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Abstract: The emergence of collaborative robotics has had a great impact on the development of

robotic solutions for cooperative tasks nowadays carried out by humans, especially in industrial

environments where robots can act as assistants to operators. Even so, the coordinated manipulation

of large parts between robots and humans gives rise to many technical challenges, ranging from the

coordination of both robotic arms to the human–robot information exchange. This paper presents a

novel architecture for the execution of trajectory driven collaborative tasks, combining impedance

control and trajectory coordination in the control loop, as well as adding mechanisms to provide

effective robot-to-human feedback for a successful and satisfactory task completion. The obtained

results demonstrate the validity of the proposed architecture as well as its suitability for the

implementation of collaborative robotic systems.
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1. Introduction

The emergence of collaborative robotics changed the development of robotic solutions drastically

for cooperative tasks. Industrial environments offer an interesting scenario for collaborative robotics,

an environment where robots could act as assistants to operators [1,2], helping them in their usual

tasks. Even so, the successful development of cooperative operations between the operators and robots

gives rise to many challenges. Beginning from the low-level robot control [3] and ending with the

social and acceptance aspects of these kinds of applications [4], many facets must be tackled during

the implementation phase.

In cooperative manipulation tasks, one key aspect which is shared among almost all of them is

the exchange of implicit and explicit information between both actors. For example, two operators are

able to transport and place large parts with few or no visual information of their partner, using mainly

the feedback of the forces sensed during the manipulation to adapt their trajectories and fulfill the task,

adding extra information only when required. Even so, it is important choosing the most suitable cues

for this information exchange to ensure successful completion of the task.

This paper presents a dual arm co-manipulation architecture for large part manipulation with

enhanced human–robot communication capabilities. The proposed approach is based on three key

elements: (1) Human driven co-manipulation, (2) coordination of dual arm robots and adaptation of

trajectories to unexpected events, and (3) robot-to-human feedback for successful task completion.

The presented architecture tackles these three elements, defining a new scheme for dual arm

co-manipulation tasks. This architecture pays special attention to the psychological aspects of the
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task, which is reflected in the inclusion of user studies in the architecture design and development

phase. The implementation and testing of the architecture shows its suitability for cooperative

industrial applications.

The paper is organized as follows. Section 2 provides information about related work. Section 3

presents the proposed architecture. Details about the low-level robot control and coordination are

provided in Section 4. Section 5 gives information about data management for feedback generation.

Section 6 presents the process carried out in the development of the user interface. Details about the

implementation of the architecture are given in Section 7. Finally, Section 8 contains information about

the conclusions and future work.

2. Related Work

Human–robot manipulation is a recurrent research topic, with multiple scenarios and approaches

proposed. From classical scenarios with standard robotic manipulators [5], to the appearance of

humanoid robots [6], many works about co-manipulation can be found in the literature.

Within the different topics posed in human–robot collaboration, force control is one of the most

studied fields, with many approaches and algorithms to take advantage of the force based interaction.

Lichiardopol et al. [3] propose a control scheme for human–robot co-manipulation with a single

robot, where the system estimates an unknown and time-varying mass as well as the force applied

by the operator. Dimeas and Aspragathos [5,7] pose a method to detect unstable behavior and

stabilize the robot with an online adaptation of the admittance control gains, adding reinforcement

learning to estimate parameters for effective cooperation. Peternel et al. [8] propose an approach for

co-manipulation tasks such as sawing or bolt screwing through a human-in-the-loop framework which

integrates online information about the human motor function and manipulability properties.

The use of Artificial Intelligence also helps improving co-manipulation applications, adding mechanisms

to tune and optimize control models. Su et al. [9] propose the use of a recurrent neural network

(RNN) to perform the trajectory control of redundant robot manipulators. Roveda et. al. [2,10] also

propose the use of a neural network to optimize the control parameters, implementing a cooperative

fuzzy-impedance control with embedded safety rules to assist human operators in heavy industrial

applications while manipulating unknown weight parts. Moreover, Deep Learning algorithms have

also been used for the identification of robot tool dynamics [11], allowing a fast computation and

adding noise robustness.

Additionally, the use of predefined trajectories and guides for dual arm and co-manipulation

tasks appear in different research works. Gan et al. [12] present a position/force coordination control

for multi-robot systems where an object-oriented hierarchical trajectory planning is adopted as a

first step of a welding task. Jlassi et al. [13] introduce a modified impedance control method for

heavy load co-manipulation where an event controlled online trajectory generator is included to

translate the human operator intentions into ideal trajectories. Following the topic of trajectory

generation, Raiola et al. [14] propose a framework to design virtual guides through a demonstration

using Gaussian mixture models.

Even so, few approaches include human and social factors in the system design. From the user

point of view any new technology needs to be accepted by the workforce to be effective. Lack of trust

can be caused by a lack of transparency in robot behaviour as shown in the work of Sanders et al.

and Wortham and Theodorou [15,16]. People are likely to feel more comfortable and confident working

with a robot if they know how it behaves and can anticipate what it will do next. In fact, Hayes and

Scassellati [4] suggest that efficient communication between humans and robots is impossible without

mutual understanding of each other behavior and appropriate expectations.

The robot’s action, communication, and transparency not only can increase task performance

according to Lakhmani et al. [17], but operators’ well-being in terms of mental workload and situation

awareness as noted by Hayes and Shah [18]. Furthermore, Sanders et al. [15] propose that a consistent

and constant flow of information can have a positive impact on trust. Trust is essential for efficient task
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completion; according to Wright et al. [19], too little trust can result in technology rejection, while too

much trust can lead to complacency. In situations with low levels of trust, mental workload and

cognitive demand increase due to monitoring of the robot’s performance. Such increases result in

less cognitive capacity left for monitoring the environment and complying with safety procedures

as shown in Chen et al. and Saxby et al. [20,21]. In general, robot behavior transparency can have

impacts on individual performance, trust, mental workload, and user experience. Studies establishing

recommendations for human robot interaction and communication should assess these factors.

As an example of the previously exposed importance of the human factors, Weiss et al. [22]

present a work where case studies are conducted during the use and programming of collaborative

robots in industrial environments, adding an anthropocentric dimension to the work.

3. Proposed Architecture

As posed in the introduction, the aim of the presented work is to develop a dual arm robotic

system able to assist human operators in manipulation tasks with large parts. The collaborative

nature of this manipulation task raises many challenges, making it necessary to tackle different aspects

ranging from robot control to human–robot interaction. In this sense, the presented work pays special

attention to the human factors of the task in order to include the most suitable cues for an efficient and

understandable information exchange between robot and human.

In the first step of the development, the large part transportation process has been analyzed in

order to understand how humans perform it and extract the basic elements of the task, as well as the

requirements to be transferred to the robot:

• During the transportation of large parts by humans, both actors agree (implicit or explicitly) on

an approximate trajectory, which will be the basis for the transportation process. Following this

premise, robots will manage a nominal trajectory which can be manually defined by users or

generated automatically (e.g., using artificial vision).

• When humans transport large parts along a previously agreed path, any of them are able to

deform this nominal trajectory in order to adapt the process to any unexpected event. In these cases,

both actors are able to adapt their movements in a coordinated way without any prior knowledge,

just based on the sensed forces. The implementation of impedance control [23,24] is proposed to

mimic this behavior.

• The premise of this implementation is that robots act as assistants to the human. Taking this into

account, robots will only advance in a trajectory when the operator moves the part along the

defined path. Therefore, the operators will always play a master role in the co-manipulation task.

• As we are working with a dual arm robotic system, both arms need to move with a degree

of coordination. Even so, this coordination will not be totally tight as in traditional robotics,

as large part manipulation may require the adaptation of both robots due to uncertainties like the

deformation of the objects or the human factor.

• During the part manipulation, besides the force feedback, humans exchange additional feedback

as voice commands or gestures. It will be necessary to investigate how to include these cues in

the robotic system.

To fulfill the previously presented requirements, a three-layer architecture is proposed:

• Guidance Control Layer: This initial layer is in charge of the low-level control of the robots,

implementing a Trajectory Driven Guidance with Impedance Control.

• Guidance Information Management Layer: This second layer collects real time data of the Guidance

Control Layer and generates meaningful information to be used as robot-to-human feedback.

• User Interface Layer: This last layer is the one in charge of presenting the guidance feedback to

operators, using different cues to this end.
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This three-layer architecture allows the co-manipulation task to be performed, devoting specific

modules to the control of the dual arm robot control and to the preparation and presentation of

information for human–robot interaction. It covers all functionality from low-level control to high-level

interaction feedback. Figure 1 illustrates the presented architecture.

Figure 1. Architecture for dual arm co-manipulation.

The following sections provide further information about the different layers and their features.

4. Guidance Control Layer

The aim of this initial layer is to implement a control algorithm that allows the addition of

a nominal trajectory to the impedance control while maintaining the coordination between two

robot arms.

The main idea of the algorithm is to follow a provided trajectory as an operator guides the

robot: the robot will transport the part smoothly along the trajectory while the robot will increase the

resistance in the directions orthogonal to the nominal path. Additionally, impedance control is added

to allow deformations on the path. It will provide some freedom to deform the robot path to the user

as long as it guides the robot near the nominal trajectory. Besides the impedance control parameters,

a set of trajectory points will also be used as input, points that will be linearly interpolated to generate

the paths.

Specifically, the algorithm implements a two step control scheme for each robot. In a first step,

the Guidance module calculates the next trajectory pose Xd based on the nominal trajectory, current robot

pose, and percentage of trajectory covered by both arms. In a second step, the Impedance control module

modifies this pose in order to obtain a compliant behavior, calculating reference pose Xr.

The following sections provide information about the Guidance module and Impedance control

module. Further details on this algorithm can be found in the work of Ibarguren et al. [25].

4.1. Guidance Module

The initial module of the control algorithm is based on a Trajectory Driven Guidance with Impedance

Control and is in charge of calculating the set point sent to the Impedance control module. Based on a set

of trajectory poses provided as input to the algorithm, it iterates along with the different segments of

the trajectory. Specifically, these are the steps followed by the control algorithm to define the next set
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point (theoretical pose of each robot arm) in each loop based on an initial segment pose A and the end

segment pose B:

• Project the current robot pose X in the vector
−−→
X

i
dB, where X

i
d is the current setpoint and B is the

end of the current segment of the trajectory.

−→
P =

−−→
X

i
dX ·

−−→
X

i
dB

|
−−→
X

i
dB|2

−−→
X

i
dB (1)

• At this step, the corrected advance vector
−→
Pc is calculated using the projection vector

−→
P and

correction factor µ. It allows reducing the advance when the robot’s trajectory coverage is above

the other robot’s, and increasing this advance otherwise.

−→
Pc = µ

−→
P (2)

The correction factor µ is calculated using values α, β, and λ, where α is the percentage of the

trajectory covered by the robot arm, β is the percentage of the trajectory of the other robot arm,

and parameter λ allows to tune this correction factor, adjusting the increase and decrease rate.

If λ takes high values, the robot that has covered less trajectory percentage will be boosted

(a maximum µ of 2) while the robot with greater trajectory percentage covered will be dampened

(a minimum µ of 0). Otherwise, if λ is set to 0, there will not be any kind of coordination between

the robots and the value of µ will always be 1.

Additionally, the direction of the projection vector
−→
P is checked; if the vector points backwards

the correction factor µ is set to 0 to avoid reverse movements.

µ =







0, if
−→
P ·

−−→
X

i
dB < 0

2 − 2
1+e−λ(α−β) , otherwise

(3)

• The new translation vector
−−→
X

i+1
d is calculated as

−−→
X

i+1
d =

−→
X

i
d +

−→
Pc (4)

while quaternion Qi+1 is interpolated between the rotations of poses A and B using the spherical

linear interpolation [26] as

Qi+1 = SLERP(QA, QB, w) (5)

SLERP(QA, QB, w) = QA exp(w log(Q−1
A QB)) (6)

where w is calculated as

w =
|
−−−→
AX

i+1
d |

|
−→
AB|

(7)

• Finally, the desired set point Xd is composed using translation vector
−−→
X

i+1
d and rotation matrix

R
i+1 created from quaternion Qi+1 as

Xd =

[

R
i+1

−−→
X

i+1
d

0 1

]

(8)

This new pose Xd is sent to the Impedance control module to be used as the set point.



Sensors 2020, 20, 6151 6 of 15

4.2. Impedance Control Module

In the second step, a compliant Cartesian behavior is added to each robotic arm

implementing Cartesian impedance control [27,28]. The Impedance control module allows to establish

a mass–damper–spring relationship between the Cartesian position ∆x and the Cartesian force F,

the following formula is applied,

F = M∆ẍ + D∆ẋ + K∆x, (9)

where M, D, and K represent the virtual inertia, damping, and stiffness of the system, respectively.

To calculate the reference pose Xr, based on the previously calculated set point Xd and the sensed

force vector F,

Xr = Xd −
∆F

M∆t2 + D∆t + K
, (10)

where ∆F represents the difference between the desired contact force and the actual one.

This pose Xr is sent to the robot for the execution of the dual arm co-manipulation trajectory.

5. Guidance Information Management Layer

As stated previously, this second layer collects real time information from the Guidance Control

Layer and manages it in order to generate meaningful information to be used as robot-to-human

feedback. Therefore, this step converts raw information provided by the control layer into

human-understandable data.

The Guidance Information Management Layer receives input vector G containing the following values,

G = [Xd1
, Xr1

, Xd2
, Xr2 , α, β], (11)

where Xd1
and Xd2

represent the set point of each robot, Xr1
and Xr2 define the reference pose of

both robots after applying the Cartesian impedance control, and α and β are the trajectory percentage

covered by the robots.

Based on this information, this layer calculates metrics about the deviation in the trajectory, quality

of the guidance and the overall trajectory percentage covered. Specifically, the trajectory deviation

D = [dx, dy, dz] is calculated as

D = [dx, dy, dz] =
(
−→
Xd1

−
−→
Xr1

) + (
−→
Xd2

−
−→
Xr2)

2
, (12)

where
−→
Xd1

and
−→
Xd2

represent the translation part of both setpoints and
−→
Xr1

and
−→
Xr2 are the translation

part of the reference poses of both robots.

To quantify the quality of the guidance θ, the following equation has been defined,

θ = λtraj min

(

1,
|α − β|

mtraj

)

+ λdev1 min

(

1,
‖
−→
Xd1

−
−→
Xr1

‖

mdev

)

+ λdev2 min

(

1,
‖
−→
Xd2

−
−→
Xr2‖

mdev

)

, (13)

λtraj + λdev1 + λdev2 = 1 (14)

where values mtraj and mdev are the maximum trajectory percentage difference and trajectory deviation

allowed, respectively, acting as a threshold. Values λtraj, λdev1, and λdev2 are weighting factors that

allow defining which of the measures (trajectory percentage difference or trajectory deviation of each

robot) have more impact in the quality of the guidance. Therefore, the equation will provide a value

ranging from 0 to 1, where 0 indicates a perfect trajectory guidance and 1 indicates a guidance error

over the limits set through the different parameters.
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Finally, the mean of the covered trajectory percentage γ is calculated as

γ =
α + β

2
. (15)

These previous equations will calculate vector U as

U = [dx, dy, dz, θ, γ], (16)

where values dx, dy, and dz contain information about the guidance deviation; θ defines the quality of

the guidance process; and γ is the mean trajectory percentage covered during the process.

This vector U is the data that will be used as input in the User Interface Layer to generate the

appropriate cues for the robot-to-human interaction and feedback.

6. User Interface Layer

Information communication is one of the essential factors for developing successful human–robot

interaction. Therefore, this User Interface Layer aims to provide an interface able to generate suitable

and understandable cues to communicate the status of the co-manipulation task. Although some

research suggests that modality of information communication (audio, text, and graphic) does not

affect trust and user experience as shown in [15], Selkowitz et al. [29] have found that the use of a

graphic information display does not significantly increase user workload. In addition to possible

positive effects on workload, the graphic modality has the benefit of requiring little experience and

training to use [30], and it can be beneficial for people with different information processing abilities

due to, for example, dyslexia as discussed in [31]. Another advantage is that, in most cases, universally

understood symbols can be used to provide support to people from different countries and cultures as

considered by Ben et al. [32].

To identify and select the most effective and understandable cues, two user studies were carried

out. These studies will help in the development and design of the user interface as they will identify the

most effective way of presenting the information generated in the Guidance Information Management

Layer. The psychological and performance impact of the developed human–robot collaboration

communication was investigated over these two studies.

In the initial phase of the user interface design process, a number of possible cues were identified.

Individuals in a team communicate by gaze and non-verbal communication [33,34] and to replicate

this, the current study used an avatar representing the robot and added head movements to indicate

trajectory deviation. In addition, trajectory deviation and trajectory percentage parameters were

introduced as graphical symbols dynamically providing information about the task to the user. Finally,

the user interface display used a background with a universally known paradigm of a traffic light to

establish how far from the optimal path the robot is (from green color indicating on an optimal path to

red indicating a strong deviation).

The following sections provide further details about the two user studies.

6.1. User Study 1

The main aim of User Study 1 was to investigate which user interface is the most effective in

indicating the robot behavior and how these user interfaces can be improved. To achieve this aim,

six versions of the user interface were used in an online study with qualitative and quantitative

questions. Six experimental conditions in the form of 20 s video clips of an operator and a robot

collaborating were presented to all participants in a counterbalanced order. The six different visual

user interfaces indicating what the robot is communicating to the operator are presented in Figure 2

from top left to bottom right as follows.

• Full body avatar and background color (A)

• Avatar torso and background colour (B)
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• Background colour (C)

• Dashboard, full body avatar and background color (D)

• Dashboard, avatar torso and background colour (E)

• Dashboard and background colour (F)

Figure 2. Six tested user interfaces.

The study collected quantitative and qualitative data. The quantitative question asked

participants to rate user interface clarity on a scale from 0 “Extremely unclear” to 100 “Extremely

clear”. This question was split into several sub-parts on each of the core elements of the user

interface depending on the condition (avatar face, avatar posture, background, trajectory deviation,

and percentage deviation). The mean of the answers for each core element was calculated to

produce an overall clarity rating. The data had a normal distribution and was further analyzed

with a repeated measures ANOVA. The qualitative questions asked the participants to describe

what they thought the user interface was trying to communicate to the operator and how it could

be clarified. Twenty-eight participants provided qualitative responses for open-ended questions;

however, only 18 of them answered all the quantitative questions allowing further inferential analysis.

Eleven participants indicated their gender as male, five as female, three reported as “other”, and nine

did not answer the question. The average age of participants was 33.11 years (SD = 9.49) with ten

participants not providing their age. Three participants reported they came from the manufacturing

industry, twelve from an academic environment, one from “other—construction”, while ten did not

respond where they were working. The study was approved by the Cranfield University Research

Ethics Committee.

The user interface information clarity was significantly different between conditions

(F(2.37, 85) = 8.80, p ≤ 0.001). Post hoc comparison with Bonferroni correction between conditions

indicated that the clarity was significantly higher for the Dashboard and background color (F) user

interface compared to all user interfaces with an avatar, but there was no significant difference with

the Background (C) user interface (Table 1). On the other hand, the Avatar torso and background color

(B) user interface was rated significantly lower on clarity compared to all other conditions except the

Full body avatar and background color (A) and the Dashboard, full body avatar, and background color

(E) user interfaces (see Table 1 for the significance levels of all comparisons).

Looking at the participants’ preferences, 75% of participants preferred the user interface with only

the Dashboard and background (F), 15% preferred the Dashboard, avatar torso and background color

(E), 5% preferred only the Background (C) and 5% preferred the Avatar torso and background color (B).

The full body size avatar (with or without dashboard (A and D)) was not chosen by any participant as

a preferred user interface.
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Table 1. Post hoc statistics and descriptive information between all experimental conditions.

Avatar Torso Dashboard, Dashboard Background Full Body Dashboard, Full
and Avatar Torso and and Avatar and Body Avatar

Background Background Background Background and Background

Avatar torso p = 0.043 p = 0.007 p = 0.025 p ≥ 0.999 p = 0.072
and background

Dashboard,
avatar torso p = 0.021 p ≥ 0.999 p = 0.463 p ≥ 0.999

and background

Dashboard and p ≥ 0.999 p = 0.018 p = 0.034
background

Background p = 0.017 p ≥ 0.999

Full body
avatar and p = 0.378

background

Mean (SD) 20.63 (4.11) 31.42 (4.95) 45.85 (6.82) 42.39 (7.63) 21.87 (4.28) 31.27 (4.49)

To shed some light on participant ratings on user interface clarity, participants’ answers to the

open-ended questions were analyzed further:

• Participants’ opinions about the use of the avatar were split: Some participants appreciated that

the avatar “makes (it) more comfortable to interact with a robot”, other participants expressed

dissatisfaction with it: “I already have my partner that bosses me around at home, I don’t

need another one in the workshop”. Participants communicated that having only the avatar

torso was more useful than the full body size avatar as the legs do not convey any task related

information. Furthermore, the avatar’s head movements were subtle and not all participants

understood/noticed them; therefore, for future development more pronounced head movements

were suggested.

• In relation to the other user interface features, participants indicated that the background circle

should be accompanied by a benchmark scale indicating trajectory from “good” to “bad”.

• Participants also commented that it might be useful to introduce commands or a feedback display

to keep the communication less ambiguous. Some of the participants indicated that this could be

done via audio feedback to the user.

These suggestions were included in the user interface in User Study 2.

6.2. User Study 2: Laboratory Results

Two types of the user interface were selected from User Study 1 and adjusted according to

the participant suggestions; specifically, the dashboard with the avatar (torso) (Figure 3a) and the

dashboard without the avatar (Figure 3b). The two user interfaces included the following cues:

• Dashboard with the deviation from the trajectory and trajectory percentage.

• Avatar with head movements to indicate the deviation from the trajectory.

• Background color indicating the deviation from the trajectory.

• Voice commands indicating deviations from the trajectory.
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(a) (b)

Figure 3. User interfaces for User Study 2. (a) The dashboard with the avatar (torso) (b) The dashboard

without the avatar.

The main aim of User Study 2 was to determine how the selected user interfaces affect collaborative

task performance and participant well-being. The task required the participant and the robot to

collaboratively remove a component from a shelf and place it in a fixture on the desk and then

move back to the shelf (Figure 4). Thirteen participants took part in the study of which ten were

males, two were females and one did not indicate their gender. The average age was 36.85 years

(SD = 7.65). Seven participants indicated that they work with robots every day, two on a regular

basis, three responded that they work with robots sometimes but not on a regular basis, and one

participant said that they have never worked with robots. All participants took part in all conditions:

two experimental conditions and the control condition with no user interface. The conditions

were counterbalanced and the study assessed behavioral parameters (deviation from the optimal

path and time to complete the tasks), and collected self-report data (Trust in Industrial Robot [35],

NASA TLX [36], and User Experience Questionnaire [37]). This paper will focus on the behavioral

and the User Experience Questionnaire results as the NASA TLX and Trust in Industrial Robot scales

did not indicate any significant differences (p > 0.05). Additional qualitative questions relating to

the user interface focused on what participants found the most useful for task completion and their

suggestions for improvement of user interface clarity. The study was approved by the Cranfield

University Research Ethics Committee.

Figure 4. Transporting a carbon fiber part from fixtures to shelf during User Study 2 experiments.

To investigate how different user interfaces affect human performance efficiency, the mean

task completion time and the mean deviation from the optimal trajectory were compared between

conditions with a nonparametric Friedman’s ANOVA as the data was not normally distributed.
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The mean task completion time was measured in seconds. The analysis showed a trend difference in

the mean deviation (X2(2) = 4.77, p = 0.092), but no significant difference in the completion time

(X2(2) = 0.15, p = 0.926), see Table 2. Further investigation was performed on the mean deviation

from the optimal trajectory which showed a lower deviation in the avatar condition compared to

the control condition at a trend significance level (Z = 1.71, p = 0.090), but the differences between

the no-avatar condition and the control condition or the avatar and the no-avatar condition were not

significant (Z = 1.36, p = 0.185) and (Z = 0.14, p = 0.906).

Table 2. Means (SD) across three experimental conditions on the behavioral and user experience

questionnaire measures.

Control Avatar No-Avatar

Mean SD Mean SD Mean SD

Behavioral data
Completion time (sec) 42.71 10.74 45.57 12.56 43.85 11.68

Mean deviation 46.58 12.08 39.69 7.30 42.15 13.18

User Experience Questionnaire
Attractiveness 1.45 0.69 1.58 0.98 1.70 0.78

Perspicuity 1.77 0.85 1.42 0.97 1.77 0.75
Efficiency 0.92 0.71 0.98 0.88 1.24 0.86

Dependability 1.17 0.70 1.19 0.74 1.60 0.67
Stimulation 1.56 0.46 1.3 1.10 1.67 0.74

Novelty 1.50 0.87 1.77 0.89 1.71 0.97

Finally, the subjective evaluation of participants’ experience was measured with the User Experience

Questionnaire (UEQ). Although the results were not significant (X2(5, 20.84) ≤ 1.62, p ≥ 0.200),

the score means across the factors between the conditions indicate that participants evaluated the user

interface without the avatar relatively higher than the other interfaces, while the user interface with

the avatar scored highest on the novelty factor. It is important to indicate that the control condition

and the user interface with the avatar both ranked below average on the efficiency factor (Figure 5).

Figure 5. Reported user experience across six UEQ factors as a function of the experimental condition.

In their qualitative feedback, 38% of the participants indicated that audio information was the

most useful and another 38% of the participants indicated the trajectory deviation and trajectory

percentage were the most useful. Fifteen percent of the participants indicated that they would

include depth information for the trajectory deviation, one participant asked for more detailed audio

information to guide the movement, while another participant explained that they used mainly audio

information to complete the task. Fifteen percent of the participants indicated that they did not use the

avatar during the task as, according to them, it did not provide useful information. This qualitative
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information confirms the User Experience Questionnaire results indicating that participants found the

user interface with trajectory deviation and trajectory percentage the most useful. However, behavioral

information from the task suggest that the presence of the avatar can reduce the deviation from the

optimal trajectory.

Based on the obtained results, it was decided to maintain both user interfaces in the presented

robotic system, allowing the operators to choose between both options based on their preferences.

7. Implementation

The proposed robotic system has been implemented using a setup of two Kuka LBR iiwa robots

with a payload of 7 kg for each arm, mounted on a mobile platform. The mobile manipulator includes

an additional PC connected to both robot controllers. The robots are equipped with automatic tool

exchangers and vacuum cups to allow grasping different types of large objects and parts. An additional

IO module is also available to manage the tool exchangers as well as the suction of the vacuum cups.

Figure 6 shows the set-up of the robots.

Figure 6. Set-up with two Kuka LBR iiwa robots.

A tablet has been used as interface for the guidance system. The selection of a tablet allows the

mobility required for this kind of applications, as operators can transport it and place it in the most

suitable placement for each co-manipulation task.

From the software point of view, all the computation of the Guidance Control Layer has been

implemented in Java in the robot controllers. The Impedance control module makes use of Kuka Sunrise’s

Smart Servo library to close the control loop. Additionally, the external PC acts as bridge between

both robots by means of several custom ROS nodes written in C++ which manage the connections and

exchanges the trajectory information. Besides, this same PC runs the Guidance Information Management

Layer as well as the User Interface Layer, which acts as HTML5 server providing the web interface to

the tablet.

Finally, the tablet only acts as user interface, displaying the different cues based on the values

sent from the external PC using any web browser installed on it. The implementation allows the use of

multiple devices at the same time, therefore it could be possible to include several operators interacting

with the robot at the same time.

8. Conclusions and Future Work

This paper presents a novel architecture for dual arm co-manipulation with an enhanced

human–robot communication capabilities. The architecture addresses different aspects of a

co-manipulation task, from the control algorithm to the user interface, paying special attention to the

user experience and psychological aspects of the human–robot collaboration.
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Initially, a control algorithm for the dual arm robots is presented, implementing a Trajectory Driven

Guidance with Impedance Control. This algorithm allows guiding the robot along some virtual guides

during the part transportation phase. The inclusion of an impedance control module adds flexibility

as operators are able to deform the theoretical trajectory in order to face unexpected events or to

correct errors.

Additionally, the architecture provides different modules to manage the information exchange

between the robot and the human. The aim of these modules is to provide effective and understandable

feedback for the completion of the part transport task. To improve the design of the user interface

and select the most suitable cues, two User Studies have been carried out. The findings of both studies

provide further insight on how a robot could communicate the task related information to the human.

The user feedback on the clarity of the user interface, their needs and requirements to make the

collaboration more transparent (Study 1) allowed to adjust the user interface and conduct a behavioral

experiment (Study 2). The behavioral results of the actual human–robot interaction task show that

the presence of the user interface has an impact on the performance, improving the precision of the

guidance using the most suitable cues.

Even so, several aspects of the architecture can be further developed and improved as a future

work. On the one hand, the impedance control parameters could be modified in execution time based

on the human behavior in order to offer a more human-like manipulation experience. Furthermore,

it would be interesting to add mechanisms to detect collisions (with external elements or between

the robot arms) to ensure a safe human–robot interaction. On the other hand, suggestions made

by participants in User Study 1 and 2 could be implemented. These suggestions include presenting

movement depth information or including the visual representation of the component, as well as

recommendations to further develop audio information. Additionally, the inclusion of voice commands

from operator to robot (e.g., to start/stop the guidance) would be an interesting addition to the

co-manipulation tasks. The voice commands would be especially important during the manipulation

of the large parts where it is difficult to use physical devices to input commands as parts need to be

carried by both hands. Therefore, the inclusion of speech recognition and conversational agents would

help to create a seamless human-to-robot interaction channel.
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