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Abstract

This research aims to investigate the nature of high β-angle cornering as
seen in rallying and in particular the World Rally Championship. This is
achieved through a combination of sensor development, on-car measurement
and vehicle dynamic simulation.

Through the development of novel β-angle measurement technology it has
become possible to measure and study vehicle attitude dynamics on loose
gravel surfaces. Using this sensor, an understanding of how a rally driver
uses the dynamics of the vehicle and surface to maximise performance has
been obtained.

By combining the new data stream with accepted vehicle dynamic theory,
the tyres have been considered and general trends in gravel tyre performance
unveiled. Through feedback, these trends have been implemented as a means
of tuning a dynamic model to improve realism and permit an analysis of
cornering trends in rally cars.

Active control systems have been considered that could implement more
sophisticated algorithms based on this understanding and potentially use the
new sensor information as an input signal. A case study which explores such
a possibility is included.
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Chapter 1

Introduction

1.1 Context

In almost all forms of driving a high β-angle1(or driving sideways) is unde-

sirable and usually associated with being a direct precursor to a driver losing

control of the vehicle. The main exception to this rule is rally driving, in par-

ticular the World Rally Championship (WRC), where the cars are often seen

balanced on the limits of control in an attempt to maximise performance on

loose surfaces. This research investigates the nature of high β-angle corner-

ing through a combination of sensor development, on-car measurement and

vehicle dynamic simulation in an attempt to understand more about how

such a style of driving can increase performance and how the active systems

of a car can better react to that style.

Initially it was clear that a greater understanding of the dynamics of

vehicles driven in such a manner would be required. Most research up to

this point has not covered the extreme performance regions of rallying and

as such this work looks to fulfil a need to progress in this direction.

It became clear that as an enabling step, a means for measurement of

vehicle development and progression was required that was better than cur-

rently available sensor technology and telemetry. Through the development

of a β-angle sensor that provided robust and reliable data, even in the loose

1Also known as vehicle attitude angle or vehicle sideslip angle.

1
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gravel conditions of rallying, it became possible to investigate the high atti-

tude nature seen in the driving styles of many rally drivers. With this in-

formation and real rally telemetry data obtained during WRC testing, many

new avenues of investigation became possible, including direct gravel tyre

comparison and optimal attitude angle cornering.

With this increased understanding of the influence and effects of β-angle

and, if permitted by the rules of the sport, the active control systems could

implement more sophisticated algorithms based on this understanding and

potentially using the new sensor information as an input signal. A case study

which explores such a possibility is included.

1.2 Vehicle Dynamic Simulation in Rallying

At present, simulation has a limited role in rallying particularly when com-

pared to its prolific use in other motorsports such as Formula One. The

primary reason for this discrepancy between the sports relates to the differ-

ing number of unknown variables in rallying and circuit racing.

Where a Formula One car races repeatedly around a track of approxi-

mately 3 miles with the same corners being driven as many as 100 times,

rally stages run over longer stretches of road in which each corner differs

from all that preceded it or will follow it. Further complications arise from

road surface variation, the tendency for the wheels to leave the ground, alti-

tude and weather conditions, particularly on mountainous rallies such as the

Monte Carlo rally whose course traverses the Alps.

These factors mean that any attempt at simulation in rallying is better

suited to developing more generic concepts in dynamic performance which

can handle the problems of uncertainty, rather than the extreme precision

and accuracy desired from a single lap simulation of a Formula One car.

Part of this research looks to assist in the development of rally car simula-

tion by the application of new understanding achieved through the use of the

β-angle sensor and corresponding telemetry data. In particular, the β-angle

sensor was employed as a means of determining tyre performance and char-

acteristics on loose gravel and on tarmac surfaces. As large attitude angles
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lead to large tyre slip angles, this method gave insight into the lateral tyre

force profile in the super-saturated region (above about 15 degrees) which

has previously been considered to be of limited value. Ultimately, with the

advantage of access to real world WRC telemetry data using the new sensor,

this has resulted in a more realistic tyre force curve that could be directly

implemented in a dynamic model, enhancing accuracy and precision.

1.3 Thesis Structure

Chapter One: Introduction

Chapter One outlines the framework of the research detailed in this thesis.

Chapter Two: Literature Survey

Chapter Two sets out the history and previous research relating to the topics

covered by this thesis. Reasons and evidence for taking certain decisions as

to which direction this research should take are presented along with mate-

rial that backs up some of the statements and assumptions made.

Chapter Three: The β-angle Sensor

As WRC is a field in which attitude angle appears to play a significant part

in performance it was firstly necessary to gauge the extremes and general be-

haviour of β-angle in such vehicles and circumstances. Unfortunately WRC

is an extreme form of racing on rough and loose surfaces that cause prob-

lems for many current sensing technologies. Therefore an enabling step was

required that allowed accurate and reliable β-angle data to be measured and

compared with the existing telemetry data and information.

Chapter Three details the design, development, prototyping and testing

of a novel β-angle sensor that provides a means for giving robust and ac-

curate measurements in the harsh environments experienced in the world of

WRC. All stages are detailed and descriptions on how design problems were

overcome along with refinements necessary to produce the desired level of

accuracy. The testing of the sensor, which both verified and validated the

sensor, is also described with example telemetry data from real world testing
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on both gravel and tarmac surfaces presented.

Chapter Four: Supplementing The Modelling Dataset

Once it became possible to determine β-angle for all road conditions using

the new sensor, it enabled the development of a model to investigate the

behaviour of such a vehicle at large β-angles. To this end, a seven degree

of freedom transient dynamic model was built with accepted tyre, aerody-

namic and powertrain models for use in simulating a WRC car. Before its

use, however, the model was run through validation and verification process

in which the model was compared with both expectations derived from ac-

cepted vehicle dynamic theory and also comparison with real telemetry data

gathered using the vehicle it was intended to simulate. Both the model and

the validation process are detailed in Chapter Four.

Using this model and the sensor of Chapter Three, the process of extract-

ing lateral tyre curves is presented with examples of both tarmac and gravel

surfaces.

Such curves are of great benefit in demonstrating the behaviour of the

tyre in the super-saturated region as this is often where laboratory tyre curve

measurement becomes less accurate or impossible to obtain. A method of

producing such curves is presented for both tarmac and gravel, the tarmac

curve is generated using both existing optical slip angle sensors[12] and the

new sensor whereas the gravel curve is only possible now that the new sensor

can provide β-angle robustly in the gravel environment.

Chapter Five: A Case Study

With the set of tools now available, both in telemetry and simulation, the

benefits of β-angle can be investigated thoroughly. In addition it became

possible to gauge a better understanding of the dynamics of the vehicle. β-

angle has long been considered an important factor in vehicle stability and

control but research into the topic has been somewhat confined to lower

values on the understanding that at higher values, the average driver simply

can not control the vehicle.

From a performance point of view, it will be shown that high values of
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β-angle can result in higher lateral cornering forces and ultimately quicker

manoeuvre times. It will also be shown that the transmission configuration

of a 4-wheel drive (4WD) vehicle can play a significant part in altering the

benefits of certain angles as well as directly affecting the β-angle of the ve-

hicle.

Chapter Six: Conclusions and Further Work

Chapter Six sums up the progress made with this research and the potential

applications of both the new sensor and understanding of high β-angle vehi-

cle dynamics that the simulations have permitted.



Chapter 2

Literature Survey

2.1 β-angle

β = arctan
(

Vy
Vx

)
(2.1)

β-angle, or as it is sometimes known, vehicle attitude or body slip angle,

has become an increasingly important aspect of vehicle dynamics as progress

in design has continued to push the envelope of vehicle performance. Despite

this, its measurement and application in control systems still holds many

difficulties for engineers. In this chapter the importance of β-angle in modern

vehicles is demonstrated as well as how it is currently measured or estimated.

Then a history of research that has led up to the development of a new β-

angle sensor is presented and a background to the research stream that this

new sensor has enabled.

This research is heavily biased towards the domain of the rally style car

and driver, in particular WRC where extremes of control and β-angle are

common as well as some of the most sophisticated 4WD transmissions.

2.1.1 β-angle in Vehicle Dynamics

The importance of β-angle began to be highlighted with the development of

the Milliken Moment Method (MMM)[13]. The main aspect of the method is,

for a given β-angle and steering angle range, to plot normalised yaw moment

6
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Figure 2.1: A Milliken Moment Diagram[1]

(CN) against lateral acceleration(Ay)[1], the plot typically being known as a

Milliken Moment Diagram (MMD). Using the MMD it is possible to quantify

the constraints that are imposed on vehicle stability and controllability by

the capabilities of the tyres. Figure 2.1 shows an example of a Moment

Diagram.

The Moment Diagram plots the lines of equal vehicle β-angle (running

upper right to lower left) and of equal steer angle, δ (running upper left to

lower right). This particular example represents a vehicle travelling at 60

mph.

Shibahata et al.[14] used similar reasoning to develop the β-angle method.

The β method explains the effect that β-angle has on the yaw moment

gain generated by the lateral tyre forces following a steer angle input. It shows

that as β increases, this yaw moment gain decreases until at large values of
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β the yaw moment can hardly be influenced by a driver’s steer input. At

these extremes of β, usually above 12 degrees on tarmac, the vehicle becomes

extremely difficult to control for all but the most experienced drivers. This

can be seen in Figure 2.2 where at low β-angles, any steer input results in

a large yaw moment. As β-angle increases, the magnitude of this moment

generated by steer input is significantly reduced resulting in a reduction in

the drivers ability to control the yaw dynamics of the vehicle.

These reasons have resulted in the majority of research being confined to

low values of β-angle, typically under 14 degrees. Such a range covers most

aspects of driving, however in the world of rallying and WRC, high attitude

angle cornering is common place, particularly on loose surfaces. Nozaki[15]

makes the point that large body slip angles do actually allow the tyre to

attain a high cornering force but as Shibahata[14] shows the reduction in

control makes it a technique that only skilled drivers can use effectively.

2.1.2 ESP and Yaw Moment Control

As the β method demonstrates, β-angle is a crucial factor in the manoeu-

vrability of the vehicle. Therefore the average or inexperienced driver may

struggle to avoid an accident if the vehicle is permitted maintain a state of

high β[16].

More recent advances have seen electronic control begin to take over

the vehicle in times of extreme situations. Electronic Stability Program

(ESP)[16] and Active Yaw Control[17] systems have been developed that

protect the driver in the event that the dynamics of a vehicle become unsta-

ble. Both are influenced by the β-angle and act to either brake individual

wheels or adjust drive-line torque distribution to control the yaw moment

dynamics[14]. Both braking and torque distribution methods seem to pro-

duce a similar dynamic performance although torque distribution control ap-

pears to possess some distinct advantages[18]. Below the typical mechanisms

used for yaw moment control are listed with some of their characteristics and

advantages[19][20].
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Figure 2.2: Yaw Moment against β-angle
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• Braking force Distribution Control

– Distributes braking torque on left and right wheels by varying the

braking force applied to each wheel.

– Only suitable for controlling yaw moment under deceleration cor-

nering and cornering at critical speed.

• Controlled LSD

– Capable only of transferring torque from the faster running wheel

to the slower one.

• Driving Force Distribution Control

– Differential imparts differing torques to left and right wheels ac-

cording to the value of the input torque.

Differential Braking

It has been demonstrated in the literature that by individually braking the

left or right wheels it is possible to generate a controlling yaw moment[21].

This method though, suffers in that it is only suitable during deceleration

cornering or cornering at critical speed so as not to effect vehicle stability[21].

Despite these limitations, this method has been employed in most forms

of traction control or stability control systems[16][22] mainly due to the ease

with which it can be implemented, particularly when combined with ABS,

when compared to the more complicated differential systems required to con-

trol torque distribution.

Torque Distribution

Torque distribution in a differential initially came about through the devel-

opment of Limited Slip differentials (LSD)[23]. These passive devices allowed

variation in the output shafts speeds that is required for cornering, but as
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the differences became larger, the use of internal clutch packs act to trans-

fer torque from the faster to the slower shaft. It is also possible to per-

form the same action using high-helix angle INVEX gears as in the Torsen

differentials[24].

The rate at which the differential would transfer torque and the degree of

variation in speed that it would allow were dictated by the internal compo-

nent configuration and as such had to strike a balance between all possible

uses of that differential[1].

In order to remove this element of compromise, the Active LSD was de-

veloped whereby the internal friction plates could be thrust closer together,

hence adjusting their interaction and distribution of torque[1]. Various meth-

ods exist for performing this task, such as the Electro-Magnetic Coupling dif-

ferential, which uses electromagnets to control plate position, or the electro-

hydraulic differential which uses a hydraulic piston[25][26]. The latter is

implemented in the simulation model used in this research (see Figure 4.3

and Section 4.1.1 for a more detailed description).

Despite the addition of the control element to the LSD, it is still only

possible to transfer torque from the faster to the slower output shaft or wheel.

In the majority of situations this is acceptable but it can only generate a

corrective yaw moment on a vehicle rather than acting to enhance a cornering

moment. For that, the differential needs to also be capable of transferring

additional torque to the faster spinning shaft.

Mitsubishi introduced the first commercial active torque distributing dif-

ferential that could perform this task in the 1990’s with their Active Yaw

Control system[19]. These differentials would work by having two internal

shafts, driven from the input shaft, with one sped up 12.5% and the other

slowed down by 12.5%. Both the output drive shafts could then be attached

to either shaft through a series of clutch plates allowing either a positive or

negative transference of torque to that shaft. By attaching the outer, faster

shaft to the faster internal shaft (as well as the inner shaft to the slower) ad-

ditional torque could be transferred to the outer wheel effectively generating

additional cornering yaw moment.

As technology progresses, the torque distributing (or torque vectoring)
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differentials are becoming more common place opening up the possibility

for enhanced and more capable traction control and stability management

systems that do not suffer the limitations of active brake distribution. The

potential in this area for performance related driving is investigated in Chap-

ter 5.

2.1.3 Estimation and Measurement Techniques

β-angle is notoriously difficult to measure, van Zanten[27] in describing the

Bosch ESP system stated that no sensor is available to measure the β-angle

of the car. Despite this slip angle can be inferred by a combination of sensors.

Sasaki[28] goes further to explain that there are currently two predominant

methods of detecting slip angle. The first by non-contact longitudinal and

lateral velocity detection and subsequent vector calculation, the second em-

ploying a dynamic vehicle model to infer slip angle from various inertial

measurement. More recently a third alternative using Dual antennae GPS

technology has has begun to be employed[3].

Velocity Detection

Its definition, equation 2.1, shows that β-angle is the inverse tangient of the

ratio of lateral velocity to longitudinal velocity. Therefore it is necessary

to measure both velocity vectors, which is only possible using non-contact

methods.

One commercial product that is available is known as a Correvit[12]. By

projecting a optical diffraction grating onto the road surface, the distortion

in the reflected pattern can be shown to be directly related to the relative

velocity vector of the sensor to the road surface[29]. This product suffers

though in that a relatively smooth surface is required for the projection and

also any dirt or gravel that may be thrown up could damage or cover the

sensor lens.

Alternative non-contact velocity measurement techniques are also avail-

able, ultrasonic[30] and microwave[31] Doppler detection can provide a ve-

locity reading. Two orthogonally mounted sensors would then provide the



2.1. β-angle 13

Figure 2.3: GPS Satellite Orbits (courtesy of www.garmin.com)

necessary vectors. Again both could suffer from being covered by dirt, dis-

rupting the sensors operation.

GPS

The GPS, or Global Positioning System, began life in the 1970’s as a U.S.

Department of Defense project with the intention to provide military units

with accurate information on their position and velocity anywhere on the

Earth’s surface[32]. It works by having 24 satellites orbiting the earth at

approximately 20,200 kilometres in six 12-hour orbital planes. This pattern

ensures at any point in time, a receiver will have direct line-of-sight with four

satellites[33]. The orbital configuration can be seen in Figure 2.3.

The other side of the system, the GPS receivers, measure time delays

and decode messages from the in-view satellites to determine the informa-

tion necessary to complete the necessary calculations to gauge position and

velocity.

Despite its initial purpose as a navigational and positioning aid, recent

developments and applications of GPS have seen its usage in more sophisti-

cated analysis and measurement of dynamic behaviour.
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By measuring the Doppler shift change in frequency of the signals coming

from the satellites as the receiver is moved around, highly accurate relative

velocity measurement can be taken[34]. Knowing the velocity and orbit of

each satellite allows calculation of the velocity and heading of the receiver

relative to the Earth. Xu[34] shows that these measurements can be accu-

rate to a few centimetres a second, with both the VBox GPS unit and the

Astech DG-14 unit, which use Doppler-based velocity calculation and are

used in this research, reporting an accuracy of 0.1km/h or 2.6 centimetres a

second[35][36]. Racelogic[37] have compared this unit to other optical veloc-

ity sensors[38] and demonstrated that such a unit could be used to replace

and, in some cases, better other optical sensors which have been the industry

standard in the past[12]. The accuracy of this velocity vector also results in

a highly accurate measurement of heading, of the order of 0.1 degrees[35].

By combining two or more GPS antennae, it becomes possible to measure

even more vehicle dynamic properties. These developments were initially

driven forward in the fields of marine and aerospace engineering.

In aerospace engineering, it is useful to measure attitude angles in all three

planes; yaw, pitch and roll. If multiple antennae are placed at strategic points

on the aircraft, Figure 2.4, it is possible to calculate the three-dimensional

orientation of the vehicle[2]. The multiple antenna solutions works by com-

paring the phase of the GPS carrier signals at each antenna. By assuming a

planar incoming wavefront from a satellite, Figure 2.5, the orientation of the

baselines between antennae can be calculated. This is also known as RTK,

or Real Time Kinematics, GPS.

These methods require expensive multiple antenna configurations. It is

also possible to determine attitude in aircraft using a simpler single antenna

system. To resolve some of the unknown quantities, a simple point mass

aircraft model has to be employed. Using this model it is possible to infer

the state of the aircraft from dynamic information determined from the GPS,

such as the rate of change of the velocity vector[39].

This is effectively the same concept that is applied with the new β-

angle sensor although the process for road vehicles is harder due to tyre

non-linearity and weight transfer effects.
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Figure 2.4: Multiple antenna mounting positions on aircraft and their asso-
ciated baselines[2]

Figure 2.5: Planar incoming wavefronts - multiple antennae[3]
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Figure 2.6: Multiple GPS antennae mounting on racecars[3]

Inevitably some of these techniques have crossed over to applications in

the automotive field. Again multiple antennae systems can be used to now

determine precise velocity, β-angle and racetrack position[3] of a race car.

How[3] used a two antenna configuration, Figure 2.6, to compute these val-

ues. When compared with the three and four antennae solution employed in

aircraft, using only two antenna makes it impossible to determine orientation

around the inter-antennae axis. This is not significant however as a racecar

is more constrained by running on a track with much less freedom to rotate

than an aircraft, which results in significantly less pitch and roll.

Roll angles can also be determined in the same fashion[40] provided that

the baseline axis between antennae does not run parallel to the roll axis of

the vehicle.

Estimation Methods

In many situations it is not possible to directly measure certain vehicle states.

However, with a basic understanding of vehicle dynamics, it is possible to

estimate the value of vehicle state by combining available measurements with

a simple vehicle model[41]. This builds on the aircraft example discussed in

Section 2.1.3.

Bevly et al.[42] detailed how using a bicycle, or half-car, model it is pos-

sible to infer wheel slip ratio and side slip angle. Using a single antenna

GPS for velocity vector calculation, wheel speed sensors for individual tyre

rotation rates and fibre optic gyroscopes for yaw rate these values can be

accurately estimated. Similarly Hahn[43] demonstrated that a similar model
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could be used to estimate the tyre-road friction coefficient which is an es-

sential in traction control systems, while Bae[44] demonstrated methods for

estimating road grade.

The Bosch Electronic Stability Program (ESP) version 5[16] typifies the

difficulties in reliably estimating β-angle when using it as a primary input to

a safety critical control system. A dynamic vehicle model is used to estimate

the slip angle for the car and each tyre from vehicle velocity, acceleration

and longitudinal tyre forces. Solving the required equations is less simple

and dependent on factors such as roll and pitch angle, road gradient and

control input. Thus, depending on the driving situation, the accuracy of

vehicle slip angle estimation is changeable.

Combined Sensor Estimation

GPS data has been combined with magnetometer data before to determine

attitude angles. Crassidis[45] attempted to use three axis magnetometer data

in order to quickly resolve some of the integer ambiguities in GPS calcula-

tions. Furthermore the magnetometers were used to infill between GPS data

drop outs which occur when insufficient information is being recieved from

enough satillites to calculate the required angles. Such disruptions in signal

may occur due to interference or obstruction from vegetation or terrain.

This method used the magnetometers to assist other sensors but did not

combine the output from the two in the same manner as presented in this

study.

Another field relates to pedestrian navigation. Ladetto[46] demonstrated

that combining magnetometers, configured as a compassing solution, with a

gyroscope could increase accuracy and reliability in pedestrian navigation,

particularly in areas prone to strong magnetic disturbance. In further work,

Ladetto[46] continued this work by including GPS as an input to the naviga-

tion system. The notion being that the combination of sensors can produce

a more reliable system over most conditions without the problems associated

with inertial systems.

Gabaglio[47] followed a similar line by combining GPS measurements with
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inertial sensors. Here the aim was to use each sensor as a method for dealing

with errors in the other, the two were not combined to produce any additional

information.

Current Methods of Estimation

As previously mentioned, the Bosch ESP system[16] is a common commer-

cially available implementation of a stability control system that attempts to

determine both β-angle and β-rate in order to use these values as inputs to

its stability control system. Although a full explanation of how the system

actually goes about estimating these values is commercially sensitive and

not available, a overview, which does include a description of some of the

problems associated with this form of estimation, is.

Again, as previously mentioned, this system attempts to estimate val-

ues of β-angle using a vehicle dynamic model and various inertial sensors.

These include four wheelspeed sensors, a lateral accelerometer and a yaw

rate sensor (also known as a gyro). These estimation techniques, however,

are not as robust as might be expected. In reviewing the ESP system, van

Zanten[16] points out that it is not always possible to obtain a reliable value

of the β-angle and, at these points, the system has to rely on a seperate sta-

bility control method that is not dependent on β. In addition he points out

that depending on the driving situation the accuracy of the vehicle β-angle

estimation is different and changeable.

With the inertial measurements and individual wheelspeeds, ESP uses a

set of equations of motion from a bicycle model to estimate β-angle from the

sensor readings. In reality the system actually has a selection of different

equations, each of which is tailored to a specific driving condition, such as

heaving braking or free rolling, from which the system can choose in order to

try and ensure the most accurate estimation of β-angle. These calculations

are then heavily filtered to provide a suitable value.

Further complications with these types of estimation system result from

the fact that the equations of motions used include factors such as coefficient

of friction between the road surface and the tyre as well as the cornering
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stiffness of the tyres on the vehicle. These combined with the problems asso-

ciated with inertial measurement on WRC cars in full stage rally conditions,

see sections 3.1 and 3.3.2, makes the implementation of a similar estima-

tion technique unlikely to provide a reliable and accurate measure of β-angle

in WRC conditions. In addition, given that the actual algorithms used by

such systems are closely guarded secrets, the development of a similar system

would be beyond the remit of this study.

As most other estimation methods for β-angle and sideslip angle[41][22]

work on similar principles and are heavily dependent on inertial measure-

ment, they are considered equally unsuitable.

2.2 The New β-angle Sensor

The concept of the novel β-angle sensor developed during the course of this

research draws inspiration from various sources including Geomatics, Space

Science, Aerospace and Marine Navigation. This section explores the back-

ground to the sensor and advances that preceded it.

Bevly et al.[42] demonstrated that it is possible to measure vehicle β-angle

by obtaining the direction of the vehicles velocity vector from a GPS and

comparing it to the orientation of the vehicle obtained from the integration of

a yaw rate sensing gyroscope. This method has certain drawbacks, primarily

due to its inertial sensing and the need to integrate the sensor signal. In

a rough environment, such as WRC, the vibration and shock the gyroscope

would encounter, results in a signal too noisy to provide accurate vehicle

orientation information. An example of gyroscope data from such conditions

is examined in Chapter 3.

The new β-angle sensor replaces the gyroscope for orientation determina-

tion with a solid state magnetometer to allow calculation of vehicle heading

in relation to the Earth’s magnetic field.
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2.2.1 Space Science

In space science, maintaining a satellite orbital trajectory is a complicated

process. Factors such as attitude angle, coning angle, spin rate and con-

ing rate are involved. Magnetometers are commonly employed as a low-

cost means of measuring such values with reference to the Earth’s magnetic

field[48].

In most cases the intended orbital trajectory of a satellite is relatively

fixed and well known in addition to the expected magnetic field vector at

each point around the orbit. Using a three axis magnetometer to sense this

vector in relation to the fixed frame of the satellite, the attitude angle can

be determined[49].

As multi-antenna GPS systems started to become available, these became

the preferred method used to calculate the orientation of a space vehicle. In

the event of a problem with the GPS signal, the magnetometer solution is

still used as a fallback as the magnetic field is always available throughout

the orbit[45].

2.2.2 Compassing and Magnetometers

Magnetometers are the modern replacement for the traditional compass se-

tups of the past. As the intention is to measure the Earth’s own magnetic

field, anisotropic magneto-resistive (AMR) sensors were considered the best

option[4].

These sensors are made of a nickel-iron (Permalloy) thin film deposited

on a silicon wafer and are patterned as a resistive strip. The properties of

the AMR thin film cause it to change resistance by 2-3% in the presence of

a magnetic field.

Typically, four of these resistors are connected in a Wheatstone bridge

configuration so that both magnitude and direction of a field along a single

axis can be measured.

For typical AMR sensors, the bandwidth is in the 1-5 MHz range. The

reaction of the magneto-resistive effect is very fast and not limited by coils

or oscillating frequencies.
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Figure 2.7: Output of two orthogonal magnetic sensors rotated horizontally
in the earths magnetic field[4]

As AMR sensors are only sensitive along a single axis, two are required

to measure the horizontal component of the Earth’s magnetic field and de-

termine magnetic heading. When such a sensor is spun around a horizon-

tal plane starting from magnetic north, the output is a cosine function of

the heading angle. This sensor is said to measure the Northings, or X-axis.

Mounting a second sensor perpendicularly to the first, the Eastings or Y-axis,

should output a sine function as shown in Figure 2.7.

Given the parametric equations for a circle of unit radius, Equation 2.2

and 2.3, it can be seen that, in idealised conditions, plotting the Northings

and Eastings against each other will result in a circle.

x = cos(t) (2.2)

y = sin(t) (2.3)

2.2.3 Magnetometer Calibration

Unfortunately, determining heading is not quite as simple as it seems as the

Earth’s magnetic field is deformed and distorted by any ferrous or magnetic
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Figure 2.8: Soft and Hard Iron Distortions on Magnetometer readings

object within it. This can occur due to local geology or due to the vehicle

which the sensors are mounted to. This interference can be classed as either

soft or hard iron distortions[8].

Hard iron distortions arise from permanent magnets and magnetised iron

or steel on the compass platform. These distortions will remain constant and

in a fixed location relative to the compass for all heading orientations. This

distortion causes an additional component field magnitude along each of the

axis and appears to shift the origin of the output circle if X and Y are plotted

relative to each other, see Figure 2.8.

Soft iron distortions are due to the interaction of the Earth’s magnetic

field and any magnetically soft materials surrounding the compass. The

difference from the hard iron distortion being that the magnitude of the

distortion is dependent on the orientation of the compass. Such a distortion

will cause the output circle to become skewed as shown in Figure 2.8.

To correct for these distortions and return the X-Y magnetometer outputs

to the desired circle, a simple calibration procedure can be applied[50]. Two
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scale factors, Xsf and Ysf can be determined to change the ellipsoid response

to a circle. Offset values Xoff and Yoff can then be calculated to centre the

circle around the origin. Applying equations 2.4 and 2.5 to the magnetometer

output values, X and Y will eliminate the effects of the distortions.

Xvalue = Xsf ×X + Xoff (2.4)

Yvalue = Ysf × Y + Yoff (2.5)

Caruso[50] describes a simple calibration method can be used to deter-

mine these offset and scale factor values for a vehicle mounted compassing

module:

• Mount the compass in the vehicle and drive the vehicle in a circle on a

horizontal surface

• Find the maximum and minimum values of the X and Y magnetic

readings

• Using these four values determine the X and Y scale factors (Xsf , Ysf )

and the zero offset values (Xoff , Yoff ). (Equations 2.6, 2.7, 2.8, 2.9)

Xsf =
(Ymax − Ymin)

(Xmax −Xmin)
(2.6)

Ysf =
(Xmax −Xmin)

(Ymax − Ymin)
(2.7)

Xoff = [(Xmax −Xmin)/2−Xmax]×Xsf ] (2.8)

Yoff = [(Ymax − Ymin)/2− Ymax]× Ysf ] (2.9)
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2.2.4 Combining Magnetometers with Other Sensors

Using magnetometers for compassing, orientation and dynamic property sens-

ing has already been presented for space vehicles. Different research has seen

magnetometers being combined with data from other sensors to further the

potential applications for this technology.

Pedestrian (or dismounted soldier) navigation research has seen magne-

tometers combined with gyroscopes and GPS systems to improve accuracy

and reliability when attempting to navigate using dead reckoning.

Dead reckoning is a method of navigation in which the azimuth, or head-

ing, and distance travelled is used to determine the current position in rela-

tion to a known starting point (a fix). In most cases speed and time taken

are used to determine the distance travelled and compasses give the azimuth.

Ladetto et al.[46] looked to overcome sensor constraints in dead reckoning

systems by integrating a range of sensors including a magnetic compass,

gyroscopes, accelerometers and GPS systems. The compass and gyroscope

were compared as a means of determining azimuth with the conclusions being

drawn that an optimal and more reliable system would consist of coupling

the two. The gyroscope derived azimuth can be used to identify magnetic

disturbances, while the magnetic compass can determine the bias and the

gyro and initial orientation. In addition the compass does not suffer the drift

that is inherent in most gyroscopic sensors.

In extending this field to look at navigation for the dismounted soldier,

Gabaglio et al.[47] took those conclusions and implemented a combined gyro-

scopic and magnetic compass integrated sensor. One of the primary reasons

for this being the ability to compensate for magnetic disturbances. It should

be noted however that the disturbance to magnetic field is more significant

as the error in azimuth increases the error in positioning as the soldier pro-

gresses. Furthermore, this research was also considering navigation within

build up areas and within buildings that harbour strong magnetic fields,

further reducing the accuracy of the magnetic compass.
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2.2.5 The DriftBox

At the beginning of 2006, Racelogic Ltd.[37] who are responsible for the

VBox[35] range of GPS systems, launched a new product - the DriftBox[51].

This unit uses a similar concept to the β-angle sensor in that the slip angle

of a vehicle is measured using the velocity vector as determined by GPS and

vehicle orientation. Unlike the β-angle sensor, this orientation is derived from

the integration of a yaw rate gyroscope signal. This method of determining

β-angle is detailed in Bevly et al.[42] and an investigation into this technique

can be found in Section 3.3.2.

As gyroscopes are prone to drift, as well as error induced by the unit

not being level, the Driftbox makes use of a zeroing algorithm to reset the

gyroscope derived heading to the GPS data. Although the precise details are

a closely guarded, commercially sensitive secret, the algorithm must make

use of the lateral acceleration data and yaw rate to try and establish when

the vehicle is at a state of zero attitude. Unfortunately this is not so simple

as there are cases in which lateral acceleration and yaw rate can both be

zero, yet the vehicle is still travelling with a large β-angle. To this end, it is

technically possible to confuse the DriftBox and severely affect its accuracy.

Despite this, the DriftBox was intended to give an idea of β-angle to

drivers whose primary intention was to ‘drift’ their vehicles and is not really

suited to vehicle dynamic research.

2.3 Vehicle Dynamic Simulation

Having a new β-angle sensor to provide new information and understand-

ing regarding the dynamic behaviour of a WRC car on gravel surfaces, this

knowledge can be put to use improving the quality and usefulness of vehicle

dynamic simulation in this field. In particular the application of experimen-

tally derived tyre curves to simulation help to demonstrate how the optimum

attitude angle in cornering is extremely tyre and surface dependent. This is

the topic of the case study in Chapter 5.



26 Chapter 2. Literature Survey

2.3.1 Lap Time Estimation

Vehicle dynamic simulation has been used for as a means of lap time esti-

mation in circuit racing for a long time. Brayshaw[9] states that there are

three primary purposes to this form of simulation, to accurately model the

dynamic behaviour of the vehicle, to accurately predict lap times and to pro-

duce lap simulation results rapidly in order to allow many different vehicle

set up and configuration changes to be examined for a particular circuit.

Various techniques for lap simulation exist but Siegler et al.[52] showed

that they can generally be considered to fall into three categories: steady

state, quasi steady state and transient.

Steady State

The steady state modelling strategy is the simplest of the three and the

vehicles lateral and longitudinal acceleration components are modelled sep-

arately. As such, no lateral dynamics are considered during straight sections

of the track and no longitudinal dynamics considered during cornering.

It is clear that this is an overly simplified solution as the notion of a vehicle

negotiating a corner with fixed velocity, steer angle, path radius and maxi-

mum lateral acceleration does not reflect the true behaviour of competitive

racing vehicles.

Quasi-Steady State

As an extension of the steady state strategy, the quasi-steady state solution

adopts a similar philosophy but instead of considering a corner to be a single

curve, the path is split into a series of discrete smaller constant radius turns

with decreasing path radius which simulate the increase of steer angle towards

the corner apex.

At each path segment the vehicle is considered to be in a steady state.

The lateral tyre force required to generate the necessary lateral acceleration is

calculated and using a combined tyre model, for example the Pacejka Magic

Tyre Model[53], the remaining longitudinal capabilities of the tyre are found.
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This method provides a significantly more realistic approach to lap time

simulation and has been used as the underlying method in discovering opti-

mal lap times for open wheel race cars given various adjustable parameters

by Brayshaw[9].

Transient

The third strategy is the fully transient solution in which the vehicle is consid-

ered to be undergoing non-steady linear or rotational acceleration[54]. This

is similar to what occurs in reality as a vehicle is never in a steady state

situation as it is always accelerating in a combination of the linear lateral,

longitudinal or normal directions and/or the rotational pitch, roll and yaw

directions.

Siegler et al.[52] compared the three simulation techniques as a means

of performing lap time simulation. In concluding, it was shown that the

steady-state model was far too simple to provide realistic results. The quasi-

static and transient models overcame these limitations but without the fully

transient solution it is not possible to take into account all vehicle factors.

Simulation for Rallying

As the transient solution considers the change in attitude and direction of

travel of the vehicle, it is the only one of the three strategies that provide

the necessary capabilities to investigate the complex yaw dynamics and high

β-angle manoeuvres seen in WRC-style driving techniques.

In the case of rallying, lap time simulation is not directly relevant and

a different set of priorities for simulation have to be considered. While it is

still important to accurately model the dynamic behaviour of the vehicle, the

different nature of the course over which rally cars compete make the notion

of lap time simulation redundant. In these circumstances it becomes more

important to model the general performance envelope of the vehicle in generic

circumstances rather than specific circuit modelling. Rapid simulation time

is still important due to the need to perform parameter sweep simulations

to investigate the dynamic trends of the vehicle under extreme manouevring
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conditions.

On loose gravel surfaces, the driving style adopted results in high attitude

angles and makes the yaw dynamics of the vehicle on gravel an important

area to investigate. As a transient simulation takes into account the response

time of the vehicle in changing its attitude and direction of travel, allowing

dynamic yaw effects to be considered[52], this method was chosen to simulate

a WRC car in all case studies.

2.3.2 Modelling a WRC car

To develop the vehicle dynamics WRC test car model used in this study, a

multibody approach as described by Harty[55] and Sharp[56] was employed.

This method describes the vehicle model as a collection of individual bodies

that are in someway connected and have a series of specified constraints on

their freedom to move in relation to each other and the surrounding world.

Despite starting with simple components, such an approach has been

shown to be highly effective at modelling extremely complex systems and,

by coupling this concept with simulation techniques from different fields, such

as aerodynamics or structural mechanics, this technique is often first choice

for multidisciplinary vehicle dynamic simulation[57].

The AutoSim[58] software package is one example of a multibody simu-

lation system (others include MSC Adams[59] and SIMPACK[60]) and was

used to define the bodies and constraints of the model. AutoSim takes this

information about the bodies and derives the equations of motion for the

system as a whole, which can then be supplemented with additional models

for powertrain[1], weight transfer[61], aerodynamics[61] and tyres[53] to build

a realistic vehicle model.

Previous research by Brayshaw[9] and Casanova[62] used the multibody

approach in the development of various transient and quasi-steady state sim-

ulations of open wheeled race cars. Both models were validated and shown

to closely mirror that of their real world counterparts as well as providing

the capabilities to perform various dynamic investigations and studies. The

WRC model is derived from the 7 degree of freedom model initially imple-
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mented by Casanova[62] and later refined by Brayshaw[9]. The model is

described in greater detail in Chapter 4.

2.3.3 Driver Modelling

In addition to modelling the vehicle accurately, it is also essential to recreate

the actions of a human driver to provide realistic control inputs to the vehicle

model. This study required two forms of driver control for simulations, the

first producing the desired time-history control input from a simple look up

table, the second requiring a more complicated path-following algorithm.

Research into mathematical driver algorithms began in the early seventies[63]

and generally concerned themselves with the concept of preview information.

Different driver models have been reviewed by Guo and Guan[64], in

particular highlighting those utilising single point preview and showed that

preview information is needed for satisfactory modelling of the vehicle/driver

system.

Later, Brayshaw[65] in considering potential driver models for simulation,

concluded that it was clear that non-linear feedback control with preview

information and knowledge of the on-limit vehicle dynamics was necessary

for the racing driver to be successful in high speed manoeuvring.

This lead to Brayshaw, and subsequently this study, implementing the

empirical driver model of Sharp et al.[56] to model the on-limit behaviour

of the driver for path following simulations. This method does not require

a linear vehicle model and was originally implemented on an open wheel

race car but only required minimal adjustment to ensure robust non-linear

preview path following control for the WRC model. Further information on

the implementation of driver models in this study can be found in Chapter

4.

2.3.4 Tyre Force Curve Inference

Tyre data is essential in motorsport to maximise vehicle performance and

large proportions of motorsport teams budgets can be spent trying to im-

prove the tyre and the vehicles use of it. Such information can either be
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Figure 2.9: Bridgestone’s MTS Flat-Trac Tyre Testing System[5]

obtained from laboratory rig testing or through experimental testing on fully

instrumented sports cars[5]. This study is primarily concerned with inferring

lateral tyre force against slip angle curves.

Laboratory Rig Testing

In order to generate a lateral tyre force against slip angle curve, various

manufactuers have large sophisticated rigs that all work in essentially the

same way. By mounting the tyre to be tested on a rolling road and applying

a specified vertical load, the lateral force being generated (trying to push the

tyre off the rolling road) can be measured. By rotating the tyre carcass with

respect to the rolling road surface, different slip angles can be induced.

One example of such a machine is the MTS Flat-Trac tire testing system

used by Bridgestone in their motorsport activities. Figure 2.9 is a picture

of the Flat-Trac rig with the tyre to be tested at the centre just above the
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rolling road. In addition to applying varying vertical loads of up to 3000kg,

the rig can also be configured to produce data for varying camber angles and

measure self-aligning torque at speeds of up to 200mph.

Unfortunately, these rigs suffer a few drawbacks. The rolling road can

simulate a tarmac surface but can not simulate the rough loose gravel surfaces

that are of more interest to rally engineers. Also only slip angles in the range

of ±30 degrees can be tested using such rigs[5]. Although 30 degrees of slip

is extreme for circuit racing, it is often exceeded in rallying.

Once the rig has determined the lateral forces generated within its range

of slip angles, the curve can be fitted to the Pacejka Magic Tyre[53] model

and relevant coefficients determined to give an accurate simulation model for

that tyre.

The Silsoe Off-Road Dynamics Facility

At the beginning of 2006 the Silsoe Off-Road Dynamics[66] facility was

opened with the intention of developing tyre testing rigs for the off road en-

vironment. During the course of this study, details were not readily available

but the facility has been designed to include off-road tyre performance mea-

surement and characterisation, vehicle drag, thrust and slip quantification

and traction surface creation and evaluation. This includes the production

of similar tyre data to that demonstrated from the new β-angle sensor and

may, in the future, provide a more controllable laboratory-based alternative

to the procedures developed in this work.

The key elements of the apparatus in this facility are:

• A whole vehicle controlled moisture soil lane

• A mobile single wheel test apparatus capable of the precise control of

wheel torque, vertical load and wheel speed in a wide range of offroad

and on-road test environments.

• A variable plane four wheel articulation rig for the measurement of

wheel load and static thrust across a wide range of axle articulations.
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• A Smart Winch capable of applying precisely controlled loads up to

100kN and 50m on a vehicle

However, use of this facility would be a more expensive option with spe-

cific testing for this purpose, whereas, the method defined in this study can

be quickly and easily included to a current test program. Furthermore this

facility may not be able to replicated conditions seen in full WRC testing.

Despite this, it is a development that may prove a complimentary tyre

testing methodology for loose gravel WRC-style environments.

Track Testing

Despite the complexity and continuing development of tyre testing rigs, the

importance of dynamic factors in tyre performance, of which there is limited

knowledge means that track testing has a valuable place in motorsport engi-

neering. It is said that “the best tire testing machine is a fully instrumented

F1 car”[5] but even this has its limitations.

Rowley[6] goes into great depth describing the complexity of development

of tyre maps in the racing world, showing how these maps are developed from

a combination of manufacturer data and track testing. Rowley breaks track

testing down into three components, skid pad, inline and circuit/race track

testing.

In all tyre testing, the primary factor is the force produced by the tyre for

a given normal vertical loading. This information provides a simple descrip-

tion of what can be expected from the tyre in any given dynamic condition

although it does not take into account many secondary factors such as:

• Tyre temperature

• Speed

• Camber angle

• Tyre inflation pressure

• Tyre wear
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• Transitional effects on vertical load

Rowley[6] states there may be sixty or more of these secondary factors

that may influence the tyre map although, in reality, it is not necessary to

consider them all unless a very complete and accurate tyre map is required.

Skid Pan

Although Rowley[6] describes a rather complicated algorithm (Figure 2.10)

for the mapping of tyre data from skid pan tests, the principle behind it is

quite simple. The concept involves driving the test vehicle around the skid

pan in a constant steer angle manoeuvre. Having reached an equilibrium

state which can be considered to be the maximum lateral acceleration for

that vehicle in that manoeuvre, the steer angle and corner loads are recorded.

Through calculation it is then possible to develop what Rowley[6] calls

‘corner tyre factors’, or in other words the lateral force contribution of each

tyre. By repeating the process for various steer angles, each time determining

the maximum speed at which the manoeuvre can be achieved, and repeating

the calculations to build a complete map.

Inline

Inline testing is used to determine longitudinal capabilities of a tyre through

straight line acceleration and deceleration. Again despite the complexity of

Rowley’s[6] algorithms, the basic premise is to determine the slip ratio of the

tyres through measurement of axle torque and loaded tyre radius velocities

as well as determining longitudinal force components from the acceleration.

Repetition is then employed to build up a complete map of the tyre charac-

teristics longitudinal characteristics.

Circuit/race track

Circuit/race track testing involves refining the tyre maps developed during

skid pan and inline testing by comparing the expectations with what is seen
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Figure 2.10: Rowley’s Base Lateral Acceleration Procedural Algorithm[6]
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from telemetry during circuit testing. A notion of best fit is employed to the

data to ensure that all maps are, to some extent, realistic of what can be

expected.

Although the tyre curve inference found in Chapter 4 is not based on

Rowley’s[6] processes, it does share some common ground. The elements of

testing are similar although, whereas Rowley[6] is determined to develop a

highly accurate map for the limited case of circuit racing, the curve inference

techniques in this work are more interested in increasing understanding of

tyre behaviour in more extreme conditions that are much less understood.

The end result being that although the exact tyre forces may not be accu-

rately found, the ability to quantitatively compare different tyre configura-

tions is now possible where it was not before.



Chapter 3

The β-angle sensor

This chapter describes the development of a novel form of sensor for vehicle

β-angle that is particularly suited to WRC environments and gravel sur-

faces. The construction, calibration, testing and validation of a prototype

are detailed.

3.1 Introduction

It has already been shown that β-angle is important in the theory behind

traction control and vehicle stability systems and that measuring the angle

is also quite a difficult procedure. The primary means being the use of a

vehicle dynamic model combined with some form of inertial sensing[16], or

for more sophisticated applications, optical instrumentation is available[12].

Experience in WRC however has shown that inertial sensors suffer from

severe noise on the rough surfaces that are common place. Even with sophis-

ticated filtering, it is still not possible to obtain useful results after integrating

the signal in an attempt to determine an accurate value of lateral speed and

hence the β-angle. Figure 3.1 demonstrates this level of noise and is taken

from a section of gravel data where the vehicle is travelling in a straight line.

As it can be seen, the lateral acceleration measured fluctuates wildly between

-0.2 and 0.2G, or about one sixth of the total lateral range of the vehicle.

In addition, optical sensors are prone to the loose surfaces effectively sand-

36
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Figure 3.1: Lateral Acceleration noise for straight line motion (gravel)

blasting the lens and rendering the sensor blind. Ultrasonic and Microwave

sensors are also very quickly covered in a layer of dirt that restricts their

accuracy.

To overcome these shortcomings, a novel form of sensing technology was

developed.

In difference to the current methods for measuring β-angle presented

in Chapter 2, the new sensor does not use optical or inertial technologies

nor does it require expensive multiple antennae or differential GPS with a

simpler single antenna solution proving sufficient. Although various concepts

in marine navigation and satellite technology consider similar ideas, there has

not to date been any published suggestion that the β-angle can be measured

in the same manner as the new sensor.

3.2 Principle Behind the Sensor

As equation 2.1 states, the β-angle is the inverse tangent of the lateral velocity

divided by the longitudinal velocity of the vehicle. This, however, can also be

considered equivalent to the angular difference between the direction in which

the vehicle is pointing and the direction in which it is travelling. Therefore

if the two vectors can be measured independently of each other, a value for

β can be obtained.
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The inspiration for the sensor came from a discussion with a colleague

regarding space science where knowing the attitude angles of satellites is

essential to maintain the desired orbital trajectory. Using magnetometers

the orientation of a satellite can be determined relative to the Earth and

comparing this with the a priori knowledge of the orbital path, attitude

angles are obtained[49]. It was thought that a similar approach could be

applied to a ground based vehicle, such as a rally car.

Part of the telemetry sensor configuration already in use on WRC cars

includes a GPS system which provides accurate measurement of the vehicle

velocity vector through Doppler-shift analysis of satellite signals. This vector

is considered extremely accurate[38] and is independent of the orientation of

the vehicle to which it is mounted. The GPS system uses this vector to

provide a geographic heading value of the velocity vector.

To gauge the alternative heading, that is the direction in which the vehi-

cle is pointing but not necessarily travelling, a compassing system has been

employed. In contrast to the floating magnetised needle used in most naviga-

tional compasses, a more accurate and sophisticated approach was adopted.

Magnetometers form the basis of modern compassing systems and mea-

sure the direction of the local magnetic field vector. In the case of the rally

car, that is a combination of the Earth’s magnetic field and the distortion

and interference due to the car’s own magnetic properties. The determina-

tion of actual compass heading requires that these car induced effects are

filtered out.

In addition, the three-dimensional nature of the field and the freedom of

the car to pitch and roll adds further complications to the equations that

govern the calculation of the heading angle.

This sensor will measure β-angle at the point where the GPS antenna is

attached to the vehicle. This is an important consideration as the velocity

vector and hence the β-angle can vary between the front and the rear of the

vehicle. The mounting position of the magnetometer is less significant as

the orientation of the vehicle body does not change depending on where it is

measured.
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3.3 Design of the Sensor

3.3.1 GPS

Although initial studies were performed using the VBox[35] GPS unit, in

particular the results shown in Figures 3.21 and 3.22, the system used in

later experiments was based on an AshTech DG-14 GPS Board[36]. One of

the main reasons for changing from VBox to Ashtech was due to the 20Hz

data sampling rate each box could produce. In the case of the VBox, the

module actually had a 5Hz GPS engine[35] and then uses an interpolation

process to add additional sample points to the datastream, resulting in an

apparent 20Hz sampling rate. This caused particular problems when the

heading signal changed from 0 to 359 degrees as the interpolation would

insert an additional 180 degree data point between the two when attempting

to log at a rate of 10Hz.

The Ashtech board provided the same functionality but can provide true

20Hz data rates, with the latency between receiving a satellite signal and

processed heading information being approximately 6ms. The change to the

AshTech unit was also due to its more modern design and it being already

integrated into the WRC test car telemetry system.

As these GPS units were already part of the standard telemetry setup

on the WRC test car, there was no initial requirement to modify or alter

their configuration. In later experiments it became clear that replacing the

antenna’s magnetic mounting with a non-magnetic alternative would be ben-

eficial in removing the presence of a strong magnetic field in close proximity

to the magnetometers.

3.3.2 Gyroscopic Heading Measurement

The integration of yaw rate, measured using a gyroscope, gives an alter-

native means of determining vehicle orientation. This particular method is

employed in Racelogic’s DriftBox[51].

Despite this, using gyroscope data was not considered for this study as

integrated gyroscope data is prone to drifting due to error in the yaw rate
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Figure 3.2: Comparison of GPS and Gyroscope-derived Heading Telemetry
(—— GPS, – – – Gyroscope)

measurement. That is, over time, the integrated value for vehicle orienta-

tion will slowly move further and further away from the actual value. This

is shown in Figure 3.2 which is taken from a WRC car and shows both in-

tegrated gyroscope data along with GPS heading. It can be seen that the

signal drifts at a rate of about one degree per second from the GPS signal.

The gyroscope angle has been set to start at the same value as the GPS

heading.

This GPS data also demonstrates the problem of satellite signal drop-

out. Just after 120 seconds and before 180 seconds in Figure 3.2 the GPS

heading value drops to zero degrees. This is the default heading for times

when the GPS unit is not receiving the required signal information from

enough satellites to allow the true value to be calculated. Some signals may

be being blocked by dense vegetation or mountainous terrain but, as soon as

the signal is reacquired, the heading returns to the correct value. As can be

seen from the data, the signal drop-out only lasts for a few samples and is

quickly restored.

It would be possible to apply a linear correction factor for this drifting
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after the drift rate has been established but the error in measurement can

also be affected by pitch and roll which is not linear in the short term. Ac-

celeration should not cause a problem but, if the gyroscope is tilted, it is

possible for it to measure more or less rotation that the vehicle has actually

performed. Unlike magnetometers, where the signal does not require inte-

gration, returning the gyroscope to the level plane will not undo the error

that had been induced.

For a complete and accurate heading solution using gyroscopes, it would

be necessary to measure rotation in all three axes to determine 3D orientation

rather than just heading. Furthermore, the accuracy required is currently

only possible using Fibre-Optic or Ring Laser Gyroscope[67] technology, both

of which are considered far too expensive, bulky and heavy for this purpose.

For these reasons it was not considered further for this study.

3.3.3 Magnetometers

As the magnetometer modules measure ambient magnetic field, it is necessary

to ensure that the unit remains horizontal with respect to the Earth to ensure

an accurate heading value.

Gimballing is the process by which pitch and roll error is removed from

magnetic compass designs and can take the form of either mechanical or

electrical solutions. The mechanical option involves placing the sensor in a

complicated frame that maintains the sensor’s orientation as the vehicle to

which it is fixed moves. This method is highly effective in shipping where

accelerations are low and vibration is not a problem. Producing a mechanical

gimbal for a WRC environment would be a significant engineering problem

and would result in a bulky and heavy unit and is therefore not practical.

As a mechanically gimballed compassing solution was not possible, a

strap-down electronically gimballed magnetometer unit was required. This

unit needed to measure all three axes of the ambient magnetic field in order

to provide the level of accuracy in vehicle heading that was required.

The Honeywell HMC2003 Three-axis magnetic sensor[7] module was cho-

sen for the implementation of a prototype sensor.
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The HMC2003 combines three permalloy magneto-resistive sensors mounted

orthogonally to each other and provides the required accuracy and resolution

for this purpose. The unit provides three analogue voltage outputs, which

are automatically filtered by a 1KHz low pass filter.

A drawback of the technology used in the HMC2003 is that the readings of

the unit will slowly drift with time and proximity to any large magnetic fields.

It is possible to reset the sensors using a brief high current pulse applied to

the unit whenever this becomes significant. As part of the validation process,

the rate of drift was investigated and shown to be within acceptable bands

if the unit was reset on a daily basis.

Also considered was the Crossbow CXM113 module[68] which used flux-

gate magnetometers. This module was dismissed however for various reasons

including its reduced accuracy, smaller dynamic range and greater suscepti-

bility to extreme temperatures that may be experienced in WRC. Despite

this the CXM113 does not suffer from drifting like the HMC2003.

Other magnetometer modules are available that are designed to function

as strap-down (non-gimballed) compasses, such as the Honeywell HMR3000[69].

These were quickly dismissed though as the need to correct the heading out-

put for any pitch or roll of the unit is performed by including two incli-

nometers onboard. In static conditions these provide a reasonably accurate

measure of orientation, however, in WRC conditions, the inertial nature of

the inclinometer makes them susceptible to vibration and significant reduces

their accuracy in the same manner as seen with accelerometers. Further-

more any lateral or longitudinal acceleration applied to these modules will

manifest itself as a false inclination reading.

Pitch and roll correction calculations are described in section 3.5.4.

3.3.4 The Prototype

Figure 3.3 shows the prototype unit containing the HMC2003 module, Fig-

ure 3.4, as used in all experimental test runs. The unit has two connecting

cables. The first providing the three analogue output voltages (X, Y and Z)

as well as +12V supply and reference ground connection, marked as Xout,
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Figure 3.3: Prototype Magnetometer Sensor

Yout, Zout, V+ and Gnd respectively in Figure 3.4. The second cable pro-

vides a connection to the sensor resetting circuitry in the module and can be

pulsed using a separate pulse generator, again SR- and SR+ in Figure 3.4.

Although the HMC2003 also has Offset straps to apply an incident mag-

netic field to each axis measurement and pre-amplified trim outputs, only the

five connections mentioned above were used for this study with any signal

adjustment being performed within the data logger and with post-processing.

The HMC2003 module was mounted within an IP65-rated[70] polycar-

bonate weatherproof enclosure which was intended to protect the unit against

any ingress of water or dust. Also the polycarbonate nature of the box meant

that it itself did not interfere with the magnetic field or the measurement of

it by the contained module. Each module was securely mounted within the

enclosure to reduce the risk of damage due to vibration. Despite the wet,

dusty and rigorous testing conditions, the unit remained in perfect working

order throughout all tests.

As the sensors of the HMC2003 are fabricated using Permalloy (NiFe)

thin films, that create changes in resistivity with respect to external magnetic

fields, strong magnetic fields can disrupt the magnetic domains of the film

particles from a smooth factory orientation[71]. Accuracy and resolution of

these sensors will suffer until the film magnetic domains are reset to recreate
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Figure 3.4: The HMC2003 module and Pinout Diagram[7]

a uniform direction.

Resetting the sensors involves applying two high current pulses (approx-

imately 4amps) between the SR+ and SR- pins of the module. This current

flows through a coil wrapped around each sensor, exposing it to a magnetic

field in excess of 40 Gauss which realign the magnetic domains of the sensor.

The induced field of these pulses are significantly higher than the ±2 Gauss

operating range. The specifications for this process are set out in the AN-213

Honeywell datasheet[71].

Each pulse lasts only 40 nano-seconds and frequently application is rec-

ommended by the sensor manufacturers to ensure maximum sensitivity. To

accompany the sensor used in each test, a set/reset module was designed

and developed that could be connected to the SR+ and SR- pins to generate

the required pulses from a 12V supply. Part of the purpose of each test was

to determine how frequent this process was required to ensure the desired

performance of the magnetometer.

The circuit used to generate the required pulses is shown in appendix A.

3.3.5 Logging

Both GPS and the three magnetometer output voltages were logged at a

sampling frequency of 10Hz using the Pi LCS Data logger[72] and chassis

control system that was already fitted to the WRC car. Although capable
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of performing the calibration and calculations necessary to produce a β-

angle data channel, the LCS was configured to simply log the data as all

calculations were performed in post-processing. This was due to restricted

access to the LCS at the time of testing.

The sampling frequency was set at 10Hz as the natural yaw frequency of

this class of vehicle is around 1-2Hz[1]. 10Hz, therefore, provided suitable

oversampling to allow β-angle behaviour to be analysed whilst trying to

reduce the size of the dataset.

It was also noted that at 10Hz, the 6ms of time required by GPS box to

calculate heading from the raw satellite signals is not a cause for concern.

3.4 WRC Testing

This study benefits from direct personal participation in the activities of the

WRC test team because access to a test vehicle and data (both telemetry

and vehicle configuration information) is usually extremely restricted. The

development of this sensor was privileged to be fully integrated into the WRC

test procedure at all stages and the richness of the data obtained helped

towards gaining a more realistic view of the dynamics of this class of vehicle

in a competitive environment than has been previously possible.

3.4.1 Construction

Each WRC test vehicle is built specifically for the conditions of the relevant

test. At the build stage it was possible to specify various factors such as the

β-angle sensor mounting position, surroundings, connection to the vehicles

telemetry system and configuration of the data logging and additional sensors

that could provide valuable insight.

In addition to input regarding vehicle configuration, feedback also pro-

vided the necessary information to tune the vehicle dynamic model used in

calculating factors such as pitch and roll, yaw inertia, weight distribution

and vertical wheel loading. This was important as the sensor was tested on

two occasions with two very differently configured test vehicles, the first for
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gravel and the second for tarmac.

Once each test vehicle has been completed, usually the day before being

shipped to the test, it is put through a procedure known as shakedown.

3.4.2 Shakedown

For the shakedown, each test vehicle is driven from the factory to an airfield

near Kirkbride in Cumbria. The purpose being to run the vehicle at full

speed through various manoeuvres to ensure that the vehicle has been put

together correctly and nothing has been forgotten or incorrectly installed.

At shakedown all key systems, sensors and components are tested but it

was also possible to perform some of the calibration procedures at the same

time. This is an advantage as it is not necessarily always possible to perform

such procedures when at the test. This is due to time restrictions or limited

facilities at the test location.

The airfield provides a flat level surface large enough to drive the test

vehicle in large slow circles that generated the magnetometer calibration

circles seen later in this chapter.

Following shakedown, assuming everything works as expected, the test

vehicle is crated up and shipped to the location of the test. Given the ex-

pense of both test vehicle and the logistic cost of running a fully staffed test,

shakedown is vital to reduce the risk of the vehicle not working on arrival.

3.4.3 Gravel Test

In February 2005, the β-angle sensor underwent its first WRC test. The test

was a standard gravel test run on mountainous roads just outside Malaga in

Spain and the conditions were very wet and the drivers described the course

as being rather slippery.

The realities of the conditions at a WRC test mean that controlled and

consistent manoeuvres are not possible. In order to produce valuable results

for the rest of the engineering team, the test team attempts to recreate a

special stage as it would be on an event. In this case, the test was run on
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a long closed gravel road course at full speed with the driver simply turning

round and coming back at the end of the course.

Between each run the telemetry is offloaded and quickly checked to ensure

nothing has broken. Then, depending on the test schedule, the vehicle setup

is adjusted before being sent out on another run. The advantage of this being

the realism of the test data and the confidence that if the sensor can survive

these conditions it should survive a full rally. However, the disadvantages

include the difficulty in producing consistent conditions and clean data.

This first full test for the sensor was intended to ensure that the magne-

tometer module could survive the rigours of being shaken about at high speed

for a lengthy period as well as to investigate the accuracy of the sensor’s out-

put. The issue of sensor drift in the magnetometer was also considered with

the unit being reset at the beginning of each day. It was found that the sen-

sor did not suffer from significant drift between each reset pulse, determined

by comparison of sensor voltages at the beginning and end of each day. Also

the sensor was found to be resilient under the conditions, continuing to work

as desired throughout the three days of testing.

3.4.4 Tarmac Test

In February 2006, the β-angle sensor was put through a scheduled tarmac

test. The location for this test being just outside Barcelona in Spain.

Following the first test, various issues were identified that could be refined

in the second test to provide better results. The magnetometer positioning

and surrounding was adjusted to reduce the interference with the magnetic

field measurement and steps were taken to improve pitch and roll correction

including the logging of GPS vertical velocity.

The test was run on a dry tarmac closed road course over 4 days. Again

the sensor did not show any adverse reactions to the conditions and performed

as expected throughout the test.
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3.4.5 Additional Test Data

In addition to the two scheduled tests that this study was permitted access to,

a set of telemetry data from a fully instrumented test vehicle was available.

This data also included a β-angle measured using a Correvit optical sensor

on the tarmac skidpan at the Millbrook proving ground.

The Correvit did not suffer from the problems previously identified in this

test as it was performed on tarmac and the manoeuvres were not performed

at full rally stage speed.

This test data was generated in a more controlled environment with clear

simple manoeuvres performed with different vehicle configurations and there-

fore noise levels are significantly reduced.

3.5 Calibration Routines

The GPS unit was supplied pre-calibrated and required no configuration or

setup.

The magnetometers in comparison required significant calibration.

3.5.1 Sensor placement and surroundings

As the purpose of the magnetometer is the measurement of the Earth’s mag-

netic field, any local distortion due to the presence of the ferrous chassis and

magnetic fields associated with the car have a clear effect on the accuracy of

these measurements. The calibration routines will remove these distortions

but by careful consideration of the placing and surroundings of the sensor, it

is possible to minimise distortion.

Magnetic field distortion diminishes rapidly with distance from the source

of interference. As such by mounting the magnetometers as far as possible

from the main sources of local magnetic fields and large ferrous objects can

help in reducing their influence. Figure 3.5 is for illustration purposes only

but demonstrates this effect on the Earth’s magnetic field due to the test

vehicle.



3.5. Calibration Routines 49

Figure 3.5: Magnetic field distortion due to Engine and GPS Antenna (Orig-
inal photo courtesy of www.fordteamrs.com)

In initial testing, a compromise was required. The car chassis has an ef-

fect, but by far the most significant contributor to distortion of the ambient

magnetic field is the engine. Distance from the engine is therefore an impor-

tant factor, although the GPS antenna used in initial testing was mounted

to the top rear of the car roof using a very strong magnetic base.

In later experiments, the magnetic GPS antenna base was removed and

the magnetometer unit moved to the extreme rear of the test vehicle. This

placement, shown in Figure 3.6 showed significant reduction in the level of

interference experienced, which can be seen by the reduction in Z-axis vari-

ation with heading. In part, mounting to the wing was also beneficial as it

is constructed from carbon fibre, which is a non-magnetic material.

3.5.2 Vehicle Chassis and Engine Interference

As previously mentioned, the chassis and engine will generate some magnetic

interference. Routines were developed which, through rotation of the test

vehicle, would allow the two components of the Earth’s and the car’s magnetic

fields to be separated and the car’s field effects removed.
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Figure 3.6: Initial and Optimal magnetometer placement (Original photo
courtesy of www.fordteamrs.com)

3.5.3 Calibration by Rotation

Section 2.2.3 detailed a process described originally by Caruso[50] which

could be used to perform a 2-axis calibration of the magnetometers to al-

leviate interference due to the vehicle chassis and engine. This process was

carried out on a test vehicle undergoing shakedown at a flat and level Cum-

brian airfield. The X and Y axis sensor voltages are shown in Figure 3.7.

Figure 3.7 shows clearly the distorted circle as expected but it also shows

two slightly different circles. On further investigation of the telemetry from

this test, it was discovered that the first rotation manoeuvre was performed

at approximately 3ms−1 and the second at 10ms−1. At the slower speed

the vehicle is experiencing only a small lateral acceleration and due to the

stiffness of the suspension, the roll angle induced can be considered to be

very close to zero. At 10ms−1 however, the lateral acceleration required

to maintain the circular path is significantly larger and hence the vehicle

experiences a higher roll angle. The rotation of the sensor in the Earth’s

magnetic field caused by this roll angle affects the measurement of the circle.

Using the information about the vehicle provided by the test team, which

included roll stiffness, approximate roll centre and location of centre of grav-

ity, the roll angle could be calculated[10] for this vehicle at this value of
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Figure 3.7: Low speed turning calibration tests

lateral acceleration. In this case it meant a roll angle of approximately 2◦.

Despite the error induced by the roll angle, the transcribed circles are clear

and not affected by excessive noise. What’s more, the circles are consistent

if the vehicle continues to drive round at the same speed. Distortion due to

the magnetic interference of the chassis and engine can be seen as the circle

is slightly elliptical and off centre (the sensor’s zero output being +2.5 volts

in both X and Y) but the application of appropriate X and Y scale factors

and offsets remove this distortion as expected.

Therefore, using the calibration process an accurate, reliably consistent,

relatively noise free heading calculation can be performed provided the sensor

can be levelled either mechanically or electronically to remove pitch and roll

induced error.

3.5.4 Pitch and Roll

During initial testing of the prototype a simplified 2-axis magnetometer cali-

bration and heading calculation, as described in Section 2.2.3, was employed.
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Figure 3.8: Error in heading calculation due to sensor pitching[8]

Although the sensor performed without any technical fault throughout the

initial tests, the limitations of the 2-axis magnetic heading calibration system

resulted in potentially unacceptable levels of error in the β-angle measure-

ment due to the rotation of the platform (car chassis) about its X and Y axis

(pitch and roll). This problem is overcome through a process of electronic

gimballing and the adoption of a three-axis magnetometer module.

Pitch and Roll Error

The pitch or roll of the magnetometer unit produced a heading error the

magnitude of which depending on the inclination of the magnetic field at

that geographical location and the vehicle heading. For example, Figure 3.8

plots the experienced heading error for a unit with various angles of pitch

at a geographical location where the Earths magnetic field has a inclination

angle of 40◦ if no tilt correction is applied.

This pitch and roll error is due to the 3D nature of the Earth’s magnetic

field and therefore corresponds to the orientation of the actual magnetometer

unit with reference to the fixed axis system of the Earth. This differs from
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the notion of pitch and roll in vehicle dynamics which usually relates to the

angular orientation of the vehicle chassis to the road surface. It is therefore

necessary to consider both pitch and roll of the chassis of the vehicle (to

which the magnetometer unit is mounted) with respect to the road surface

but also the inclination of the round surface to the level plane of the Earth’s

surface to understand this source of error.

This error results in a range of X and Y values for each heading and

hence when shown graphically, the data forms a thick circular band where

a thin line is expected. Figures 3.9 and 3.10 demonstrate this problem. In

Figure 3.9 the test vehicle is being driven in a large circle at a low speed

during preliminary shakedown at Kirkbride, this effectively keeps pitch and

roll angles near zero. It can be seen that the sensor voltages transcribe a

clear and consistent circle. Comparing this to Figure 3.10, which shows the

raw voltage telemetry from a run of one of the Spanish tests of the vehicle in

which pitch and roll of the vehicle and the mountainous terrain are significant

factors, it can be seen that the data now transcribes a thick band of values.

The difference in voltages is due to the geographical distance, and hence

differing magnetic field declinations, between the two tests.

By including the Z channel data and plotting all three axes, the circle is

replaced with a section of a sphere that shows that that the thickness of the

band corresponds to varying magnitudes of vertical magnetic field strength

and hence the unit must be experiencing some pitch and roll disturbance.

Figure 3.11 shows three projections of this sphere using data from one of the

Spanish tarmac tests.

Using the Z-axis channel data of the magnetometer, as well as the value

of pitch and roll of the sensor module allows the reorientation of the X and

Y data to the horizontal plane and hence the reduction of error. It should

be noted that this error is transient and if the sensor is returned to its initial

level orientation, the error is removed.

As previously mentioned in Section 3.3.3, electrically gimballing a mag-

netic heading sensor allows the unit to remain fixed to the vehicle, known as

being strapped-down, and by knowing or sensing the values of pitch and roll,

rotating the three-dimension magnetic vector reading back to that of a level
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Figure 3.9: Calibration Circle at Low Speed (no pitch or roll) - raw voltages
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Figure 3.10: Raw X and Y axis voltages for full test run
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Figure 3.11: Raw X, Y and Z axis voltages for full test run

orientation. The X, Y and Z magnetic readings can be re-orientated to the

horizontal plane (Xh and Y h) by applying rotation equations 3.1 and 3.2 for

a given pitch (φ) and roll (θ) angle[50].

Xh = X × cos(φ) + Y × sin(θ)× sin(φ)− Z × cos(θ)× sin(φ) (3.1)

Yh = Y × cos(θ) + Z × sin(θ) (3.2)

Using a similar calibration method, but now also encompassing the Z axis

before applying these correction equations and the same heading calculation

method now based on Xh and Y h produces a pitch and roll corrected value.

This method requires the pitch and roll angle of the unit to perform the

correction. Obtaining pitch and roll angles is described later in this section.



56 Chapter 3. The β-angle sensor

Calibration of the Z-axis

As the pitch and roll correction equations include the Z-axis data, there is

now a requirement to perform a calibration routine on this axis to derive the

scale factor and offset for that geographic location. As described in Chapter

2, scale factors and offsets are determined for the X and Y axes by rotating

the vehicle, with sensor, through a full 360◦ and attempting to map the plot

of the resulting data to a circle centred at the origin. Applying the same

logic to the Z-axis would mean rotating the vehicle with sensor around its

Y-axis and is therefore extremely unpractical.

As an alternative method, instead of attempting to map a set of data from

a complete rotation, it is possible to attempt to map a segment of data from a

known angle of rotation. In other words, instead of rotating the car end over

end, by jacking up the rear of the vehicle and then the front of the vehicle

to a known angle a data segment can be measured. It is then possible to

calculate a scale factor and offset that map the data to the segment of a circle

expected for that geographic location and angle of magnetic inclination. This

is easiest to achieve by initially pointing the vehicle in a Northerly direction

and comparing only the X and Z axis data.

Figure 3.12 demonstrates this method by showing the magnetic field vec-

tor in the X-Z plane for a level vehicle as well as the effects of jacking the

front and rear of the vehicle. The segment created can then be seen to be part

of the expected circle (dotted) that would be created if the vehicle could be

completely rotated in this plane. The initial vector is inclined to the vertical

due to the magnetic field inclination angle for the given geographic location,

in this diagram the inclination is 45◦.

Given that it is unlikely that the vehicle will experience such rotation to

angles in excess of those achieved through jacking this method of calibrating

the Z-axis is sufficient. The magnetic distortion due to the presence of a jack

is considered to be minimal.
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Figure 3.12: Effect of Jacking front/rear of test vehicle on magnetic inclina-
tion

Obtaining Pitch and Roll angles

Inertial Sensing

Currently commercially available magnetometer-based compassing solutions

either utilise a pair of orthogonal tilt sensors or a tri-axial accelerometer

to determine an accurate value for the pitch and roll of the magnetometer

module. As the angles involved are quite small (a few degrees) any noise or

vibration will significantly affect the accuracy of such units.

Both of these methods attempt to determine orientation with reference

to the Earths gravitational field and are only effective if the module is not

experiencing any additional acceleration. For example, if the module is expe-

riencing a lateral acceleration of 0.1G, these systems would imply a tilt angle

of 5.7◦[73]. Given the nature of operation of the WRC car, this method

would therefore be completely inappropriate.

Angular Rate Sensors

Angular rate sensors, or gyros, could be used to measure rotation of the unit

in its three axes to provide the required angles. These sensors do not suffer

the sensitivity to accelerations but have their own drawbacks[73].

The need to integrate the signal from the angular rate sensors increases

the likely error in the system and the standard range of sensors cannot provide
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the required precision to maintain an acceptable level of accuracy for the re-

quired period of time. Section 3.3.2 demonstrates this inaccuracy and again

the latest high specification fibre-optic gyroscope[67] sensors could resolve

this problem but not in their current form, which would be an excessively

expensive, bulky and heavy solution. This technology may, in the future,

become more viable a solution.

Vehicle Dynamics Model

Using a basic understanding of the vehicle dynamics of the car to which the

module is strapped, it becomes possible to build a model that can infer the

vehicles orientation in most situations. By combining data from accelerom-

eters and GPS, with a few assumptions, an acceptably accurate value for

pitch and roll can be determined without the problems experienced in the

previous methods. This method has been shown to be effective and is further

detailed below.

Inferring Pitch and Roll from a Dynamic Model

If the dynamics of a vehicle with suspension are considered, there are four

steady-state conditions which can result in a rotation of the chassis about

its X or Y axis. Two are concerned with the lateral and longitudinal forces

generated on the chassis by driving/braking and cornering, the other two

relate to the banking and inclination of the road surface over which the

vehicle is travelling.

The suspension system has the added advantage that it works as an ef-

fective high pass filter, helping to remove the noise introduced through road

surface variations, from the pitch and roll data. Suspension geometry infor-

mation was provided as a set of Kinematics and Compliance data from test

rig measurements of the class of vehicle used. Spring rates were also provided

for each of the test vehicles.
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Longitudinal Acceleration and Pitch

As the vehicle accelerates or brakes, it will dive or squat on its suspension.

The extent of pitching relates to the degree of longitudinal acceleration.

In the simplest situation, a calculation of load transfer of the front and

rear of the vehicle can be used to give a good indication of the magnitude of

pitch; however this assumes little influence from any anti-dive or anti-squat

suspension components.

Milliken[1] defines this change in axle load (∆W ) due to longitudinal

acceleration as a function of the acceleration (Ax), the weight of the vehicle

(W ), the wheelbase (WB) and the height of the centre of gravity of the

vehicle (h), thus:

∆W =
hWAx

WB
(3.3)

This load transfer approach combined with suspension wheel recession

rates gives a very good approximation for the purposes of approximating

pitch angle without the need to model the suspension geometry in full. This

method has been widely accepted as providing suitably accurate values for

the majority of potential simulations and studies and is considered by many

to represent a high level of realism.

Figure 3.13 shows a sample of pitch angle data calculated using this

method. It can be seen that pitch of the vehicle due to longitudinal ac-

celeration rarely exceeds one degree. This being a consequence of the stiff

suspension setup. It is also worth noting that the frequency of changes in

pitch angle is generally around 1-2 Hz which is as expected for a vehicle of

this class.

Lateral Acceleration and Roll

Under lateral acceleration, a vehicle experiences load transfer. The suspen-

sion system of the vehicle then reacts to this load transfer by the compression

of the outer springs and expansion of the inner springs. Given the recession
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Figure 3.13: Vehicle Orientation Angles derived from Acceleration Telemetry
(—— Pitch, – – – Roll)

rates of the wheels and knowing the magnitude of the load transfer, it is pos-

sible to calculate the linear expansion and compression of the inner and outer

suspension. With this information the roll angle due to lateral acceleration

can be inferred.

In the same way as for longitudinal acceleration, Milliken[1] again pro-

vides a simplified method of calculating percentage lateral load transfer

(LLT ) as a function of lateral acceleration (Ay), track width (TW ) and

height of the centre of gravity (h) of the vehicle, equation 3.4. An accelerom-

eter provides the lateral acceleration information required. Although it has

been previously mentioned that the level of noise in this measured acceler-

ation is too severe for integration to determine lateral velocity, this is not

required in this case. A moving average filter, as shown in Equation 3.5, is

applied to smooth any irregularities.

LLT =
Ayh

TW
(3.4)
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yf (i) =
1

2N + 1
(y(i + N) + y(i + N − 1) + ... + y(i−N)) (3.5)

The suspension recession rates differ between the front and rear of the

vehicle as well as the effect of the anti-roll bars, so it is necessary to calculate

the two independently and average across the two.

As the degree of roll is usually only of the order of a few degrees, the sen-

sitivity of this calculation to error through a simplified modelling approach

to the suspension and load transfer from accelerometer measurements is ac-

ceptably small.

Figure 3.13 also shows a sample of roll angle data due to lateral accelera-

tion calculated using this method. Roll angle rarely exceeds 3 degrees, again

due to the stiff nature of the suspension and also demonstrates frequencies

in the 1-2Hz range as expected.

Vertical Velocity, Road Inclination and Pitch

In most situations, the road surface over which the vehicle will be travelling

will be subject to some degree of inclination. This will have a clear effect on

the pitch of the vehicle, measured relative to the centre of the Earth.

The GPS module can calculate three-dimensional velocity extremely ac-

curately through Doppler shift analysis of the satellite signal. The angle of

the road can be considered to be equivalent to the inclination of the velocity

vector to the horizontal plane and, with small correction to take into account

the slight change in wheel loads due to the angle of the vehicle, the compo-

nent of vehicle pitch caused by the road inclination can be determined. This

technique was initally developed by Bae et al.[44].

Unfortunately, despite wanting to log the vertical velocity output of the

GPS module for the second Spanish test, it was not possible to reconfigure

the LCS data logger to perform this function. This was due to a lack of time

in the tight build schedule caused by other issues and technical problems with

the electronic components of the test car taking priority. It was, however,
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Figure 3.14: GPS Altitude telemetry

possible to log altitude above mean sea level, which provides a similar method

of calculating road inclination. Due to the inherent errors in GPS positioning

calculations, this is not as accurate as the Doppler-shift vertical velocity

calculations but does provide reasonable road inclination calculations.

Figure 3.14 shows a set of GPS altitude data from a test run on a hilly

tarmac stage in Spain and the road inclination angle, Figure 3.15, that can

be inferred using it and the horizontal velocity measurement.

Both GPS and inclination data have had a moving average filter applied

to them. This filter replaces each data point with an unweighted mean of the

surrounding data points, the purpose of which being to smooth irregularities

and random variations and allow the identification of trends[74]. Equation 3.5

demonstrates this filter. yf (i) represents the filtered data point replacing the

ith element of y, y is the original data set and N represents the size of the

moving average window.

In this case a moving average window of one second was applied, by which

it is meant that each data sample is averaged with those up to half a second

before and up to half a second afterwards.

Super Elevation

The case of super elevation, or banking, of the road surface is an interesting

special case as it can not be determined from simple accelerations or GPS
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Figure 3.15: Road Inclination Angle

data. It also poses the question as to whether β-angle on a banked surface

is the same as a flat surface as the dynamics of driving with zero β along

a super elevated surface require some lateral force applied to the system to

counter the desire to slide down the bank. Fortunately banked surfaces with

an angle of more than a degree or two are relatively rare and due to the diffi-

culty in measurement, it can be overlooked in initial studies. It is technically

possible to determine whether road surface banking is present and its mag-

nitude by comparing the 3-axis magnetometer data, corrected with the three

other pitch and roll corrections, to the expected value for that geographical

location. This, however, was not possible within the scope of this work and

would be very susceptible to noise levels.

Combining the Components

These four components should combine to give a reasonably accurate as-

sessment of the current vertical orientation of the vehicle and hence the

magnetometer in all situations.

With these values of pitch and roll it becomes possible to correct the

magnetometer data to provide significantly more accurate headings under

the conditions experienced by the sensor module under testing. Correcting

in this manner increases accuracy by removing the pitch and roll error as

shown in Figure 3.8. Further degrees of accuracy may be obtained from
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further studies into the super elevation issue.

It is also clear from telemetry that road inclination angle is a significantly

larger factor in heading error with inclination angles reaching in excess of

10 degrees on typical rally stages, compared with a maximum pitch due to

suspension components of less than 3 degrees.

At magnitudes of greater than 10 degrees for pitch and roll, the error

in magnetic heading calculation becomes highly significant (see Figure 3.8).

This results in an unacceptable level of error in magnetic heading and hence

β-angle. As such correction of this error is essential for these road inclination

angles. The smaller level of variation in sensor orientation due to vehicle

suspension movement, which is the more traditional concept of pitch and

roll in vehicle dynamics, is of a suitably low level to not cause excessive error

in the range of values seen in WRC.

3.6 Testing and Validation

The prototype sensor was tested for three qualities: the durability of the

sensor, the quality of the data obtained from the sensor and to test for any

drift in the results obtained from the sensor over a prolonged period of testing.

The prototype unit was mounted to a Ford Focus WRC car. Mounting

of the unit was a compromise to alleviate as much of the magnetic field

distortions generated by the vehicle as possible. The engine, the strong

magnetic bases of the GPS antennae and the metal chassis of the vehicle

generate the majority of the distortion. Distance from all three is optimal

although this is clearly not an option. A compromise of the centre of the

roof, just behind the cockpit air inlet, provided a position with acceptable

levels of distortion. For future tests the GPS antenna base was replaced with

a non-magnetic alternative allowing for increased distance from the engine

as previously described.

The tests were conducted in southern Spain as part of a scheduled test

session for the WRC team on a gravel surface. They were undertaken on a

hilly track surfaced with wet rough gravel. The track was a single carriageway

but varied in width from narrow to relatively wide. Vehicle speeds were in
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the range 60 to 140 kph.

Data was available for 14 test runs each of which varied between 15 and

30 minutes long and spanned three days of testing.

The three signal outputs from the magnetometer were logged at a 10Hz

sampling frequency by the onboard telemetry system. The GPS heading was

also logged accordingly.

The resulting data was filtered with a moving average filter, and then

calibrated using calibration functions as described in section 3.5. There was

no opportunity to conduct these calibration tests in Spain, although careful

analysis of the Spanish data revealed a correction factor to take account of

the change in angle of magnetic field declination from Cumbria to Spain.

Headings were calculated using the magnetometer data. This was combined

with GPS data to yield β-angle time histories.

Raw β-angle Data

Figure 3.16 and 3.17 show two examples of the raw β-angle telemetry ob-

tained in Southern Spain. Both represent the same road stage course but

each is driven by a different driver.

These figures represent the raw data and as such the signal can be seen

to exhibit a few sources of noise. Firstly, the angle trace is slightly jagged

and every so often the angle peaks up to values in excess of 100 degrees.

These peaks are caused by GPS dropout problems when then GPS unit is

not receiving sufficient information from the satellites to provide a heading

value. Fortunately the GPS unit quickly reacquires the satellite signal so the

data stream is quickly restored.

In addition, for approximately the last 20 seconds of each run and the first

few seconds of run 2, the data stream becomes extremely noisy and erratic.

This is due to the vehicle actually having come to rest and could be removed

by including a velocity threshold.

Without any filtering or sophisticated analysis, it can be quickly seen from

these two graphs that the β-angle sensor can be used for driver comparison

with each figure representing the same course but with different drivers. The
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Figure 3.16: Raw β-angle Telemetry (Run 1)
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Figure 3.17: Raw β-angle Telemetry (Run 2)
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two traces show that the drivers are using a similar techniques with the

vehicle being excited to high β-angles at the same points and resulting in a

similar shape to the trace. However, the driver in Run 1 seems to be achieving

peak angles around 25 degrees where driver 2 is closer to 35 degrees which

could correspond to many factors including driver performance.

Other factors could also influence these traces such as a sudden downpour

during the driver switch overs resulting in a more slippery road or a change

of tyres, but with further development it is clear that the sensor could be

used as a quantitative tool for driver comparison.

Example Manoeuvres

In order to validate the β-angle, the data was analysed for manoeuvres where

the expected β-angle is widely accepted. Three are presented for considera-

tion.

Straight Line Running

The first, Figure 3.18, demonstrates driving in a straight line at relatively

high speeds between 70 and 100 kph as can be seen in the upper right graph.

The upper left graph of Figure 3.18 shows both the GPS velocity heading

measurement as well as the magnetometer derived vehicle heading, in this

case the two appear to be almost equal as the β-angle (shown in the lower

left graph) in such conditions is, as expected, close to zero.

It is worth noting that the steering angle input seems quite dramatic

given the high vehicle speeds, shown in the lower right graph. This is due

to the road conditions of loose wet gravel. For this particular test the driver

described the conditions as “extremely slippery” and he struggled to maintain

the straight line orientation of the vehicle, ultimately requiring the drop in

velocity half way through this data segment to avoid going off the road.

The results of these conditions and the efforts of the driver are shown in

the slight fluctuations in the values of β-angle measured. Despite this the

β-angle does not increase beyond 2◦ and is quite stable. This is as expected

from such a class of vehicle driven in this manner and nicely demonstrates
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the loosely coupled nature of β-angle to high frequency steer inputs at high

speeds. By considering similar situations throughout the entire set of test

run data, it was seen that the sensor was consistent in producing expected re-

sults and therefore boosting confidence that the sensor performs as it should

in such conditions.

Vigorous Cornering

The second, Figure 3.19, shows a vigorous cornering manoeuvre where the

path of the road turns a little to the left, then to the right and then back to the

left in a similar manner to a double lane change or chicane manoeuvre. Again

the upper left graph shows both GPS velocity heading and magnetometer

derived heading, upper right gives vehicle velocity, lower left shows steer

angle and lower right is the vehicle’s β-angle.

The approach to the manoeuvre shows significant braking during which

the driver slows the vehicle from 80 to around 30kph. As the driver ap-

plies some counter steer under braking, the rear tyres of the vehicle becomes

saturated and a high β-angle of about 15◦ is induced.

Next the driver turns into the corner and applies some throttle. This

results in an slight increase in vehicle speed and sees the rear of the vehicle

swing back in the opposite direction. This is sometimes known as a ’Scan-

dinavian Flick’. As the swing occurs, the β-angle drops suddenly to around

-28◦.

Coming out of the corner, the driver initially slows down to help bring the

vehicle back under control and reduce the β-angle. Once the vehicle attitude

drops to a much lower level he accelerates and straightens up but due to the

loose gravel surface the vehicle fish-tails and the driver works erratically to

again reduce the β-angle back to smaller values.

The behaviour of the value of β-angle in this manoeuvre follows the ex-

pectation given the nature of the path taken and the control inputs.



3.6. Testing and Validation 69

Handbrake Turn

The third manoeuvre, Figure 3.20, is a handbrake turn performed by the

driver to turn the vehicle around on a tight section of road. Vehicle veloc-

ity has been replaced in Figure 3.20 with the handbrake sensor to better

demonstrate the timing of the manoeuvre.

Initially the driver counter steers to move the vehicle to one side of the

road, before making a large steering input and inducing a high negative

angle. As the handbrake is applied to the rear wheels, resulting in rear tyre

saturation, it causes the rear of the vehicle to swing back round as it loses

lateral capability. At this point the β-angle climbs quickly to around 25◦ and

is sustained and controlled by the steer action of the driver and application

of throttle.

From the heading comparison it can also be seen that during this manoeu-

vre the vehicle has rotated through a full 180◦ as expected. Once the vehicle

reaches it intended heading orientation, the β-angle is allowed to return to

lower figures.

It can be seen that the clear change in β-angle from negative to positive

occurs directly after the application of the handbrake and the magnitude ex-

tremes of about 25◦ correspond with what is accepted to occur during such

a manoeuvre and, therefore, partially validates the sensors output.

To increase the confidence in the sensor further, three validation methods

could also be used. By using a visual reference field the observer could get

an idea of the β-angle and compare it with that being read by the sensor.

This would be achieved using a video of the run from the drivers perspective

that could be indexed to the data. Due to the wet and muddy conditions of

the Spanish test this was not possible.

The second method involves rotating the mounting of the sensor to induce

an artificial attitude angle. The resulting data from a straight-line test should

mirror that of a run with the original sensor mounting, but with the β-angle

being increased by the degree of rotation of the sensor. This test was planned

on the WRC car but due to the weather conditions time was not available

to perform it. However, a similar experiment was performed during initial
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Figure 3.18: Straight line operation, wet conditions on gravel

feasibility studies in which the magnetometer sensor was rotated by 20◦. This

test used a standard road car and a two axis magnetometer for a brief test

run at significantly lower speeds than the WRC test runs. Figure 3.21 show

the magnetic heading and GPS heading data, while Figure 3.22 clearly shows

the β-angle to be around the 20◦ mark as expected.

The momentary drop in β-angle at around 130 seconds occurs when the

vehicle has an heading of approximately zero degrees or Due North. As

previously mentioned in Section 3.3.1, the VBox unit used in this experiment

infills between data points to create the appearance of a higher sampling rate

that it can actually achieve. The downside of this being intermediate data

points when the vehicle moves past Due North from 359◦ to 0◦. This results

in an intermediate value around 180◦ on the GPS data stream and, as the

magnetometer does not suffer the same problem, the β-angle calculation

is momentarily affected. A more sophisticated filtering method could be

employed to remove this problem or the replacement of the GPS with a unit

that does not infill between data points - in further experiments the latter
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Figure 3.19: Vigorous cornering with initial counter steering on approach,
wet conditions on gravel

Figure 3.20: Handbrake turn, wet conditions on gravel
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Figure 3.21: GPS and Magnetometer Heading Measurement-20◦ simulated
β (——- GPS, – – – Magnetometer)

approach was taken.

The third method and the preferred option for a comprehensive valida-

tion of the sensor measurements would see the β-angle sensor’s output being

compared with that of existing sensor technologies. For tarmac surfaces this

would be achieved through direct comparison with the already accepted accu-

racy of the Correvit[12] and for gravel comparisons using the dual-antennae

GPS systems that are starting to become available.

As already mentioned, the Correvit is limited by its susceptibility to dam-

age on loose surfaces and the dual-antennae being a very costly piece of

equipment that has only just become commercially available. Despite this,

the comparison of the measurements taken with these sensors with the novel

β-angle sensor would give a very precise indication of both accuracy and reso-

lution with an analysis of both magitude and transient response of a vehicle’s

β-angle.

Despite this being a clear method of validation, it was not possible to

perform such a validation using either the Correvit or a dual-antenna GPS

system during the course of these studies. It is hoped that further work and

investigation might permit this in the future.
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Figure 3.22: β-angle - 20◦ simulated β



Chapter 4

Supplementing the Modelling

Dataset

Having developed the β-angle sensor, it is now interesting to re-evaluate the

usefulness of vehicle dynamic simulation for WRC class cars.

One major advantage of the sensor when combined with a vehicle dy-

namics model is the ability to derive lateral tyre force curves for any surface.

Current methods of constructing tyre force curves involve laboratory test-

ing on rolling roads which limits the ability to test tyre dynamics on loose

surfaces. These are detailed in Chapter 2.

Although deriving from vehicle test telemetry has been possible with pre-

vious sensor technology, the limitations already discussed of β-angle mea-

surement makes it difficult to collect sufficient data for loose surfaces. These

problems have been overcome with the new sensor.

This chapter details the development of a suitable vehicle model, its ver-

ification and validation and the methodology in determining a lateral tyre

force curve.

74
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4.1 Construction of the Model

4.1.1 Vehicle dynamic model

For the purpose of this research a World Rally Championship-style vehicle

model[75] was required. The model developed was based on a previously

published and validated rear wheel drive vehicle model with extensions to

include two additional differential units, implementing a 4-wheel drive system

standard on this class of vehicles. The equations of motion were derived using

the AutoSim[58] multibody modelling system.

A summary of this model is provided below.

Chassis

The car model has seven degrees of freedom. The vehicle body is free in

longitudinal (X) and lateral (Y) displacement and yaw about the vertical

(Z) axis, observing the standard SAE axis conventions[1]. This is shown in

Figure 4.1

In addition, each of the four wheels has an independent rotational spin

degree of freedom relative to the vehicle chassis. The use of a seven degrees

of freedom model provides acceptable simulation computation times for large

parameter sweeps[76]. The model is both non-linear and transient.

The lateral and longitudinal load transfers are included as steady-state

approximations.

Aerodynamics and Vertical Tyre Loads

Aerodynamic lift and drag forces are included using constant coefficients.

Drag is applied at the height of the centre of gravity of the vehicle. Down

force distribution is defined between the two axles and applied equally to

each wheel on the axle. The static wheel load is derived from the centre of

gravity of the vehicle, in this instance there is a 60/40 front to rear mass

distribution.

An approximation of the lateral and longitudinal load transfer is cal-

culated corresponding to an acceleration of the mass centre and a simple
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Figure 4.1: Seven Degree of Freedom Model[9]

roll-axis model.

Tyre Forces

The lateral and longitudinal tyre forces are produced using a variant of the

1997 Pacejka Magic Tyre Model[53]. These forces are vectored for the front

tyres to simulate a steer angle. The parameters for the model are initially

based on data from a high performance road tyre on tarmac. Static wheel

camber angle is included.

Although the tyre parameters for the high performance road tyre are

used as a starting point, further investigation questions the accuracy of this

particular set of parameters, particularly when considering loose surfaces.

This will be discussed in more detail in later sections.

Powertrain and Transmission

A two dimensional engine map characterises engine torque by engine speed

and throttle position. Gear ratios are automatically selected based on vehicle

speed. Braking torque is characterised by a maximum braking torque and

is delivered as a function of throttle position. That is a negative value for

throttle corresponds to a braking action being applied to the wheels.
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Figure 4.2: Model Transmission Configuration (Original photo courtesy of
www.fordteamrs.com)

The braking torque is applied to the front and rear wheels based on a

constant front/rear distribution.

Extensions to the Brayshaw[9] model include two additional differen-

tials, converting his model from rear wheel drive (RWD) to four wheel drive

(4WD). The three differentials distribute drive torque to the front and rear

of the vehicle, and to the left and right at each axle, each with a 50-50 torque

output ratio. See Figure 4.2

The differential models implemented in this model are based on the lim-

ited slip Salisbury-type [1] differential, see Figure 4.3, with electro-hydraulic

actuation[26] employed in most forms of motorsport including the World

Rally series[75]. Figure 4.3 shows the inner workings of such a differential.

The standard gearing of an open differential are shown with the standard
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Figure 4.3: Limited Slip Differential[9]

pinion and side gears that permit a difference in rotational speed of the out-

put shafts. In addition there are clutch plates attached to each output shaft

and the main casing of the differential. As the difference in output shaft

speed increases, these clutch plates interact and generate a torque to reduce

the difference.

The pressure ring, seen in Figure 4.3, acts to push the clutch plates to-

gether as the input hydraulic pressure in increased. This results in increased

friction between the clutch plates and the locking action between the fixed

and rotating plates increases.

Figure 4.4 demonstrates this action. With no input pressure, the unit

works like an open differential with only a small amount of torque transfer

between the clutch plates occurring despite high differences in output shaft

speed. As the hydraulic pressure increases, the torque transfer also increases

resulting in more locking action.
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Figure 4.4: Torque Transfer in an Electro-Hydraulic Limited Slip Differential

As the model developed simulates the individual clutch plates and hy-

draulic pressure, the model can be adjusted to match differentials with dif-

fering numbers and sizes of clutch plates. In addition, an open differential

can be simulated with the same model by setting zero hydraulic pressure

(excluding pre-load). Likewise, a locked differential can be modelled with

a very high hydraulic pressure. The origins of the model are described in

Casanova[62] and Brayshaw[9].

AutoSim Model Overview

Figure 4.5 depicts the structure of the AutoSim 7-DOF WRC Model. The

blue lines represent a physical connection between individual bodies with the

wheels and differentials attached to the chassis. Each body is attached to its

parent and allowed to rotate about the specified axis.

The red line can be thought of as the powertrain, with the rotational speed

of the crankshaft constraining the centre differential, which subsequently
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Figure 4.5: 7DOF WRC Model Overview
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constrains the rotation of the front and rear differentials. The bevel gears

on each differential influence these constraints to model a real differential

action. Finally each tyres rotation is constrained by either the front or rear

differentials.

Outside the AutoSim marked box, additional models are implemented

to represent external factors such as driver controls, engine and gearbox

models, aerodynamics and tyre force models. These connect into the model

along the green lines and influence the behaviours of those bodies through

the application of a relevant force or torque.

4.1.2 Driver models

Directional Control

Two methods of direction control have been implemented to simulate the

actions of a driver. The first sets the steer angle using a pre-specified table,

the angle being a function of either simulation time or distance travelled by

the model. This method provides no means of feedback or consideration of

vehicle state but allows a consistent control input to be applied independently

of the state of the vehicle.

The second method, a path following driver model, allows the vehicle to be

driven through a set path manoeuvre in differing states until the manoeuvre

becomes beyond the abilities of the vehicle. The driver model would also

react to the current state of the vehicle.

This method models a human driver more closely and attempts to follow

a specified path. The control algorithm adjusts to counter any undesirable

dynamics, for example, excessive oversteer, and allows the model to be driven

through a set path manoeuvre with varying velocity control.

This non-linear, preview method[77] works by projecting a so-called op-

tical lever forward of the vehicle (Figure 4.6) and compares the relative path

and yaw errors between the current path and intended path at various pre-

view distances from the vehicle. The error in the expected and actual vehicle

state is also considered. The preview distance over which the optical lever

is projected is dependent on the velocity of the vehicle as at higher speeds



82 Chapter 4. Supplementing the Modelling Dataset

Figure 4.6: Path Following Directional Control - Optical Level

more preview information is required that for slower manoeuvres.

At each distance, a gain is applied to the relative path error as well as

a saturation function which limits certain contributions to the equation and

prevents the tyres from being forced to work too far beyond their saturation

point.

The purpose of this being to rate the relevance of the error between the

vehicles projected path and intended path to the required control input.

That is, the further away from the vehicle for which preview information

is considered, the less significant its effect on what the current steer input

should be. As the vehicle progresses toward this initially distant point, its

significance increases and hence a larger gain is applied when the point is

closer to the vehicle.

A simple arithmetic function then calculates the required steer angle from

the set of weighted path errors from preview information and the current

vehicles yaw error. This method was originally devised for the model used

in Casanova’s research[62].

For example, by shortening the preview distance too far the controller

may have to make drastic steer input changes to attempt to maintain a

relatively simple path, while lengthening the preview distance too far could
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result in the vehicle moving off the intended path in pre-emption of a distance

corner. Therefore there is a requirement to tune these values to ensure that

good path tracking and vehicle stability is preserved.

The tuning of the path following algorithm is accomplished using a trial

and error technique. Starting with the parameters used in previous research

by Brayshaw[9] for differing types of vehicle model it was possible to obtain

an approximation to a suitable set for the 7-DOF model being used. During

the validation process of the model, various manoeuvres were attempted. For

each manoeuvre the effects of adjusting the parameter set was investigated

and it was discovered that the values inherited from Brayshaw[9] provided

acceptable path tracking and stability for the requirements of this research.

A suitable preview distance for this model was found to be the distance

the vehicle would travel in one second at its current velocity. The points on

the lever at which error is calculated and the effective gain applied at these

points is shown in Table 4.1, distances are shown in terms of time to travel.

Table 4.1: Optical lever path following - Parameters

Preview Distance (s) 0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0
Relative Gain (%) 100 100 60 20 8 1.6 0.4 0.1

Velocity Control

Again two methods of velocity control have been implemented for the vehicle

model to permit a wide range of vehicle simulations. By specifying the exact

throttle/brake position dependent on time or distance travelled, a consistent

and repeatable profile can be employed for the required manoeuvre. These

values being interpolated from a simple look-up table specified before the

simulation.

The alternative method is a PI (proportional plus integral)[78] throttle

controller which attempts to maintain an acceleration target. The success

or failure of the controller to perform this task being determined by the

limitations of the dynamics of the vehicle. This method was also originally

implemented and tested in Casanova’s[62] and Brayshaw’s[9] work.
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4.2 Validating the Model

Brayshaw[9] makes the case for the use of a 7-DOF model clear by demon-

strating that such a model provides acceptable realism and accuracy whilst

still maintain the simplicity required to allow for large parametric sweep

simulations without significant computation time. The open wheeled racing

car model of Casanova[62] and Brayshaw[9] was modified to include addi-

tional differential models and standard vehicle parameters changed to match

a WRC-style vehicle, the model was re-validated to confirm that the alter-

ations had not affected the realism and accuracy of the initial model.

Brayshaw’s[9] validation process compared his model to that of an ac-

cepted and published version as well as a comparison of the equations of

motions of the model with the set of hand-derived equations. In addition the

effects of different transmission configurations were investigated, showing the

effects on yaw rate and lateral acceleration. Although Brayshaw’s[9] results

correlate with accepted thinking on vehicle dynamics for rear wheel drive

vehicles, they are further confirmed with reference to telemetry data from a

4WD WRC vehicle.

The validation of the extended model used here consisted of two stages in

which the model was driven through a set of simulated manoeuvres. In the

first stage, the performance of the model was compared with expectations

based on the results of hand calculations using accepted standard vehicle

dynamics equations[1].

The hand calculations considered the expected weight transfer, pitch and

roll angles, accelerations and yaw rates during the steady state manoeuvres

of straight line acceleration, deceleration and steady state cornering. The

results show indicate that the model produces a very close match to that

calculated. The results of the hand calculations and values from simulation

can be found in appendix B.

The second validation stage compares the model to a set of real-world

telemetry data.
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4.3 Telemetry comparison

Thanks to the availability of a set of telemetry data from a 2001 WRC-class

vehicle it was possible to make a direct comparison between the telemetry

and a simulation of certain manoeuvres.

The comparisons relate to steady state constant radius and speed corner-

ing. Three transmission configurations are examined as defined in Table 4.2.

Table 4.2: Transmission Configurations for Telemetry Comparison

Configuration Front Differential Centre Differential Rear Differential
1 Open Open Open
2 Locked Locked Locked
3 Open Locked Open

The first of the three transmission configurations examined is one in which

all three differentials are left open and differing wheel speeds are uncon-

strained. As both the vehicle and model are fitted with electro-hydraulic

activated units, the open configuration can be simulated by setting the hy-

draulic pressure to zero.

In the second configuration the three differentials are locked, whereby the

two output shafts of the differential are locked together ensuring they rotate

at the same speed. This can again be simulated using the active differentials

by setting the hydraulic pressure to its maximum value for the duration of

the test.

The third configuration is a combination of the two with the centre dif-

ferential, which distributes torque to the front and rear axles, is locked. The

front and rear units are configured to be open as in the first case.

In order to verify that the model is producing an accurate simulation of

a real vehicle, it was compared with the telemetry for lateral, longitudinal

and vertical acceleration, yaw rates, individual wheel speeds and throttle

position.
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4.3.1 Constant radius and speed cornering

For each of the transmission configurations, the vehicle was driven in a circu-

lar path around the 12 metre radius circle at the Millbrook proving ground.

The driver attempted to hold the vehicle on or near to the limits of its dy-

namic range whilst maintaining the desired path trajectory.

To simulate this manoeuvre, the model was configured with the path-

following steer controller setup to follow a 12 metre radius circle. The model

was also configured to attempt to maintain the same speed achieved, by the

real driver, by setting the acceleration target of the model to 0ms−2 and the

initial vehicle speed from the telemetry.

The telemetry includes a steer angle as measured at the steering wheel

whereas the simulation works on wheel angle. Unfortunately the steering col-

umn ratio is not known with certainty but by comparing the first simulation

with the telemetry, a ratio of 1:7.5 is apparent. The second and third simu-

lation verify this. The tables shows the adjusted wheel angle from telemetry

with the original steering wheel angle in bracket.

A torque curve for the engine of the test vehicle was also not available

and as such comparison of throttle pedal position is of limited value. It was,

however, noted that for the three open and locked centre configurations the

same amount of throttle was required to maintain the desired path and speed

in the simulations. This corresponded to the telemetry. The three locked

configuration required approximately 33% more throttle than the other two

configurations in both telemetry and simulation.

Longitudinal and vertical accelerations were checked to ensure that they

were both zero for simulation and telemetry as expected from this type of

manoeuvre.

An initial glance at an unfiltered wheel speed graph, Figure 4.7, indicates

that there is significant noise in the telemetry data compared with the simu-

lation. As this noise is around 10Hz, it can be attributed to vibration within

the tyre carcass. The application of a moving average filter removes this noise

and smoothes the graph down to something much closer to the simulation

output. It is also the case that the driver model benefits in terms of an abil-
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Figure 4.7: Unfiltered Wheel Speed Telemetry - Three Locked Differentials
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)

ity to react significantly faster and more precisely than the real driver. This

results the driver model being able to very quickly obtain the exact throttle

and steer requirements to maintain a perfect match to the desired trajectory.

For each transmission configuration, the wheel speeds from both teleme-

try and simulation are shown, along with tables 4.3, 4.4 and 4.5, compar-

ing averaged values for steer angles, lateral acceleration and four individual

wheel speeds. The percentage differences between simulation and telemetry

are also calculated. All results demonstrate a close correlation implying that

the model accurately represents the real vehicle. Any differences can be at-

tributed to the simulation using a standard set of tyre data for a performance

road car as tyre data for the vehicle used to gather the telemetry was not

available.

Three Open Differential configuration

With three open differentials, any differing wheel speeds caused by the cor-

nering action are unhindered by the actions of the differential unit. This can

clearly be seen in both Figure 4.8 and 4.9 where the four wheel speeds are
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Figure 4.8: Telemetry of Individual Wheel Rates-Three Open Differentials
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Figure 4.9: Simulated Individual Wheel Rates — Three Open Differentials
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Table 4.3: Three Open Comparison

Metric Simulation Telemetry % Difference
Speed (ms−1) 8.09 8.09 0
Steer (Deg) 16 15.6 (117) 2.6
Lat Acc (ms−2) 5.40 5.43 0.6
LF (ms−1) 8.81 8.87 0.7
RF (ms−1) 7.88 7.96 1.0
LR (ms−1) 8.77 8.76 0.1
RR (ms−1) 7.77 7.99 2.8

clearly different. The average figures are shown in Table 4.3 and along with

steer angle and lateral acceleration can be seen to correlate closely with each

other.

Three Locked Differential configuration

By locking the three differentials the four wheels should be constrained to

rotate at the same velocity. Comparing the results with the three open

configuration shows that the wheel speeds have been dramatically brought

together. The variation that remains, Figure 4.10 and 4.11, is now a result of

the different slip ratios of the tyres as they are deformed from the cornering

forces and to a lesser extent, torsional effects on the driveshaft and play in

the differentials.

Again, after removing the noise seen in the telemetry data, the average

figures are a very close match for the results from the simulation, as shown

in Table 4.4.
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Figure 4.10: Telemetry of Individual Wheel Rates-Three Locked Differentials
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Figure 4.11: Simulated Individual Wheel Rates - Three Locked Differentials
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Table 4.4: Locked Comparison

Metric Simulation Telemetry % Difference
Speed (ms−1) 7.66 7.66 0
Steer (Deg) 20 20.1 (151) 0.5
Lat Acc (ms−2) 4.80 4.95 3.1
LF (ms−1) 8.04 8.14 1.2
RF (ms−1) 7.86 8.14 3.5
LR (ms−1) 7.98 8.15 2.1
RR (ms−1) 7.89 8.16 3.4

Table 4.5: Locked Centre Comparison

Metric Simulation Telemetry % Difference
Speed (ms−1) 8.05 8.05 0
Steer (Deg) 16 15.6 (117) 2.6
Lat Acc (ms−2) 5.37 5.42 0.9
LF (ms−1) 8.74 8.83 0.9
RF (ms−1) 7.81 7.89 1.0
LR (ms−1) 8.71 8.76 0.6
RR (ms−1) 7.72 7.94 2.8

Locked Centre Differential configuration

Locking the centre differential, whilst leaving the front and rear differentials

open permits the left and right wheel of each axle to rotate freely although

the rotation of the two input shafts to the front and rear differential is locked

together. In other words, the sum of the wheel speeds on the front axle is

constrained to be the same as the sum of the wheel speeds on the rear axle.

This results in similar wheel speeds to the three open configuration in the

steady state circular path manoeuvre presented here.

β-angle comparison

The telemetry data included a vehicle β-angle as measured using a Correvit[12].

As the model was intended to simulate manoeuvres in which β-angle is a key
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Figure 4.12: Telemetry of Individual Wheel Rates-Locked Centre Differential
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Figure 4.13: Simulated Individual Wheel Rates - Locked Centre Differential
(– – – Front Left, – - – Front Right, - - - Rear Left, —— Rear Right)
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Figure 4.14: Simulated and Measured β-angles - Three Open Differentials
(—— Measured, – – – Simulated)

Table 4.6: β-angle Comparison

Three Open Three Locked Locked Centre
Telemetry (Deg) 12.0 13.3 12.0
Simulation (Deg) 10.6 11.6 10.7
% Difference 13 % 14 % 13 %

component, it was important to ensure that the telemetry from the three

transmission configurations was accurately recreated in simulation.

Figures 4.14, 4.15 and 4.16 show both the measured and simulated values

for the manoeuvres.

Table 4.6 shows the average values of β-angle. In both simulation and

telemetry, this angle was relatively stable.

Although the difference is between 13 and 14%, this is directly related

to the tyre model parameters being used. The effect on attitude due to the

change of transmission, however, is the same in both telemetry and simula-

tion, hence the model is verified.

From the constant radius and speed cornering comparisons of wheel speed,

accelerations and control inputs, along with the hand calculation comparison
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Figure 4.15: Simulated and Measured β-angles - Three Locked Differentials
(—— Measured, – – – Simulated)
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Figure 4.16: Simulated and Measured β-angles - Locked Centre Differential
(—— Measured, – – – Simulated)
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Table 4.7: Transient Manoeuvre Speeds

Three Open Three Locked Locked Centre
Constant Speed (ms−1) 16.0 14.1 14.0

in Appendix B, it can be seen that the general geometry and behaviour

closely match to the telemetry of the test vehicle. This includes the effects

of differentials and powertrain on the wheelspeeds and chassis.

Through comparing β-angles, this begins to demonstrate that the dy-

namics of the body and the mechanics of the tyres match those of the test

car. The subsequent section continues this through the comparison of a more

dynamic transient manoeuvre.

4.3.2 Transient Manoeuvre Comparison

In addition to the constant radius circular path telemetry data, the test

vehicle was subjected to a more transient manoeuvre at the Millbrook proving

ground. In this case the vehicle was driven at constant speed through a

slalom style manoeuvre with the same three transmission configurations as

seen previously.

To validate the dynamic behaviour of the WRC model, the steer angle

time history from the telemetry was applied directly to the model as it pro-

gressed at the same constant speed. For both telemetry and simulation, the

vehicles β-angle was compared.

Figures 4.17, 4.19 and 4.21 show the steer inputs applied to each model.

The constant speed at which each manoeuvre was attempted are detailed

in Table 4.7.

Figures 4.18, 4.20 and 4.22 show clear agreement between telemetry and

simulation β-angle. As with the constant radius cornering, however, there is

a difference of around 15% in actual values, again this is contributable to an

inexact match in tyre model.

The slight fluctuations that can be seen to occur in the β-angle telemetry

data relate to the human driver being less capable at maintaining a constant
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speed when compared to the acceleration target PI model used in the simu-

lation. This results in the human driver having to make small adjustments

to the throttle input as he progresses and indirectly affecting the β-angle.

Other factors such as vibration noise and suspension effects, which are not

considering in the simulation model, also contribute to the fluctations.

In the case of the three open and locked centre differentials, the β-angles

stay relatively low at around 4 degrees. However, by locking all three differ-

entials and effectively restricting the potential for a difference in wheel speed

between the left and right tyres, β-angle increases to around 7 degrees. This

increase in the measured values being matched in the simulation results.

Despite this there is a clear match between the simulated results and the

measured telemetry that confirms this model is a close dynamic representa-

tion of the real test vehicle used to generate the telemetry.

Combined with the constant radius and speed cornering of the previous

section and the hand calculation comparison in Appendix B this provides a

conclusive validation of the 7-DOF WRC model.
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Three Open Differentials Configuration
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Figure 4.17: Steer Angle Telemetry and Simulation Input for Three Open
Comparison

Figure 4.18: Comparison of β—angle for Three Open Differentials Model
(—— Telemetry, – – – Simulation)
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Three Locked Differentials Configuration
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Figure 4.19: Steer Angle Telemetry and Simulation Input for Three Locked
Comparison

Figure 4.20: Comparison of β-angle for Three Locked Differentials Model
(—— Telemetry, – – – Simulation)
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Locked Centre Differential Configuration
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Figure 4.21: Steer Angle Time History for Locked Centre Comparison

Figure 4.22: Comparison of β-angle for Locked Centre Differential Model
(—— Telemetry, – – – Simulation)
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4.4 Lateral Tyre Curve Inference

Having developed a robust β-angle sensor along with a validated and veri-

fied model of the vehicle to which such a sensor can be fitted, various new

opportunities are opened up for investigating vehicle behaviour. One of the

most significant is the ability to derive lateral tyre force curves (with tyre

slip angle plotted against lateral force) from telemetry data irrespective of

the surface conditions.

This section presents a method of applying a set of telemetry data to the

equations of motion used for the 7-DOF model to construct a lateral tyre

curve. The method can be applied to a more conventional slip angle sensor

as well as the new sensor described. Where the conventional sensors are

restricted to tarmac surfaces, as previously described, the β-angle sensor is

robust enough to produce a realistic measurement on a gravel surface.

The curves generated are for pure side slip and in order to produce the

graphs, certain assumptions have to be made. These are:

• The tyres are always working in pure side slip conditions

• Lateral weight transfer effect is considered to average out between in-

side and outside tyres

• The vehicle is considered to be in discrete steady states at each sample

point. Transient effects are ignored.

• Rear axle compliance is considered negligible such that rear slip angle

is equivalent to body slip angle

• All other tyre factors, such as temperature and wear, are considered to

be constant.

• All other external factors, such as road surface, are considered to be

constant.

In practical experimentation under controlled manoeuvres and circum-

stances, it is shown that these assumptions are not unreasonable and that
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Figure 4.23: Variation in Toe Angle of Rear Wheel under Lateral Force

Figure 4.24: Variation in Toe Angle of Rear Wheel under Longitudinal Force

realistic tyre curves can be obtained. In particular the magnitude of rear axle

compliance can be shown using two extracts from experimental observations

obtained using a kinematics and compliance test rig on this class of vehicle.

Figure 4.23 and 4.24, both extracted from a set of data provided by a WRC

team, demonstrates the variation in toe angle of the rear wheels under an

applied longitudinal and lateral force of a WRC car. From these figures it

can be seen that even at high forces, the rear axle compliance only results in

an extremely small change in toe angle, at most less than 0.1 degrees. This

confirms that such an assumption would be valid.

However, in applying the same theory and methodology to standard stage

test run data, it is shown that some of the other assumptions no longer

hold and combined with increased high frequency and transient effects, the

clarity of the tyre curves become significantly degraded. Despite this it is still

possible to see a degree of correlation between expected and actual results
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which provide some insight into driver behaviour and tyre performance.

Three sets of results are presented, the first using a Correvit[12] on a

tarmac skid pan under controlled test conditions. The data being collected

from the set of manoeuvres described below. The second and third sets are

collected from stage test runs on gravel and tarmac surfaces using the β-angle

sensor.

4.4.1 Determining Tyre Slip Angle

Vehicle β-angle can be measured using a variety of techniques as described

in Chapter 2 and 3. Due to the relatively fixed nature of the rear wheels in

respect to the chassis, it is possible to equate vehicle β-angle to rear wheel

slip angle directly when the GPS antenna of the β-angle sensor is mounted

above the line of the rear axle. This removes any necessary consideration

of potential effects due to applied steer angle at the front wheels but also

assumes that the vehicle is in a steady state. During transition between

states, tyre relaxation or changes to the carcass distortion may result in a

difference between rear wheel slip and vehicle slip.

As attempted curve generation is concerned with pure side slip condi-

tions, it is assumed that the longitudinal tyre slip ratios are zero. This is

on the basis that the vehicle is being driven at a steady speed and that the

aerodynamic drag effect is negligible meaning that no longitudinal tyre forces

and hence slip ratio is being generated. Camber angle and other suspension

geometry effects are also assumed to be static and negligible on the extremely

stiff test vehicle.

4.4.2 Determining Lateral Tyre Force

Determining an individual tyres lateral force consists of two steps. The first

considers total vehicle lateral force whilst the second resolves the front and

rear axle contributions to that total.

Although previously discounted as a means for measuring lateral ve-

locity due to excessive noise and problems with using integrated signals,

accelerometers[79] can still provide suitably accurate measurement of lateral
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acceleration. Then using Newton’s Second Law, equation 4.1, and knowing

m, the mass of the vehicle, the total lateral force being applied to the vehicle

can be determined.

F = ma (4.1)

This force is a product of the four tyre forces. As the slip angle is being

taken at the rear tyres, this force must be divided into front axle and rear

axle components. Any difference in the distribution of force between the

front and rear of the vehicle results in a yawing moment and hence a yaw

acceleration, as the rotational equivalent of equation 4.1 shows.

N = Iψα (4.2)

Angular acceleration can be measured using a gyroscopic yaw rate sensor

and, given the yaw inertia of the vehicle, the rear axle force can be calculated.

Assuming that the slip angle and vertical loading of both rear tyres is the

same, the individual lateral tyre forces can be considered equal and therefore

each is generating half the total axle force.

Unfortunately the assumption of equal vertical loading on both rear tyres

is difficult to justify as generating higher slip angles requires higher lateral

acceleration and hence more lateral weight transfer.

By using the lateral weight transfer equations of the 7 DOF WRC model

it is possible to calculate an approximation of the static vertical loading for

each individual data point. Using this data it becomes possible to overcome

this problem as the data can be separated out into sets with similar vertical

loading on the tyre. This method requires significantly more data to produce

a set of complete graphs for each value of vertical tyre load.

The alternative, and the method used in this study, is to produce a curve

which represents half the axle lateral force generated, that is the sum of the

inside (less loaded) and the outside (more loaded) tyres. This is akin to using

a bicycle model where only one front and one rear tyre are considered. Using

this method it is assumed that the vertical load on each of the tyres is equal

throughout the manoeuvre and equivalent to the static vertical load which
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Figure 4.25: Tyre Lateral Force against Vertical Load[10]

can be easily measured.

Although this does not give a direct insight into what each individual

tyre is doing as the load of the vehicle is transferred to the outside wheel, it

does allow analysis of the general properties of the combined axle and hence

the dynamics of the vehicle system.

If it were important to isolate a single tyre for analysis, it would be

necessary to rebalance the vehicle with either ballast or using some other

method to ensure consistent vertical load throughout all manoeuvres. This

seems somewhat unrealistic however as high slip angles invariably produce

high lateral accelerations and hence significant changes in vertical loading

from the static condition.

Longitudinal weight transfer is considered to be zero as the vehicle is

travelling at constant speed in the controlled test manoeuvres.

Estimating Yaw Inertia

Despite the detailed information provided about the test vehicle, the yaw

inertia was not provided or available from the test team. In addition, detailed

drawings of the vehicle, which would have allowed a calculated value to be
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determined, were also not available for this study. Unfortunately this meant

an estimation was required. Although not perfect, this was the only option

for obtaining the essential value for the yaw inertia.

Fortunately, there exists a rule of thumb, Equation 4.3 and 4.4, and

an approximation method, Equation 4.5, which have been used in previous

research as suitable replacements. The implications of this first rule is that

yaw inertia is equal to pitch inertia and that pitch inertia is approximately

the product of the vehicles mass, the distance of the CofG from the front

axle and the distance of the CofG from the rear axle.

Iψ = Ipitch (4.3)

Ipitch = Mab (4.4)

To verify this rule of thumb, the National Highway Transport Safety Ad-

ministration (NHTSA)[80] compared the results of various measured inertias

from their Inertia Parameter Measurement Device(IPMD) rig to the inertias

derived from Equation 4.4. It was shown that this is an accurate enough

approximation of true yaw inertia for this form of vehicle dynamics calcula-

tion.

The second estimation method for yaw inertia[81], again derived from a

wide range of vehicle measurement is shown in Equation 4.5. Both methods

produce a very similar value for yaw inertia which helps to increase confidence

in the results.

Iψ =
(TW )× (WB)

K
×M (4.5)

K represents an approximation value for each class of vehicle. For yaw

inertia and a standard passenger car, a value of 2.1942 is recommended[81].
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4.4.3 Process Overview

Figure 4.26 shows a simplified flowchart intended to give an overview of the

tyre curve calculation process.

Figure 4.26: Tyre Curve Generation Process Overview
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4.4.4 Populating the tyre curve

In order to produce the necessary conditions to fully populate a complete

tyre curve, whilst at the same time minimising excessive transient effects,

the curve is split into two intersecting regions. For each region a set of

manoeuvres are suggested that yield the required range of slip conditions.

The first region is known as the linear region as lateral force increases

linearly with respect to slip angle. This is the region in which the majority

of standard road driving occurs, tyre performance is highly predictable and

the vehicle feels more controllable.

The second region covers the area leading up to saturation, at which the

tyre generates its maximum lateral force, and beyond into super-saturation.

This is the region more commonly inhabited by high ability drivers looking

to maximise vehicle performance. Super-saturation occurs after the force

peaks and begins to tail off. This is the area of most interest to rally drivers

when they drive with high vehicle attitude angles. These two regions and

the expected shape of a lateral tyre curve according to the Pacejka[53] model

are shown in Figure 4.27.

Figure 4.27: Lateral Tyre Curve Regions
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The Linear region

The simplest manoeuvre to cover the linear range is a slalom course in which

a sinusoidal steer input is applied at a moderate constant speed. As the steer

angle is progressively increased, slip angle increases as the vehicle begins to

yaw. Once the vehicle approaches the saturation region, the steer angle is

eased off and applied in the opposite direction, thus producing both positive

and negative slip angles. Furthermore as the manoeuvre is simple, with slip

angle and lateral force increasing and decreasing progressively, any erroneous

readings or significant noise can be easily spotted and corrected.

For increased confidence in the results this manoeuvre can be repeated

at various speeds although it may be difficult to reach the higher end of the

linear region at lower speeds.

An alternative to this method involves a circular course where the test

vehicle is driven at a constant speed around a constant radius circle. By

progressively increasing the speed, the lateral force requirements also increase

leading to higher steer angles and higher slip angles.

At each speed it is necessary to obtain a steady state with a constant steer

angle and throttle position to maintain forward velocity before completing a

few circuits to collect the relevant data.

Unlike the first method, the circular path requires less physical space in

which to perform the manoeuvre but suffers as it generates data at various

points along the linear region rather that the transition through the region

seen with a sinusoidal manoeuvre. Ultimately a combination of the two would

provide the most comprehensive dataset.

Saturation and Super-Saturation

To populate the saturation and super-saturation region, the test vehicle needs

to be driven in a more vigorous manner that pushes the tyres beyond their

saturation point. This can be achieved by a skilled test driver inducing the

test vehicle to drift round a circular path to varying extents while trying

to maintain constant speed. By changing the radius of curvature a richer

dataset can be obtained.
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The driver must attempt to maintain the state of saturation without large

throttle inputs as these would result in high slip ratios and affect the lateral

capabilities of the tyre[82]. This is dependent on the highly developed skill

of the test driver, they need to gauge the feel of the vehicle in such a manner

to achieve this as it is relatively easy to produce an unstable drift through

large fluctuations in throttle input and steer angle.

As shown by Shibahata[14] and discussed in Chapter 2, the tyres of a vehi-

cle generate a stabilising yaw moment as the attitude of the vehicle increases.

This moment can be calculated by Equation 4.6.

Mψ = −aFf + bFr + (TSA1 + TSA2 + TSA3 + TSA4) (4.6)

Therefore, if the vehicle is induced to a state of high attitude angle, it

will try to return to a more stable state and the attitude angle diminishes.

If the initial state is at the far end of the super-saturated range, the tyre will

experience a range of conditions during this transition that allow data to be

collected across the desired part of the tyre curve.

The driver would be asked to excite the vehicle to a high value of β, a

method for this is shown in Chapter 5, and then allow the angle to diminish

naturally while using the throttle only to maintain forward velocity. Unfor-

tunately such a manoeuvre is very difficult to duplicate exactly each time

but is necessary to see the tyres working at the higher slip angles and in the

super saturated region. Some variation will therefore be expected in peak

angles and rate of slip angle reduction although this should not affect instan-

taneous slip angle and lateral force measurements. Again as with previous

manoeuvres, different forward velocities are tested although it is not possible

to induce higher angles at lower speeds.

During these periods, the lateral tyre forces can be calculated as pre-

viously shown and the corresponding region of the tyre curve can be filled

in.

As the higher tyre slip angles are generating higher lateral accelerations,

lateral weight transfer begins to have a more significant influence on the indi-

vidual vertical wheel loads. At these points, the assumption that any loss in
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tyre force on the inside of the rear axle will be compensated for by an increase

on the outer side becomes less tenable. It should be remembered, though,

that the process described here is not intended to produce highly accurate

tyre maps due to this and the large number of other unknown quantities.

Despite these factors, the procedure will be shown to give a good overview

of the tyre performance on loose gravel surfaces where tyre curves have not

been seen before as well as a means of comparison with test rig generated

tarmac curves.

4.4.5 Testing Process Overview

Figure 4.28 shows a flow diagram depicting the collection of tyre data used

in generating the lateral force curve.

Having performed the testing process and produced a lateral tyre force

curve, the data is compared with the expectations from the Pacejka Magic

Tyre[53] model defined tyre curve, see Equation 4.7.

Fy = Dsin(Carctan(Bα− E[Bα− arctan(α)])) (4.7)
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Figure 4.28: Data collection Flow Chart
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4.5 Resultant Tyre Curves

Presented below are three tyre curves, the first derived from Correvit-based

telemetry data and the second from the β-angle sensor.

4.5.1 Correvit Tyre Curves

Figure 4.30 is derived from the same Millbrook proving ground telemetry

data used for validating the 7-DOF model. The vehicle was fitted with a

Correvit[12] which measured the slip angle of the vehicle by projecting a

diffraction grating onto the tarmac surface.

Figure 4.29: Lateral Tyre Curve - Tarmac (Fz = 3000N)

In Figure 4.29, two datasets are shown. The first in blue covers the lin-

ear region whilst the second green data covers saturation and beyond. The

telemetry data used to construct the data set is not perfect and as such is

quite noisy. The manoeuvres that were logged are more transient than the

steady state manoeuvres suggested for constructing a cleaner curve. This
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transient nature affects the curve as each point in the tyre curve should rep-

resent a steady state equilibrium. As such, factors such as the time required

to distort the tyre carcass and the effects of the damper force on vertical

loading conspire to generate a less that perfect fit.

By ignoring this problem, a degree of uncertainty can be seen in the graph

as a tyre force band rather than a sharper line.

Despite this, the expected shape for a lateral tyre curve as prescribed by

the Pacejka Magic Tyre Formula[53] is clearly seen. It should be noted that

this set of tyres appears to be saturating at around eight degrees of slip angle

and 4000 Newtons of lateral force. Beyond saturation, the tyre appears to

steadily drop off to a lateral force of around 2500 Newtons at 30 degrees of

slip.

The linear region can be seen to be symmetric through the origin as both

left and right turning manoeuvres are available. Beyond saturation data is

only available for a left hand drift.

4.5.2 β-angle Sensor Derived Tyre Curves

Figure 4.30, 4.31, 4.32 and 4.33 are from a vehicle fitted with the β-angle

sensor driven on gravel and tarmac surfaces and at full rally special stage

speed. Because of this the data shows more noise and variation from the

expectations than seen in the Correvit derived curves. Unfortunately it was

not possible to obtain data for the controlled test manoeuvres described

previously. Despite this there are some points that than be extracted from

the data.

Values for static vertical tyre loading were provided for the test vehicle

and were 3000 Newtons for the rear tyres.

Tarmac

Figure 4.30 shows the tyre data extracted from the telemetry of a test run

through a tarmac stage in Spain. It was run at full rally speed and as such

shows significant noise. In addition to this, the GPS module used for this

test seemed to suffer problems in acquiring a suitable GPS signal lock. As
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such the GPS data demonstrated multiple drop out points which affected the

calculation of β-angle. This data set has therefore been truncated to remove

these regions.

Despite the noise, this graphs show clear similarities with the Correvit[12]

generated curve of Figure 4.29. Again this set of tyres appears to become

saturated at between eight and ten degrees of slip angle with a maximum

lateral force generated of just below 4000 Newtons. Beyond saturation, al-

though there is only limited data, the tyre appears to drop off to a lateral

force of approximately 2500 Newtons at 30 degrees of slip - the same as the

Correvit generated curve.

As a simple check on these figures, the telemetry from the vehicle showed

peak lateral accelerations of around 1.4G. A quick calculation shows that

to obtain such a value, each tyre would need to generate just below 4000

Newtons.

From this data, it is not only possible to gauge the performance of the

tyre, it is also possible to analysis the driver’s style. For these tarmac stages

the vast majority of the data shows the tyre working in the linear region and

around the saturation point (between zero and 15 degrees). This matches

expectations and demonstrates that the driver is adopting a more track-like

racing style. There are still a few points at which the driver induces slip

angles of up to 25 or 30 degrees but these are usually attributed to the driver

not necessarily being aware of the nature of the corner. That is, each corner

is new to the driver until they have actually entered it and hence the driver

may require a more aggressive correction if it is tighter than expected. This

problem does not exist in circuit racing as the driver will be already aware

of each corner and its relevant dimensions.
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Figure 4.30: Lateral Tyre Curve 1 - Tarmac (Fz = 3000N)
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Figure 4.31: Lateral Tyre Curve 2 - Tarmac (Fz = 3000N)
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Gravel

Figure 4.32: Lateral Tyre Curve 1 - Gravel (Fz = 3000N)

Figure 4.33: Lateral Tyre Curve 2 - Gravel (Fz = 3000N)
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Figure 4.32 shows the tyre data extracted from a test run on wet loose

gravel. Figure 4.33 show the same features but from a slightly shorter run

by a different driver.

As the data presented here does not represent the specific manoeuvres

detailed previously, the assumptions regarding the variation in vertical tyre

loading are less tenable. Whereas the specified manoeuvres represent either

a steady state cornering action or a linear increase and decrease in weight

distribution, this is not the case with this data. The more erratic nature of

the control inputs and hence the action of the suspension and the dampeners

combine to significantly affect the changes in vertical tyre load between the

inside and outside wheels. This is the primary reason for the broad band

of data that is seen in the results and could be improved through repeating

the data collection and conforming to the recommended procedure detailed

previously.

Both graphs, although noisy as described, show some important charac-

teristics about the tyres and also the driving style used for these vehicles on

loose gravel surfaces.

Despite the static vertical loading on the tyre being 3000 Newtons, the

graphs show that the peak lateral tyre force does not exceed 2000 Newtons.

This demonstrates a significant reduction in lateral ability compared with

the data from the tyre on tarmac. In addition the tyre becomes saturated

somewhere around 12 degrees of slip angle, slightly higher than seen for

tarmac.

Beyond saturation, the tyres drop off in a similar manner to the tarmac

tyres with lateral forces down to about 1250 Newtons around 30 degrees of

slip.

Performing the same check as for the tarmac curve, again the telemetry

shows peak lateral accelerations of approximately 0.6 to 0.7G. This would

imply each tyre generating just below 2000 Newtons each.

Although saturation occurs only slightly higher than the 8-10 degrees

seen in tarmac tyre data, the driver routinely excites the vehicle to higher

slip angles in the 20-30 degree range. This is due to the vehicle’s yaw mode

becoming under-damped and oscillatory on low friction surfaces, as demon-
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strated by Casanova in optimal simulations on a surface with a coefficient of

friction as low as 0.6[62]. The driver takes advantage of this by sliding the car

in order to enhance the vehicles yaw rate when turning, ultimately achieving

greater corner speeds. This driving technique, including the method used to

induce high slip angles, is investigated more thoroughly in Chapter 5.

4.5.3 Conclusions from the Tyre Data

Despite the limitations listed below, the generated tyre graphs produce a

good match to the expectations from the Pacejka Magic Tyre model[53].

By repeating the tyre measurements in a more rigourous manner using the

prescribed manoeuvres which are intended to minimise some of this points,

a clearer result would be obtained.

• Pure lateral slip conditions not maintained due to acceleration and

braking

• Transient effects from suspension effects and tyre carcass deformation

• Changes in the vertical tyre forces

• Errors and noise in Accelerometer measurements

• Errors in yaw inertia estimation and other model parameters

The tyre curves, though, still provide invaluable results from a real WRC

car driven in realistic conditions on both tarmac and loose gravel surfaces.

Where as the tarmac data can be compared to similar data from a suitable

test rig, the gravel data gives an understanding of the tyre characteristics

that have not been previously seen.

In concluding it can now be confirmed that a tyre on gravel will have

around 50 to 60% of the lateral force generating capabilities of a tyre on

tarmac. In addition, the linear region appears to continue until higher val-

ues of slip angle than that of the tyre on tarmac, with saturation occuring

at 12 degrees rather than 8-10 degrees. Unfortunately the uncertainty in
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the collected data does not allow a closer comparison of the exact point of

saturation in either case.

It is worth noting that although the tyres used for the two tests were

similar, they were not identical with different hand cut tread patterns for the

wet tarmac and gravel surfaces. No further information about the difference

in tyres was available.

Beyond saturation the change in road surface does not appear to have a

significant effect on the rate of deterioration of the lateral tyre forces. This

should not be considered conclusive though as there are many grades gravel

which may demonstrate different results.

The implications of these results would suggest that a simple adjustment

in the coefficient of friction to model a tyre on gravel, as implied is the case

by Wong[83], is not sufficient to truely represent the real tyre behaviour. By

determination of a suitable set of Pacejka coefficients to match the data ob-

tained, a more realistic model can be implemented that matchs the change in

peak forces and the movement of the saturation point. These coefficients and

tyre model then result in the ability to produce a more accurate simulation

of a rally car on gravel, particularly when simulating manoeuvres where the

tyres are working in the saturation region and beyond.



Chapter 5

Modelling Case Study

This chapter presents three case studies relevant to rallying and, in particular,

the application and effect of extreme β-angles, and the ability to sense them,

on the vehicle’s dynamics. Through the first case study, the importance of

β-angle is stressed and it is shown that the notion of using control systems

to strictly limit a vehicle, such as a rally car on gravel, to low values during

cornering will not necessarily result in optimal performance. The influence

of aspects such as tyres, differential and torque distribution is also shown,

demonstrating that β-angle characteristics of a vehicle are dependent on

many factors. The second case study continues this investigation into the

corner exit scenario.

The third case study demonstrates a potential development of the β-angle

sensor as a control system input.

One of the most spectacular and dramatic aspects of rallying is the

method that skilled drivers use to negotiate tight corners on loose surfaces

at high speeds. Their technique involves extreme β-angles and gives the im-

pression that the vehicle is on the verge of losing control and sliding straight

off the road. This represents a stark contrast to circuit racing where β-angles

are kept near zero.

The first case study examines this behaviour and through simulation

demonstrates the performance gains that are available. The influence of

different transmission configurations are also studied to gauge what effect

120
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they may have on cornering speeds given that the well understood thinking

applied to circuit cars does not necessarily hold at higher β-angles.

Through the simulations presented, it is clear that the primary influence

on the results from each simulation is the tyre model employed. To that

end, a tyre sensitivity exercise is performed to show how differing tyres could

affect the results. This is also examined in the context of the experimentally

generated tyre curves from the previous chapter.

The second case study looks at how β-angle control may be implemented

using the β-angle sensor as a potential vehicle control input. The corner exit

problem is used as a key example in which a driver has allowed the vehicle to

maintain a high β-angle out of the corner and now needs to reduce this angle

to maximise straight line acceleration. As with the previous case study, the

transmission configuration and control is investigated for a vehicle fitted with

electro-hydraulic actuated differentials. This is finally extended to demon-

strate the potential to induce and control vehicle β-angles at magnitudes to

correspond with maximum performance demonstrated in the first case study.

The third case study presents a further example where β-angle control of

variable torque splitting transmissions is presented. Although these type of

transmissions are only just becoming commercially available it will be shown

that such flexibility can result in improving vehicle feel and performance.

One attribute of a nimble car is the ability to accelerate through a double

lane change manoeuvre without excessive β-angle or oscillations in β-angle

(so-called fish-tailing. Three examples are shown representing a small exec-

utive class passenger car with varying degrees of torque vectoring capability.

Each increase in complexity is shown to produce a significant reduction in

the magnitude of β-angle witnessed during the manoeuvre. As torque vec-

toring can also be employed to enhance yaw dynamics, the simulations were

performed in such a manner as to produce nearly identical paths between

the three models; this allowed the direct affect on β-angle to be understood

without the added complexity of considering active yaw control influences.

This case study is based on the research presented at the IAVSD confer-

ence in Milan 2005[84].
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Figure 5.1: Force Vectors During Cornering Under Power - with 0◦ and 30◦

of β-angle

5.1 Cornering with high β-angles

There are two primary reasons that explain why rally drivers achieve higher

performance with high β-angles. The first relates to the way the driver looks

to power through the corner under the higher rolling resistance of loose gravel

surfaces compared with tarmac roads[83]. This results in combined slip in

each tyre of the 4WD rally car generating both lateral and longitudinal force.

These two forces are slightly contradictory in that the lateral component aids

cornering whereas the longitudinal component will be a hinderance. By using

a high β-angle, the combined force vector of the two components will also

be rotated such that it points more toward the centre of the corner and

maximising the centripetal force. This is shown in Figure 5.1 where the red

arrow, denoting the net force on the vehicle during cornering, pointing more

towards the centre of the corner (shown as a green dot) for the vehicle with

30◦ of β-angle.

This has been seen in other research, for example, Nozaki[15] presents

a similar case when investigating the notion of ‘drifting’ around a corner.

He comments that tyres can attain a high cornering force at large β-angles

during experiments to accelerate around a fixed radius circular course.
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The second reason for high β-angle cornering is described well by Casanova[62]

when discussing the comparisons between rally and formula one cars.

“On a low-friction surface the vehicle yaw mode becomes

under-damped and oscillatory. Professional rally drivers take ad-

vantage of the vehicle natural dynamics by sliding the car in order

to enhance the vehicle yaw rate when turning, ultimately achiev-

ing greater cornering speeds. It is typical for a rally driver ap-

proaching a sharp turn after a straight to apply an oscillatory

steer control input much in advance from the corner, with the

purpose of exciting the vehicle yaw mode. When the vehicle fi-

nally enters the turn with greater yaw rate and speed, the driver

must apply a steer control input with a different phase in order to

damp the oscillation. A similar strategy applies when changing

direction from one turn to the next. With the car already pro-

ceeding with large side slip angles, for example on a right hand

turn approaching a left hand one, the driver would quickly ap-

ply a sharp steer input to the right, which upsets the delicate

car equilibrium, and then quickly steer to the left. The car re-

sponds with a rapid variation in yaw rate and changes direction

very quickly. The driver must subsequently control these induced

oscillations by applying opposite lock.”

Here Casanova is describing a manoeuvre that is also known as the “Scan-

dinavian Flick” and is used to induce the required high β-angles before a

driver reaches the corner.

The next section will demonstrate this technique using simulation before

continuing to investigate how effective the resultant β-angle is in influencing

cornering performance.

All subsequent simulations are performed using the validated 4WD 7DOF

rally car model presented in chapter 4. It was configured with three open

differential models unless otherwise stated.
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Figure 5.2: Simulated ’Scandinavian Flick’ - β-angle

5.1.1 Corner Entry β Induction

Although each simulated manoeuvre begins with the vehicle model initiated

with a β-angle of between 0 and -70o (the angles being negative in order for

the model to correspond to the SAE conventions), in reality the driver has

to attempt to induce this angle in their approach to a corner.

This technique, as previously described, consists of flicking the steering

in the opposite direction to the corner being approached before applying a

high steer angle in the direction of the corner. During this flick the driver

switches rapidly between the brakes and the throttle. This control input

combines to induce a high β-angle on corner entry and is known to increase

vehicle performance through the corner.

As the exact control inputs required are usually determined by the drivers

feel of the car and the road surface, a trial-and-error technique is employed

here to discover the exact control input to produce the required β-angle.

Using this technique it is possible to produce control histories that generate

all the initial β-angles used in simulations. Figure 5.2 shows the β-angle

induced during this manoeuvre in degrees. It can also be seen that this angle

is relatively stable and not a transient.
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Figure 5.3: Simulated ’Scandinavian Flick’ - Steer input to achieve 45◦β with
25ms−1 initial velocity

Figures 5.3 and 5.4 show the time-history for both throttle/brake con-

trol and steer angle input that generate a 45o β-angle for the 7DOF model

equipped with three open differentials. With careful timing, the required

angle could be induced to correspond with the corner entry.

For this simulation, the vehicle was travelling in a straight line at 25ms−1

before attempting the manoeuvre. The steer angle is shown in radians, the

throttle/brake position ranges from +1 for full throttle to −1 for maximum

braking torque.

As the driver approaches a right turn driving in a straight line with full

throttle, they briefly steer left causing the rear of the vehicle to swing out to

the right. Then quickly steering right and briefly applying the brakes. The

rear of the car now swings back out to the left. By returning to full throttle

and adjusting the steering, a high β-angle is maintained.
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Figure 5.4: Simulated ’Scandinavian Flick’ - Throttle/Brake input to achieve
45◦β with 25ms−1 initial velocity

5.1.2 The Cornering Manoeuvre on a Loose Gravel

Surface

For the simulations it was decided that to reduce the influence of driver input

on the results, each run would see the same control inputs being applied to

the vehicle. This meant that the path taken would vary and the radius

of curvature obtained with each initial β-angle could be compared. The

choice of steer and throttle settings were based on a simplified logic of how a

real driver attempts such manoeuvres and were set to produce the required

performance from the vehicle. It was not the intention of this case study to

produce an optimum control history or to stay on a fixed width road, more

to investigate the direct influence of β-angle on a standard manoeuvre.

The vehicle model used for this simulation was the WRC model as de-

scribed in Chapter 4. Vehicle parameters and futher information can be

found in Appendix C.

The simulated manoeuvre is a 90◦ right hand corner, its completion being

the point at which the velocity vector of the vehicle rotates to match the de-

sired exit trajectory vector from the corner. The velocity vector direction can

be determined with reference to the fixed coordinate system by subtracting
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Figure 5.5: High β-angle cornering - Steer Time History Input

the attitude of the vehicle from its orientation.

Throughout the initial stage, the steer angle is progressively reduced from

0.4 radians to 0 (straight ahead). The throttle input is gradually increased

from zero to half throttle over the first second of cornering. This represents

the driver applying throttle after braking in the approach to the corner. The

vehicle begins each manouevre with an initial velocity of 15 ms−1. Time his-

tories for both throttle and steer input are shown in Figures 5.5 and 5.6. The

simulated manoeuvre was repeated with different initial β-angles between 0

and -70◦.

5.1.3 Initial Results

Figure 5.7 plots the time taken for the vehicle to rotate its velocity vector

through 90◦ against the initial β-angle with which the manoeuvre was started.

It can clearly be seen that the cornering performance can be influenced and

improved through entering the manoeuvre with a moderate attitude.
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Figure 5.6: High β-angle cornering - Throttle Time History Input

In Figure 5.7, it appears that for an initial β-angle of -55◦, the manoeuvre

time for a 90◦ corner can be reduced from the 4.32 seconds, obtained with

no initial β-angle, to 3.99, an improvement of around 8%.

If such high β-angles were recreated on tarmac, the lateral forces acting

on the tyres rubber carcass may be significant enough to remove the tyre

from the rim. Modern tyres are stiff enough to reduce the likelihood of this

occuring and instead begin to scrub sideways generating reduced lateral force

and very high tyre temperatures. At this point the tyre dynamics become

more complicated as the rubber at the contact patch begins to melt.

On gravel though, the lateral forces and surface µ are much lower and

this becomes less of an issue.

Figure 5.8 shows the path taken for each simulated manoeuvre. This

reinforces the completion time results as it demonstrates that the higher

initial β-angles produce a tighter radius of curvature and shorter path length.

It is interesting to note though that even though the completion time begins

to increase again after -55◦, higher angles seem to produce an even tighter
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Figure 5.7: Time Taken to Complete Manoeuvre against Initial β-angle
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corner. This can be explained if the first section of the corner is examined

where it would appear the higher angles take longer to begin to rotate and

hence have a slower overall manoeuvre time.

Figure 5.9 plots the time-histories of β-angle for all simulated manoeu-

vres and shows how high β-angles are quickly dampened to much smaller

and stable values. If the manoeuvre with the quickest completion time is

considered, the vehicle model completes the desired manoeuvre with only

-1.7◦ of β - given that the driver will then be looking to accelerate at full

throttle out of the corner, a small value is very beneficial.

5.1.4 The Yawing Moment

The β-angle method, described in Chapter 2, showed that at higher angles

the yaw moment generated would reduce to a relatively low self-restoring

moment. This implies that the vehicles will not be able to generate high

yaw angle accelerations at such angles. It is at this point that it becomes

important to stress two points.

Firstly, β-angle and yaw angle are linked but are not dependent on each

other. It is technically possible for a vehicle to experience a change in β-angle

without any change in yaw. This requires a change in either longitudinal or

lateral velocity to occur.

Secondly, the notion of high β-angle cornering implies that the vehicle is

already pointing towards the exit of the corner on entry. Therefore a quantity

of the required change in yaw angle has already occured and instead of the

vehicle needing to yaw around the 90◦ of the corner, the required amount of

yaw is much less.

This means that although the yaw moment capabilities are reduced at

higher β-angles, it does not mean that the vehicle must be slower in com-

pleting the specified cornering manoeuvre.

To verify this the yaw rate produced for the simulation with an initial

β-angle of 70◦ with the base tyre set and three open differentials was used to

determine the yaw moment. Plotting this against β-angle gives something

that can be compared with the β-angle method. Figure 5.10 shows this
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Figure 5.9: β-angle - Three Open Differential Simulations

plot. It is worth noting at this point that even with extremely high initial

β-angle, this simulation completed the manoeuvre significantly quicker than

the simulation with zero initial β, as can be seen in Figure 5.7.

Figure 5.10 confirms that the vehicle is conforming to the outcomes of

the β-angle method by only generating high yaw moments at low β-angles.

At the higher angles the smaller moment is also negative, in this case making

it contrary to the direction of the corner and against the β-angle. That is to

say that the yaw moment is trying to yaw the vehicle in a manner to reduce

the β-angle.

During this attempt to yaw the vehicle into a state of reduced β-angle,

the vehicle is also experiencing a centripetal acceleration and as such the

velocity vector is rotating into the corner. As this vector rotates, it also

causes the vehicles β-angle to deminish.

These two factors combine to influence the vehicles β-angle but as the

first is independent of the direction of the velocity vector and the second is

independent of the vehicles yaw rate, it is very difficult to equate the two.
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Figure 5.10: Yaw Moment against β-angle

5.1.5 The Influence of Differentials

Open Differentials

The first set of simulations used a model configured with three open differ-

entials. This permitted large wheel speed differences between all four wheels

as can be seen in Figure 5.11. Figure 5.11 is taken from the simulation with

an initial β-angle of -55◦.

In the first few seconds, it can be seen that the front wheels, in particular

the left front wheel, begin to rotate significantly faster than the rear wheels.

This occurs as the throttle is being increased and the vehicle attempts to

accelerate forward with its high β-angle. As the vehicles attitude angle re-

duces to a lower level, the wheel speed can be seen to converge back to those

expected from a steady state cornering manoeuvre.

Limited Slip Differentials

In circuit racing, the use of limited slip differentials has been employed to

assist in reducing potential losses in tractive forces that may occur when
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Figure 5.11: Individual Wheel Speeds - Three Open Diffs, initial β = 55◦

(—— LF, – – – RF, - - - LR, — - — RR)
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cornering or driving on an uneven, split-µ or loose surface.

This raises the question of whether such differentials may assist in some-

way with the the higher β-angle cornering of this case study. To discover

this, the model was reconfigured with three limited slip differentials which

acted to reduce any large differences in wheel speed.

Figure 5.12 depicts the same manoeuvre as Figure 5.11 with initial β-

angle set to 55◦. However, this model is configured with three limited slip

differentials. Now when the front left wheel begins to speed up about half

a second into the manoeuvre in the same way as seen in Figure 5.11, the

differentials apply a resistive torque according to the wheel speed difference

and the other three wheels are now forced to speed up as well.

Torque is transferred from the faster wheel to the slower wheel as a result.

As the vehicle continues through the corner, the wheel speeds can be then

seen to diverge again at around 2 seconds. This coincides with dramatic

increase in β-angle caused by the oscillation that occurs in this manoeuvre.

The implication is that the locking action applied due to the wheel speed

differences at half a second induces the oscillation and the secondary β-angle

peak, in which the individual wheel speeds diverge again before returning to

more consistent values as the vehicles steer angle is reduced and it exits the

corner.

With the limited slip model, the quickest manoeuvre time dropped signif-

icantly to around 3.127 seconds with an optimum β-angle of -35◦. However,

if the vehicle at completion is compared, the three limited slip model finishes

with over -40◦ of β-angle remaining. This high angle is far from conducive

to accelerating out of a corner and hints at a more fundamental problem.

Figure 5.13 shows the β-angle time-histories for each manoeuvre. Unlike

the three open differential model (Figure 5.9) the vehicle swings dramati-

cally back and forth demonstrating considerable instability in cornering even

without high initial angles. This instability may be countered with a more

realistic human driver but it is clear that such extra effort is not required

with the three open model.
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Figure 5.12: Individual Wheel Speeds - Three LS Differentials, initial β = 55◦

(—— LF, – – – RF, - - - LR, — - — RR)
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Figure 5.13: β-angle - Three LS Differential Simulations

Other Configurations

Three other configurations of transmission where simulated in addition to

the three open and three limited slip differentials. The configurations were

an open centre with front and rear LSDs, an open front with centre and

rear LSDs and an open rear with centre and front LSDs. To summarise the

effect on performance, Table 5.1 shows the quickest time that the specified

manoeuvre was completed in and what the initial βangle was that gener-

ated the result. It also shows the β-angle which remains at the end of the

manoeuvre for the fastest run.

Table 5.1: Summary of Simulation Results

Configuration Time (s) Initial β Exit β
3xLSD 3.127 -35◦ -41.3◦

Open Centre 3.225 -50◦ -3.8◦

Open Rear 3.307 -55◦ -2.6◦

Open Front 3.464 -50◦ -2.5◦

3xOpen 3.985 -55◦ -1.7◦
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Figure 5.14: Lateral Tyre Force Curves for Sensitivity Analysis (Fz ≈
3000N, µ = 0.6) (– – – Tyre A, —— Tyre B, — - — Tyre C)

5.1.6 The Influence of Tyres

Although initial results show peak performance occurring at around 50◦ to

55◦ of β-angle on corner entry and on loose gravel, these simulation results

are heavily dependent on the particular tyre model used. The base set of

Pacejka parameters adopted for the tyre, those for a high performance ex-

ample, show next to no decline in lateral force potential even at extreme slip

angles (Figure 5.14, Tyre A). This is not entirely realistic and as such the

simulations were repeated with the tyre parameters altered to create a tyre

that gently diminishes with slip angle and a tyre that dramatically dimin-

ishes with slip angle. The lateral force curves for these tyres on a surface

with a µ of 0.6 to represent the gravel surface, are shown in Figure 5.14

5.1.7 Results

Figure 5.15 shows that as the tyre’s lateral capabilities are reduced (see Tyre

B in Figure 5.14) the optimum corner entry β-angle also drops. This is
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Figure 5.15: Time Taken to Complete Manoeuvre against Initial β-angle -
Tyre B

Figure 5.16: Time Taken to Complete Manoeuvre against Initial β-angle -
Tyre C
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expected as now the tyre model cannot generate the same high forces at

higher slip angles. Despite this the optimum entry angle is still around 30◦

although it is now slightly slower than the fastest time obtained for Tyre A

at around 4.03 seconds.

Figure 5.16 continues this trend. Now the tyre model is configured to

diminish severely as slip angle increases and the tyres can only perform ef-

fectively around their saturation point, at somewhere between 5◦ and 10◦.

Any increase in corner entry β-angle now has a dramatic effect in reducing

the cornering performance.

From this it is clear that an optimum corner entry strategy is heavily

dependent upon the tyre model. Interestingly, if the experimentally derived

tyre curves obtained in Chapter 4 are considered, tyre B represents a close

match to the data from the real tyres.

Furthermore this would suggest optimum corner entry angles of around

30◦, which is also the range of β-angles seen from the telemetry data. This

would suggest that the drivers feel for their vehicles does seem to have a

sound vehicle dynamic basis. Further investigation could confirm this by

considering more closely matched manoeuvres and telemetry.

5.1.8 Case Study Conclusions

The instability seen with the three limited slip differential configuration is

only apparent for this model. All other models demonstrated similar β-angle

time-histories to the three open case.

This instability in the cornering would therefore make it a drastic choice

despite it generating the fastest cornering time. If the centre differential is

opened up though, the fastest corner manoeuvre time only increases marginally,

see Table 5.1, but the vehicle now exits the manoeuvre with a much more

modest β-angle that will have only a negligible detriment in terms of the

ensuing attempt to accelerate out of the corner. Operating rally cars with

an open centre differential and limited slip front and rear differentials is,

therefore, a rational choice.

Furthermore, higher β-angles of around 50◦ to 55◦ can produce noticeably
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increased performance. This should be taken into account in development of

any control systems that may look to prevent such angles.

5.1.9 Potential for β-angle control

From the results seen, it is in theory possible to calculate an optimum corner

entry β-angle that will minimise the time required for that corner. If it were

possible to control the transmission in such a manner as to assist in the

generation of that β-angle, the effort in predicting how the car will behave

can be offloaded from the human driver onto the chassis controller.

Although current WRC cars utilise only actively locking differentials, re-

cent developments have seen the potential for a torque distributing unit that

can adjust and control the ratio with which the input torque is split between

the two output shafts. One of the earliest differentials with this potential is

the Mitsubishi AYC unit as described in Chapter 2.

With this in mind, a simulation model was created in which a differential

model was implemented as the centre differential to allow the torque split

between the front and the rear wheels to be adjusted.

The common understanding is that a rear wheel drive vehicle will tend

to increase its β-angle if given enough throttle, usually referred to as over-

steering, whereas front wheel drive cars tend to reduce their β-angle, or

understeer. This logic relates to the relative saturation points between the

front and rear tyres, with rear wheel drive vehicles saturating their rear tyres

sooner when throttle is applied. The converse holds for front wheel drive

vehicles.

Therefore if the vehicle has too high a β-angle, by pushing the drive

torque forward, a reduction should be seen. Similarly if too low a β-angle

for the optimum corner entry, torque pushed to the rear should correct this.

It is worth noting though that as there is no left-to-right torque distribution

differentials on the front and rear axle, the driver would be required to induce

some angle through a flick of the steering wheel. Without this the centre

differential cannot generate the yawing moment required to create a β-angle.

To demonstrate this, a vehicle was initiated to a 45◦ β-angle and driven
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Figure 5.17: Influence on β-angle for varying front-rear torque splits

under full throttle with varying front-to-rear torque splits on a surface with

a µ of 0.6, representative of a loose gravel. Figure 5.17 shows the resultant

β-angle time histories.

Figure 5.17 clearly shows that this philosophy is essentially correct and

that a torque split of somewhere between 63% and 64% rear should produce

a stable angle. It is unlikely an exact figure could be determined given the

nature of the unknowns, but using the β-angle sensor and a suitable control

algorithm that adjusts torque as required, the task is possible.

It should be noted though that these results are specific for the vehicle

model and that changes in factors such as weight distribution would probably

move the stable point.
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5.2 Corner Exit Strategy

In order to maximise performance the driver will look to apply full throttle

as soon as possible on exiting the manoeuvre. However, if a residual β-angle

remains when the driver attempts to apply full throttle, controlling the vehi-

cle becomes problematic with the driver having to make drastic steer inputs

or reduce throttle to bring the vehicle back under control before accelerating

out of the corner once more. This instability in the car can be influenced

by the transmission configuration and may be able to assist the driver in

achieving the desired results without excessive effort to keep the vehicle on

the path intended.

During pure longitudinal acceleration, the accepted philosophy is that

the transmission should be locked. This results in maximum tractive effort

and, in circumstances where the road surface is slippery or loose, reduces any

unwanted wheel speed on an individual tyre.

This section examines the end of the corner where an excess of β-angle is

most undesirable. The driver needs to reduce the vehicles β-angle as quickly

as possible as they attempt to maximise their lateral acceleration into the

next straight. Different configurations of differential demonstrate this.

5.2.1 Simulated Corner Exit

To simulate a corner exit manoeuvre, the steering is centred and full throttle

applied.

This represents the easiest option available to the driver and is intended

to demonstrate the effect that residual β-angle may have. In reality the driver

may use high frequency counter steer inputs and ease off the throttle in order

to reduce β-angle and achieve straight line acceleration but this would not

represent maximum performance.

To that end, two simulations are presented. The first, Figure 5.18 demon-

strating the path taken when a vehicle model with three limited slip differen-

tials attempted to accelerate out of a corner with varying degrees of residual

β-angle. The second, Figure 5.19 presents the same scenario but with three

open differentials. The surface µ was again set to 0.6 to represent a loose
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Figure 5.18: Corner Exit β-angles - Three Limited Slip Differentials

gravel surface as in the first case study.

From Figure 5.18 it is clear that even with low initial β-angles, the vehicle

becomes oscillatory and fish-tails down the straight. With higher initial

angles, the vehicle begins to swing dramatically back and forth in a manner

that, without driver input to dampened the action, would probably lead to

an accident.

Figure 5.19 however shows a different picture. With all three differentials

open, the differing wheel speeds are not restricted and the vehicle quickly

returned to a steady zero β-angle state while accelerating away from the

corner. This occurred at all angles simulated and would require the least

driver input of the two.

5.2.2 Optimum Strategy

Despite the clear benefits in terms of rapidly reducing β-angle, leaving the

differentials open for hard acceleration is not the optimum solution for loose

surface driving. Any difference in the level of grip between the four wheels
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Figure 5.19: Corner Exit β-angles - Three Open Differentials

would result in a loss of traction and effectively would slow down the rate of

acceleration.

Fortunately, WRC cars employ active differentials and can be controlled

to increase or reduce their locking action based on a suitable control al-

gorithm. This would allow for an algorithm that would detect the corner

exit, say from the driver straightening the steering and applying full throt-

tle, detect the residual β-angle using the β-angle sensor and open up the

differentials long enough to allow the angle to be reduced before reapplying

the differential locking for maximum traction.

Such a control strategy though would have to conform to the rules and

regulations of WRC but the results of the simulation show that with the aid of

the β-angle sensor, some of the control elements currently under the influence

of the human driver, could be replaced with a suitable control system that

would maximise performance potential.
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5.2.3 Case Study Conclusions

Through simulation it has been shown that entering a corner on a loose

surface with a high β-angle can reduce the time required to complete the

manoeuvre. It has also been shown that the transmission configuration and

tyre properties have significant effects on both performance and stability,

measured in terms of β-angle, throughout the cornering and beyond.

A philosophy towards high performance cornering is beginning to emerge.

For a given corner, it is now possible to obtain an approximate value for

optimum entry β-angle. The exact value is more difficult to obtain due to

the unknowns such as road conditions and tyre properties. Tyre properties

are coming to light through the application of the β-angle sensor and this

should help to reduce uncertainty.

Furthermore, the transmission results demonstrate that a centre limited

slip unit can help cornering by reducing front-rear axle speed differences

without the detrimental effects on stability that appear to occur when front

and rear limited slip differential units are employed. In corner entry, it has

been seen that any excess β-angle is disadvantageous and by opening all three

differentials, even under full power, the vehicle will quickly scrub the excess

and allow the transmission to be locked up for maximum traction without

unwanted instability.

It has also been put forward that the potential now exists, enabled by the

β-angle sensor, to develop a car and control system that can aid the driver

in inducing and reducing β-angle as appropriate for maximum performance.

Although only initial studies have been put forward, the results suggest that

such a system could have dramatic effects for vehicle control on loose surfaces.

Future work in developing this system though is dependent on advances

in differential technology to allow rapid changes in torque distribution and

the rules and regulations of WRC.
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5.3 Torque Vectoring using β-angle Control

This case study is based on three scenarios where the complexity of the AWD

transmission increases. The first with three open differentials, the second

with a 70/30-30/70 switchable centre differential with open front and rear,

and third, a fully left-to-right vectoring front and rear differential capable of

any ratio of torque distribution (centre differential being left open).

The results show some of the benefits of adding a smarter centre differ-

ential to a standard open differential AWD system, and then the effect of

adopting full torque vectoring whereby the torque transferred to each road

wheel is controlled independently.

The benefits are described in terms of effective vehicle β-angle and its rate

of change under acceleration through an ISO double lane change manoeuvre[11]

shown in Figure 5.20. A reduction in the magnitude of the angles observed

being indicative of a more nimble and agile vehicle.

The double lane change change manoeuvre is negotiated using the path-

following optical lever directional controller and configured to accelerating

briskly at 2.5 ms−2. The model begins the manoeuvre at an initial starting

speed ranging from 10ms−1 to 30ms−1.

Figure 5.20: ISO Double Lane Change Manoeuvre[11]
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5.3.1 Three Open Differentials

The results for the first case study (with three open differentials) are shown in

Figure 5.21, 5.22 and 5.23. Figure 5.21 shows the path taken by the vehicle

at ground speeds in the range 10 ms−1 to 30 ms−1 The steer controller is

less successful in finding a smooth path through the ISO double lane change

manoeuvre as the speed increases. Figure 5.22 shows the β-angle time history

at 30ms−1 which is significant and changing rapidly. Figure 5.23 shows the

steering time history.

This case study represents the baseline performance against which the

torque vectoring studies are compared.
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Figure 5.21: Three Open Differentials - Paths Taken
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Figure 5.22: β-angle for 30ms−1 Simulation
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Figure 5.23: Steer Angle Input for 30ms−1 Simulation
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5.3.2 70/30-30/70 Switchable Centre Differentials

In the second example the vehicle model undergoes the same manoeuvre but

with a switchable centre-differential (the so-called 70/30 differential). This

device switches between two modes using a system of clutches. In one mode

it transfers 70% of the available torque to the front differential and 30% to the

rear. In the other mode, the torque distribution is reversed. Because of this

switching of modes, the control strategy for this device has earned the label

bang-bang control. When the β-angle exceeds 1.5◦, the centre-differential

switches between modes in order to minimise the β-angle.

Comparing the baseline results of the three open differential case to those

in Figure 5.24, 5.25 and 5.26, which relate to the 70/30 differential, it is

clear that with a switchable centre differential, the vehicle is prone to a

strong oscillation in β-angle. The impact on the path followed is remarkably

slight because the preview steer controller has been successful in countering

the path effects of vehicle attitude using counter-steering. Notwithstanding

the unwanted oscillations the bang-bang differential control did successfully

reduce β-angle before the oscillations arose.

The oscillations can be seen to grow rapidly and dramatically as the path

following steering controller is operating to maintain vehicle path. Between

5 and 10 seconds the controller is applying large high frequency steer in-

puts as the vehicle fish-tails (oscillates in β) in an attempt to maintain the

desired acceleration. A sympathetic steer and throttle control provided by

a live driver would act to suppress the oscillation either through easing off

on the throttle or the steer input until the oscillation is suitably damped.

Another possible method for suppressing the fish-tailing would be to adjust

the differential controller in such a way to avoid changing the front-to-rear

torque distribution ratio until the β-angle rate has diminished.

In the initial sections of the manoeuvre, peak β-angle and rate can be

seen to be reduced compared with the baseline results. For short duration

manoeuvres, the bang-bang strategy would give the vehicle an improved sense

of nimbleness.
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Figure 5.24: 70/30-30/70 Centre Differential - Paths Taken
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Figure 5.25: β-angle for 30ms−1 Simulation
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Figure 5.26: Steer Angle Input for 30ms−1 Simulation



5.3. Torque Vectoring using β-angle Control 153

5.3.3 Left-Right Torque Vectoring

In the third example, the vehicle is configured with torque vectoring differ-

entials at the front and at the rear where the torque delivered to each wheel

is independently controlled. The centre differential is of the open design. A

PI controller is applied to both front and rear differentials in order to min-

imise β-angle. In order to produce similar path following abilities as the first

and second case studies, the individual gains used in the PI controller were

adjusted using a trial and error approach until a good approximation was

achieved.

Figure 5.27, 5.28 and 5.29 show the comparative results for the vehicle

fitted with torque-vectoring differentials front and rear and an open centre

differential. This time β-angle is reduced even further with no oscillations.

The gains employed in the β-angle PI controller have been chosen to de-

liberately reduce the deviation in path followed (compared with the other

two case studies) in order that a like-for-like comparison can be made. How-

ever, a more liberal choice of gains would reveal a more significant control

of β-angle, but with the unwanted side-effect of worsening path following

qualities.

The benefits of adopting this sophisticated AWD system, although mod-

est when compared with the cost and weight penalties imposed, are clear

even for the short duration manoeuvre found in the ISO double lane change.

For the case of accelerating through a small radius curve, the positive impact

of the torque vectoring system would be more marked.



154 Chapter 5. Modelling Case Study

0 50 100 150 200 250 300
−2

−1

0

1

2

3

4

5

Y
 (

m
)

X (m)

Figure 5.27: Left-Right Torque Vectoring Differentials - Paths Taken
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Figure 5.28: β-angle for 30ms−1 Simulation
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Figure 5.29: Steer Angle Input for 30ms−1 Simulation

5.3.4 Case Study Conclusions

The results have shown that the more complex torque vectoring differen-

tials can produce a significant improvement in perceived vehicle agility and

nimbleness. Peak β-angles were reduced to around 40% of the base case sim-

ulations and fewer high frequency steer inputs were required to maintain the

desired path.

The addition of an active centre differential showed marked improvement

over the base case, although it did tend to create a slightly unstable vehicle

under heavy acceleration, this being characterised by the fish tailing effect

seen on exiting the double lane change manoeuvre. A live driver would

obviously be able to rapidly suppress this although a more intricate control

strategy may reduce the need for this intervention

An even more significant improvement was also noted with the introduc-

tion of left-to-right torque vectoring ability without the instability seen in

the active centre case.

This model, however, maintained an open centre differential to avoid any

potential for conflicting control strategies. Further studies could investigate

whether an active centre differential and sophisticated controller could be
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added to this model to produce a more agile vehicle.

In summary, this case study shows a method of applying β-angle control

to the small executive passenger car to provide the driver with a more enjoy-

able ride and feel to the vehicle. It has also been shown that by adjusting the

control of the transmission, the vehicle dynamics can be altered and therefore

could be tuned to the drivers style or mood in real-time.



Chapter 6

Conclusions

This research began by identifying a gap in the vehicle dynamics field relating

to the specific case of rally driving, particularly on loose surfaces.

Through various processes, this work looked to begin to fill this gap and

in doing so has laid a foundation but also has opened up various other pos-

sibilities and applications.

6.1 β-angle Sensor

This work has presented a novel method for the direct measurement of β-

angle and has shown the development of an appropriate sensor to implement

the method.

The sensor was taken from a conceptual stage, through initial testing,

calibration, refinement and validation processes to result in a practical, re-

liable and robust device that could be used for vehicle dynamic study and

investigation.

One major advantage of this sensor has been its robust nature that al-

lowed it to be used in the investigation of β-angle dynamics in WRC cars

on loose gravel surfaces. Through testing with WRC vehicles on loose gravel

conditions at full racing speeds, an extreme case was taken and confirmed the

sensor’s durable nature by surviving these environments without failure or

incident. New insight has been obtained through its use as well as potential

157



158 Chapter 6. Conclusions

to develop analytical techniques to examine driver style, dynamics on loose

surfaces and tyre properties in real time.

Unfortunately due to recent changes in the rules and regulations of WRC,

the use of GPS technology has been banned during rallies. This reduces the

potential applications of the sensor although it is still an important tool

that could be developed into an essential part of the testing and vehicle

development process.

Furthermore with the increased adoption of 4WD and active transmis-

sions in road cars, and given that the implementation of the β-angle sensor

is relatively cheap, there may be a future use in traction control or tuneable

dynamic behaviour systems for the more pro-active drivers and car owners.

To continue the development of the β-angle sensor, more validation which

compares the performance of the sensor with significantly more expensive and

complex dual-antennae GPS systems that are only just becoming commer-

cially available, would confirm the available accuracy and resolution.

There is also scope for an extended calibration method of the magnetome-

ters that results in an more sophisticated method of removing pitch and roll

inaccuracies. The lead for this may be taken from the likes of the stability

control systems, such as the Bosch ESP[16] system, which infers such values

from an array of additional sensors.

In addition, there still exists a geographical element to the calibration of

the magnetometer corrections. This was overlooked in this study as testing

occurred within a small enough area in which the Earth’s magnetic field could

be considered to be constant. If the sensor was to be developed for practical

commercial use in a non-competitive road car application, this would need

to be overcome.

In summary, the β-angle sensor has been developed to a state where it can

be used as a useful tool in potential research or control applications where

other alternative methods are either too expensive or rendered ineffectual

due to the need to operate in a harsh environment.
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6.2 Tyre Curve Inference

Tyre forces are one of the fundamental factors in the performance of a vehicle

and one which is difficult to quantify due to the number of unknowns that

can affect them.

The use of test rigs can provide some element of understanding but these

do not always reflect true performance when fitted to a vehicle. Through

the application of the β-angle sensor, a suitable vehicle dynamic model and

various other sensor data, a method of inferring the performance of the tyres

in real time has been presented.

Even though it was not possible to perform the steady state manoeuvres

recommended to generate clear tyre curves from the WRC test car on gravel

and tarmac, it was possible to see the tyre data extracted directly from the

telemetry of full-speed test runs. This data shows many transient proper-

ties and noise but does clearly represent a structure that conforms with the

accepted Pacejka[53] model theory. In addition, the data from the gravel

telemetry gives valuable insight into tyre performance on that surface. The

limited lateral capabilities of the tyre and its rate of drop off with increased

slip angle proving of great interest in order to help improve the accuracy of

simulations relevant to this field.

The ability to produce this tyre data could be refined and improved to al-

low quantitative analysis of different tyre compounds or tread patterns as well

the potential to monitor the degradation of tyres in real time. Although the

process presented here is relatively new, it can be seen as a proof of concept

that should now be taken forward to develop sophisticated tyre measurement

capabilities.

6.3 β-angle in Vehicle Dynamics

In order to try and quantify the importance of β-angle in vehicle dynamic

theory, particularly for the realms of WRC, a 7-DOF model has been created

and used in appropriate case studies.

This model benefited from validation against a set of real world telemetry
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data from a fully instrumented WRC test car, particularly in relation to β-

angle as originally measured using a Correvit[12]. Furthermore, the lessons

learnt from tyre curve research and β-angle sensor measurement have allowed

this simulation to be applied to loose gravel surface analysis with a high

degree of confidence that its accuracy has been preserved.

Through this process, the application of vehicle dynamic simulation to

WRC style problems has become a real possibility in a field that is tradition-

ally seen as being unsuited to such an approach. Despite this, there is still

significant scope for future development work.

Three case studies were subsequently presented. The first demonstrating

that high β-angle has a place in loose surface racing for maximising tyre

performance and cornering speeds albeit at the expense of the ability to

command full control of the vehicle. The second showing how differentials

can be used to influence the β-angle behaviour and vehicle stability with the

emphasis on performance related issues. Finally the third demonstrating the

potential for β-angle control on sophisticated torque vectoring differentials

as a means of providing a more exciting and potentially tuneable driving

experience for small-executive class passenger cars.

Again these three case studies represent initial starting points that build

on the concept of having a cheap, robust and reliable β-angle sensor. Future

work is virtually limitless in its scope and prospective application and not

restricted to any particular field, although WRC does represent a likely target

through the predominance of high β-angle driving styles.

6.4 Future Work

To summarise, this research has formed a solid basis and starting point for

the development of β-angle related work. Below are a few recommendations

that flow from this work.

• Continued development of the β-angle sensor towards a cheap, reliable

and robust commercially viable product for vehicle dynamics analysis.
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• Continued development of the potential for tyre curve inference through

the use of the β-angle sensor or similar.

• An investigation into the potential for real-time tyre performance mon-

itoring applications.

• Research into the effectiveness of β-angle control systems, in particular

tuneable drivability for future cars with sophisticated torque vectoring

transmissions.
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Set/Reset Pulse Generator

Circuit Diagram
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Appendix B

Model Comparison

B.1 Straight Line Acceleration

The pitch and roll angles are simulated values based on a constant spring

rate derived from experimental data obtained from a WRC vehicle in tarmac

specification being analysed on a Kinematics and Compliance test rig.

B.2 Straight Line Deceleration

At 0ms−2 the small pitch angle is due to downforce distribution. The front

lifts slightly more than the rear at speed.

Note: Due to the non-constant rate of deceleration, the pitch angles are

an average value over the main braking region of the simulated manoeuvre.

Table B.1: Pitch and Roll under Straight Line Acceleration

Acceleration Target (ms−2) Pitch (deg) Roll (deg)
2 -0.15 0.00
4 -0.29 0.00
6 -0.44 0.00
8 -0.60 0.00
10 -0.73 0.00
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Table B.2: Pitch and Roll under Straight Line Deceleration

Deceleration Target (ms−2) Pitch (deg) Roll (deg)
0 -0.02 0.00
2 0.14 0.00
4 0.28 0.00
6 0.45 0.00
8 0.61 0.00
10 0.74 0.00

B.3 Constant Radius and Speed Cornering

In these comparisons the model was configured to follow a 12 metre radius

circular path with a zero longitudinal acceleration target (PI throttle, Optical

level steer). Table B.3 compares the values of lateral acceleration, yaw

rate and percentage lateral load transfer expectations as calculated using the

equations of Milliken[1] (shown in brackets) and the values from the simulated

model.

Table B.3: Comparison of Simulated and Calculated Values

Speed (ms−2) Lat Acc (ms−2) Yaw rate (rads−1) % Lat Load Transfer
2 0.34 (0.33) 0.167 (0.166) 0.9 (0.9)
4 1.34 (1.34) 0.334 (0.333) 3.4 (3.5)
6 3.00 (3.00) 0.500 (0.500) 7.9 (7.9)
8 5.32 (5.33) 0.664 (0.666) 14.0 (14.0)
10 8.28 (8.33) 0.830 (0.833) 22.0 (21.9)



Appendix C

Model Parameters

C.1 Chassis Data

Table C.1 contains the parameters used in the seven degree of freedom model.

Table C.1: Chassis Parameters

Parameter Value Unit
Height of CofG 0.4 m
Height of Roll Centre 0 m
Position of Roll Centre from Front 0 m
Position of Roll Centre from Rear 0 m
Yaw Moment of Inertia 2700 kgm−2

Front Axis Polar Moment of Inertia 0.7 kgm−2

Engine Moment of Inertia 0.017 kgm−2

Rear Axis Polar Moment of Inertia 0.7 kgm−2

Distance of CofG from Front Axle 1.1 m
Distance of CofG from Rear Axle 1.5 m
Mass 1230 kg
Front Wheel Radius 0.33 m
Rear Wheel Radius 0.33 m
Front Roll Stiffness 58 %
Rear Roll Stiffness 42 %
Front Track 1.55 m
Rear Track 1.55 m
Wheelbase 2.6 m
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C.2 Aerodynamic Data

Table C.2 details the front-rear downforce distribution as well as the neces-

sary coefficients to calculate both drag and lift. The frontal surface area is

also listed.

Table C.2: Aerodynamic Parameters

Parameter Value Unit
Cx 0.3 -
Cz -0.005 -
Downforce Distribution Front 70 %
Downforce Distribution Rear 30 %
Frontal Surface Area 1.88 m2

C.3 Powertrain Data

C.3.1 Gears

The model has a six speed gear box. The gear ratio is changed when the mod-

els longitudinal speed with rises above or falls below the specified velocities

shown in Table C.3.

Table C.3: Powertrain Parameters - Gearbox

Gear Ratio Velocity for Gear Change (ms−1)
1 12.56 18.16
2 9.13 24.96
3 6.23 36.62
4 5.1 44.75
5 4.4 51.82
6 3.8 70.13
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C.3.2 Differentials

The model contains three active differentials - front, centre and rear. The

hydraulic pressure is limited to a range of between 5 Bar minimum and 200

Bar maximum.

Table C.4: Powertrain Parameters - Differentials

Parameter Front Centre Rear Unit
Number of Plates 3 3 3 -
Inner Plate Radius 0.025 0.025 0.025 m
Outer Plate Radius 0.03 0.03 0.03 m
Thrust Bearing Area 0.0008 0.0008 0.0008 m2

Frictional Coeff (m0) 0.05 0.05 0.05 -
Frictional Coeff (m) 0.0001 0.0001 0.0001 -
Torque (interal friction) 20 20 20 Nm

C.4 Engine Data

The engine produces a maximum torque of 400Nm and has a maximum

rotational speed of 7000 rpm.

Table C.5: Engine Parameters - Torque Curve

RPM Overdrive (%) Torque (%)
0 0 0.0
2500 -10.1 52.3
3000 -10.1 46.5
3500 -10.1 69.7
4000 -10.1 92.8
4500 -10.1 93.0
5000 -10.1 94.0
5500 -11.3 96.0
6000 -12.5 96.0
6500 -12.8 94.0
7000 -13.0 82.0
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C.5 Brake Data

The Brakes can exert a maximum torque of 5500 Nm distributed 65% to the

front brakes and 35% to the rear brakes.



Appendix D

Base Tyre Parameters for

Simulation

Table D.1 presents the coefficients for the Pacejka ’97 variant Magic Tyre

Formula that were used as the base set for the simulations in this research.

Camber was set at zero degrees for all four tyres. The coefficients are repre-

sentative of a performance road tyre.
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Table D.1: Pacejka Tyre Coefficients

Coeff. Front Tyres Rear Tyres Coeff. Front Tyres Rear Tyres
pCx1 1.65 1.65 qEz3 0 0
pDx1 1.713 1.7325 qEz4 0.11464 0.12472
pDx2 -0.07738 0.026135 qEz5 10.876 9.1471
pEx1 0.40839 0.70969 qHz1 0.007124 0.00698
pEx2 0.23267 -0.28966 qHz2 -0.00573 -0.00434
pEx3 -0.58098 -0.27092 qHz3 -0.21898 -0.3037
pEx4 0 -0.20289 qHz4 0.17854 0.22493
pKx1 60.039 67.029 rBx1 19.038 17.411
pKx2 52.873 55.354 rBx2 21.592 19.23
pKx3 -0.77268 -0.8776 rCx1 1.1219 1.1211
pHx1 0 0 rHx1 0 0
pHx2 0 0 rBy1 17.812 18.191
pVx1 0 0 rBy2 19.528 15.143
pVx2 0 0 rBy3 -0.01097 -0.00196
pCy1 1.75 1.75 rCy1 1.0244 0.98793
pDy1 -1.5033 -1.5158 rHy1 0 0
pDy2 0.3201 0.30257 rVy1 0 0
pDy3 0.46794 6.571 rVy2 0 0
pEy1 -0.14418 -0.03076 rVy3 0 0
pEy2 -0.10511 -0.02086 rVy4 0 0
pEy3 2.8169 9.6751 rVy5 0 0
pEy4 23.797 106.44 rVy6 0 0
pKy1 -37.281 -41.954 ssz1 -0.00841 0.015828
pKy2 1.0987 0.93374 ssz2 0.005695 0.010874
pKy3 0.03559 -0.71886 ssz3 -1.17177 -0.84611
pHy1 0 0 ssz4 0.848501 -0.00793
pHy2 0 0 Fz0 4000 4000
pHy3 0 0 R0 0.32725 0.3263
pVy1 0 0 lFz0 1.01 1.02
pVy2 0 0 lmx 1 1
pVy3 0 0 lmy 1.015 1.035
pVy4 0 0 lKx 1 1
qBz1 19.603 19.127 lKy 0.88 0.88
qBz2 -2.1057 -2.0276 lCx 1 1
qBz3 1.1019 1.3341 lCy 1 1
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Table D.2: Pacejka Tyre Coefficients Cont.

qBz4 -0.11937 0.045639 lEx 1 1
qBz5 -0.11937 0.045639 lEy 1 1
qBz9 29.924 29.753 lHx 1 1
qCz1 1.1348 1.1348 lHy 1 1
qDz1 0.10849 0.12287 lVx 1 1
qDz2 0.059517 0.05851 lVy 1 1
qDz3 0.17618 0.40916 lgy 1 1
qDz4 -25.824 -64.204 lgz 1 1
qDz6 -0.00188 0.002461 lt 1.023 1.023
qDz7 -0.0178 -0.01905 lMr 1 1
qDz8 1.5478 2.0554 lxa 1 1
qDz9 0.72528 0.48231 lyk 1 1
qEz1 -0.65433 -0.67073 lVyk 1 1
qEz2 0.61078 0.56648 ls 1 1


