix of grid extension, off-grid and standalone systems are 
needed to bridge the gap [2–4]. 

RE investments increased globally from US$ 200 billion to US$ 315 
billion between 2005 and 2018 [5]. This increase is driven mainly by 

lower capital costs due to technological advances and volume induced 
savings in wind and solar PV technologies.2 However, there is a need to 
increase RE investments to an estimated US$ 600 billion worldwide by 
2030 to widen energy access while meeting climate change targets [5]. 
The investment deficit is higher for SSA, where studies have estimated 
US$ 11-9 billion/annum compared to annual investment needs of US$ 
40–43 billion [6,7]. In SSA, power sector investments are primarily 
funded by the public sector with reliance on international development 
finance and grants [8–12]. Studies identified a scale-up in private in
vestments as a critical enabler to bridging this gap [6,13,14]. Low in
vestment in RE projects in developing countries is attributed to capital 
intensiveness and unattractive risk-return profiles [9,12,13,15,16]. 
Additionally, Zeng et al. [13] identified limited financing channels and 
poor adaptability of policies to changing markets and, consequently, 
risks and opportunities as contributors. Derisking policies and incentives 
are a means of unlocking RE potential [8,17,18]. Different investors 
weigh opportunities and risks differently between countries [19]. Un
derstanding risks, risk levels, and their dynamic interactions from the 
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investor perspective can enable a more deliberate approach towards 
identifying appropriate actions that can lower investment risk exposure. 
This holistic understanding can provide more clarity on drivers of 
changes in key risks. Insights on the impact of mitigations, such as policy 
actions on improving financing conditions, cost competitiveness, and 
accelerating diffusion, can make RE investments more accessible and 
affordable [18,20,21]. 

There are three main strands of research employing RE investment 
risk management methods focusing on: risk identification [16,22–26], 
risk assessment [12,16,20,27–30] and risk mitigation [8,10,15,31,32]. 
Ioannou et al. [33] offer a review of risk analysis methods, while Painuly 
et al. [34] provide a framework for identifying RE penetration barriers 
and possible measures to overcome them. Within the existing body of 
literature, the review and application of risk methods are fragmented. 
This paper offers three contributions; firstly, it expands the scope of 
previous reviews [33,34] and presents a systemic review of RE invest
ment risks and methods used for risk assessment and mitigation for 
developed and developing countries. Secondly, insights are drawn to 
introduce a ‘holistic multi-dimensional investor risk management 
framework’. The framework unifies four key considerations treated in a 
fragmented manner in existing literature: consideration for (i) 
multi-dimensional perspective of risks (ii) interdependencies of risks 
and interactions within a complex system, (iii) dynamic nature of risks 
and (iv) holistic approach to risk identification, assessment, and miti
gation of priority risks. Lastly, the new framework is reviewed from an 
SSA perspective and identify suitable methods that could be employed to 
determine specific actions to reduce investor risks and consequently 
improve energy access in a structured manner. 

The objectives of this paper are to (i) critically assess methods used in 
literature for assessment and mitigation of RE investment risks for 
developed and developing countries, (ii) identify specific risk factors 
and appropriate risk management methods, and (iii) propose a con
ceptual framework that uses a holistic approach to identify actions for 
managing investment risks. 

The paper is structured as follows: Section 2 provides an overview of 
risk management. Section 3 sets out the methodology. Findings on risk 
identification are presented in section 4, while findings on risk analysis, 
evaluation, and mitigation methods are presented in section 5. Section 6 
presents a conceptual framework for holistic risk management, discus
sions, and considerations from an SSA perspective. Section 7 offers 
conclusions. 

2. Overview of risk management 

ISO 31000 [35] defines risk as the effect of uncertainty on an orga
nisation’s ability to meet its objectives. Additionally, barriers may also 
introduce challenges to achieving an organisation’s objective. IRENA 
[24] defines barriers as obstacles or challenges in developing, financing, 

investing in, or operating projects. Project development risks and bar
riers can increase investors’ perception of the overall difficulty of the 
investment environment. Hu et al. [36] note that actual and perceived 
risk factors influence the risk of RE investment. Risk perception is a 
function of risk judgement (defining risk levels) and risk attitude 
(reflecting the emotional attitude of an investor towards a judged risk) 
[36], which can impact an investment decision. Attributes that can in
crease risk perception could be in the form of psychological, behavioural 
or institutional characteristics such as lack of knowledge and experience 
or path dependence where historical investments in a particular tech
nology, e.g. thermal generation, may impact RE risk perception and 
investment decisions [36]. These attributes need to be considered con
textually due to the impact on perceived investment value proposition 
and corresponding investment decisions. 

ISO 31000 provides the guideline for effective risk management 
which includes (i) establishing the context, (ii) risk identification, (iii) 
risk analysis, (iv) risk evaluation, and (v) risk treatment [35,37]. 

In establishing the context, the following needs to be considered: 
scope of the project, its boundaries, location, stakeholders, their objec
tives, and what level of risks are considered acceptable. The next step is 
to analyse the risks to determine risk levels based on likelihood and 
consequence. These risks are prioritised at the evaluation stage to 
determine acceptability. Outputs from this stage determine which risks 
require treatment. Risk treatment involves the implementation of con
trols to mitigate risks. This study uses ‘risk mitigation’ instead of ‘risk 
treatment,’ which is more prevalent in the reviewed literature. The risks 
are reviewed and updated at each risk assessment and mitigation stage 
via stakeholder communication and consultations. 

3. Methodology - identification and selection of relevant studies 

This section provides the methodology for identifying and selecting 
relevant studies, including analysis of papers along spatial and temporal 
distributions and an overview of reviewed methods. 

Scopus searches limited to years 2010–2020 were conducted with 
keywords ‘Investor risk renewable energy investment’ (242 papers), 
‘Investor risk economic renewable’ (111 papers). Abstracts were 
reviewed for relevance, and additional studies were identified by 
reviewing references of papers. This snowballing approach allows for 
the identification of topical papers more reliably than database search; 
however, results are dependent on the starting papers [38,39]. On 
scrutiny of articles, a total of 42 papers were selected based on coverage 
of risk management methods and classified where applicable according 
to technology application, location, and method. Papers related to 
assessing effectiveness of mitigations such as policy actions were clas
sified under risk mitigation. Papers outside of these classifications were 
excluded from the review. 

Figs. 1 and 2 show the distribution of papers. Geographically, 52% of 
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studies covered other developing nations like China, while 24% and 
19% of studies covered SSA and developed countries, respectively. More 
focus has been on semi-quantitative risk analysis and evaluation in other 
developing countries than SSA in the last five years. While studies 
covering developed countries focused on quantitatively determining the 
effectiveness of mitigations, papers related to SSA mainly focused on the 
qualitative identification of risks and mitigations. 

Fig. 3 presents an overview of methods reviewed in the literature. 
Qualitative methods ranging from literature reviews to interviews and 
surveys have been used for risk identification, while risk analysis (RA) 
and evaluation have used semi-quantitative and quantitative methods. 
Risk mitigations were identified via qualitative methods, while quanti
tative methods tested their effectiveness. 

Findings from the literature review are arranged in the following 

order according to the risk management framework and grouped based 
on methods, spatial distribution, application, and coverage of risk fac
tors. RA, evaluation, and mitigation are grouped in the same section for 
continuity as similar methods have been used in literature.  

(i) Risk identification.  
(ii) RA, evaluation, and mitigation. 

4. Review of RE risks identification 

4.1. Risk classification and coverage 

Classification of RE risks was done broadly according to barriers or 
uncertainties by focusing on (i) location, (ii) stakeholders (iii) project 

Fig. 1. Geographical and temporal distribution of reviewed papers.  

Fig. 2. The distribution of studies by methods and relevance to risk management framework.  
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phases. 
Within these broad rationales, barriers have been categorised 

differently according to the focus of the study. For example, Soshinskaya 
et al. [25] categorised barriers into technical, regulatory, financial and 
stakeholder barriers, whilst Williams et al. [40] identified technical, 
financial and policy/regulatory barriers as crucial barriers to RE uptake 
in developing countries. Bhattacharyya et al. [22] found technical, 
policy, financial, revenue, and political risks as factors impacting 
mini-grid implementation to scale in developing countries. Schmidt 
et al. [8] additionally considered risks according to barriers that stem 
from stakeholders at local, national, and international levels along 
revenue sources. This approach enabled a line of sight between barriers 
to revenue and measures required at the different stakeholder levels. 
Malhotra et al. [12] classified risks according to barriers from stake
holders who influence the cost of financing for a portfolio of projects. 
Risks were categorised such that they are mutually independent to 
enable independent analysis. Interactions were thus not considered. In 
contrast, Liu et al. [29] considered that risk factors dynamically change 
through feedback loops. This approach provided a system perspective 
involving risks and their interactions. 

Different barriers can translate into investment risks at different 
project phases thereby, discouraging investments [8]. Hu et al. [36] 
grouped risk factors according to the stage of the project (preliminary 
risk scanning, appraisal, capital access, and project development stages) 
with a view that as projects mature, more information becomes avail
able, and the level of uncertainty becomes clearer. Additionally, as a 
project matures, the type or level of risks can also change. Barroco et al. 
[41] classified risks according to project phases (feasibility, 
pre-construction, financing, construction, operations phases) and in the 
context of developing countries. The study provides a view of how risks 
change with project phasing. Knowledge of risks per project phase 
provides an opportunity to address risks timely. 

Risk identification studies in the literature have used different risk 
categorisation themes according to their intended study focus. Some 
studies identified barriers without formal categorisation, e.g., 

inadequate technical skills, poor policy frameworks, and access to 
finance [23,42–44] as barriers to RE in SSA. This review uses the 
following definitions adopted from the literature to standardise the 
categorisation of risks.  

• Technical risks arise from factors related to the type of technology, 
e.g. technology maturity, resource capacity and factors that can 
affect the technical design and implementation [29,40].  

• Resource risks are the risk of lower revenues due to inaccurate 
resource potential estimation, such as variability or intermittency of 
radiation in solar development [20,29].  

• Policy and regulatory risks refer to uncertainties in meeting project 
objectives due to legal frameworks, policies, or regulations changes. 

• Political risks arise from political events that can impact in
vestments, e.g., government change, political will, institutional 
structures, security events, embargoes, and currency inconvertibility 
[28,29,36,43].  

• Economic and financial risks may arise from economic or financial 
factors that impact the project value or deployment. These can 
include changes in the economic environment on the macro level, e. 
g., currency fluctuation, uncertainties in accessing appropriate 
financing, revenue uncertainty [22,40–42].  

• Market risks refer to uncertainties brought by variation in markets, 
e.g., market access barriers, changes in market conditions [22,29, 
36].  

• Curtailment risks account for lower revenues due to unexpected 
curtailment [20].  

• Social risks emerge due to changes in social conditions, e.g. public 
resistance impacting adoption patterns, demography [28].  

• Environmental risks may result from changes in environmental 
regulations or impact caused by characteristics of energy systems, e. 
g., toxic waste, emissions [45]. 

Table 1 presents a comprehensive list of risks by these categories. 

Fig. 3. Overview of RE risk management methods in the reviewed literature.  
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Table 1 
Risks to RE deployment in various regions from the reviewed literature.  

Risk Category Risk Factors Developed 
country 

Developing 
country - other 

Developing 
country - SSA 

Reference 

Technical Technology maturity • • • [13,24,28,30, 
44,46–48] 

Technology progressiveness impacting on efficiency and quality • • [25,28,29] 
Limited technical skills and capacity in operations and maintenance  • • [8,12,23,24,40, 

42,43,49,50] 
Limitation in developer’s capability to effectively design, construct and 
operate a project  

• [8,12] 

Limited training, research, and development capacity  • • [28,29,42,49] 
Availability of alternative technology  • • [23,28,29] 
Limitations in the quality control and availability of hardware  • • [12,43,49] 
Variability in demand leading to uncertain load profile  • • [8,16,28,40] 
Uncertainty in population distribution patterns  • • [40] 
Higher maintenance cost due to technology novelty and unpredictability • [20] 
Limitations with dual-mode operations, i.e., grid to off-grid transitioning 
for grid-connected systems 

• [25] 

Resource Uncertainties in estimating power potential and its variability • • • [16,20,24,28, 
30,43,48,50] 

Policy and 
Regulatory 

A retroactive change in policy, e.g., feed-in-tariff, tax, regulation • • • [20,26,28,29, 
44] 

Inability to efficiently and transparently administer mini-grid related 
licensing and permit.  

• [12,41] 

Uncertainty in grid extension plans and technical regulations for 
integration of mini-grids into the main grid  

• • [12,22,40,50, 
51] 

Lack of long-term policies   • [42,49] 
Insufficient supporting policy frameworks and incentives, e.g., low support 
for foreign direct investments, high taxes, disparity between energy 
policies and development blueprint and uncertain fiscal policies  

• • [23,29,36,42, 
43,48,49,51] 

Policy and regulatory uncertainty, e.g., policy consistency, 
implementation 

• • • [22,25,40,42, 
44,46,50] 

Difficulty in acquiring land, competition with land uses  • • [28,41,43,49] 
Unattractive regulated tariff  • • [8,36,40,43] 
Limitations in regulations on interconnection of mini-grids to main grids 
and enabling bi-directional flow of power mini-grids to main grids 

• [25] 

Political Effect of political changes, e.g., reshuffling of institutions.  • • [22,28,42,51] 
Complex Institutional structures with overlapping responsibilities  • • [8,40,43,51] 
Insecurity of infrastructure   • [43,49] 
Political events that adversely impact the value of investments (e.g., war, 
currency inconvertibility, breach of contract, non-honouring of 
obligations)  

• • [24,49,52] 

Bribery and Corruption  • • [28,42,50] 
Lack of political will to diversify into clean energy   • [42,44,49] 
Legislative changes  • • [28,44] 
Political decision making and target setting impacted by political will, 
political cycle, influence of vested interest and perception on a social 
mandate to act 

• • [47,49,50] 

Inadequate decisions and non-involvement of relevant experts in energy 
decision making   

• [49] 

Economic/ 
finance 

High initial cost  • • [22,43,48–53] 
Limited access to affordable finance  • • [8,22,24,29,30, 

40,42,50] 
High-interest rate  • • [23,30,40,41, 

44,50] 
Refinancing risk – Inability to secure loan refinancing due to mismatch 
between short loan terms and project lifetime.  

• • [24] 

Currency risk - Foreign exchange challenges leading to cost-revenue 
mismatch  

• • [12,16,24,28, 
41,52,53] 

Limited domestic investor capital  • [8,12] 
Risk of price volatility within a stable policy regime • • [20,30,53] 
Poor economic conditions  • [28,41,49,50] 
Limited experience in the financial sector and domestic investors’ lack of 
familiarity with RE  

• • [22,24,48,49] 

Off-taker risk - Revenue uncertainty due to default by off-taker, potential 
customers with insufficient financial track records, unwillingness to pay, 
low affordability, seasonal income  

• • [12,22,28,30, 
40,41] 

Market Sensitivity of competitiveness of RE to prices of conventional energy 
sources  

• • [16,23,41,43, 
44,50,53] 

Market fluctuations due to speculative markets, e.g., land, foreign 
exchange markets  

• [28] 

Market distortion issues: Market access barrier, non-market-oriented 
research for solar energy technology and application, unavailability of 
investment-ready projects   

• [22,24,29,42] 

Limited market and consumer data availability  • • [8,22,51] 
Vulnerability to external market volatility due to dependence on imports  • [29] 

(continued on next page) 
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4.2. Risk identification methods 

Painuly et al. [34] broadly identified the following three com
plementing approaches to identifying barriers in RE: analysis of existing 
literature via literature survey, insights from site visits to existing pro
jects and interactions with stakeholders through interviews and ques
tionnaires. In application, scholars mainly use three qualitative risk 
identification approaches: analysis of previous studies via literature re
views, survey/questionnaires, interviews, or a combination. 70% of 
papers studied reviewed existing literature for barriers and risks related 
to similar locations or technologies. 27% of studies used a combination 
of literature review and surveys or interviews to identify risks. Malhotra 
et al. and Egli et al. [12,20] conducted a combination of literature re
view and exploratory interviews to identify the most relevant risk given 
the location, technology, and timeframe of the study. While Mohamed 
et al. [55] used a combination of literature reviews to establish risks and 
questionnaires/surveys to identify important risks. Schmidt et al. [8] 
iteratively used a combination of field research (including interviews) 
and literature review to identify barriers and mitigation measures for RE 
investments in Indonesia. Wells et al. [46] used interviews for risk 
identification. 

Literature review provides a good starting point and can allow an 
expanded review of barriers that could be applicable, whilst interviews 
can help narrow down specifics and provide further insights on in
terdependencies. Most studies that used interviews for risk identification 
went on to further analyse or evaluate risks. 

5. Methods for RA, evaluation, and mitigation 

RA involves understanding the causes, probabilities of occurrence 
and impact of risks [37]. Risk evaluation uses the output of RA to 
compare risks, their priorities and whether they are tolerable. The most 
relevant risks can then be focused on for risk mitigation. 

Options for risk mitigation as set out by ISO 31000 include risk 
avoidance by not progressing the activity, taking the risk, removing risk 
source, changing likelihood or consequence, and risk sharing [37]. The 
process involves iteration between risk mitigation and evaluation as 
control is evaluated to test for acceptable risk reduction. A risk could be 
deemed acceptable if the cost of mitigation outweighs the benefits or the 
level is considered low against what is tolerable. 

Risk assessment can be qualitative, quantitative, or semi-quantitative 
or a combination [37]. Ioannou et al. [33] conducted a systematic 
literature review of risk assessment methods and grouped findings into 
quantitative and semi-quantitative methods. Findings on methods are 
grouped using categorisation by Purdy [37]. Table 3 summarise findings 
categorised based on location, technology type, method, and validation 
methods where specified. 

5.1. Qualitative methods 

Qualitative risk methods are subjective assessments typically used 
when numerical data are inadequate, unavailable, or limited resources 
[57]. It may involve assessing the probability and impact of risks and 
identifying mitigations using subjective techniques. Methods applied in 
reviewed literature include interviews and literature surveys. Qualita
tive analysis is simple and can explain mechanisms that drive invest
ment risks. 

5.1.1. Literature reviews and analysis 
Studies have identified barriers and recommended mitigations by 

reviewing and analysing data from existing literature. Studies [43,44, 
49,50] identified barriers to RE applications in Africa. They recom
mended mitigations such as adequate and enforceable policies with 
strong political will in financial and subsidy incentives, compensation 
for land use and encouragement of community participation or owner
ship to mitigate security issues. In these studies, the feasibility and 
impact of the mitigations were not further analysed. 

5.1.2. Exploratory and structured interviews with literature review 
Schmidt and Diemuodeke et al. [8,49] identified barriers to RE uti

lisation and possible mitigations. Schmidt et al. [8] conducted a barrier 
analysis to identify barriers, understand risks and consider measures to 
assist investors for RE based village grids in Indonesia. They identified 
that barriers could be along local, national, or international levels at 
project phases. Through interviews with investors, mitigations such as 
improving access to finance, policy reforms and fossil fuel subsidies 
redistribution were identified. 

5.2. Semi-quantitative methods 

Semi-quantitative methods have the flexibility to consider statistical 
and non-statistical risks [33]. These methods are characterised by in
terviews and placing numerical values to risk levels and priorities. The 
following section discusses three broad semi-quantitative methods 
identified in the literature: exploratory and structured interviews, mul
ticriteria decision analysis (MCDA) and system dynamics (SD). 

5.2.1. Exploratory and structured interviews 
Malhotra et al. [12] conducted structured interviews to refine risks 

identified in literature and obtain quantitative ratings of likelihood and 
impacts using Likert scale. The authors determined the contribution of 
each risk category to the cost of capital using an approach proposed by 
Waissbein et al. [58]. The limitation with this method is risks were 
considered independently. The authors determined the effect of spatial 
diversification strategies on levelized cost of energy as a means of 
addressing risks and found that risk profiles of mini-grid projects can be 

Table 1 (continued ) 

Risk Category Risk Factors Developed 
country 

Developing 
country - other 

Developing 
country - SSA 

Reference 

Curtailment Lower revenues due to unplanned curtailment, e.g., grid bottlenecks • • [12,20] 
Social Inability to gain buy-in and trust of constituents for development of mini- 

grid 
• • [25,40] 

Construction of social relationship network in an unfamiliar investment 
environment  

• • [28,40] 

Poor understanding of customer needs or usage patterns  • • [8,50] 
Public resistance to change to RE technology  • • [12,28,42,48, 

49] 
Poor awareness of solar benefits   • [42,48–50] 
Instability caused by social events, e.g., riots  • [28,52] 
Uncertainties in consumer technology adoption pattern and societal 
attitudes 

• [47] 

Environmental Public resistance to projects due to environmental influence  • [28] 
Force majeure e.g. due to natural disasters  • [28,52] 

*Countries are grouped based on the United Nations classification [54]. 
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Table 2 
Risk identification methods and categories in the reviewed literature.  

Risk 
identification 
method 

Region 
(Technology) 

Reference Risk category Risk and barrier categorisation rationale 
according to: 

% of 
reviewed 
papers 

Technical Resource Policy/ 
Regulatory 

Political Economic Market Social Environmental Curtailment No 
categorisation 

Location Stakeholders 
and location 

Project 
development 
stages 

Literature 
reviews 

China, India, 
Brazil, Mexico, 
Russia, 
Indonesia, 
Turkey (Wind) 

[52]    • • • • • 70% 

USA, 
Netherland, 
Japan, Norway 
(RE) 

[25] • • • • •

Africa (RE) [23] • • • •

Developing 
countries (RE 
Minigrid) 

[22]   • • • • • •

Philippines (NS) [41] • • • • • • •

Nigeria (RE, 
fossil) 

[51]   • • • •

RE generation 
projects 

[36] • • • • •

Nigeria (solar) [43]   • • • •

Nigeria (Grid 
solar) 

[42] • • • • • • •

Worldwide (RE) [24] • • • • •

Worldwide (RE) [53]          •

Asia (Solar PV) [30] • • • • • •

Brazil 
(Distributed 
system) 

[27]     • •

Developing 
countries (RE 
Mini-grid) 

[40] • • • • • • •

Rwanda 
(decentralised 
RE and hybrid) 

[16] • • • • • •

China (Wind) [29] • • • • •

54 developing 
countries (Grid 
and 
decentralised 
Solar) 

[28] • • • • • •

Germany, France 
(wind) 

[26]   • •

Corte d’Ivoire 
(RE) 

[48] • • • • • • • •

Africa (RE) [50] • • • • • •

South Africa 
(RE) 

[44] • • • • • • • • •

Exploratory and 
semi- 

UK (RE) [46]   • • • • 3% 

(continued on next page) 
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Table 2 (continued ) 

Risk 
identification 
method 

Region 
(Technology) 

Reference Risk category Risk and barrier categorisation rationale 
according to: 

% of 
reviewed 
papers 

Technical Resource Policy/ 
Regulatory 

Political Economic Market Social Environmental Curtailment No 
categorisation 

Location Stakeholders 
and location 

Project 
development 
stages 

structured 
Interviews 

Literature 
reviews and 
survey 

China (EV 
charging 
infrastructure) 

[56] • • • • 7% 

India (Grid & 
decentralised 
Solar) 

[55] • • • •

Literature 
review, 
Exploratory 
and semi- 
structured 
Interviews 

India (Mini- 
grids) 

[12] • • • • 20% 

Literature 
review, 
Exploratory 
Interviews/ 
focus group 

Middle East 
(Power plant) 

[45]        • •

UK, Germany, 
Italy (wind, 
solar) 

[20] • • • • •

Indonesia (RE) [8] • • • • •

UK (Energy 
transition) 

[47] • • • •

Nigeria (RE) [49] • • • • • • •

NS - not specified in the literature. 
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Table 3 
Review of methods for RA, evaluation, and mitigation.  

RA, evaluation, and mitigation methods Region (System) Reference Application Risk category Validation 

RA & 
Evaluation 

Risk 
Mitigation 

Technical Resource Policy/ 
Regulatory 

Political Economic Market Social Environmental Curtailment 

Qualitative 
methods 

Literature review Nigeria (solar 
development) 

[43]  • • • •

Literature review South Africa (RE) [44]  • • • • • •

Literature review Africa (RE) [50]  • • • • • •

Literature review and 
questionnaire 

USA, Netherland, 
Japan, Norway (RE – 
grid and decentralised) 

[25]  • • • •

Literature review and expert 
Interview 

Indonesia (RE) [8]  • • • • Interviews 
Nigeria (RE) [49]  • • • • • • •

Semi- 
Quantitative 
methods 

Literature review, Structured 
Interview 

UK, Germany, Italy 
(wind & solar) 

[20] • • • • Literature data and 
interviews 

Structured and exploratory 
interviews with Linkert scale 

India (mini-grids) [12] • • • • • •

Expert Interview with Delphi 
and Fuzzy set theory 
establishing likelihood and 
impact 

Germany, France 
(wind) 

[26] • • Expert interview 
data 

AHP, Interviews/survey and 
Literature reviews 

India (Grid & 
decentralised Solar) 

[55] • • •

Fuzzy AHP and Interview Asia (Solar PV) [30] • • • Literature review, 
expert interviews 

ANP-Cloud and Interviews with 
Delphi 

Middle East, Russia, 
India (Grid & 
decentralised Solar) 

[28] • • • • • •

ANP-Cloud and Interviews with 
Delphi for RA and fuzzy 
comprehensive assessment 
method for evaluation 

China (EV charging 
infrastructure) 

[56] • • • Expert interview 
with SA 

Literature review combined 
with Interval type 2 (IT2) fuzzy 
DEMATEL 

China, India, Brazil, 
Mexico, Russia, 
Indonesia, Turkey 
(Wind) 

[52] • • • • • • • Robustness check 
with IT2 fuzzy 
TOPSIS 

SD, cost-benefit analysis and SA 
(Assess policies for promoting 
solar PV) 

Taiwan (Solar PV), 
Taiwan (Solar PV and 
heating) 

[10,66]  • • Reproduction of 
historical data 

SD and SA (Assess policies for 
promoting solar PV) 

China (Solar PV) [67]  • •

SD with scenario analysis (To 
evaluate policy effect on PV 
competitiveness 

Spain (PV grid) [68]  • •

SD China (RE) [29] • • • • Expert Interview 
Middle East (Power 
plant) 

[45] • • Interviews, focus 
groups 

SD Malaysia (Solar PV) [65]  • • Boundary accuracy 
and structural 
verification per [74] 

Quantitative 
methods 

TE analysis with SA Rwanda (decentralised 
RE and hybrid) 

[16] • • • • • •

SA and MCS combined with 
cashflow analysis (MAD) and 
real options approach 

Indonesia (wind) [70] • • • • • • •

TE analysis and MCS combined 
with SA 

Brazil (Distributed sys - 
diesel, gas) 

[27] • •

(continued on next page) 
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made more attractive by aggregating projects in a spatially diverse 
portfolio. 

Egli et al. [20] drew on a mixed-method approach using existing 
literature data and exploratory and structured interviews combined with 
the Borda count method to identify and refine findings on the most 
important risks (given the context of technology, timeframe, and loca
tion). Borda count was selected for its straightforward interpretation 
and wide use [20]. This approach enabled corroboration and improve
ment of validity of findings. Network text analysis of interview data was 
used to identify risk drivers and links between risk types. Technology, 
price, policy, curtailment, and resource risks were most important to RE 
investments, with levels changing over eight years. The authors subse
quently put forth a techno-economic model that considers the revenue 
impact of relevant risks. There was no analysis done on actions that can 
reduce risk levels. 

Gatzert et al. [26] developed a framework for studying policy risks 
for RE investments. The authors used interview and fuzzy Delphi 
probability prediction method to obtain the likelihood and impact of the 
considered policy risk scenario. Mozuni et al. [59] defined Delphi as a 
survey technique used to gain consensus knowledge from a group of 
experts over multiple rounds. The model was calibrated using expert 
interview data for two countries and Delphi technique. 

5.2.2. MCDA 
MCDA is a family of decision support analysis methods used in the 

energy sector to evaluate alternative energy sources, policy analysis, 
decision-making, and consideration of risk perceptions due to their 
ability to incorporate multiple actors’ opinions [33,60]. MCDA methods 
rely on relationships such as priority and outranking. It takes judge
ments from stakeholders to evaluate weighted priorities of decision al
ternatives. With regards to its application to risk assessment, outputs are 
usually in the form of risk ranking. The methods have therefore been 
applied to RA and evaluation. MCDA methods encountered in literature 
include Analytical Network process (ANP) [28,56], Analytical hierarchy 
process (AHP) [30,55] and decision-making trial and evaluation labo
ratory (DEMATEL) [52]. 

In the ANP method, a pairwise comparison of risks is made [61]. ANP 
allows for feedback and interaction – such that elements in a network 
can communicate with each other [28,62]. ANP combined with in
terviews presents flexibility that enables simultaneous use of quantita
tive and qualitative criteria, including review consistency [62]. For 
instance, Wu et al. [28] used Delphi combined with expert interviews to 
express the probability and consequences of risks in linguistic terms for 
54 countries. The authors used a combination of ANP method to 
determine relationships between risks and weighting of risks and a cloud 
model to express linguistic terms to numerical form and assess risk 
levels. They grouped countries according to risk levels and provided 
recommendations for investors according to risk level. 

Wu et al. [28] used a combination of interviews, ANP for weighting 
calculations and grey fuzzy assessment to prioritise risks for electric 
vehicle (EV) charging infrastructure, thereby identifying critical risk 
factors to be managed. The result shows that operation incomes, costs, 
industrial standards, and technical risks factors were most important. 
Robustness checks carried out include sensitivity analysis testing impact 
of (i) subjectivity in human judgement and (ii) expert sample size on risk 
values. Risk mitigations were suggested but were not further evaluated 
for their effectiveness. 

AHP can also translate qualitative inputs into numerical relations. 
Mohamed et al. [55] used AHP to identify major risks and weightings, 
while Kim et al. [30] used a combination of interviews and fuzzy AHP to 
determine financial risk factors as the most important. The study showed 
differences in the relative importance of risk factors for the different 
stakeholders, which is essential in determining specific risk strategies. 
Fuzzy AHP considers that there is uncertainty in the human 
decision-making process. Although AHP conducts a pairwise compari
son, it assumes factors in the hierarchical structure are independent, Ta
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making it unsuitable for representing complex systems [63]. 
Qui et al. [52] applied combined two MCDA methodologies – In

terval type 2 (IT2) fuzzy DEMATEL to determine risk levels and IT2 
fuzzy VIKOR for risk ranking. The authors further deployed IT2 fuzzy 
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution; 
a fuzzy MCDA method) as a robustness check for ranking. Wang et al. 
[64] used fuzzy DEMATEL for determining which criteria were critical 
from RE investment and policy perspective. None of the reviewed 
studies further quantified risk mitigations. 

5.2.3. SD 
SD combines qualitative and quantitative analysis, including syn

thesis reasoning [29], to identify problems, primary variables, and in
teractions. SD is characterised by feedback loops and time delays to 
model complex system behaviours. The method can be used for sensi
tivity analysis and scenario simulations [65]. 

Liu and Al Mashaqbeh et al. [29,45] evaluated RE investment risks 
using SD and noted that static models could not adequately model RE 
investment risk complexity resulting from interdependencies and 
interactions. 

Al Mashaqbeh [45] developed an SD conceptual model to assess 
non-technical risks for power plants considering interdependencies and 
the dynamic nature of risks. Li et al. [29] studied RE investments risks in 
China and developed an assessment model consisting of technical, policy 
and market risks sub-models to simulate system behaviours as a feed
back system over ten years. The study determined how risk importance 
changes over time, which is vital for investment timing. Although the 
study analyses technical, policy and market risks, including interactions, 
it could be further improved by expanding to analyse other applicable 
risk factors to understand their importance. Risk mitigations were not 
explored in the study. 

Another set of literature has deployed SD for policy assessments in 
support of RE investments. Hsu et al. [10] used SD with cost-benefit 
analysis to assess policies for promoting solar PV applications such as 
feed-in tariffs (FiT) and capital subsidies to achieve solar PV installation 
and CO2 emission reduction targets under various conditions. Results 
showed that goals might be attained by applying reasonable FiT or 
subsidies, including some compulsory regulations and punitive mea
sures. Historical data on solar PV installations between 2001 and 2010 
in Taiwan were used to validate the model. 

Trappey et al. [66] used a cost-benefit evaluation methodology based 
on SD to assess the effectiveness of policies and the corresponding 
benefits for carbon reduction. Guo et al. [67] used SD with sensitivity 
analysis to evaluate China’s policy environment and interaction with 
variables considering technical and economic factors. The model was 
used to explore impact of policies on PV power generation, investment 
and installed capacity over 20 years. A limitation of the model is that it 
did not consider interactions such as energy sources, social, political 
factors with PV system investments. Movilla et al. [68] used SD to 
analyse the dynamic behaviour of the Spanish PV market under different 
support policy scenarios to assist policymakers in designing energy 
policies. Results indicate that the sector would be profitable with 
continued policy support and a gradual subsidy reduction with PV de
velopments. The model was validated by reproduction of historical data. 

5.3. Quantitative methods 

Quantitative risk-based evaluation methods deal with statistical data 
and probabilities to determine risk levels, consequence analysis and risk 
reduction via numerical or computer-based models. Quantitative 
methods identified in the literature include Monte Carlo simulation 
(MCS), Sensitivity analysis (SA) combined with techno-economic (TE)/ 
cashflow analysis, and agent-based modelling (ABM). 

5.3.1. TE/cashflow analysis with MCS or SA 
SA and MCS were combined with TE in the reviewed literature. TE 

combines technical parameters and financial metrics to assess the eco
nomic potential of a project. 

SA is a simplified method that enables identification of the most 
impactful variables. For example, Okoye et al. [69] conducted SA to test 
the effects of fluctuations in inflation rate, loan interest rate, electricity 
price, loan repayment time, and income tax rate on NPV. 

MCS is a method that allows for uncertain input parameters and can 
be employed to produce probabilistic valuation models which incorpo
rate risk [33]. MCS has been applied widely in literature and integrated 
into financial models to determine cashflows and investment criteria 
ranges. MCS has been used in combination with other techniques such as 
SD [16,27], real options and cashflow analysis using market disclaimer 
approach (MAD) [70] and ABM to improve robustness of the model. 

For instance, Williams et al. [16] conducted a quantitative study 
considering a range of scenarios, including various technologies and 
tariffs, to quantify the effect of technical design and business model on 
investor risks. Deterministic SA was used to identify important un
certainties. Probabilistic SA determined variables that contributed most 
to project risks as fuel price, foreign exchange rate, demand for elec
tricity, and price elasticity which vary depending on technology and 
tariff structure. 

Zaroni et al. [27] assessed the economic risk associated with 
decentralised energy systems in Brazil using MCS. Although not an RE 
system, the method is considered applicable, therefore included in this 
review. Similar to Williams et al. [16], a deterministic SA was performed 
to rank input variables by associating the variables with probability 
distribution functions (PDF). Using MCS, mean peak energy price, 
generators parameter, and fuel price were determined as the most 
impacting variables on NPV PDF. 

Kim et al. [70] proposed a framework for investment decisions in RE 
projects for developing countries at planning, design, and construction 
phases. Steps employed in the study included cashflow analysis, real 
options valuation of RE project using 3-point estimate and MAD 
approach. SA and MCS were conducted to identify influential variables 
(tariff, energy production) and quantify their impact to arrive at de
cisions at the different project phases. Real options allow for incorpo
ration of investor choices in decision making in the model. The authors 
emphasise risks associated with revenues and did not consider un
certainties in capital costs, such as access to affordable capital or policy 
changes during project phases. 

Gatzert et al. [26] determined the impact of mitigations, e.g., 
changes in FiT and cross-country diversification, on risk-return profile 
using cashflow analysis with MCS and SA. Cross-country portfolio 
diversification and increased FiT over a short period were found to 
decrease the impact of policy risk on the risk-return profile. In deter
mining this impact, the study assumed the independence of policy risk 
factors. 

Bhattacharyya et al. [15] used discounted cashflow analysis to assess 
the viability of new policies to attract private investments in rural India 
when applied to small scale mini-grid and large-scale grid connect solar 
PV systems. The authors found mini-grid support such as subsidies or 
low-interest debt would be required to attract private investments under 
the studied policy regime, while large-scale solar projects were an 
attractive proposition for investors. The impact of risks on cashflow was 
not included in the analysis. 

All the reviewed studies did not consider the interactions or in
terdependencies between risk factors. 

5.3.2. ABM 
ABM is a dynamic model consisting of agents with an ability for 

learning. It allows representation of behaviours and feedbacks of agents 
such as investors, consumers, policymakers by representing discrete 
decision-makers and focusing on agent decisions and interactions over 
time [71]. 

ABM was not used to assess risks in the reviewed literature but was 
used to evaluate policy effectiveness. These policies could be viewed as 
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mitigations or responses to barriers. ABM has been widely used in 
market diffusion, technology adoption, policy evaluation for climate 
targets and investments. Schiera et al. [31] used ABM to assess the 
impact of regulatory schemes on adoption of rooftop PV. Zhang et al. 
[31] integrated ABM, real options and social networks to assess RE 
adoption. The model incorporates the customer risk preferences into real 
option decisions to determine the customer’s willingness to invest. 
Chappin et al. [72] developed a modular ABM approach to explore 
electricity and emissions policies that can interact with each other and 
tested its robustness under uncertainties of input parameters such as fuel 
price and demand. Al Irsayd et al. [73] used ABM to evaluate policy 
effect on solar PV investments, emissions, and economic output. 

6. Discussion 

This section introduces a conceptual holistic framework for invest
ment risk management to identify factors that can improve investor risk 
profiles. It further highlights key findings from the literature review, 
comparing methods used for risk assessment and mitigation. Findings 
are further discussed from an SSA perspective, drawing on existing 
literature to identify suitable methods. 

6.1. Holistic multi-dimensional investor risk management framework 

‘RE investment risk evaluation is a complex system’ [29]. Complex 
systems can be defined as many interacting parts known as actors, 
agents, or components [76]. Interactions between agents and their ac
tions can result in effects that cannot be easily predicted by studying the 
individual agents. The impact of actions such as policy changes within 
these interactions can be better understood by identifying actions taken 
by the combination of actors [77]. This perspective can enable identi
fication of impactful policies to mitigate risks. 

The framework presented in Fig. 4 addresses four limitations 
observed in the literature, which may have been addressed in a frag
mented manner within the existing body of literature. 

Firstly, in assessing investment risks, many studies have focused only 
on techno-economic factors [27,40,70] or one key risk factor, e.g. 
Ref. [26]. Policy analysis has traditionally focused on techno-economic 
uncertainties. However, an inclusive, multidisciplinary approach that 
considers other perspectives enables more suitable solutions to address 
risks [47]. 

Risks need to be considered contextually. Policymakers and investors 

need to consider impact of location-specific risks, e.g., TE models may 
not incorporate location specific social risk factors in the analysis of 
investment parameters. Overlooking the impact of socio-economic risk 
factors such as affordability can lead to revenue risks. During decision 
making, investors need to consider the impact of human behaviours, 
such as a person’s willingness to pay for and adopt a technology, on 
investments [78]. 

Secondly, many studies have addressed risks independently without 
considering interdependencies and interactions within the complex 
system. RE deployment involves actions and complex interactions be
tween actors such as investors, developers, financing institutions, poli
cymakers, regulators, and customers of various demographics. These 
interactions can be driven by factors such as environment, decisions, and 
actions taken by actors [77], which can be driven by risks resulting from 
multi-dimensional factors, e.g. social, market, economic, technical, po
litical factors. For example, without considering interdependencies and 
feedback, it may not be apparent that a fossil fuel subsidy policy can 
introduce additional market risks for RE investments and may subse
quently impact investments over time. 

Thirdly, many studies do not consider the dynamic nature of risks. 
Risks can change over time, e.g., technological advances, the impact of 
policy change [20,68] and across project phases [36,41]. Understanding 
the dominant risk factors at a given project phase and period can provide 
focus on relevant risk and timely mitigations. 

Lastly, whereas different aspects of risk management have been 
studied separately, the framework calls for a holistic approach to iden
tifying, assessing, and mitigating priority risks using the ISO 31000 risk 
management guideline. By systematically following risk management 
guidelines and applying the multi-dimensions of risks and their in
teractions, an assessment of associated risk factors and their relative 
importance in terms of impact on investment decisions can be made. 
This can provide a more impactful approach to mitigating risks. The 
framework can be applied from different stakeholder and location 
perspectives. 

6.2. Key findings on risk identification and methods 

Out of the reviewed literature, 30% of papers identified risks and 
barriers applicable to SSA countries while 43% and 8% applied to other 
developing and developed countries, respectively. It is noted that 
although some investment risks categories can be generalised between 
developing (including SSA) and developed countries, risk causal factors 

Fig. 4. Proposed conceptual ‘holistic multi-dimensional investor risk management framework’. 
Source: Adapted from Refs. [9,11,35,47]. 
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and their level of impact may not be the same. For instance, developed 
country technical risks can be attributed to technological issues related 
to efficiencies, commercial availability of technologies and limited 
research and development [25,47]. In contrast, technical risks in 
developing countries include hardware quality and availability issues 
due to importation, limited availability of skilled personnel from project 
development through execution, competing alternative technology and 
technology novelty [8,12,40,43]. Policy risk levels also differ. Whilst 
developed country investments are open to risks due to retroactive 
changes in policy and tariffs, developing countries include policy in
consistencies and implementation uncertainties, insufficient policy 
frameworks for supporting investment and uncertainties in grid exten
sion plans [20,28,47,51]. The dimensions of social and economic risk 
factors also vary significantly [20,26,40,47,50,79]. Developed countries 
social risk factors comprise uncertainties in technology adoption, 
changes in societal attitudes and demography. Social risks for devel
oping countries can result from resistance to change due to lack of 
awareness of RE benefits, and revenue and demand uncertainty due to 
socio-economic conditions such as willingness to pay and low afford
ability. Although high implementation costs affect all countries, devel
oping countries face further economic barriers, including lack of access 
to affordable capital, high cost of capital, the competitiveness of RE 
compared to alternatives, payment default, and limited domestic in
vestors experience with RE [20,22,28,40,42]. 

In the review of risk identification methods (Table 2), literature re
view was the most prominent method, followed by interviews with 
literature review. Although easy to implement, literature review may 
not adequately identify relevant location-specific risks. Additionally, it 
neither captures the dynamic nature of risks that may vary across project 
phases and stakeholders nor provides an understanding of risk in
terdependencies with other risks and actors. It can be refined by sup
plementing with surveys or expert interviews. Results depend on the 
diversity and experience of the experts as well as the depth of interviews. 
Methods such as Delphi have been used in literature to achieve a 
consensus between experts [62]. Risk levels determined via expert in
terviews could be influenced by the number of experts and their sub
jective judgement. Therefore, it may be necessary to perform a SA to test 
the robustness of the responses [56]. 

6.3. Key findings on RA, evaluation, and mitigation 

Of the reviewed literature, MCDA methods and TE or cashflow 
analysis with MCS and SA were most widely used for RE RA and eval
uation. SD and ABM were mainly used to determine the effectiveness of 
risk mitigation approaches. 

The impact of uncertainties on investment matrices has been tested 
by applying SA to TE [69]. Although easy to communicate, sensitivity 
changes are typically random without regard for the relative importance 
of the variables; this does not provide a reasonable basis for decision 
making [80]. 

TE has also been combined with interviews, SA, MCS and real op
tions analysis in the case of Kim et al. [70] for RA and evaluation. In 
these studies, SA was used to quantify the impact of variables and MCS 
to identify the most important variable. Incorporating MCS to un
certainties in input parameters also produced probabilistic outcomes for 
cashflows. The results’ accuracy depends on the statistical modelling of 
input variables and probability distribution function [33]. Input vari
ables need to be statistically independent to prevent misinterpretation of 
results. Therefore, these methods did not account for feedback re
lationships between variables. 

Furthermore, the sensitivities were only related to economic and 
technical risk factors. Williams et al. [16] noted the gap in quantifying 
risks for rural microgrids in SSA. They developed a TE model to quan
titatively assess the impact of risk drivers on the business model and 
technology decisions using SA and MCS. However, the authors did not 
evaluate the effectiveness of the proposed risk mitigations. Further, 

although a detailed assessment of risk drivers was carried out, in
teractions between various risk drivers were not assessed. For example, 
it was considered that exchange rate impacts fuel price fluctuation; 
however, it was not considered that this could impact consumer 
disposable income, thereby changing demand patterns and thus 
affecting investor revenue. 

A range of methods in the MCDA family was used in literature for RA 
and determination of risk priority levels based on interview or survey 
data. Methods used include AHP, fuzzy AHP, ANP-Cloud and IT2 Fuzzy 
DEMATEL methods. The impact of the proposed risk mitigations was not 
explored in the reviewed literature. Although MCDA allows for the use 
of quantitative and qualitative data, a general weakness is the inability 
to accommodate feedback between risks or criteria. Within the MCDA 
family, ANP allows for limited feedback and interaction. However, ANP 
cannot capture uncertainties in relationships due to exact or crisp values 
allocated to pairwise comparison [61]. In literature for decision making 
studies, fuzzy ANP was considered an improvement to ANP whereby 
instead of a crisp value, a range of values was applied to account for 
uncertainties in human judgements. However, fuzzy ANP poses the 
limitation of some alternatives incorrectly being ranked the same and 
consequently being treated equally. Noting this limitation, Hefny et al. 
[63] applied Gaussian fuzzy ANP to improve decision making among the 
alternative power generation scenarios. This method provided a more 
precise distinction between ranking alternatives than fuzzy ANP. 

Gatzert et al. [26] conducted RA and evaluation using Fuzzy set 
theory combined with MCS, SA and cashflow analysis to estimate the 
impact of mitigation measures on policy risk reduction. Interactions of 
mitigations on other risks were not evaluated. 

Complex interactions were modelled using SD and ABM. SD has been 
applied in RA [29,45] and to determine policy mitigation effectiveness 
[10,68]. These SD studies covered environmental, policy, and market 
risks. Al Mashaqbeh et al. [45] indicated that SD could also be applied to 
other risk areas. SD allows for modelling of complex systems from a 
cause-effect perspective which enriches analysis capabilities of the 
model [65]. SD requires comparably less quantitative data for building a 
model than ABM [72]. SD has its limitation in representing social in
teractions within social networks that can generate diversity of behav
iours in individuals, such as willingness to adopt new patterns [70]. In 
comparison, ABM can be applied when choices and behaviours need to 
be incorporated into investment preferences. Although SD requires 
long-term data for model development and validation, the validation 
process is more structured than ABM and gives emphasis to qualitative 
information [71]. 

Movilla et al. [68] developed an SD model to simulate different fu
tures against various policy scenarios. The model’s validity was tested 
by reproducing historical data prior to running scenarios. Scenario re
view shows how policy changes may affect investments. The authors 
appear to assume that the investment decision parameters are solely 
payback period and profitability. Other investment decisions drivers 
that could be considered include portfolio comparison rather than in
dividual projects, checks against investment criteria, NPV, debt service 
coverage ratios, political, and environmental drivers. Modelling in
vestors as part of the SD model could improve the authenticity of the 
analysis. 

Liu et al. [29] quantified the most important risks over time based on 
interactions with the system and other risks. The model was able to show 
that dominant risks change over time based on feedback loops. The 
authors note that risks considered were not exhaustive, which could 
impact system feedback loops. For example, one of the scenarios simu
lated reviewed the effect of increasing tariff subsidies; the resulting 
system behaviour was that policy risks decreased over time. As the 
government or regulatory body was not modelled as a separate actor, the 
developed system would not capture responses from the regulator. Such 
response could be to continue increase in tariff subsidies as modelled 
(this is unlikely due to limitation in budget), or where risk of policy 
change declines, the regulator could decrease or maintain a maximum 
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tariff increase. This interaction or learning behaviour could be modelled 
using ABM due to its capability to model non-optimal decision-making 
and simulate learning behaviour of agents [81,82]. 

6.4. Review of risks from SSA perspective 

RE investment risk is multi-dimensional, dynamic, location and 
stakeholder dependent. In addition to the risk factors discussed in sec
tion 6.2, further specific factors are highlighted for SSA. These include 
lower levels of in-country technical skills in manufacturing and imple
mentation, insufficient supporting policy frameworks such as low sup
port for foreign direct investments, high-interest rates and taxes, and 
policy uncertainties [23,44,48,50]. Studies highlighted socio-cultural 
and behavioural barriers such as poor awareness and negative percep
tion of RE, security issues, non-involvement of relevant experts in 
decision-making, political, market, access to finance, and economic 
barriers [44,49,50]. Some studies looked into barriers to solar devel
opment, given its abundance in Africa [42,43] and cited political will, 
policy, incentives, availability of market data and security challenges as 
some of the barriers to implementation [42,43]. 

Within the same country, risk dimensions also vary across 
geographical areas and jurisdictions at national, state and local levels, as 
observed by Schmidt and Malhotra [8,12]. For instance, the importance 
of variability in demand due to population distribution patterns will 
vary between urban and rural areas characterised by low density, 
dispersed populations, and low incomes levels. Sparse populations 
require increased distribution infrastructure leading to elevated cost of 
development [83]. These differences will affect risk perception and risk 
levels and thus affect investment decisions. Therefore, to better under
stand effects and design appropriate measures to reduce risks and 
improve investments, it is necessary to focus on specific locations at 
local levels as implemented by Malhotra [12]. For example, aggregation 
of a spatially diverse portfolio can be a means to improve the risk profile 
whilst improving energy access. 90% of studies related to risk identifi
cation for SSA were carried out via literature survey. The studies can be 
improved via expert interviews using the Delphi method to provide a 
consensus of findings. 

In determining suitable methods to assess these risks with a view of 
providing effective mitigations in form of policy actions, the following 
could be considered:  

(i) Conformance to ISO 31000: Method(s) should have a holistic 
approach to assessing key investment risks and identifying 
mitigations.  

(ii) SSA risk factors are multi-dimensional, and methods should be 
capable of assessing risks across technical, social, economic, 
market, policy, environmental and political perspectives. Due to 
the complex nature of risks and interdependencies, the method 
should have the capability to estimate interactions between risk 
factors and agents.  

(iii) One of the reported barriers in SSA is the limitation in availability 
of market data [48,51]. In the absence of detailed data, a quali
tative or semi-quantitative method is more appropriate to 
determine risk priorities 

(iv) and assess the effectiveness of mitigations, thus ensuring a ho
listic approach. 

Table 4 shows a comparison of methods with their capability to 
conform to the considerations set out above. 

MCDA methods and cashflow analysis with MCS and SA have been 
widely used in other developing countries such as China for RE risk 
assessments. Apart from ANP, these methods are unable to model risk 
interactions. However, ANP has limitations in assessing effectiveness of 
mitigations which can be tested using ABM and SD. 

SD provides an alternative to the reviewed methods because it can 
model interactions in a complex energy system. This feedback 

relationship can enable analysis of risk factors and the effect of their 
interactions. For example, it is possible to represent the circular effect of 
increased electrification on productivity and income, and subsequently 
the increased demand, which can lead to reduced revenue uncertainties 
and enhanced returns, leading to potentially more favourable invest
ment decisions in the long term. 

Although SD model development requires large data sets from both 
quantitative and qualitative sources, it has an advantage over ABM, 
which requires significantly more data in areas of model validation. SD 
was not used in the reviewed literature to assess social and political 
risks, possibly due to its limitation in representing social interactions; 
this can be complemented with ABM. ABM can be used to estimate be
haviours of heterogenous agents acting independently. Such behaviours 
could be driven by socio-economic factors that impact revenue and in
vestments. For instance, individual behaviour can be driven by socio- 
economic factors such as income seasonality, RE perceptions or avail
ability of alternative traditional energy. These can drive demand vari
ability, thus impacting revenue. Individual and investor behaviours can 
be modelled with ABM due to its capability to provide realism to 
modelling. ABM and SD methodologies have been combined to support 
policy analysis for grid systems. Zhao et al. [75] integrated SD into ABM 
framework to evaluate effectiveness of policy incentives to encourage 
PV systems adoption by incorporating consumer behaviour. The 
modelling framework comprised a 2- level simulation. On the higher 
level, the model is comprised of an ABM to simulate the customers’ 
behaviour on adopting PV systems, while on the lower level, ABM and 
SD are employed to calculate the payback period of the PV system by 
different types of households [75]. ABM was used to simulate household 
consumption in the lower level, while SD was used to model the rela
tionship between demand, PV generation, and local grid. The authors 
demonstrated that combination of the two techniques resulted in more 
realistic outcomes. A hybrid SD and ABM methodology for risk assess
ment and mitigation may thus offer more advantages when ABM is 
deployed to complement the SD gaps. 

7. Conclusion 

Decentralised RE systems have been identified as an enabler to 
improving energy access, meeting both SDG and climate change targets. 
Despite national targets, policy reforms and global trends of decreased 
capital cost, RE investments in SSA countries has been lower than 
required. Private investments have been identified as a key enabler to 
bridging the gap. However, there is a high-risk perception of in
vestments in SSA which needs to be reduced to encourage investments 
[9,11]. 

This paper widens the scope of previous reviews of risk methods. 
Through a holistic lens, it provides a review of risk identification, 
analysis, evaluation, and mitigation methods for RE systems. It identifies 
the spatial and temporal distribution of studies carried out for devel
oped, SSA and other developing countries. It is found that RE investment 
risks have been classified broadly according to barriers or uncertainties 
by focusing on location, stakeholders, or project phases. This paper has 
catalogued the various RE risks for developed and developing countries, 
including SSA based on standardised categorisation of risks (technical, 
economic, market, policy, social, resource, environmental, curtailment). 
Developing and developed countries face the same risk categories driven 
by different dimensions of factors. For example, social risk factors may 
include uncertainties in technology adoption and changes in societal 
attitudes in developed countries. In developing countries, these can 
result from resistance to change due to lack of awareness of RE benefits. 
It was also found that RE risk dimensions may differ according to 
geographical locations within the same country across national and local 
levels. Consequently, in providing impactful mitigations to improve risk 
profiles, it is necessary to consider distinct characteristics of locations 
across jurisdictional boundaries, e.g., national, state, local levels or 
based on demography, e.g., across urban, peri-urban, or rural locations. 
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Table 4 
Comparative review of risk methods.  

Application Method Literature reviews MCDA Cashflow/TE analysis SD ABM 

Criteria *Interviews/surveys Fuzzy 
ANP 

Fuzzy AHP, 
IT2 Fuzzy 
DEMATEL 

TE analysis 
and expert 
interview 

TE or 
Cashflow 
analysis, SA 
and MCS 

Risk Management Risk 
Identification 

Identify specific 
risks 

• •

Risk Analysis Estimate 
probability and 
impact of risk 

*• • • • • •

Assess and estimate interaction between SSA risks factors: 
Technical, 
Resource  

• • •

Economic, 
Finance, 
Market, 
curtailment  

• • •

Social  • •

Political  • NS •

Policy/ 
regulatory  

• • •

Risk 
Evaluation 

Quantify risk 
priority  

• • • • • •

Risk 
Mitigation 

Estimate effectiveness of policy actions in mitigating investment risks factors 
Technical, 
Resource    

• • •

Economic, 
Finance Market    

• • •

Social       •

Political      NS NS 
Policy/ 
regulatory     

• • •

Strengths  1. Relatively easy to 
implement  

1. AHP, IT2 fuzzy & ANP 
are easy to understand 
and capable of using 
quantitative and 
qualitative data [62]  

1. Easy to understand and 
simplified  

1. Models complex energy system 
from cause-effect perspective, 
rather than relying on statisti
cally significant relationships 
[65].  

1. Capability to model complex 
systems, host multiple actors and 
represent non-linear, social in
teractions, and RE adoption pat
terns [72].  

2. ANP allows for 
feedback and 
interaction for criteria 
[28,62].   

2. Lower amount of quantitative 
data needed for building a model 
compared to ABM [72].  

2. Allows for individual and non- 
optimal decision-making and 
simulates learning behaviour of 
agents [81]. 

Limitations  1. Generalised and may 
overlook context- 
specific factors.  

1. Apart from ANP, it 
does not allow for 
feedback or interaction 
between risks or 
criteria [30].  

1. Parameter changes are 
typically random and do not 
provide basis for decision 
making [80].  

1. Does not represent social 
interactions within social 
networks [71].  

1. Significant amounts of empirical 
data are required to describe 
social interaction and for 
validation [31].  

2. Limited to risk 
identification unless 
combined with other 
methods  

2. Criteria, weights & 
values depend on 
subjective expert 
judgements [33].  

2. MCS – variables need to be 
statistically independent to 
prevent result 
misinterpretation. Therefore, 
interactions and feedback 
relationships between 
variables cannot be modelled.  

2. Long-term data is required for 
both model development and 
validation [71].  

2. Correct specification of realistic 
behaviour of agents is challenging 
[81].   

3. MCDA methods have 
not been used to 
determine mitigations.     
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This paper also introduces a conceptual framework that provides a 
holistic approach to risk management from identification, assessment to 
mitigation. The framework recognises that RE risks are complex 
involving multidisciplinary perspectives and their interactions with 
other risks, actors, and their actions. It proposes a structured means of 
identifying suitable actions. Actions such as policy mitigations may have 
side effects and interactions with actors and other policies, leading to 
unintended risk impacts. It, therefore, highlights the importance of 
analysing effectiveness of mitigations on risks and investment matrices 
given the interactions. 

In the review of methods, it was found that risks were qualitatively 
identified primarily via literature reviews for SSA. This approach could 
be improved by combining literature reviews, surveys, expert in
terviews, and Delphi for specific locations and technologies. 

RA and evaluation mainly employed semi-quantitative MCDA and 
SD methods for developing countries excluding SSA (where limited risk 
assessment studies were carried out). The reviewed methods assessed 
technical and economic risks at a minimum, while MCDA methods were 
additionally used to assess social, political and policy risks. Most MCDA 
had limitations in estimating interactions between risk factors. SD 
method was found to overcome this limitation due to its capability to 
conceptualise and model feedback relationships. 

Qualitative methods have been used to identify risk mitigations. The 
effectiveness of policy actions in improving investments, meeting 
climate change and national targets have been tested using quantitative 
(ABM, MCS and SA) and semi-quantitative (SD) methods for policy, 
technical and economic uncertainties. SD has been largely employed in 
developing (excluding SSA) countries such as China and Taiwan. Its 
ability to represent investment risk’s dynamic interactions and com
plexities make it a suitable tool for RA, evaluation, and mitigation. Its 
limitations in representing social interactions can be complemented 
with ABM. A hybrid SD-ABM method thus emerges as a powerful tool to 
analyse investment risks in developing countries such as SSA when 
applied within the framework of the ISO 31000 risk management 
guideline. This can provide a structured assessment of risks, identifying 
high priority risks and effective mitigations towards improving risk 
profiles. Such mitigations may include policy actions, policy imple
mentation strategies, incentives, and investor actions, e.g., aggregating a 
spatially diverse portfolio of projects. Risk mitigations may incur asso
ciated costs which need to be weighed against the benefits. The hybrid 
model can be further enhanced by determining the cost-benefit of the 
risk mitigation using cashflow analysis and incorporating real options 
for investment decision making. The development of such a hybrid 
method can provide policymakers with a tool that can be used to test and 
tailor location-specific policies aimed at reducing investor risks and 
consequently improving energy access. 
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Cuza« din Iaşi Ştiinţe Econ 2009;56:643–57. 

[58] Waissbein O, Glemarec Y, Bayraktar H, Schmidt TS. Derisking renewable energy 
investment. In: A framework to support policymakers in selecting public 
instruments to promote renewable energy investment in developing countries; 
2013. New York. 

[59] Mozuni M, Jonas W. An introduction to the morphological Delphi method for 
design: a tool for future-oriented design research. She Ji 2017;3:303–18. https:// 
doi.org/10.1016/j.sheji.2018.02.004. 
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