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A novel quasi-dynamic guidance law for
a dynamic dual-spin projectile with
non-conventional, asymmetric roll
constraints
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Abstract
A novel quasi-dynamic guidance law (QDGL) is presented for a dual-spin projectile (DSP) with unconventional constraints
on roll direction. A 7 degree-of-freedom (DOF) dynamic model is established and the projectile operational mechanism is
presented with a description of how it is used to enact control. The QDGL is presented and a parametric study is
conducted to show how the QDGL parameters affect the system response. A procedure of using batches of Monte Carlo
simulations is described, to numerically compare the system response with different QDGL configurations. A genetic
algorithm is then used to optimise both the innate system parameters and PID controller gains. The disturbance rejection
capabilities of the optimal QDGL are then evaluated along with the performance against different target profiles. It was
found that the GA optimised QDGL is able to provide satisfactory control capabilities against static and dynamic targets.
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Introduction

The calibre of guided weapons is getting ever smaller to
meet the evolving needs of modern engagement scenarios.
This is in turn driving a reduction of critical subsystem
volumes of guidance and control hardware. It is thus
pertinent to develop a novel method of control so as to
either minimise the necessary subsystems occupying
a volume or reduce the demand on subsystems/materials
which are included in the projectile. This would allow
a reduction in calibre with currently available technology
without having to advance the capabilities of any specific
subsystem/material.

Dual-spin projectiles (DSPs), such as STARSTREAK,1

are becoming more prevalent in today’s military arsenals
as they enable a wide scope of target engagement profiles.
The dual-spin configuration slows the roll rate of the forward
section to a point where the response rate of the actuators is
sufficiently high compared to their roll rate such that effective
control can be enacted. The aft section stays at the high roll
rate and the projectile thus maintains gyroscopic stability.
Guidance modules in the form of course corrected fuses are
also being retrofitted onto conventionalmunitions, such as the
Orbital ATKArmament Systems’M1156 PrecisionGuidance
Kit2 andBAE’s Silver Bullet.3 In these largerweapon systems
(155 mm), the roll rate of the projectiles is relatively low

compared to smaller calibres. For smaller projectile calibres
with high roll rates, it may not prove feasible to mitigate the
high roll rates to apply conventional control methods.

Some prevalent examples of conventional guidance
laws (GLs) used in projectiles include proportional nav-
igation (PN), proportional derivative (PD) and sliding
mode control (SMC).4 Conventional SMC or variations
thereof have already considered constraints such as au-
topilot lag and actuator fault,5 accelerator saturation,6 and
modelling uncertainty in missile/target dynamics. Impact
angle is often the considered an aspect for control in a GL.
In addition to purely controlling the impact angle,7 sec-
ondary constraints have also been placed on trajectory
time,8 field-of-view,9–11 and manoeuvrability.12 External
uncertainties and missile jerk have also been considered.13
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Amodified SMCGLwas used to improve the chattering,
miss-distance and finite time over conventional SMC and
PN methods.14 The validity of the PN-like LOS GL has
been investigated for a three body (two aircraft, one missile)
systemwhere the launch platform is alsomoving.15 A novel
variation, called ‘airborne-CLOS’ utilises two separate LOS
rates with one gain to control the three body problem.16

A novel GL has been created utilising virtual targets for
impact angle and burst height constraints.17 A polar GL has
been investigated which controls a missile based on the polar
radius and angle of the target from the missile.18 An ex-
panded 2D PD GL was created for a skid-to-turn command
to LOS anti-tank guided missile, which builds upon classic
PD,with the objective of eliminating a spiral trajectorywhich
is an artefact of PD GLs.19 A proposed method uses
a weighted zero-effort-miss (ZEM) to shape the actual ZEM,
presenting as a PN GL with an extra time varying gain.

A few publications specifically pertain to the guidance
of DSPs. Iterative impact point prediction has been used to
create a GL for a DSP with control force imparted by fixed
canards20. A modified form of projectile linear theory is used
to predict where the projectile will land and make the nec-
essary corrections to the control system. Proportional navi-
gation has been used in the GL of a dual-spin mortar during
the ascent and descent phase.21 The results of the GL were
validated with hardware-in-the-loop testing and Monte Carlo
simulations.

It is a common practice to neglect gravitational forces
when creating a GL.22–25 Once an idealistic GL has been
created, constraints can then be placed on the model which
reflect conditions present in chosen real-world systems. GLs
are often described from the perspective of the YZ plane
(shown in Figure 1) also known as the ‘picture plane’.7,18,19

Some of the cited literature use kinematic models for the
derivation and validation of the control law,8,12,14,15,17

while this paper uses a dynamic projectile model. It is
common to test the GL using arbitrary model parameters
to facilitate more efficient and reliable interpretation of
the results.18,19

Conventional projectile control utilises control surfaces
which are able to adjust the roll angle of a projectile as well as
themagnitude of the control force. The conventional guidance
strategy is to roll the projectile to align the controllable pitch
axis with the desired direction, and then increase the force
by actuating the control surfaces which results in lateral
movement. Dual-spin projectiles use a similar method with
the addition of a coaxial motor to assist the correction of the
forward section roll angle.26 This paper proposes a quasi-
dynamic GL (QDGL) for a DSP, with a fixed roll direction

as well and a fixed magnitude control force; however, the
phase of the force can change, hence the quasi nature.
Control is enacted by adjusting the roll rate of the control
force, slowing it down through certain roll angles to bias the
force in the desired direction. There currently exists no lit-
erature which describes a GL for a DSP with roll-direction,
roll-rate and control-force magnitude constraints.

The section Projectile Dynamics describes the 7 degree-
of-freedom (DOF) dynamic model of the projectile used in
simulations. The section Quasi-dynamic guidance law
formulation introduces the projectile design and describes
how control is enacted with the asymmetric roll constraints.
The QDGL and associated parameters are introduced, with
a brief parametric investigation showing their effect on the
system response. The section Monte Carlo Procedure and
Normalised Errors presents a Monte Carlo procedure which
is used to numerically compare the effect that different
QDGL configurations have on the system response. A
genetic algorithm is then run to optimise the QDGL pa-
rameters as well as the gains of a PID controller. The system
response of the optimised QDGL is evaluated against
various disturbances and target profiles. The final section
gives a summary of the paper and the key findings.

Projectile dynamics

This section describes the seven DOF dynamic model of
the DSP, which has previously been used to investigate
DSPs21,27–29 and is a derivative of the well-establishedmodel
for a conventional projectile used by McCoy.30 Subscript F
denotes the forward section and subscript A denotes the aft
section. The assumption is made that the total centre of
mass (COM) coincides with the aft COM, that is, the
mass of the forward part is small with respect to that of
the aft part and the nose moment of inertia Ixx,F is small
compared to the aft one Ixx,A. The forces and moments
the projectile is subject to are represented by an aero-
dynamic coefficient. The whole body longitudinal CA0,
transverse CY0 and normal CN0 coefficients represent the
combined effect of these individual forces, and are shown
in Figure 2 for non-zero angles of attack α.

The non-linear kinematic translational and rotational
equations are given by equations (1) and (2), respectively
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Accordingly, the dynamic translational is shown in
equation (3)

Figure 1. Dual-spin projectile with fixed control force Fc.
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while the dynamic rotational equation is shown in equation (4)
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Here, M is the Mach number, τM is the motor torque
which controls the roll angle of the forward guidance section
(fF) and τFA is the frictional torque which counteracts this.
The frictional torque can bemodelled as a hydrodynamic and

roller bearing in combination where ks and kv are the static
and viscous friction coefficients, respectively

τF ,A ¼ 1

2
ρSdCA0ðM,α,βÞsgnðpA � pFÞðks þ kvjpA � pF jÞ

(7)

Quasi-dynamic guidance law formulation

This section describes the control method of the DSP
design with unconventional roll constraints. The QDGL is
formulated and the resulting system response is shown. A
brief parametric study is conducted to illustrate how the
QDGL parameters affect the system response.

Most guided projectiles have fins which can roll the
projectile and induce a variable control force along
a pitching axis. If lateral deflection is required, the pro-
jectile adjusts its roll angle such that the axis of the control
force is parallel to the direction of required travel, whereby
it increases the control force and therefore imparts an
acceleration. Figure 3 shows the DSP design; a control
force Fc is produced by aerodynamic lifting surfaces on
the forward section. At launch, the aft section engages
with the rifling which accelerates the roll rate, while the
forward section producing Fc remains de-spun. During
flight, the two sections will reach an equilibrium through
the bearing torque τF,A, and the forward section will have
a relatively slow roll rate, ω0. If τF,A is increased during
flight (e.g. by means of a brake) then there will be new

Figure 2. Projectile coefficients when α ≠ 0.

Figure 3. Earth axis perspective of the picture plane and
control force Fc rotating at rate ω1 through angle f
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equilibrium where the forward section has a higher roll
rate, ω1.

Figure 3 shows the key parameters of the control
method, as well as the YZ plane, referred to as the picture
plane. The constant magnitude Fc moves through a roll
angle fwith rateω0 orω1, whereω0 <ω1. Thef 2 [0, 2π]
describes the roll orientation of Fc with respect to the
normal axis. It sweeps in the negative mathematical di-
rection, since most conventional projectiles have a right
hand twist. The novel guidance strategy proposed herein
uses a fixed magnitude Fc rolling at speed ω1. The roll rate
is slowed to ω0 through favourable roll angles when Fc is
aligned with the desired correction axis, and then accel-
erated back to ω1 through the remaining unfavourable roll
angles. The act of slowing Fc when sweeping through
favourable roll angles is henceforth referred to as a ‘bias’.
All measurements and symbols henceforth are given in the
‘picture plane’ reference frame unless explicitly stated.

The integral of Newton’s second law relates the im-
pulse of an object, J, to its change in velocity Δv

J Δt ¼ mΔv Δtjj (8)

Here, the mass is an assumed constant since there are
no on-board resources being consumed. A generalised
decomposition of Fc onto any orthonormal axis i, j in
the YZ plane has the corresponding forces Fi, Fj. Let the
desired decomposition axis i be an angle fB from the
normal axis bz (where f = 0). Let fi be a particular angle
between Fc and the arbitrary decomposition axis i. Let
fa be the angle through which Fc sweeps at a given rate ω
such that the sweep begins at the angle (fB � fa) and ends
at fB.

The range of angles during which Fc is slowed is
defined as the bias angle. Let the midpoint of the bias angle
coincide with decomposition axis i, such that the sym-
metrical angle on either side of the midpoint is fa. The
bias angle thus starts at (fB � fa) and ends at (fB + fa)
with a midpoint of fB. This is shown in Figure 4.
However, Fc will continue to rotate through the rest of the
angle f eventually sweeping another angular range (fB +

π) ± fa (wrapped so f 2 [0, 2π]). During this time, the
resulting change in velocity is directed along the negative
ith axis.

We define ΔV as the total change in velocity of one
whole roll rotation in sweeping through equal but opposing
angles of size 2fa, at different rates ω0 and ω1. Assuming
Fc,m andω as constants, it can be shown from equation (8)
that

ΔV ¼ 2Fc

m
sinðfaÞ

�
ω0 � ω1

ω0ω1

�
(9)

The maximum bias angle is half of a roll rotation,
fa,max = π/2. ThemaximumΔV per rotation is thus given by

ΔVmax ¼ ΔV jfa¼π=2 (10)

which is evaluated for a given system. Table 1 shows
a comparison between the idealised parameters which are
used during analysis of the QDGL, and values that can be
expected for real systems. Lloyd and Brown31 investigated
the maximum lateral control force Fc which can be applied
to the nose of a projectile before flight instability occurs. For
a 15 kg, 105 mm projectile, not more than 40N (0.34 g)
could be applied. Li et al.29 continued this work and
concluded that the same projectile would remain stable
provided Fc 2 [� 35.48, 58.33]. The provided Fc is within
the limits defined by these frameworks; projectile stability
is ensured by satisfying the gyroscopic stability criterion.32

When designing such a projectile, the gyroscopic and
dynamic stability framework for DSPs33 or other methods34

can be used.
Since the purpose of this paper is to test whether the

uni-rotational, fixed magnitude control force can be used
to guide a projectile in the 2D plane, all forces and mo-
ments except the control force are neglected. Additionally,
there is no transient between the fast and slow oscillations,
and the switching is instantaneous.

By design, the QDGL calculates a desired change in
speed when f = 0, and then calculates the bias angles from
equation (9). The projectile will then continue to roll,
whereby the actuator will slow the roll down if the current
roll angle lies within the bias range previously calculated.
In practice, the desired speed change and resulting bias
angles are calculated when f lies in a small range, f 2 [0,
0.001], to account for the machine computation inaccuracy.
While this calculation could be conducted and updated
continuously, the relative speeds would have to be trans-
formed to the f = 0 reference frame which adds another
layer of computational complexity. In addition, this discrete
computation of speeds at the beginning of each rotation
accommodates the bandwidth of hardware with respect to
the roll rate of the projectile.

The current relative velocity of the projectile to target is
the difference between the projectile and target velocity,
VR = V � VT, or in full

VR ¼
"
uR
vR

#
¼

"
u� uT
v� vT

#
(11)

Figure 4. Bias manoeuvre of size fa centred about fB.
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N.B. The projectile having [u0, v0] = [0, 0] and un-
dergoing consecutive unbiased rotations does not result in
a circular trajectory; instead a semi-circular trajectory
would result. To achieve a circular trajectory in the resting
state, the horizontal velocity at the beginning of the bias
calculation must assume the control force has already ro-
tated through one quarter rotation. Taking this into con-
sideration, we defineVDR0 as theΔV correction necessary to
bring the projectile to a stable circular orbit relative to the
target, including the current relative velocity

VDR0 ¼
h
uR þ ΔV f¼π=4vR

i��� (12)

This only allows the autopilot to bring the projectile to
relative rest, the desired closing speed VPT(d) describes the
chosen approach speed as a function of d. The total de-
manded velocity change from the velocity autopilot VDem

is then a linear combination of the necessary relative speed
correction to bring the system to an orbit, VDR0, and the
closing velocity VPT(d) dictated by the QDGL is

VDem ¼ VDR0 þ VPT ðdÞ (13)

VPT(d) must only demand speeds which can be de-
livered by the actuation mechanism, given that ΔV can
never exceed ΔVmax. Let the function Vlim(d) be the
maximum relative speed the projectile can have at a dis-
tance d ≥ 0, such that it is still able to decelerate in time to
be at relative rest when d = 0. This function can be

calculated by starting with a stationary projectile and
applying consecutive ΔVmax biases, since the process is
reversible. From the rates given by the idealised system
parameters in Table 1, a ΔVmax = 0.954 9 ms�1 bias is
enacted by the projectile in 2.5s. An effective acceleration
value, ~a, is measured from simulations for consecutive
ΔVmax biases. Using this, it can be shown that

VLimðdÞ ¼
�
2~ad

�
1=2 (14)

Since the function VPT(d) is calculated when f = 0 at
a particular distance d1, the desired ΔV will not be ach-
ieved until after the bias manoeuvre has been executed one
full rotation later. Hence, the process is discontinuous. By
this point, the projectile will have moved to some new
distance d2 under its residual velocity. Figure 5 shows the
delay of the system response when the target speed is set to
be the limit of the system, for example,. VPT(d) = Vlim(d).
The data points indicate specific positions where f = 0,
triggering the calculation of the bias angles. Figure 5
illustrates how the value of Vlim(d) demanded at a spe-
cific point is achieved at the next calculation point but
after the delay caused by the roll rotation. This delay
causes the system to exceed Vlim(d), resulting in an
overshoot. To account for the delay, the demanded speed
is modified by a factor ξ which ensures the relative speed
never exceeds Vlim(d). The delay does not directly scale
with distance but rather with VPT(d) as it is the result of
dynamic system evolution. Hence, the closing speed
function is written as

VPT ðdÞ ¼ VlimðdÞ � ξ, ξ 2R ≥ 0 (15)

where ξ is a constant to be optimised. The result of this
modification is also shown in Figure 5, where the adapted
system response never exceeds the limit, for example,.
VPT(d) = Vlim(d) � ξ | VR(d) > Vlim(d).

By including ξ, VPT(d) is not properly defined when d ≤
d1 where d1| (VPT(d1) � ξ = 0). From equation (14), this
boundary is

d1 ¼ ξ2

2~a
(16)

As such, the function Vlim(d) � ξ is only valid for d 2
(d1, ∞] and must be defined by other means for d 2 [0, d1].
Firstly, the distance d2 is chosen to represent the desired
level of precision for the projectile. The projectile will
remain relatively stationary within this threshold, when it
is on course to hit the target, so VPT(d) = 0 " d 2 [0, d2]

Table 1. Comparison of simulation parameters used against real-world projectiles.

Parameter Idealised system 105 mm 155 mm projectile

ω0 [rad.s
�1] π/2 N/A N/A

ω1 [rad.s
�1] 2π 105029 166835

m [kg] 1 1529 42.79836

Fc [N] 1 [ � 35.48, 58.33]29 2035

Figure 5. Effect of ξ to prevent system response exceeding
Vlim(d).
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where d2 2R ≥ 0. Secondly, a linear region is defined
where the projectile moves at a low constant velocity
toward the target in anticipation of either stopping or
accelerating by a larger amount. This is represented by
VPT(d) = Vk " d 2 [d2, d1] where d2 < d1 and Vk 2R ≥ 0 is
a constant speed. In its entirety, the function VPT(d), and
thus the QDGL, for d 2 [0, ∞] is given by

VPT ðdÞ ¼

2664VlimðdÞ � ξ
Vk

0

3775" d 2

8>><>>:
d1 ≤ d
d2 ≤ d < d1
0 ≤ d < d2

(17)

Monte Carlo Procedure and Normalised Errors

MCSs are used to compare the performance of different
QDGL parameter configurations. Table 2 shows the range
in which the model parameters are randomised upon in-
itialisation. Once the projectile and target are initialised
with randomised speeds and positions, the simulation runs
for a fixed time of 50s unless otherwise specified.

Multiple MCSs are run in a ‘batch’. Figure 6 shows the
average system responses for four batches of 104 MCSs.
The difference in the response is caused by the stochastic
nature of the MCS initialisation. Increasing the batch size
results in an average system response which is sampled
over a large number of simulations, providing more con-
sistency between batches as well as being more repre-
sentative of the true system behaviour. Obviously, the

maximum discrepancy between multiple batches is in-
versely proportional to the batch size.

Figure 7 shows the instantaneous maximum error for
varying batch sizes over time. For a given batch size, four
separate batches are run. The maximum discrepancy be-
tween any of the four batches at any specific instances is
plotted, for duration of the simulations. This process is
repeated for four different batch sizes.

All batch sizes in the figure start with the same zero
error, since the error curves which are being averaged all
begin at the maximum error. In addition, the same QDGL
parameters are used in every simulation in a given batch,
so the identical terminal error reduction capabilities produce
the same steady state error in all cases. This results in the
maximum error difference being small at the beginning and
end of every batch. Table 3 shows the peak error difference,
total integral error and computation time for each batch size
shown in Figure 7. A batch size of 104 was chosen as the
optimal trade-off between peak difference and computation
time. While a batch size of 103 produced an integral error of
the same magnitude as 104, the peak difference was un-
acceptably high.

Each MCS produces a system response like that shown
in Figure 8. The system response of each MCS is nor-
malised against the initial distance error, which was in turn
randomised at the beginning of each simulation. The
instantaneous error, ϵt, is given by

ϵt ¼ dt
d0

(18)

The integral of the normalised system response is thus
given by

ϵ ¼
Z τ

0

ϵt
ϵ0
:dt (19)

where є0 is the initial error. By integrating the whole system
response in this way, the system response for different
QDGL configurations can be numerically compared. The
size of the steady state error amplitude is small compared to
the initial and transient error amplitudes. Thus, єm is

Table 2. Range of values for initialisation of Monte Carlo
simulation.

Parameter Initialisation range

x0, y0 [ � 100, 100]
(u0, v0) (0, 0)

f0 [0, 2π]
xT0, yT0 [ � 10, 10]

(uT0, vT0) (0, 0)

Figure 6. Response discrepancy between multiple batches of
104 MCSs.

Figure 7. Instantaneous maximum variation of the
normalised error of different batch sizes.

2332 Proc IMechE Part G: J Aerospace Engineering 236(11)



representative only of the initial convergence and transient
errors. However, the error amplitude of overshoots are not
negligible compared to transient error amplitudes; thus,
overshoots will be detected by the integration. Likewise, the
‘batch average integral’ error, bϵ, can be computed for
a batch size M as

bϵ ¼
XM
m¼1

ϵm
M

(20)

where єm is the normalised integral system response of
MCS m. This value allows a direct and meaningful nu-
merical comparison of batches with different QDGL pa-
rameter configurations.

Figure 8 shows an example system response with
annotations showing the different regimes governed by
equation (17). VPT(d) = Vlim(d) � ξ is the closing regime,
VPT(d) = Vk is the linear regime and VPT(d) = 0 is the
stationary regime. In addition, the aspects of the steady
state error are the transient, the steady state amplitude and
the oscillation amplitude. The transient is also the motion
of the projectile in the linear regime; a faster Vk provides
a faster transient speed. The steady state amplitude can be
thought of as the distance d of the ‘orbital centre’ from the
target. The oscillation amplitude, and in addition the os-
cillation frequency, is governed by Fc and ω0,1, in which
neither can be affected by modifying Vk or ξ. These os-
cillations are caused by the holding orbit described in
equation (12); if the locus of the assumed circular orbit
coincides with the target, then there will be no oscillations.
However, if any small perturbation offsets the orbit loci
or the orbit isn’t perfectly circular, the amplitude of the
steady state error and steady state oscillations will in-
crease. If the steady state oscillation continues periodi-
cally, then the orbit is stable, and the projectile is
remaining in the stationary regime. If the steady state has

another lower frequency oscillation, the orbit is not
stable. This is caused by the linear regime velocity Vk

being too great for the current d2, causing the projectile to
pass straight through the stationary regime. N.B. The
regimes are governed by d and so the vertical lines
representing them on Figure 8 should be horizontal; this
was intentional, to aid interpretation.

Figure 9 illustrates how Vlim is modified in the QDGL
to account for the system response lag. Vlim acts as the
reference signal which the QDGL then modifies using ξ.
The closing speed function VPT(d) is then passed to the
autopilot, which calculates the change in speed per revo-
lution demanded from the projectile’s actuator mechanism
VDem. The VDem can then be passed through a chosen
controller H, such as a PID. The VDem, modified under the
action of controller H, is then passed to the actuator
mechanism which saturates the signal such that VDem 2 [0,
ΔVmax]. N.B. Vmax is an absolute limit of the system re-
sulting from the maximum bias angle of one half roll
revolution, and it is not a characteristic of any physical
actuator hardware. If VDem > VMax the system will saturate
and will only be able to deliver VMax. As such, any H > 1
when the autopilot is already demanding VPT = Vmax will
have no effect on the system whatsoever.

The sensor block shown in Figure 9 represents the
sensor dynamics of the system which are assumed in the
idyllic system to be perfect and instantaneous. For practical
implementation, conventional on-board sensors or an
external detection system could be used to measure the
roll angle, similar to that described in Ref.18. If volu-
metric restrictions permit, on-board image sensing
hardware could be used.37 Linear ballistic theory could
also be used to estimate the change in roll rate of the
projectile along the trajectory beyond what is known
from the projectile launch to supplement information
from the sensors.

Table 3. Error characteristics and computation time for varying Monte Carlo simulation batch sizes.

MCSs per batch Peak difference % Total envelope error Computation time

102 15.56 2.95 × 10�1 13 min

103 4.70 7.16 × 10�2 2 h
104 1.43 2.90 × 10�2 22 h

105 0.42 6.88 × 10�3 9 Days

Figure 8. System response showing different quasi-dynamic guidance law regimes.

Norris et al. 2333



Parametric investigation

With the QDGL fully presented, the system parameters Vk,
ξ, d1, and d2 can be investigated, with extreme variation in
the parameters being shown to demonstrate their functionality
and its impact on the system response. A more high-fidelity
optimisation is conducted in the Results section. Throughout
this section values such as ‘zero’, ‘low’, ‘medium’ and ‘high’
are used when discussing the system response. This is in-
tended to illustrate the change in behavioural differences
across the full range of suitable parametric values. However,
the exact numeric values are given in the corresponding
figure caption.

Figure 10 shows how modifying ξ to extreme values
affects the system response. When ξ = 0, the system re-
sponse exceeds Vlim which was the case in Figure 5
leading to a large overshoot and oscillatory motion
where the projectile closes with a speed which is too high.
Any negative value of ξ yields a steady state error that is
unacceptably high; thus, it is not shown on the figure. For
low values, 0 < ξ < 1, the error is reduced quickly with
a low amplitude steady state error and no higher order

oscillations. High values, ξ ≥ 1, produce a large amplitude
steady state error.

Figure 11 shows three example trajectories which
correspond to the extreme values of ξ from Figure 10. The

Figure 9. Modification of Vlim for speed controller with velocity feedback.

Figure 10. How extreme values of ξ affect the normalised
error (zero: ξ = 0, low: ξ = 0.7, high: ξ = 2).

Figure 11. How extreme values of ξ affect the picture plane
trajectory (zero: ξ = 0, low: ξ = 0.7, high: ξ = 2).

Figure 12. How varying Vk affects the transient and steady
state error (zero: Vk = 0, low: Vk = 0.01, medium Vk = 0.2, high:
Vk = 1).
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high steady state error for large ξ is represented by the
projectile being brought to rest too far from the target. The
high amplitude decaying oscillations in the normal error
for ξ = 0 is visible as the projectile overshoots the target by
a large margin. This is caused by too high a speed being
demanded and the projectile is unable to reduce its speed
in time due to the system lag. For low values of ξ, the
projectile is brought sufficiently close to the target to
initiate a regime change.

Figure 12 shows the effect of modifying the linear
regime constant velocity Vk. All speeds initially follow the
same error reduction path from t = 0 to t = 12. This is the
range governed by VPT(d) = Vlim(d) � ξ and thus mod-
ifying Vk has no effect. If Vk is sufficiently small, as the
projectile transitions from the linear velocity to the sta-
tionary regime, the orbital centre is brought to rest very
close to the boundary of the stationary regime, d2. This
results in a higher amplitude steady state error than if the
velocity was high enough to reduce the distance to d →
0 before it was brought to rest. This is apparent from the
figure, as an increasing value of Vk results in a lower
amplitude of the steady state error up to the point that Vk

is too high resulting in an overshoot. The optimal Vk is
a trade-off with d2 to deliver the orbital centre suffi-
ciently close to the target before switching to the sta-
tionary regime.

In this case, for Vk = 0, the linear regime vanishes,
merging with the stationary regime, that is, VPT(d|d 2
[0, d2]) = VPT(d|d 2 [d2, d1]) = 0. The result of this is
that the projectile enters the stationary regime at
a distance d1 and this is apparent from the figure, with
a steady but large magnitude steady state error. For low
values of Vk, the transient is very slow, but the am-
plitude of the steady state error is small. For medium
values of Vk, the most desirable system behaviour can
be observed. There is a very quick transient period
followed by a low steady state error amplitude. For high
values of Vk, there is an unstable switch between the
linear and stationary regimes, caused by a sufficiently
high overshoot to exceed d2.

Figure 13 shows the effect of modifying the
boundaries of the linear regime, d1 and d1. While d2 is
already arbitrary and selected based on the chosen level
of accuracy of the system, d1 is calculated from d1|
(VPT(d1) � ξ = 0) (equation (15)), after a value of ξ has
been selected. However, d1 is varied manually here to
illustrate the impact of linear regime size. If the
boundaries are set to be equal, d1 = d2, then there is ‘no
linear regime’, it is bypassed completely and the ve-
locity is brought to relative rest immediately. This leads
to a large steady error as was the case for low values of ξ
and Vk. The steady state oscillation amplitude is the
same as for any other case, since Fc, ω0 and ω1 are not
being modified.

If d2 is small then the projectile gets closer to the
target before switching to the stationary regime, this is
the ‘Late termination’. When d2 is sufficiently small, it
becomes significant compared to the distance that can
be travelled by the projectile travelling at speed Vk

during the time for one complete roll rotation. This
results in an unstable steady state oscillation from
overshooting, where the projectile continuously
switches between the linear and stationary regime,
which is indicated by the late regime termination on the
figure. In an ‘early activation’, d1 is higher than its true
value would be when computed from equation (15).
The projectile is brought to the linear regime speed Vk

too early in time, at a point where Vlim(d) � ξ would
have otherwise permitted a higher closing velocity,
resulting in a transient period significantly longer than
in the other cases. Desirable system behaviour is ob-
served from the ‘ideal duration’ on the figure with
a steady transient from the dynamic to the stationary
regime followed by a stable steady state oscillation.

The steady state amplitude for early regime acti-
vation is lower than the ideal scenario, which is not
expected since the lower bound of the linear regime is
the same for both simulations. The stationary regime
governs all d < d2, which describes a circular area
around the target of radius d2. Since the projectile only
calculates the bias points when f = 0, the projectile will
switch regimes at a different point depending on where
the first bias calculation takes place within d2. Small
deviations in the trajectory can thus cause a discrep-
ancy in steady state amplitude though the oscillation
amplitude will remain the same in all cases. This
discrepancy must be mitigated by averaging large
number of simulations.

Results and discussion

This section discusses a genetic algorithm used to optimise
the QDGL parameters, ξ and VK, as well as the gains of
a PID controller. As discussed in the previous section, the
values of d1 and d2 cannot be optimised and are therefore
not included in this section. The performance of the QDGL
with the optimised ξ and VK is then assessed for performance
rejection capabilities and evaluated against stationary and
moving targets.

Figure 13. How varying linear regime boundaries affects
transient and the steady state error.
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System parameter optimisation using
genetic algorithm

Genetic algorithms (GAs) are the proven method of op-
timising system parameters and PID controller gains.38–41

A basic genetic algorithm is implemented using the pa-
rameters shown in Table 4. The GA was first tested on
a drop-wave function of the form

f ðx1,x2Þ ¼ �
1þ cos

�
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p �
0:5ðx21 þ x22Þ þ 2

(21)

which is a non-convex, multi-modal, continuous function
with

min½f ðxÞ� ¼ �1 when x ¼ ð0; 0Þ (22)

The GA converged to the same optimum value for 10
individual trial runs, to within 3sf, and verifying the GA
can repeatedly converge to a known optimum solution in
the given configuration.

Both the initialisation of the GA and the MCS
procedure are stochastic in nature; hence, the optimum
value found is not necessarily the ‘true’ optimum.
However, the MCS procedure consistently represents the
system response to within the desired degree-of-
accuracy. In addition, the GA is of low dimensionality
and is operating in a relatively low complexity space.
This, in conjunction with the consistent performance of
the GA when optimising the drop-wave function, re-
affirms the optimum values provided by the GA are
satisfactory for the scope of this paper.

Using this MCS batch procedure, each specimen of each
generation within the GA can now be meaningfully
compared such that an optimal solution may evolve. Al-
gorithm 1 shows the order of operations for the GA. The
fitness function, FIT, of the GA to beminimised is simplybϵ,
since this represents the average error over time for many
instances for a particular QDGL parameter candidate

FIT ¼ bϵ (23)

The normalised integral error of the system response
for the mth MCS follows from equation (19) as

ϵm ¼
Z τ

0

ϵt
ϵ0
:dt (24)

Likewise, the mean normalised integral error of the
system response for a Monte Carlo batch of size M for
specimen n follows from equation (20) as

bϵ ¼
XM
m

ϵm
M

(25)

The Monte Carlo batch size for the proceeding is M =
104, the justification for which was discussed in the
previous section.

Algorithm 1. Execution of GA optimisation using the
MCS procedure

1: Randomly initialise N specimens, ðξ,vKÞn
2: for Each generation g 2 [1 : G] do
3: for Every Specimen in the population n2 [1 :N] do
4: Set QDGL parameters equal to specimen

ðξ,vKÞ ¼ ðξ,vKÞn
5: Set d1 ¼ ξ2=2~a (From equation (16))
6: for For MCS m 2 [1 : M] do
7: Run MCS m with random initial conditions
8: Compute ϵm
9: end for
10: Compute specimen Fitness: FITn ¼ bϵn
11: end for
12: Rank specimens in order of fitness and select

candidates for reproduction
13: Create offspring from candidates and cull re-

sulting population to size
14: Mutate population, then reduce mutation factor
15: end for

To reduce computation time, a preliminary search is
conducted to inform the scope of the GA. Figure 14 shows
a bϵ surface for the joint variation of ξ 2 [0.2, one] and Vk 2
[0, 1.5]. Low regions on the figure correspond to a low bϵ and
the lowest point is with certainty, bounded by ξ 2 [0.3, 0.8]

Table 4. Range of values for initialisation of Monte Carlo
simulation.

Parameter Value

Generations G 200
Population size N 100

MC batch size M 104

Figure 14. System response error bϵ as a function of quasi-
dynamic guidance law parameters ξ and Vk.
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and Vk 2 [0, 0.5]. High values of ξ or VK lead to a large bϵ.
Large values of ξ produce a saturated response regardless of
the value of Vk. In either case, VPT(d) > Vlim(d) and there is
a substantial overshoot, confirming what was seen in Figures
10 and 12. In addition, low values ofVk have a small rise inbϵ.
This is not due to an overshoot, rather a slow transient results
in a residual error which is not present for higher values of Vk
which reduces the error quicker. In addition, this surface is
less complex than the drop-wave function in which the GA
was evaluated on during the preliminary tests, indicating that
the GA will with high probability converge to the true
solution.

Figures 15 and 16 show the convergence rate for the
GA operating under the boundary conditions for ξ and Vk.

The optimal QDGL parameters from the GA were
found to be ξ = 0.54 and Vk = 0.18.

PID controller gain optimisation

Figure 9 included a block H which represents the chosen
controller for VDem. A PID controller is used to investigate
the proportional, integral and differential aspects of VDem

during feedback. The use may reveal system behaviour

that was not otherwise obvious from the previously discussed
framework and highlight any weaknesses of the QDGL
approach. During the simulation, VDem is decomposed in
the YZ plane to the YZ earth axis giving ½uDemvDem�T. This
vector is then modified by the chosen controller and ex-
ported to the actuator block which calculates the bias angles
using the method discussed in the previous section. This
means that one controller can act on both channels si-
multaneously or two controllers could act separately on
each channel. Since the environment is simplified to a point
of planar symmetry, one controller is chosen to act on both
channels simultaneously. If external forces are introduced
into the environment, then two controllers would be better
suited to account for non-symmetrical forces which are
biased to one direction, such as gravity. Using two con-
trollers may require re-normalising the signal so any gain
applied to one channel is not lost during saturation by the
actuation mechanism.

Figure 17 shows a preliminary search of independently
varying the PID controller gains, corollary to Figure 14.
The gains are initially held at ½kPkI kD�T ¼ ½ 1 0 0 �T,
which emulates the absence of a PID controller. Each gain

Figure 15. Convergence of 2D GA to optimise quasi-
dynamic guidance law parameters.

Figure 16. Generation distribution during initial
convergence of GA for QDGL parameters.

Figure 17. Contribution of independent kP, kI and kD to the
system error.

Figure 18. Convergence of 3D GA to optimise PID
controller gains.

Norris et al. 2337



is individually swept over the given range while the other
gains remain fixed, and a MCS batch is run to determine
the corresponding bϵ for each specific gain configuration.
As with the optimisation of the QDGL parameters, the in-
tention is to reduce the scope of the GA optimisation and,
therefore, computation time. The ranges bounding the op-
timum solution were found to be kP 2 [0.6, 1.4], kI 2 [0, 0.1]
and kD2 [0, 0.5]. The GA is thenmodified from algorithm 1,
such that each specimen is now ðkPkI kDÞn"n2N.

Figures 18 and 19 show the convergence rate of the 3D-
adapted GA. The optimal configuration of PID gains was
found to be ½ kP kI kD �T ¼ ½ 1 0 0 �T, indicating that
tuning the QDGL parameters is a sufficient and complete
optimisation for the described system. A PID controller
will not provide a performance increase beyond the de-
scribed tuning of the QDGL parameters, ξ and Vk, since
there is no significant behavioural dependence on the state
derivative or state-time integral. It is of note that the GA
converged to a local minima much quicker than when
optimising for ξ and Vk. This is likely due to the adverse
effect any kI, kD > 0 has on the system response, which

quickly coerces the evolution, effectively reducing the search
to a 1D GA. The minimum bϵ achieved during the optimi-
sation of the PID controller gains was equal to the minimumbϵ during the optimisation of the QDGL, to 3sf. This is within
the expected MCS batch error.

Disturbance rejection and system performance

The optimised QDGL is now tested for disturbance re-
jection capabilities and performance against different target
profiles. Figures 20 and 21 show how the projectile re-
sponds to different disturbances. In each case, the projectile
and target are initialised at a specified distance, the target
closes the distance under normal operation and is then
allowed to remain in steady state for a sufficient time until
the chosen disturbance is applied and synchronised at 50s.

Figure 20 shows disturbance displacements, where at
50s, the target coordinates are set to be at a magnitude of
0.5x, 1x and 2x that of the initial displacement, as in-
dicated by the figure. For all magnitudes of displacement,
the error change is discontinuous. The initial correction
response is similar for all due to the demand of the velocity
autopilot saturating the control mechanism. Once the
projectile has slowed sufficiently, it enters the linear re-
gime at the same point in each case, d ≈ 10�2, since the
regime switching is governed by a certain distance. There
is a small discrepancy between linear regime switching for
the disturbances and the initial reference signal. The ref-
erence signal enters slightly later at a lower distance. This is
likely caused by the projectile crossing the regime threshold
d2 with more of the roll rotation left to complete, meaning it
will travel longer before the speed is corrected again. The
similarity in response is due to the fact that in all cases, the
initial relative velocity between the projectile and target is
zero, and thus, the system will respond as if the simulation
has just been initialised at different distances.

Figure 21 shows velocity displacements, where at 50s,
the relative velocity of the target is instantaneously changed
to a low, medium and high respective speed, radially away
from the projectile. The positions of the projectile and target

Figure 19. Generation distribution during initial
convergence of GA for PID controller gains.

Figure 20. System response to various target distance
disturbances.

Figure 21. System response to various target velocity
disturbances (low: V = 0.01 ms�1, medium V = 0.1 ms�1, high:
V = 1 ms�1).
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are not changed; they are then free to dynamically
evolve. When the velocity disturbance is low, within
what the actuator mechanism is capable of correcting in
one roll rotation, the disturbance is corrected quickly.
With a medium disturbance, beyond the correction of
one bias manoeuvre, the system takes longer to recover.
Since this is a velocity disturbance, the maximum error
increase is not instantaneous, rather it coincides with
the instant where the target is no longer moving away
from the projectile and the relative speed is zero. From
this point, the closing of the projectile is similar to the
distance disturbances. This is the same for the high
velocity disturbance, except that the rate of reduction of
error divergence takes longer to correct.

Figure 22 shows the average normalised error for a 104

MCS batch against both stationary and moving targets.
The response against stationary targets is the same as
previously in this section. Against moving targets, how-
ever, the error initially increases a small amount before
decreasing in a manner similar to the response against static
targets. This initial increase is due to the random chance of
the projectile being initialised with speeds directed away
from the target, and then having to correct this dispersive
motion before beginning the correction procedure.

Conclusions

A 7 DOF dynamic model for a dual-spin projectile (DSP) is
presented and implemented in computational simulations.
A novel projectile design is presented along with the un-
conventional control method of asymmetric roll-rate biases.
The quasi-dynamic guidance law (QDGL) is developed and
a parametric study is conducted which shows how modi-
fying QDGL parameters affect the system response. A
Monte Carlo simulation (MCS) procedure is described,
which is used tomeaningfully compare the system response
for different parameter configurations. A genetic algorithm
which utilises the MCS procedure is then used to optimise
the QDGL parameters and PID controller gains. The dis-
turbance rejection capabilities of the optimised QDGL are
tested, as well as the effectiveness against both static and

dynamic targets. In all cases, the QDGL is able to reduce the
distance error to a satisfactory level.

Full dynamic coupling and aerodynamic disturbances
have not been considered in this paper but will be the
topic of further investigations. In addition, the use of
this QDGL should be explored with a dynamic or time
dependant control force and arbitrarily complex roll rate
switching profiles.
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