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ABSTRACT 

Inefficiencies that could be avoided during the product development process account for 

a large percentage of the manufacturing cost. To introduce innovative, high-quality 

products in a time- and cost-efficient manner, companies need to improve the 

performance of their product development processes. Set-based concurrent engineering 

(SBCE) has the capability of addressing this issue if the right knowledge-environment is 

provided. Trade-off curves (ToCs) are effective tools to provide this environment through 

knowledge creation and visualisation. However, there are several challenges that 

designers face during their product development activities such as rework, inaccurate 

decisions, and failure in design performance, which eventually cause waste. Therefore, 

the aim of this thesis is to eliminate waste by developing a systematic approach for 

generating and using ToCs. These then serve as a guide for designers to support their 

decision-making and achieve an efficient product development performance in an SBCE 

environment. To achieve this aim, qualitative research methods were employed. 

Following an extensive literature review, industrial field study and industrial applications, 

three processes were developed to generate ToCs and validated with five industrial case 

studies. 

The process for generating knowledge-based ToCs describes how to create and 

visualise knowledge that is obtained from historical data and/or experience. This process 

facilitates the reuse of knowledge about existing products, in order to reduce the 

requirement for resources (e.g. product development time). The process for generating 

physics-based ToCs describes an approach to creating knowledge that is obtained from 

understanding the physics and functionality of the product under development. Thus, the 

practitioners gain sufficient confidence for identifying a compromise between conflicting 

design parameters. Finally, the process for using ToCs within the SBCE process model 

presents a technique to use generated knowledge-based and physics-based ToCs in 

order to enable key SBCE activities. These activities are (1) Identifying the feasible 

design area, (2) Developing a design-set, (3) Comparing possible design solutions, (4) 

Narrowing down the design-set and (5) Achieving the final optimal design solution. 

For validation, the developed processes were applied in five industrial case studies, and 

two expert judgements were obtained. Findings showed that ToCs are essential tools in 

several aspects of new product development, specifically by reducing the lead time 

through enabling more confident and accurate decisions. Additionally, it was found that 

through ToCs, the conflicting relationships between the characteristics of the product can 
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be understood and communicated effectively among the designers. This facilitated the 

decision-making on an optimal design solution in a remarkably short period of time. The 

design performance of this optimal design increased by nearly 60% in a case study of a 

surface jet pump. Furthermore, it was found that ToCs have the capability of storing 

useful data for knowledge creation and reusing the created knowledge for the future 

projects. 

 

Keywords: Trade-off curves, knowledge creation, knowledge visualisation, physics 

knowledge, set-based concurrent engineering, lean product development, new product 

development. 
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Chapter 1 - Introduction 

1 

1 INTRODUCTION 

1.1 Research Background and Context 

The international competition in an open global market is pressurising 

manufacturing companies to improve the efficiency of their product development 

(PD) processes. This is required in order to continually produce a high-quality 

product in a cost-efficient manner, and in less time. Only companies with an 

efficient PD process can hope to sustain and improve their market share, as 

organisational survival and long-term growth depends on the timely introduction 

and development of new and better products. To this end, companies are 

applying various tools, techniques, and management systems that enable them 

to remain successful within their particular markets. New product development, 

as well as the organisational knowledge, have become important capabilities and 

assets of organisations (Wang and Wang, 2012; Nonaka et al., 2014). This thesis, 

and its research context, provides a vital contribution to linking these two 

important assets, as is illustrated in Figure 1-1.  

 

Figure 1-1: Overall scope of this thesis 

As shown in Figure 1-1, consumers’ demands for innovative products have been 

the trigger for companies to improve their new product development processes. 

However, there are several challenges that the manufacturing industry faces 

during their product development processes. Some of these challenges are 

(Khan et al., 2011): 
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1. Rework 

2. Late design changes 

3. Lack of knowledge 

4. Communication challenges between departments 

5. Lack of process ownership 

6. Ineffective planning and scheduling. 

Academics and scholars have historically focused on defining principles and 

practices in order to address these challenges, and to increase the effectiveness 

and efficiency of PD. This has led to the development of the Lean Product and 

Process Development (LeanPPD) model, which is elaborated on in section 3.3. 

The LeanPPD model relies on several enablers; these are the set-based 

concurrent engineering (SBCE) process, chief-engineer technical leadership, 

value-focused planning and development, the knowledge-based environment, 

and the existence of a continuous improvement culture (Khan et al., 2013). As a 

cornerstone enabler of LeanPPD, SBCE is recognised as an effective approach 

to product development (Al-Ashaab et al., 2013). SBCE is a knowledge-intensive 

process that comprises the creation of a design-set, the communication, the 

trade-off and the narrowing down of the set of potential design solutions, while 

simultaneously proceeding throughout the PD process until an optimal solution is 

agreed upon (Sobek, Ward and Liker, 1999). 

Companies have recognised the significance of creating a knowledge-

environment in SBCE in order to enhance the quality of their decision-making 

throughout the development process, as well as to reuse and share the 

knowledge gained in this process (Baxter et al., 2009; Lindlöf, Söderberg and 

Persson, 2013; Kennedy, Sobek and Kennedy, 2014; Maksimovic et al., 2014). 

Knowledge creation has been defined in detail and explicitly by the SECI model 

(Nonaka, Toyama and Konno, 2000), which stands for Socialisation, 

Externalisation, Combination and Internalisation. Trade-off curves are considered 

to be a vital tool for the externalisation mode of the SECI model (Tyagi et al., 

2015). Externalisation is the process of converting tacit knowledge (i.e. 

experience, individual knowledge) into explicit knowledge such as documents, 
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reports and drawings (Nonaka, Toyama and Konno, 2000). Trade-off curves 

(ToCs) not only provide a knowledge-based environment, but also document and 

illustrate existing knowledge, making it more useful (Raudberget, 2010; Correia, 

Stokic and Faltus, 2014). Dr. Allen Ward, who was a pioneer of LeanPPD, 

stressed the importance of using trade-off curves with the following words: 

“If I teach you only one lean tool, trade-off curves would be the 

one.” 

Trade-off curves are tools to create knowledge, and to visualise that knowledge 

in a simple manner. Thus, they enable PD processes, especially SBCE 

applications (Morgan and Liker, 2006; Kennedy, Sobek and Kennedy, 2014). 

ToCs allow designers and engineers to compare alternative design solutions, 

with conflicting attributes, in any aspect of the early stages of design (Ward and 

Sobek, 2014). Furthermore, ToCs prevent the designers from “reinventing the 

wheel” by visualising the knowledge from previous projects for reuse in the 

current project (Ward and Sobek, 2014). ToCs are also widely propagated tools 

to create and visualise the knowledge that is obtained from understanding the 

physical features and fundamental principles of the product under development, 

which is essential to making a rigorous and correct decision during the SBCE 

process (Araci et al., 2016).  

1.2 Research Aim and Objectives 

The aim of this thesis is to develop processes for knowledge creation and 

visualisation, by using trade-off curves, in order to enable SBCE applications.  

Five research objectives have been formulated to achieve this aim: 

1. To synthesise the best practices of knowledge provision and visualisation 

in supporting the application of SBCE through an extensive literature review 

and industrial applications.  

2. To capture the best practices of knowledge creation and visualisation with 

ToCs. 

3. To investigate the role of knowledge creation and visualisation with ToCs, 

with a view of enabling the application of the SBCE process model. 
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4. To design processes that enable the generation of ToCs and to use 

generated ToCs in order to enable SBCE applications. 

5. To evaluate the proposed ToC approach, regarding its contribution in 

enabling the application of SBCE, through industrial case studies and expert 

judgements. 

1.3 Research Questions 

Although ToCs are considered to be important tools for knowledge creation and 

visualisation to support SBCE applications, knowledge about the following issues 

is limited to date: 

1. What type(s) of ToC should be used for different key activities of the SBCE 

process model? 

2. How can ToCs that enable SBCE applications be generated? 

3. How can non-scale ToCs be generated, based on the understanding of the 

product’s functionality and physics? 

4. How should generated ToCs be used to effectively apply SBCE? 

This research attempts to address the above-mentioned questions by developing 

processes for designers and engineers who are involved in the development of a 

new product.  

1.4 The Role of the Research in the CONGA Project 

CONGA (Configuration Optimization of Next Generation Aircraft) is a project 

funded by the UK’s Technology Strategy Board. Rolls-Royce Plc is one of the 

collaborating companies of this project. The aim of CONGA is to develop new 

multi-disciplinary SBCE capabilities that can deploy new aircraft and engine 

designs and configurations more quickly and with greater confidence. Such 

developments are essential if designers are to be able to deliver robust product 

concepts at the early stages of the design cycle for novel aircraft and power plant 

configurations, which also embed new technologies. 

ToCs allow designers and engineers, by enabling the SBCE process model, to 

compare alternative solutions with conflicting attributes, in any aspect of the 

product life cycle. This thesis is investigating the development of such knowledge-
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environments to support the application of set-based design, and thereby to 

support the generation and evaluation of the set of conceptual designs within a 

company. Apart from the CONGA project, this PhD research has contributed to 

other research-based projects, in order to evaluate and validate the proposed 

approach to generating and using ToCs for knowledge creation and visualisation. 

1.5 Thesis Structure 

This thesis consists of seven chapters and several sections, subsections and 

sub-subsections within each chapter, as shown in Figure 1-2. Chapter 2 

(Research Approach) explains the research paradigm, research design and the 

research approach that have been employed in this thesis. Chapter 3 (Literature 

Review) provides an overview of knowledge creation and visualisation practices 

using trade-off curves, and the role of ToCs within the SBCE process model. 

Moreover, the current practices for generating ToCs that enable SBCE 

applications were explored, as well as the research gaps identified. Practices of 

industrial applications of ToCs are captured by conducting interviews in chapter 

4 (Industrial Field Study). Chapter 5 (Processes for Knowledge Creation and 

Visualisation that Enable SBCE) describes the approach taken for developing 

three processes for knowledge creation and visualisation to enable SBCE 

applications. It also includes detailed explanations of the three processes, which 

are listed below:  

1. The Process for Generating Knowledge-based ToCs: Based on Historical 

Data 

2. The Process for Generating Physics-based ToCs: Based on Knowledge 

about the Physics of the Product 

3. The Process for Using Knowledge-based and Physics-based ToCs within 

the SBCE Process Model 

These three processes are subsequently referred to as “the processes” in order 

to facilitate a clear flow throughout this thesis. Chapter 6 (Industrial Case Studies 

and Expert Judgements for Validation) presents the implementation of the 

processes in an industrial environment with industrial collaborators and the 

validation of the processes. Expert opinions are also presented in chapter 6.   
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Finally, chapter 7 concludes the research by presenting the discussions, 

limitations, contributions, implications and future work. 

 

Figure 1-2: Thesis Structure
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2 RESEARCH APPROACH 

2.1 Introduction  

This chapter, as illustrated in Figure 2-1, presents the research methodology that 

was employed in this thesis.  

 

Figure 2-1: Structure of chapter 2 

The research paradigm is explained in detail in section 2.2. Data collection, 

validation tools, and methods related to the research paradigm have been 

selected, given the research aim and objectives, and presented in section 2.3. 

With the research design defined, the approach employed in this thesis is 

developed in order to achieve the research aim and objectives, and it is presented 

in section 2.4. The employed research approach consists of three main phases: 

1. Contextual study,  

2. Developing processes for knowledge creation and visualisation to enable 

SBCE applications,  

3. Application and validation of the proposed processes.  
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Each phase includes key tasks as described in section 2.4. Research Ethical 

Approval from Cranfield University has been considered during this research.  

2.2 Research Paradigm 

Research requires a well-organised, structured and rigorously employed 

methodology in order to detect problems and focus on solving these problems by 

gathering data, analysing them and producing valid conclusions (Sekaran and 

Bougie, 2016). In order to discover true knowledge, researchers apply different 

pragmatic approaches depending on their subjects (Robson and McCartan, 

2016). There are four different research paradigms: Epistemology, ontology, 

axiology and methodology. In this thesis, the problem is stated in section 1.1, and 

the research aim and objectives to address this problem have been presented in 

section 1.2. Since this thesis addresses real-life applications, it is considered as 

an application of social sciences. 

Epistemology and ontology are the most commonly applied research paradigms 

in social science. Epistemology is defined as the study of knowledge that seeks 

acceptable knowledge in a discipline, while ontology is the study of “being” which 

differentiates between what exists and what the reality is like (Bryman and Bell, 

2015). It is a common practice to select one research paradigm and follow its 

approaches throughout the research. This thesis seeks true knowledge in 

generation and application of trade-off curves that enable SBCE processes, as 

stated in Section 1.2. Therefore, epistemology is selected as an appropriate 

research paradigm for this thesis. Epistemological commitments are associated 

with certain research methods as illustrated in Figure 2-2. Positivism and 

interpretivism are the different research approaches under the umbrella of 

epistemology.  

Posivitism is a widely-used research approach which aims at relating an event, 

observation or other phenomenon to a general law. In the positivist approach, 

knowledge can only be based on sensory experience (see, hear, touch etc.) 

(Neuman, 2011; Bryman and Bell, 2015; Robson and McCartan, 2016). However, 

as the research in social science developed, it has become clear that the positivist 

approach was not appropriate for all questions. Hence, interpretivism is an 
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alternative approach to positivism. The interpretivist approach describes 

meaningful social actions by using qualitative approaches (Neuman, 2011).  

 

Figure 2-2: Overall view of research tools and methods 

Before deciding which research approach to commit to, it is important to 

understand whether the research questions require an inductive or deductive 

research. The deductive research is associated with positivism, while the 

inductive research is considered in the area of interpretivism. The main difference 

between deductive and inductive research is the manner in which explanations 

for observations are reached. In deductive research, explanations are derived 

from theories and then tested against the data. On the contrary, inductive 

research derives theories and explanations from the data (Bryman and Bell, 

2015; Robson and McCartan, 2016). Since the aim of this thesis is to develop 

processes for creating a knowledge-environment for SBCE applications, 

inductive research is considered as a suitable research approach. It is conducted 

by using qualitative methods and qualitative data (Bryman, 2012). The following 

section explains the qualitative methods that have been employed and the reason 

for using these methods.  
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2.3 Research Design 

The research design is an important element of research. It facilitates data 

collection, measurement, and analysis in order to reach true knowledge. The use 

of different research methods is dependent on the subject at hand. The subject 

of this thesis requires qualitative research methods as discussed in the previous 

section. Therefore, qualitative methods for data collection and validation will be 

explained in detail in this section. 

2.3.1 Data collection methods 

There are two types of data: primary and secondary. Primary data is observed or 

collected directly from first-hand experience. Commonly known qualitative 

primary data collection methods are interviews, grounded theory, focus groups, 

and open-ended discussions (Neuman, 2011; Bryman and Bell, 2015; Robson 

and McCartan, 2016). Primary data has been collected by performing interviews, 

and is presented in section 4.3. The reason for applying interviews was to capture 

the real-life practices, experiences and views of practitioners about trade-off 

curves in an industrial environment. On the other hand, secondary data is the 

data that has previously been collected by others for a different aim than the 

purpose of the current research (Sekaran and Bougie, 2016). The literature 

review is a form of secondary data collection from several sources, such as 

academic publications, government publications, statistical bulletins, and others. 

The following sub-subsections present the data collection methods, literature 

review and interviews. 

2.3.1.1 Literature review method 

Literature review is one of the most important data collection methods for 

research (Bryman and Bell, 2015). This method helps the researcher to identify 

the research gaps that would guide to contribute to the existing knowledge 

(Robson and McCartan, 2016). Bryman and Bell (2016) suggest that the 

researcher should develop an approach in order to carry out a literature review. 

Figure 2-3 illustrates the approach for the literature review of this thesis. 
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Figure 2-3: Process flow for the literature search strategy 

Stage 1: Identifying a well-defined literature review question 

Considering the research aim and objectives, three literature review 

questions were identified and are presented in Table 2-1. 

No. Literature Review Questions  Research Objectives 

1. 

What are the best practices of 

knowledge provision and 

visualisation in supporting 

SBCE?  

To synthesise the best practices of 

knowledge provision and visualisation in 

supporting the application of SBCE through 

an extensive literature review and industrial 

applications. 

2. 
What are the best practices of 

using ToCs? 

To capture the best practices of knowledge 

creation and visualisation with ToCs. 

3. 
What are the practices of 

using ToCs in SBCE? 

To investigate the role of knowledge creation 

and visualisation with ToCs, with a view of 

enabling the application of the SBCE process 

model. 

Table 2-1: Literature review questions according to the research aim and objectives 
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Stage 2: Developing a searching strategy 

A search strategy has been developed based on three parallel steps: 

identifying keywords, databases, and authors. A list of keywords is 

presented in Table 2-2, which also shows the relevant databases and key 

authors in the subject area covering this thesis. Numerous data sources 

have been found during the literature search, and these include textbooks, 

journal papers, theses, conference proceedings and unpublished 

manuscripts. Unrelated sources have been eliminated and the literature 

review focuses mainly on journals and theses, resulting in a robust 

secondary data collection. 

Search 
strategy 

step 

Identified search parameters and sources 

Key Words 

• Set-based concurrent engineering/set-based design/set-based 

thinking  

• New product development/product design 

• Lean product development 

• Knowledge provision/knowledge visualisation/knowledge 

representation/communicating knowledge/visual 

knowledge/previous knowledge/knowledge creation/knowledge 

sharing/knowledge management  

• Trade-off curves/trade-off  

• Product history/previous project/previous product 

• Decision-making/decision support 

Databases Scopus, EBSCO, ProQuest, Web of Science and Google Scholar 

Key 

Authors 

Ahmed Al-Ashaab, Allen Ward, Brian M. Kennedy, Christoffer 

Levandowski, Durward K. Sobek, Endris Kerga, Jeffrey K. Liker, 

Maksim Maksimovic, Michael N. Kennedy, Muhammad S. Khan.  

Table 2-2: Literature review stage 2 activities for developing a searching strategy 

Stage 3: Evaluation of the literature 

After removing unrelated sources, the remaining sources have been read 

thoroughly. Findings from the literature have been critically analysed. 

Finally, the review questions have been addressed and research gaps 

have been identified and documented in chapter 3. 
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2.3.1.2 Interview method 

The interview is one of the most widely used methods for qualitative research 

(Robson and McCartan, 2016). There are two major types: unstructured and 

semi-structured interviews, and both have flexibility and advantages in primary 

data collection (Bryman and Bell, 2015). However, the semi-structured interview 

is a more useful method since it helps the interviewee to avoid misunderstanding 

the questions (Bryman and Bell, 2015). In addition, the semi-structured interview 

gathers data and information individually to build the research foundation, for 

example to understand the industrial perspective of using ToCs for knowledge 

creation and visualisation in product development processes. During a semi-

structured interview, the researcher employs a close-ended questionnaire which 

helps to gain straightforward information within a limited time. By using semi-

structured interviews and a close-ended questionnaire, rich and in-depth 

information and feedback from the participants can be captured. Therefore, this 

research focuses on interviews with semi-structured questions as a primary data 

collection method. Figure 2-4 illustrates the process for employing semi-

structured interviews throughout this research.  

 

Figure 2-4: Stages in developing and using interviews (adapted from Wilkinson and 

Birmingham, 2003) 

The questions are identified based on the information gathered from the literature 

review. Interviewees are identified based on their area of expertise. 

Subsequently, interviews are conducted in face-to-face meetings as well as 
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WebEx meetings. Eventually, interview data has been analysed and the findings 

are documented in chapter 4. 

2.3.2 Validation 

Validation is the most important part of social research, as it reflects the quality 

of the research (Bryman, 2012). Two validation methods were implemented: case 

study and expert judgement, which are explained in the following sub-

subsections.  

2.3.2.1 Case study method for validation 

A case study is a strategic qualitative research method and commonly used in 

sociology and industrial relations (Noor, 2008). Yin (2014) describes case study 

as “an empirical enquiry that investigates a contemporary phenomenon within its 

real-life context”, further suggesting that a case study is preferred when “how” 

and “why” questions are to be answered. In order to successfully conduct a case 

study, a linear, iterative process has been recommended by Yin (2014). It 

consists of six main steps: Plan, design, prepare, collect, analyse, and share. 

Five industrial case studies were conducted throughout this research. They are 

presented in chapter 6. Results of the case studies are discussed and 

documented in section 7.2.  

2.3.2.2 Expert judgement method for validation 

Expert judgement is a way of reducing the level of bias within the research (Inglis, 

2008). Expert judgement is a method widely used for content validity fulfilment 

and as an alternative strategy to ensure content validity from relevant research 

(Joo and Lee, 2011). In order to conduct this method, experts are identified from 

the area related to the research. Then, the proposed approach/model/process is 

presented to the experts in order to obtain their comments and feedback. Finally, 

expert opinions are documented and analysed. This thesis captured the views of 

two experts, and the discussions with the experts are documented in section 6.8. 
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2.4 Employed Research Approach  

The methodology defined for this research consists of three main phases, which 

are based on the research objectives as presented in section 1.2. Each phase 

has key tasks, methods to complete these tasks, and deliverables as shown in 

Figure 2-5. Each phase will be explained in detail in this section. 

2.4.1 Key tasks of phase 1: Contextual study 

1.1 Synthesising the best practices of knowledge provision and visualisation in 

the SBCE process model:  

Knowledge provision and visualisation applications of enabling the SBCE 

process model have been synthesised by an extensive literature review 

and industrial applications. 

1.2 Capturing the best practices of ToCs:  

The best practices of knowledge creation and visualisation using ToCs in 

different areas are captured by an extensive literature review. 

1.3 Investigating the role of using ToCs in enabling SBCE applications:  

The role of knowledge provision and visualisation using ToCs to enable the 

application of the SBCE process model is investigated by an extensive 

literature review. 

1.4 Understanding the industrial perspective of ToCs:  

Semi-structured interviews with a close-ended questionnaire are performed 

to investigate companies’ best practices regarding the knowledge creation 

and visualisation in the form of ToCs during the early stages of product 

development processes. 

Deliverables of this phase are documented and presented in detail in chapters 3 

and 4. 
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Figure 2-5: Employed research approach 
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2.4.2 Key tasks of phase 2: Developing processes for knowledge 

creation and visualisation to enable SBCE 

2.1 Analysing the data collected from the literature review and interviews:  

Primary data, collected from interviews, and secondary data, collected from 

the review of the related literature, are analysed.  

2.2 Designing and developing processes for generating ToCs for knowledge 

creation and visualisation:  

Analysing the obtained information, from both the literature review and 

interviews, and understanding the research gaps helped the author to 

develop three processes for providing a knowledge-environment to enable 

the SBCE applications. These three processes are: 

1. The process for generating knowledge-based ToCs 

2. The process for generating physics-based ToCs 

3. The process for the integrated use of ToCs in the SBCE process 

model 

Deliverables of this phase are documented and presented in detail in chapter 5. 

2.4.3 Key tasks of phase 3: Application and validation of the 

proposed processes  

3.1 Applying the proposed processes to generate ToCs for knowledge creation 

and visualisation in companies:  

The proposed processes, as listed in the previous subsection, are applied 

and validated in different companies from a variety of industries by using 

the case study method.  

3.2 Receiving feedback from experienced researchers and practitioners:  

The applied processes are validated by receiving feedback from 

experienced researchers and practitioners who are called “experts” in this 

research by using expert judgement method. 

Deliverables of this phase are documented and presented in detail in chapter 6. 
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2.5 Summary of Chapter 2 

Different research paradigms were discussed, and epistemology was selected as 

an appropriate paradigm for this research. Considering the research aim and 

objectives, an interpretivist approach and, accordingly, an inductive research type 

were deemed appropriate to be applied in conducting this research. Therefore, 

the author decided to implement qualitative research methods. The research 

approach employed in this thesis was developed by the author and described in 

section 2.4. Literature review and interviews were the methods chosen for data 

collection, in order to conduct a contextual study. Case studies and expert 

judgement methods were selected for validating the proposed processes for 

creating and visualising knowledge-environment for SBCE applications. 
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3 LITERATURE REVIEW 

3.1 Introduction 

This chapter, as is illustrated in Figure 3-1, presents the current practices of 

knowledge creation and visualisation for using ToCs that enable SBCE 

applications in section 3.2. It also provides a definition and an overview of ToCs 

in general, as well as of different ToC types. Section 3.3 highlights the main 

features of the lean product and process development (LeanPPD) model and 

SBCE. A review of the role of ToCs in SBCE is also presented in this section. 

Section 3.4 provides an insight into current practices of generating ToCs that 

enable SBCE applications. Finally, the research gaps found in the literature are 

presented in section 3.5. 

 

Figure 3-1: Structure of chapter 3 
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3.2 Knowledge Creation and Visualisation by Using Trade-off 

Curves 

3.2.1 Knowledge in the context of new product development 

Production equipment was the most valuable asset of a company in the 20th 

century, whereas in the 21st century, knowledge has become a gateway for 

achieving a competitive advantage (Nonaka, 1994; Tseng, 2009; Wang and 

Wang, 2012). Knowledge also plays an important role in the product development 

performance (Zhang et al., 2009).  

Data, information and knowledge are three different concepts (Stamm, 2008; 

Andriopoulos and Dawson, 2009). However, information and knowledge are often 

used interchangeably, although they are different from one another (Andriopoulos 

and Dawson, 2009). Data refers to observations, facts and figures (Andriopoulos 

and Dawson, 2009), which are not categorised or analysed. Information is the 

more useful and organised form of data (Stamm, 2008; Andriopoulos and 

Dawson, 2009). On the other hand, knowledge is considered as consisting of 

truths, perspectives, judgement and know-how (Stamm, 2008).  

Knowledge is classified in various forms in the literature. For instance, Blackler 

(1995) sorts knowledge in five groups: encoded knowledge, embedded 

knowledge, embodied knowledge, embrained knowledge, and encultured 

knowledge. On the other hand, the common practice in the literature is dividing 

knowledge in two types: tacit and explicit, which have a better-established 

definition. Tacit knowledge is informal knowledge, present as a personal 

possession in individuals’ minds. Once individuals leave the company, 

knowledge is lost since it is not available in a written or documented form, and 

thus not suitable for communication and education of others (Nonaka 1994; 

Goffin and Mitchell, 2010). Therefore, tacit knowledge should be stored in the 

form of explicit knowledge, which can be formulated, articulated, codified, stored 

and reused (Nonaka and Takeuchi, 1995). Explicit knowledge is also considered 

as being systematic and easy to access, communicate and share (Goffin and 

Mitchell, 2010). However, although explicit knowledge has become very popular 

among top managers and academics, there is still a gap in the literature regarding 
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how to create and utilise it to enhance the performance of PD activities in 

companies. Trade-off curves are considered to be important tools to convert tacit 

knowledge into explicit knowledge (Tyagi et al., 2015), but there is no systematic 

approach to generating such ToCs. Therefore, this PhD research focuses on 

developing a step-by-step guide to generating ToCs, which are representing tacit 

knowledge in the form of explicit knowledge. 

Knowledge creation is a vital part of knowledge management, which is studied 

broadly in the literature. Due to the scope of this thesis, knowledge management 

is briefly mentioned in order to clarify the meaning of knowledge creation in the 

context of product development process.   

There are numerous definitions of knowledge management in the literature. 

Some academics define it as utilising expertise (Alavi and Leidner, 2001), while 

it is also defined as an integration of capabilities, abilities, organised information, 

and technology applications that are useful for new product development 

(Forcadell and Guadamillas, 2002). Figure 3-2 illustrates a common practice of a 

knowledge management process, which consists of the steps of knowledge 

creation, storage and retrieval, transfer and sharing, and application (Alavi and 

Leidner, 2001). 

 

Figure 3-2: Knowledge management processes (Alavi and Leidner, 2001) 

Knowledge creation is the combination of generating new organisational 

knowledge and capability (Nonaka, 1994) and obtaining the knowledge from 

external partners (Alavi and Denford, 2011). Storage and retrieval is the process 

of storing the created knowledge in a documented form and recalling it when it is 

needed (Rebolledo and Nollet, 2011). Transfer and sharing is the process of 

diffusing knowledge from its original location to a required location (Alavi and 

Denford, 2011). Finally, application is the process of utilising knowledge for PD 

activities, such as decision-making and problem-solving (Alavi and Denford, 

2011).  

Creation
Storage & 
Retrieval

Transfer & 
Sharing

Application
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3.2.2 Definition and overview of trade-off curves  

Trade-off curves are tools to visualise and trade-off the relationships between 

conflicting factors/parameters/elements to help engineers make an accurate 

decision (Otto and Antonsson, 1991; Bitran and Morabito, 1999). The most 

relevant definition to this thesis’ context has been made by Sobek, Ward and 

Liker (1999): A trade-off curve establishes a relationship between two or more 

design parameters, which is more useful than trade-off data. During the 

conceptual design stage of PD, there are several conflicting parameters which 

have a major impact on design decision-making. It is important to identify these 

conflicting parameters and understand the relationships between them in a visual 

manner (Maksimovic et al., 2012; Correia, Stokic and Faltus, 2014; Kennedy, 

Sobek and Kennedy, 2014). This is integral to the application of SBCE and in 

order to produce a set of design solutions; as there may be many design 

parameters to be considered simultaneously (Sobek, Ward and Liker, 1999; 

Kennedy, Sobek and Kennedy, 2014). Trade-off curves are useful tools to be 

employed in this context. Figure 3-3 shows an example of the key elements of 

trade-off curves: Design parameters 1 and 2 are represented on the X and Y 

axes. Design parameter data is plotted against these axes. Three customer 

requirements are plotted against the trade-off curve. These define the feasible 

area, within which a design solution’s parameter data has to lie in order to meet 

all design requirements. 

As shown in Figure 3-3, a trade-off curve has several key elements. The existing 

literature highlights these key elements as follows, and stipulates that they are 

imperative in order to develop suitable trade-off curves which support the product 

design and development (Burke et al., 1988; Hong, Nahm and Doll, 2004; Catalão 

et al., 2008; Maksimovic et al., 2012; Kerga et al., 2013; Ringen and Holtskog, 

2013; Kennedy, Sobek and Kennedy, 2014; Levandowski, Michaelis and 

Johannesson, 2014):  
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Figure 3-3: An example of a trade-off curve illustrating the key elements 

1. Customer requirements:  

These are the minimum product-related requirements necessary to 

satisfy the stakeholders’ needs. Figure 3-3 illustrates how customer 

requirements are utilised in trade-off curves to identify the feasible 

area. In this example, there are three customer requirements, which 

are illustrated by the dashed lines.  

2. Decision criteria:  

These are related to customer requirements that drive the key 

design decisions. These frequently include cost, complexity, 

durability and reliability of the product. Decision criteria are not 

illustrated on a trade-off curve, however, each ToC should address 

at least one decision criteria. 

3. Design parameters:  

These represent the special characteristics of the product under 

development. The different design parameters often conflict with 

each other. Analysis is required to understand the relationship 

between the conflicting design parameters. In addition, the areas of 

conflicts and the reasons behind them must be determined. Visually 
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displaying such relationships in trade-off curves facilitates the 

communication between different departments and stakeholders, 

thereby knowledge creation. Examples of design parameters and 

how they may conflict with others are material cost (e.g. with the 

magnitude of production), noise level (e.g. with engine size), and 

fuel consumption (e.g. with pollution levels). Figure 3-3 shows how 

design parameters are represented on the X and Y axes. 

4. Design parameter data:   

Ranges of data relating to the identified design parameters need to 

be captured from different sources, including previous projects, 

testing, and simulation. Figure 3-3 illustrates how design parameter 

data is plotted against the X and Y axes. This data represents the 

respective design solutions, and their relationship to the 

requirements, in a visual form. 

5. Feasible area: 

The feasible area is defined by plotting customer requirements 

against the design parameters. Thereby, possible conceptual 

design solutions that meet both the decision criteria and the 

customer requirements, for the related project, are identified. In the 

hypothetical example shown in Figure 3-3, six potential solutions 

are situated within the feasible area, which is defined by three 

customer requirements (dashed lines). 

6. Curve:  

The curve in trade-off curves represents the trend of data and the 

form of the relationship between the design parameters. However, 

there are some cases where the plotted data on trade-off curves 

does not show a meaningful trend. In such cases, there may be no 

curve, only the design parameter data. Examples of trade-off 

curves without a plotted curve can be found in the literature (Burke 

et al., 1988; Fine, Golany and Naseraldin, 2005; Vassilvitskii and 

Yannakakis, 2005; Raudberget, 2010; Michaelis, Levandowski and 

Johannesson, 2013). 
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ToCs can be generated in two-dimensional, three-dimensional or multi-

dimensional form depending on the analytic/analysis need or different types of 

products. If the design team would like to see relationships between more than 

two design parameters, in order to make a more accurate decision, these 

relationships can be visually projected on a three-dimensional trade-off curve 

(Otto and Antonsson, 1991; Browning and Eppinger, 2002; Wang and Terpenny, 

2003; Fine, Golany and Naseraldin, 2005; Malak and Paredis, 2010; Raudberget, 

2010; Richards and Valavanis, 2010) or multi-dimensional  trade-off curve 

(Haselbach and Parker, 2012). Figure 3-4 illustrates examples of three-

dimensional and multi-dimensional trade-off curves. 

 
                         (a) 
         Three-dimensional ToC  
      (Otto and Antonsson, 1991) 

                          (b)  
            Multi-dimensional ToC  
     (Haselbach and Parker, 2012) 

  

(c) Three-axis ToC 

Figure 3-4: Different trade-off curve examples 



Chapter 3 – Literature Review 

26 

Trade-off curves can also be presented on multiple axes as shown in Figure 3-4 

(c). Thus, the designer can see the relationships between three conflicting design 

parameters within one graph. 

Trade-off curves have been widely referred to in the literature, especially from the 

1960s onwards (Pershing, 1968), within a range of disciplines from finance and 

environmental science to engineering and computer science. Most of the studies 

in these disciplines have used trade-off curves to facilitate the solving of multi-

objective optimisation problems. Multi-objective (or multi-criteria) optimisation 

problems are such that have more than one conflicting objective function to be 

satisfied in order to achieve the optimal solution (Askar and Tiwari, 2011). The 

most common areas that utilise trade-off curves to facilitate solutions of multi-

objective optimisation problems are shown in Table 3-1. 

Table 3-1: The subjects and the references that have utilised ToCs as a multi-objective 

optimisation tool  

The role of trade-off curves within multi-objective optimisation problems is 

highlighted in Table 3-2. These trade-off curves are developed by using the data 

generated by algorithms and mathematical calculations rather than real data, 

experience, and knowledge. This issue will be discussed in more detail in sub-

subsection 3.2.3.1. 

 

Subjects that utilise ToCs as a  

multi-objective optimisation tool 
References 

Manufacturing networks optimisation (Bitran and Morabito, 1999) 

Scheduling (Catalão et al., 2008) 

Capacity planning and resource allocation (Bretthauer, Shetty and Syam, 2003) 

Inventory management (Grewal, Enns and Rogers, 2014) 
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Table 3-2: The role of ToCs within multi-objective optimisation problems 

On the other hand, while it is possible to find many publications in aforementioned 

areas, the number of publications that mention trade-off curves within the PD 

context is very limited. Kennedy, Sobek and Kennedy (2014) reported that the 

earliest use of trade-off curves in PD was by the Wright Brothers in the late 1800s. 

They succeeded in the first manned and heavier-than-air flight, and did so in a 

very short time and with a lower budget than their rivals. It is believed that a part 

of this success was attributable to the use of trade-off curves in the early stages 

of their PD. Sobek, Ward and Liker (1999) reported that the utilisation of trade-off 

curves has appeared at Toyota as a knowledge visualisation tool which facilitates 

the key tasks of set-based design. At Toyota, “jidoka” refers to the visual 

management, a technique adapted from lean manufacturing to the PD area in 

order to simplify complex knowledge by using visual tools such as trade-off 

curves (Morgan and Liker, 2006). They visually display subsystem knowledge in 

a graph so that engineers are able to explore the design space (Ward and Sobek, 

2014) and evaluate design alternatives (Kerga et al., 2014). Moreover, in a lean 

product development context, trade-off curves avoid the reinvention of previously 

The role of ToCs within  

multi-objective optimisation 
References 

Decision support 
(Holtzman, 1984; Preetha Roselyn, 

Devaraj and Dash, 2014) 

Data representation and visualisation 
(Rhyu, and Clearance and Kwak, 1988; 

Abido, 2003) 

Best solution compromise 

(Avigad and Moshaiov, 2010; Zhou et al., 

2011; Mohagheghi, Kapat and Nagaiah, 

2014) 

Comparing conflicting parameters (Dunning et al., 2014; Kuo et al., 2014) 

Comparing solutions 

(Gardner, Jr. and Everette, 1990; 

Suwanruji and Enns, 2007; Quirante, 

Sebastian and Ledoux, 2013) 

Feasible/infeasible area definition 
(Cao and Yang, 2004; Samarasinghe, 

Inaltekin and Evans, 2013) 
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considered design solutions during prototyping (Womack, 2006). Hence, 

engineers save time that they can spend on new and innovative solutions.   

3.2.3 Different types of trade-off curves depending on data source 

There are different types of trade-off curves, these are math-based and 

knowledge-based ToCs which are generated by using data from different 

sources. The characteristics and data sources of each type of trade-off curve are 

explained in detail in the following sub-subsections. 

3.2.3.1 The characteristics of math-based trade-off curves 

Math-based ToCs are generated by using the data output from simulating 

engineering applications through mathematical modelling (Browning and 

Eppinger, 2002; Roemer and Ahmadi, 2004; Fine, Golany and Naseraldin, 2005; 

Panduro et al., 2006; Richards and Valavanis, 2010). Math-based ToCs have 

been used for different purposes: To visualise and compare conflicting design 

parameters (Li et al., 2013) and to support the decision-making in multi-objective 

optimisation (Panduro et al., 2006). However, the ToC data in these studies is 

generated in a mathematical manner (e.g. simulations, algorithms and 

mathematical programming) depending on assumptions (Malak and Paredis, 

2010) rather than facts and knowledge. Assumptions, however, might be 

overestimated or underestimated which may lead designers to make an 

inaccurate decision. Moreover, due to the fact that uncertainty is an issue with 

math-based ToCs (Bitran and Morabito, 1999), there are risks and estimation 

errors (Roemer and Ahmadi, 2004). Additionally, math-based ToCs might not be 

reusable for future projects. They should be generated anew for every single 

project, since different projects have different assumptions and constraints (Fine, 

Golany and Naseraldin, 2005). Finally, while they are capable of generating 

thousands of solutions (Panduro et al., 2006), it might take significant resources 

to compare and evaluate these solutions. Therefore, math-based trade-off curves 

do not provide the right environment to enable SBCE, which requires accuracy of 

data, the right reusable knowledge-environment and more precise data than is 

provided by math-based ToCs.  
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Table 3-3 demonstrates the use of math-based ToCs in different subjects. These 

trade-off curves are generated by the data that is obtained from algorithms, 

modelling, simulations and programming. 

Table 3-3: Examples of subject areas using math-based ToCs 

Data 

obtaining 

method 

Subject areas using generated ToCs Reference 

Algorithm 

Engineering design optimisation 

(Pareto Front algorithm) 

(Richards and 

Valavanis, 2010) 

Linear antenna arrays 

(Genetic algorithm) 

(Panduro et al., 

2006) 

Representing the variety of reasonable 

options in the design space 

(Genetic algorithm) 

(Vassilvitskii and 

Yannakakis, 2005) 

Concurrent crashing and overlapping in 

product development 

(Overlapping crashing algorithm) 

(Roemer and 

Ahmadi, 2004) 

Discrete manufacturing systems design 

(Genetic and heuristic algorithms) 

(Bitran and 

Morabito, 1999) 

Gate sizing problems 

(Single-point optimisation algorithm) 

(Berkelaar, 

Buurman and Jess, 

1994) 

Modelling 

and 

Simulation 

Supply chain outsourcing risk management (Wu et al., 2013) 

Short-term scheduling of thermal unit 

problems 

(Catalão et al., 

2008) 

Gate sizing problems 
(Montiel-Nelson et 

al., 2005) 

Cost and schedule risk in product 

development 

(Browning and 

Eppinger, 2002) 

Demand planning, maintenance scheduling, 

transmission planning 
(Burke et al., 1988) 

Programming 

Quality of Service (QoS) routing and network 

design 

(Integer programming) 

(Van Mieghem and 

Vandenberghe, 

2006) 

Product and supply chain design 

(Goal programming) 

(Fine, Golany and 

Naseraldin, 2005) 
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3.2.3.2 The characteristics of knowledge-based trade-off curves 

Knowledge-based ToCs are generated by using data that is based on facts and 

knowledge obtained from material providers, previous projects (including failed 

or incomplete projects), R&D, prototyping and testing. Therefore, knowledge-

based ToCs usually display the actual experiences from engineering activities, or 

the knowledge that companies already have. Table 3-4 illustrates the current 

practices of knowledge-based ToCs and their data sources that are mentioned in 

the literature.  

Table 3-4: Current practices of using knowledge-based ToCs 

The challenge is to provide a knowledge-environment that supports SBCE 

applications. The characteristics of such environments are as follows: 

a. Visual:  

Data to be used during the early design stage should be in a visual form 

so that the designers are able to quickly understand the trends among the 

Data 
obtaining 
method 

Subject areas using generated ToCs Reference 

Material 

Providers 

Knowledge visualisation to support 

engineering decision-making in SBCE 
(Maksimovic et al., 2012) 

Comparing different design concepts to 

support set-based convergence of 

integrated product and manufacturing 

system platforms 

(Levandowski, Forslund 

and Johannesson, 2013) 

(Michaelis, Levandowski 

and Johannesson, 2013) 

Visualising the knowledge of technology 

and creating a set of design alternatives 

to enable SBCE 

(Ward and Sobek, 2014) 

Previous 

Projects 

Selection of potential design solutions 

for SBCE 
(Maksimovic et al., 2012) 

Prototyping 

and Testing 

Hypothetical case of a muffler to identify 

feasible solutions to be used in SBCE 

(Kennedy, Sobek and 

Kennedy, 2014) 

R&D 

Visualisation of several parameters to 

analyse and compare different 

aerothermal design concepts in early 

stages of product development process  

(Haselbach and Parker, 

2012) 
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design parameters (Maksimovic et al., 2012; Correia, Stokic and Faltus, 

2014; Levandowski, Michaelis and Johannesson, 2014). 

b. Easy to communicate: 

Captured knowledge should be clearly understood and communicated 

between different departments in the company (Hong, Nahm and Doll, 

2004; Al-Ashaab et al., 2013; Correia, Stokic and Faltus, 2014; Ward and 

Sobek, 2014). 

c. Data type:  

Design parameter data should be real and based on facts and knowledge, 

rather than algorithms and mathematical calculations (Sobek, Ward and 

Liker, 1999; Maksimovic et al., 2012; Kennedy, Sobek and Kennedy, 

2014). This creates knowledge in parts of the business where it was not 

previously available. 

d. Minimum uncertainty:  

The uncertainty during the early design stage should be decreased to a 

minimum level for the designers to make precise decisions. This is 

possible especially by using real data and experience rather than 

generating data with algorithms (Hong, Nahm and Doll, 2004; Kennedy, 

Sobek and Kennedy, 2014; Ward and Sobek, 2014). 

e. The amount of generated conceptual design solutions: 

Generating high amounts of design solutions (e.g. thousands) will require 

resources to evaluate the sets and eliminate those solutions with low 

performance (Al-Ashaab et al., 2013; Khan et al., 2013). It is thus 

preferable to have fewer design solutions, but base these in reality rather 

than theory. 

f. Reusable:  

Usable knowledge created during the early design stage should be stored 

rather than discarded, in order to reuse it for future projects. Thus, the 

designers will save resources by not generating the same design solutions 

repeatedly (Maksimovic et al., 2012; Kennedy, Sobek and Kennedy, 

2014). 
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It is imperative to clarify that “fuzzy set-based trade-offs” (Wang and Terpenny, 

2003; Hernández-Luna, Moreno-Grandas and Wood, 2010) might cause 

confusion with set-based concurrent engineering. Zadeh (1965), who introduced 

the “fuzzy set theory”, described it as a class of objects with a range of grades of 

characteristics (e.g. a set that includes not only black and white but also all the 

possible tones of grey). Thus, if the relationships between conflicting 

requirements are built based on this theory, it would be referred to as fuzzy set-

based trade-offs. Fuzzy sets have been established as a new way to solve 

problems that were not addressed previously by the standard multi-objective 

optimisation methods (for more information see Hernández-Luna, Moreno-

Grandas and Wood (2010); Wang and Terpenny (2003); Zadeh (1965)). It is, 

however, understood that fuzzy set-based trade-offs are not part of SBCE 

applications, and are therefore outside the scope of this thesis. 

Knowledge-based ToCs have been shown to represent the design limit by 

separating the feasible design area from the infeasible design area (Araci, Al-

Ashaab and Maksimovic, 2016; Ward and Sobek, 2014). Thus, designers will be 

able to locate the solutions that meet the requirements of the product under 

development (Ward and Sobek, 2014). Furthermore, since the history of the 

product does not change and some knowledge-based ToCs use historical data, 

companies can reuse these ToCs for future projects (Levandowski, Michaelis and 

Johannesson, 2014). Naturally, they should be updated carefully in order to 

include new technologies. Thus, innovation could be achieved in new projects. 

Table 3-5 summarises similarities and differences between knowledge-based 

and math-based ToCs. While both types of ToCs are used as an efficient tool for 

visualisation and decision support, the source of data emerges as a significant 

difference between them. Since the aim of this thesis is to create and visualise 

the knowledge-environment for SBCE applications, knowledge-based ToCs are 

the focus of this research. 
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Table 3-5: Comparison between math-based and knowledge based ToCs 

3.3 The Role of Trade-off Curves within the Set-Based 

Concurrent Engineering Environment 

This section explains the role of trade-off curves within the SBCE context. The 

SBCE concept was first described by Dr. Allen Ward, who was a pioneer in lean 

product development (LeanPD) (Ward et al., 1995). LeanPD is an effective 

approach to performing new product development by eliminating the waste 

throughout the PD process (Al-Ashaab et al., 2013). The lean product and 

process development (LeanPPD) model has been developed as shown in Figure 

3-5.  

The LeanPPD model consists of five enablers, namely: value-focused planning 

and development, the existence of a knowledge-based environment, the 

existence of a culture of continuous improvement, technical leadership by the 

chief-engineer, and the set-based concurrent engineering process. These 

enablers are applied in the early stages of a PD process (Khan et al., 2013).  

The SBCE process is the core enabler of the LeanPPD model. Unlike 

conventional PD processes, the SBCE approach deliberately delays the critical 

design decisions until the last possible moment to ensure that the customer 

Features Math-based ToCs Knowledge-based ToCs 

Visualisation Yes Yes 

Decision Support Yes Yes 

Source of data Mathematical Calculations Facts and knowledge 

Accuracy Based on assumptions Based on reality 

Updateable No Yes 

Reusable No Yes 

Amount of solutions Many Few 

Evaluating generated 

solutions 
Resource-intensive Efficient 
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expectations are fully understood and that the achieved design solution meets 

the requirements (Al-Ashaab et al., 2013). 

 

Figure 3-5: The LeanPPD model (Khan et al., 2011) 

As it is illustrated in Figure 3-6, SBCE is a PD process within which products are 

developed by breaking them down into subsystems and designing sets of 

solutions for these subsystems in parallel. SBCE evaluates this set of designs 

concurrently and then gradually narrows the set by testing and communicating 

with other participants until the final solution is obtained (Al-Ashaab and Sobek, 

2013; Raudberget, 2010; Sobek, Ward and Liker, 1999).  

 

Figure 3-6: The SBCE process model (Khan et al., 2011) 

The SBCE process ensures that designs are feasible and compatible with their 

environment (Sobek, Ward and Liker, 1999). SBCE has several benefits for the 
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new product development. It significantly reduces the need for engineering 

changes (Khan et al., 2011). Additionally, the set-based philosophy helps to 

identify and resolve problems as early as possible, and ensures that product 

attributes, including crucial trade-offs, are clearly understood (Sobek, Liker and 

Ward, 1998; Morgan and Liker, 2006; Al-Ashaab and Sobek, 2013).  

Scholars, academics and practitioners studied the principles of the set-based 

concurrent engineering concept. However, SBCE was not well-established in a 

systematic process model until Khan et al. (2011) compiled the principles of the 

Toyota Product Development system and developed the SBCE process model 

as shown in Figure 3-7. Therefore, the SBCE process model, which is guiding 

designers step-by-step throughout their product development activities, has been 

employed in this thesis in order to demonstrate the processes for generating 

ToCs. The SBCE process model has five phases and several activities within 

each phase, as shown in Figure 3-7. The main outcomes of these phases are 

outlined as follows (Khan, 2012; Al-Ashaab et al., 2013): 

1. Value research:  

Customer value and innovation level of the product are identified 

and the project is aligned with the company strategy.  

2. Map design space:  

The design team identifies the scope of the design as well as the 

feasible design area.  

3. Concept set development: 

A set of possible conceptual design solutions is developed and 

tested at the subsystem level. In the meantime, the design team 

captures the created knowledge and utilises this knowledge for the 

evaluation of different sets of design solutions. These solutions are 

communicated within teams to receive feedback and understand 

constraints.  

4. Concept convergence:  

Intersections of the subsystems are explored, and integrated 

systems are tested. The weak solutions are eliminated allowing the 

optimal design solution to reach the final phase. 
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5. Detailed design: 

The final set is concluded and final detailed specifications are 

released. 

 

Figure 3-7: Activity view of the SBCE process model (Khan et al., 2011) 

The knowledge-environment has a vital role throughout the SBCE process  

(Morgan and Liker, 2006; Al-Ashaab et al., 2013; Khan et al., 2013; Ward and 

Sobek, 2014). There are several knowledge sources that provide this knowledge-

environment for SBCE applications. Trade-off curves are one of these knowledge 

sources (Maksimovic, 2013) since they have the ability of representing the design 

data in a visual format. During the SBCE process, evaluation of the design-set 

and learning effectively from several alternative designs can be challenging 

(Morgan and Liker, 2006). Trade-off curves are powerful tools to address these 

challenges. Moreover, trade-off curves facilitate the communication between 

different teams, departments and stakeholders in a company as well as 

supporting the decision-making of designers (Correia, Stokic and Faltus, 2014; 

Araci, Al-Ashaab and Maksimovic, 2016). Although trade-off curves are 

considered to be useful knowledge tools, the role of trade-off curves is not defined 

thoroughly (Oosterwal, 2010). However, the current literature shows initial 
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insights on how to use ToCs in enabling key activities of the SBCE process 

model. These activities are illustrated in Table 3-6.  

Key SBCE activities References 

Identifying the feasible 

design solutions area 

(Maksimovic et al., 2012; Khan et al., 2013; Kennedy, 

Sobek and Kennedy, 2014; Kerga et al., 2014)  

Generating a set of 

conceptual designs 
(Oosterwal, 2010; Ward and Sobek, 2014) 

Communicating a set of 

designs to others 

(Levandowski, Forslund and Johannesson, 2013; Correia, 

Stokic and Faltus, 2014) 

Comparing alternative 

design solutions 
(Sobek, Ward and Liker, 1999; Raudberget, 2010) 

Trading-off and 

narrowing down the set 

of design solutions 

(Sobek, Ward and Liker, 1999; Raudberget, 2010; Khan et 

al., 2013) 

Table 3-6: The key SBCE activities that can be enabled by using knowledge-based 

trade-off curves 

3.4 How to Generate Trade-off Curves that Enable SBCE 

Knowledge-based trade-off curves are important tools in supporting PD, and 

particularly in enabling SBCE applications. However, there is a lack of a 

systematic approach to generating knowledge-based ToCs (Oosterwal, 2010). 

For instance, Morgan and Liker (2006) propose that in a trade-off curve, a 

subsystem’s performance in one characteristic is mapped on the Y-axis while 

another is mapped on the X-axis. A curve is then plotted to illustrate the 

subsystem’s performance relative to the two characteristics. On the other hand, 

Ward and Sobek (2014) recommend the design team to execute three workshops 

of developing and using trade-off curve sheets. An example of this is depicted in 

Figure 3-8.  
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Figure 3-8: A sample of a trade-off curve sheet (Ward and Sobek, 2014) 

The first workshop is intended for problem definition. They advise designers to 

focus on only one problem as a starting point and to identify the success 

measures for the progress of problem solving. The second workshop is 

recommended for drawing a causal diagram that identifies the possible causes 

of the problem and countermeasures, and then assigning a person to obtain the 

data required to generate trade-off curves. While data is being collected, the 

design team should seek a plausible combination of the parameters. This 

eventually enables them to generate ToCs. The third workshop is meant for the 

discussion of the ToCs. These are presented and used to evaluate the problem 

and find solutions. While generating the trade-off curve sheets, Ward and Sobek 

(2014) recommend designers to implement these sheets for the current problem, 

and then preserve them for future use. However, this model does not include the 

customer requirements and decision criteria, and also does not demonstrate any 

known solutions from previous projects. 
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3.5 Research Gaps 

The research on creating a knowledge-environment that enables SBCE has been 

evolving and growing in volume, during the last few decades. However, 

knowledge creation and visualisation have not been addressed thoroughly. 

Therefore, the research gaps presented in Table 3-7 have been defined. This 

research attempts to address these gaps. 

No. Identified research gaps 

Literature review 

section that the gap 

applies to 

Related thesis 

section that the gap 

has been addressed 

1 

There is a lack of 

definition of the role of 

ToCs within the SBCE 

context. 

Section 3.3: The Role of 

Trade-off Curves within 

the SBCE Environment 

Section 5.2: The 

Approach to 

Developing 

Processes for 

Knowledge Creation 

and Visualisation to 

enable SBCE 

2 

There is no clear 

approach to assisting in 

the creation and 

visualisation of a 

knowledge-environment 

that enables SBCE 

applications. 

Section 3.2.3: Different 

Types of ToCs 

Depending on the Data 

Source 

Section 3.4: How to 

generate ToCs that 

Enable SBCE 

Section 5.3: The 

Process for 

Generating 

Knowledge-based 

ToCs: Based on 

Historical Data 

3 

There is no clear 

approach to generating 

ToCs based on the 

understanding of the 

physics and functions of 

the product under 

development. 

Section 3.2.3: Different 

Types of ToCs 

Depending on the Data 

Source 

Section 3.4: How to 

generate ToCs that 

Enable SBCE 

Section 5.4: The 

Process for 

Generating Physics-

based ToCs: Based 

on Physics 

Knowledge of the 

Product 

4 

There is no clear 

explanation of how to 

analyse generated ToCs 

in order to enable SBCE. 

Section 3.3: The Role of 

Trade-off Curves within 

the SBCE Environment 

Chapter 6: Industrial 

Case Studies and 

Expert Judgements 

for Validation 

Table 3-7: Research Gaps 
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3.6 Summary of Chapter 3  

A comprehensive definition and an overview of ToCs were presented in this 

chapter. Two different types of ToCs were identified in the literature. These are 

knowledge-based and math-based ToCs. It was found that math-based ToCs are 

commonly used in multi-objective optimisation applications. On the other hand, 

characteristics of a knowledge-environment for the SBCE process were defined. 

Knowledge-based ToCs are considered to have the capability of creating and 

representing this knowledge-environment. Furthermore, SBCE activities that are 

supported by the use of ToCs were described and the current practices of 

generating ToCs were highlighted. Finally, research gaps were identified as a 

result of the extensive literature review. 
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4 INDUSTRIAL FIELD STUDY 

4.1 Introduction 

An industrial field study was performed in order to capture the real-life 

applications of trade-off curves during the practitioners’ product development 

activities. This chapter, as illustrated in Figure 4-1, presents the industrial 

perspective of knowledge creation and visualisation by using ToCs. Section 4.2 

describes the interactions with industrial collaborators. Section 4.3 presents the 

analyses of the results of the interviews with a semi-structured questionnaire. 

 

Figure 4-1: Structure of chapter 4 

4.2 Interactions with Industrial Collaborators 

Interactions with industry stakeholders consisted of discussions with industrial 

collaborators through virtual web-based meetings, as well as face-to-face 

meetings. These collaborators each have initiatives to apply the SBCE process 

model within their companies. The collaboration involved both observations of 

their product development process and discussions with engineers and 

managers. Meetings, observations and workshops were used in order to 

understand the industrial needs of generating and using ToCs that enable SBCE 

applications in their businesses.  

Feedback and comments were received from senior managers in four 

collaborating companies. The details of these industrial collaborators are 

presented in Table 4-1. This collaboration helped the author, throughout the PhD 
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research, to develop and improve the proposed processes for generating ToCs, 

which are described in chapter 5. 

Collaborating 

company 
Position of the industrial collaborator in the company 

Rolls-Royce 

Systems Design Integration Manager 

Knowledge Management Specialist 

SiTech Director of Product Strategy, Research and Development 

Paxton 

Development Director 

Process Improvement Engineer 

Senior Engineer - System Test  

Caltec 

Technology Director 

Process Engineer 

Table 4-1: Portfolio of the industrial collaborators 

4.3 Interviews with a Semi-Structured Questionnaire 

Interviews were performed to capture the current practices of using trade-off 

curves during product development processes in the industry. A semi-structured 

questionnaire was developed to capture the most relevant information from the 

participants. Appendix A contains the relevant part of the “Best Practices in 

Product Development” questionnaire. This questionnaire originally consists of 

three parts:  

1. Product Development Process 

2. Trade-off Curves 

3. Collaboration between Commercial and Engineering teams 

Since part 1 and 3 are out of the scope of this thesis, only results of part “2. Trade-

off Curves” are discussed in this section. The numbering of the questions is 

maintained in line within the original questionnaire.  
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The semi-structured questionnaire was completed by five participants from five 

different companies, as presented in Table 4-2. These companies either have 

initiatives to apply SBCE or are interested in using SBCE to support their product 

development processes. This section is presenting the results about how to use 

ToCs in supporting product development activities, and what key activities are to 

be carried out while generating ToCs. Participants were intentionally selected 

from managerial positions with more than fifteen years of experience. As shown 

in Table 4-2, interviewees were mainly from the automotive industry in the UK.  

Interviewing this strong profile of experts has facilitated the collection of reliable 

and trustworthy information about the practices, regarding trade-off curves, in 

product development activities of the industry. 

No. Company Position 
Years of 

Experience 
Industry Country 

1 Ford 
Senior Program 

Manager 
15 Automotive UK 

2 GKN 
Continuous 

Improvement 
Manager 

23 
Automotive 

and 
Aerospace 

UK 

3 Paxton 
Process 

Improvement 
Engineer 

15 
Security & 

Access 
Control 

UK 

4 Ricardo Program Manager 28 Automotive UK 

5 Visteon 
Engineering Quality 

Senior Manager 
15 Automotive UK 

Table 4-2: Profiles of the Interviewees 

Question 1:  How would you describe the use of trade-off curves (ToCs) in the 

current product development (PD) process within your company? 

The aim of this question was to discover whether trade-off curves are 

currently being used within the company’s product development process. 

Three participants indicated that they had initiatives to create and introduce 

ToCs. One of the interviewees said that ToCs were loosely used in some 

projects, while only one company uses ToCs formally throughout the PD 
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process and in most of the projects. All participant companies are aware of 

the importance of using ToCs, however most of them have not established 

the formal use of ToCs. This might be due to the lack of a systematic 

approach for generating ToCs, and for using the generated ToCs in the PD 

process.  

Question 2: Which of the following descriptions is the closest to your company’s 

interpretation of trade-off curves in the early stages of the product 

development? 

Participants were asked to define trade-off curves, in a product development 

context, from their perspective. Interviewees were able to select more than 

one definition from the available options. As shown in Figure 4-2, according 

to two respondents ToCs are tools to understand the relationships between 

various design characteristics as well as to characterise the relationship 

between two or more key parameters that represent the customer 

requirements. Additionally, most of the participants agree that ToCs are a 

source of knowledge which enables the identification, capture, comparison, 

and reuse of knowledge for new projects. Another application of ToCs was 

also acknowledged by the majority, with ToCs being seen as a simple form 

of visualising the limits of design performance of the product under 

development. 

 

Figure 4-2: Definition of ToCs from the participants’ perspective 
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Therefore, ToCs are perceived as helpful and simple tools to be used 

throughout the product development processes. 

The importance of using ToCs in PD was obvious from the related literature 

review, and was supported by the evidence from the first two questions. 

Therefore, it became necessary to ask participants how to generate ToCs. 

Possible activities were listed to provide a guidance for the respondents, 

however, an option was provided to specify their own opinions.  

Question 3: How important do you find the following activities in generating 

trade-off curves, and how efficient do you implement these activities 

throughout the early stages of the new product development 

process? 

This question has two parts to answer. The first part questions the importance 

of each activity while the second part asks participants to understand how 

efficiently they implement the relevant activity. Figure 4-3 illustrates a graph 

representing the responses of both parts as importance and efficiency.  

 

Figure 4-3: Key activities to generate trade-off curves 

Participants indicated that, in order to generate ToCs, identifying decision 

criteria, design parameters, and customer requirements are as important as 

collecting data from previous projects and defining the feasible and infeasible 

area. One of the participants indicated that investigating and understanding 
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the physical characteristics and functions of the product properly also has a 

significant contribution to generating trade-off curves. 

Although the interviewees were aware that these activities are essential to 

generate ToCs, they expressed that they do not implement these activities 

efficiently. This could be due to the fact that there is no systematic approach 

for generating ToCs in product development which clearly explains how to 

implement these activities. 

Question 4: How do you define decision criteria for the generation of trade-off 

curves? 

Defining decision criteria has a significant role in ToC generation, since they 

affect the key decision-making throughout the PD process. The aim of this 

question was to capture the best practices of identifying decision criteria. As 

shown in Figure 4-4, participants appreciate the use of experiences from 

previous projects, such as conflicting issues and problems they encountered. 

Additionally, extracting from customer requirements was another means of 

defining decision criteria that was frequently stated. One of the participants 

also suggested that it was very important to define decision criteria by 

understanding the customer’s need.  

 

Figure 4-4: Methods of identifying decision criteria for generating ToCs 

 



Chapter 4 – Industrial Field Study 

47 

Question 5: How do you obtain the required data to generate trade-off curves? 

Data collection is one of the most important activities of generating ToCs. 

Interviewees were asked to express their thoughts about several means of 

data collection. Responses show that collecting data from previous projects 

has a high importance, however, efficiency of their practice is low as shown 

in Figure 4-5 (option 5.1). On the other hand, it is understood that dedicating 

people to collect data has a high importance, however most participant 

companies do not practice this method (low importance). The reason might 

be that this method is rather resource-intensive, and that no systematic 

approach is defined for it. 

 

Figure 4-5: Tools and methods for data collection to generate ToCs 

A process for data collection, as presented in Figure 4-6, was recommended 

to the respondents as an alternative method. Participants appreciated the 

importance of having such a process to collect data for generating ToCs. 
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Figure 4-6: A recommended process to collect data for generating ToCs 

Question 6: In which steps/tasks/activities of your current product development 

process would you use trade-off curves? 

This question was asked to capture the best practices of using ToCs 

throughout the product development activities of companies. Figure 4-7 

shows that it is very important to use ToCs to enable the PD activities listed 

in the figure. However, ToCs are not used efficiently in these activities. The 

reason is likely the lack of understanding about how and where to use ToCs 

effectively in product development processes. These results support the 

authors’ proposal that a process is needed for how to use ToCs that enable 

SBCE, as is presented in chapter 5. 

 

Figure 4-7: PD activities to be enabled by the use of generated ToCs 
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4.4 Summary of Chapter 4 

An industrial field study was carried out to obtain a better understanding of the 

industrial perspective for this research. The field study includes interactions with 

industrial collaborators and interviews. Feedback and comments from the 

industrial collaborators as well as the findings from interviews contributed to the 

research by providing a direction for the development of processes for knowledge 

creation and visualisation that enable SBCE applications.  
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5 PROCESSES FOR KNOWLEDGE CREATION AND 

VISUALISATION THAT ENABLE SBCE 

5.1 Introduction 

The analysis of the extensive literature review in chapter 3, and the industrial field 

study in chapter 4, demonstrated that a systematic approach is needed in order 

to create a knowledge-environment for SBCE applications. This chapter, as is 

illustrated in Figure 5-1, presents three processes that were developed in order 

to address this need. Section 5.2 describes how the author developed these three 

processes. Section 5.3 presents the process for generating knowledge-based 

ToCs by using historical data. Section 5.4 presents the processes for generating 

physics-based ToCs by using knowledge obtained from the understanding the 

physics and functionality of the product. Section 5.5 presents how to utilise 

generated knowledge-based and physics-based ToCs throughout the SBCE 

process model.  

 

Figure 5-1: Structure of chapter 5 
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5.2 The Approach to Developing Processes for Knowledge 

Creation and Visualisation to Enable SBCE 

This section presents the approach taken to develop three processes, which are 

for generating ToCs that create and visualise a knowledge-environment for SBCE 

applications. These three processes are listed in section 5.1. 

Among the key driving elements that helped the author to develop these three 

processes were an understanding of the information gained from the related 

literature and analysis of the research gaps as presented in section 3.5. They 

suggest that there is a need of a visually displayed knowledge-environment 

throughout the SBCE application. Data obtained from the field study, as is 

presented in section 4.3, supported the notion that industrial companies are also 

in need for such an environment. Therefore, an initial process for generating 

knowledge-based ToCs was developed as shown in Figure 5-2. This process was 

implemented in a research-based aerospace case study and is demonstrated in 

section 6.3.  

 

Figure 5-2: Initial process for generating ToCs 

Comments and constructive feedback helped the author to improve the initial 

process, as is shown in Figure 5-3, and implement it in an automotive case study 

for a car seat structure design. This case study is described in detail in section 
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6.4, and has also been published in an open access electronic journal (Araci, Al-

Ashaab and Maksimovic, 2016).  

 

Figure 5-3: Improved version of the process for generating ToCs 

Through the experiences from the industrial case studies, which are presented in 

sections 6.3 and 6.4, the process for generating knowledge-based ToCs was 

evolved to its final version as presented in Figure 5-4. This process was validated 

with an industrial case study for a new access card reader in electronics industry, 

which is explained in section 6.5. The main change was made in step 5 of the 

process shown in Figure 5-3, where it became apparent that this step should be 

explained in more detail in order to accurately compare the possible design 

solutions until achieving the optimal design.  
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Additionally, applying the process for generating knowledge-based ToCs and 

feedback from one of the interviewees showed that it is essential to understand 

the physical characteristics of the product, especially in the conceptual design 

stage. Physics-knowledge supports the creation of new design solutions and 

assists in improving, comparing and narrowing down the design-set while 

proceeding through the SBCE process. However, the literature does not reveal 

applications, information or research to address this issue. It has thus been 

identified as a research gap in section 3.5. Analysing the industrial case study 

results and collaborating with different industries helped the author to develop a 

new process for generating physics-based ToCs, as shown in Figure 5-6, to 

provide physics-knowledge for SBCE applications. This process was also 

validated by an industrial case study, which is presented in section 6.6. Both 

processes provide a systematic approach. The sequential steps and activities 

within each process enable an ordered flow of tasks required in order to generate 

ToCs.  

Information gained from the literature review and implementing the processes in 

different industrial case studies clarified the need for a systematic approach for 

use of the generated ToCs in enabling the SBCE process model, which is 

presented in detail in section 5.5 and validated by a case study with oil and gas 

industry. 

In the following sections and chapters, reference will be made to “the design 

team”. This term refers to the designers, engineers, managers or other 

stakeholders who are involved in the development of a new product in the related 

project. 

5.3 The Process for Generating Knowledge-based Trade-off 

Curves: Based on Historical Data 

This section describes the process for generating knowledge-based ToCs that 

enable SBCE applications. As mentioned in sub-subsection 3.2.3.2, knowledge-

based ToCs are generated by using historical data that is collected from material 

providers, previous projects (complete or incomplete), R&D, testing and 

prototyping. Figure 5-4 illustrates the process for generating knowledge-based 
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ToCs including five main steps, which are further broken down into different 

activities. Although a sequential approach has been suggested here, the 

chronological position of some activities within the process may be 

interchangeable. The activities within each step are described in detail below. 

 

Figure 5-4: The process for generating knowledge-based ToCs that enable SBCE 

5.3.1 Step 1: Decision criteria 

Activity 1.1: Get customer requirements 

Objective: Customer requirements are the characteristics, specifications and 

features of a product that are determined by a customer. Customer 
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requirements should be thoroughly understood in order to identify 

both the decision criteria and the key design parameters.  

Method: Customer requirements are obtained by using customer request 

documentation and requirements, market research methods, and 

meetings with customer representatives.  

Activity 1.2: Define decision criteria 

Objective: Decision criteria that drive the key design decisions should be 

identified by the design team. With them, they will be able to make 

a final decision about the product design which they believe fulfils 

the customer requirements. Additionally, decision criteria will 

support the team in identifying the design parameters for the next 

activity of the process for generating knowledge-based ToCs. 

Method: Decision criteria are identified by extracting them from customer 

requirements, benchmarking and using experiences from previous 

projects. Among such experiences may be information about 

conflicting issues and problems that were encountered.  

Activity 1.3:   Define design parameters 

Objective: Design parameters represent the special characteristics of the 

product under development. They are measurable indicators of the 

decision criteria identified in the previous activity. Design 

parameters are vital elements of ToCs and essential for the data 

collection activity. They facilitate the collection of the appropriate 

data, thereby minimising resource wastage. Therefore, all identified 

design parameters should relate to the decision criteria.  

Method: Each design parameter should represent at least one decision 

criteria. One parameter might be related to more than one decision 

criteria. As the parameters are identified, they should be listed in 

preparation for the data collection in “Activity 2.1. Collect the data 

of the defined parameters”. Eventually, parameters should be 
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classified according to the respective decision criteria. They can 

then be used, in the next activity, for defining the relationships 

between the design parameters. While identifying design 

parameters, environmental matters can also be considered in order 

to reduce negative impacts. 

Activity 1.4: Define the relations between defined design parameters  

Objective: ToCs are knowledge visualisation tools that display the relationship 

between various design parameters, each of which have an impact 

on design decisions. This activity provides insights for the design 

team to understand the conflicting relations and make an accurate 

decision accordingly. 

Method: The design team should associate the defined design parameters 

to each other and define plausible relationships that represent 

meaningful knowledge, as well as conflicts between the individual 

parameters. Two conflicting design parameters should be related to 

each other in order to represent at least one decision criteria. The 

design team decides which parameters are compared. If the 

product is a complex system, the design team might require more 

than two relations within one pair of parameters. In addition, defined 

relationships are classified according to the related decision criteria. 

Thus, it is easily understood which possible design solutions meet 

which decision criteria, and decision-making is facilitated.  

5.3.2 Step 2: Data collection 

Activity 2.1: Collect the data of the defined design parameters  

Objective: Design parameter data is the primitive form of the knowledge that 

is required in order to present the design performance of the product 

on trade-off curves.  

Method: Data of the design parameters is collected from previous projects, 

testing and prototyping, material providers, suppliers, and R&D 
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projects. Collected data is made available in a data processing 

software (e.g. Excel). 

Activity 2.2: Filter and refine the data  

Objective: After data collection, instances might be found where there is 

unavailable data which has not previously been recorded, does not 

exist in the data source or cannot be generated at the present time. 

The data set should be amended in order to avoid generating ToCs 

based on inaccurate data.  

Method: Design parameters that do not have data, or where data integrity is 

questionable (e.g. outliers), should be removed from the data set. 

Activity 2.3: Prepare the final filtered data  

Objective: Design parameters data might not be found in the required format. 

The data may require transformation into a form that the design 

team can work with. 

Method: The design team should check the data set to see if there is a need 

for converting the unit of data (e.g. converting cm2 to mm2) or for 

derivations from the collected data. The data set should be 

organised in a way that the design team can easily select and use 

the data when generating ToCs.  

5.3.3 Step 3: ToC generation 

Activity 3.1: Plot the data of the corresponding design parameters 

Objective: This activity will lead to the generation of a trade-off curve which 

turns the data into a visual form. It will then be available for the 

design team and assist them in identifying the feasible and 

infeasible design solutions, which are explained in detail in the 

activity 4.1.  

Method: Design parameter data is plotted on the related axes of the ToC 

diagram according to the relationships defined in activity 1.4. The 
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design team should be able to generate as many ToCs as there are 

defined relationships between the parameters. However, if any 

parameters have been removed in activity 2.2, the number of 

generated ToCs may decrease. In some cases, it is difficult to 

discern a clear relationship between the data points. Reasons for 

the unclear relationship should be analysed and understood by the 

design team. For example, one reason might be that changes in the 

regulations for a product might have resulted in new restrictions or 

requirements, when compared to previous products. 

Activity 3.2: Plot the customer requirements against generated ToCs  

Objective: Customer requirements represent the limits, specifications and 

numeric values of the product that the design team desire to 

achieve. This activity is the first step needed to identify the feasible 

area, which is explained in activity 4.1. 

Method: After generating ToCs, the customer requirements, which are 

obtained in activity 1.1, should be plotted against the related ToCs. 

It should be noted that not every generated ToC must necessarily 

present customer requirements or show a trend. In such cases, the 

design team should analyse these ToCs in order to support 

decision-making.  

5.3.4 Step 4: Feasible solutions 

Activity 4.1: Define the feasible and infeasible area 

Objective: The feasible area is the region that includes the data of possible 

design solutions from previous projects, or new solutions, which 

either fulfil or are very close to meeting new customer requirements. 

The infeasible area is the region that features the data of design 

solutions which do not meet the customer requirements. 

Method: After plotting the customer requirements against the generated 

ToCs, the area surrounded by these customer requirements should 
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be highlighted. Thus, the feasible area will be differentiated from the 

infeasible area. 

Activity 4.2: Identify the design solutions within the feasible area 

Objective: Design solutions located within the feasible area are named as 

“feasible” design solutions. These designs are reused for the 

current project in order to develop a design-set.  

Method: Highlighting the feasible area facilitates pointing out the possible 

feasible designs. They stem from complete/incomplete previous 

projects, R&D projects, testing and prototyping. Detailed 

information about all these solutions can be obtained from a shared 

folder of the previous solutions and company database, for example 

PLM or PDM. The design team should note down the feasible 

solutions in a table by indicating the related decision criteria. This 

activity, then, is repeated for each ToC that is generated. 

Activity 4.3: Develop a set of potential design solutions  

Objective: This activity aims to develop a set of possible design solutions to be 

utilised and narrowed down in the early stages of the SBCE 

process. 

Method: Activities 4.1 and 4.2 are performed for all generated ToCs. The 

design solutions and the curve within the feasible area are analysed 

by considering the customer requirements and decision criteria that 

are explained in activities 1.1 and 1.2. Thus, companies do not need 

to employ resources only to redesign already existing solutions. 

Rather, they reuse those which fall in the feasible area, as explained 

in activity 4.1. One or a combination of the following activities can 

be carried out to this end: 

i. Reusing the existing proven design solution: If the feasible 

design solution shows a suitable solution, or nearly does so, this 

solution can be reused as a part of the set of possible design 

solutions. In addition, in some cases, some of the components or 
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subsystems of the proven existing product design within the 

feasible area can be reused. 

ii. Minor changes: ToCs will help the design team to identify several 

existing design solutions within the feasible area. However, 

because requirements for the product under development may 

have changed compared to earlier work, these identified feasible 

design solutions may only be reused after applying minor 

modifications. For example, the quantitative value of the design 

parameters (e.g. physical principles, shape variations, 

tolerances) can be modified and tested in order to turn the 

existing solution into a suitable solution.  

iii. Major changes: Existing design solutions may have been 

classified as feasible. However, these design solutions can only 

be reused after applying major modifications. For example, the 

performance of the product on the subsystem or component level 

(e.g. material properties, geometry) may require modification, 

without re-thinking all of it.  

iv. Create new conceptual design solutions: The design team may 

make a decision not to reuse the existing design solutions for the 

current project. However, the approach, knowledge and 

experience from these existing solutions might inspire the design 

team while creating new, innovative solutions. After identifying 

the feasible area and the curves within this area, the design team 

chooses a point on the curve from each ToC. This point will be 

representing the design parameters (X and Y axes / X, Y1, Y2) 

of a suitable solution for the examined ToC. This suitable solution 

should be addressing the customer requirements and decision 

criteria of the project under development. Thus, the design team 

will understand the accurate design parameters which will 

support the creation of new conceptual designs for the set of 

possible design solutions.  
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5.3.5 Step 5: Optimal solution 

Activity 5.1: Convert these potential solutions to a final optimal solution by  

  using the SBCE process model:  

Objective: The optimal solution is a design which fully meets the identified 

customer requirements and decision criteria as defined in activities 

1.1 and 1.2, and is therefore ready for detailed design. The aim of 

this activity is to enable SBCE applications by providing a design-

set which is to be used throughout the SBCE process, until 

eventually achieving the optimal design solution. 

Method: The generated design-set is analysed in order to evaluate and 

compare the possible solutions. Solutions should be aggressively 

narrowed down, by using the SBCE process model, until an optimal 

solution is identified. 

Since each step has been explained in detail, the proposed process might be 

perceived as tiresome work. However, in real life this process proceeds quite 

smoothly, especially after gaining experience in using it. Figure 5-5 illustrates an 

overview of the process.  

 

Figure 5-5: Overview of the process for generating knowledge-based ToCs 

 



Chapter 5 – Processes for Knowledge Creation and Visualisation that Enable SBCE 
 

63 

5.4 The Process for Generating Physics-based Trade-off 

Curves: Based on Knowledge about the Physics of the Product 

This section presents the process for generating physics-based trade-off curves 

that enable SBCE applications, as illustrated in Figure 5-6.  

 

Figure 5-6: The process for generating physics-based ToCs that enable SBCE 



Chapter 5 – Processes for Knowledge Creation and Visualisation that Enable SBCE 
 

64 

Physics-based trade-off curves are generated by using data that is obtained by 

understanding the physical characteristics of the product under development. A 

key requirement for this process is the existence of a design-set, which can be 

evaluated and narrowed down further throughout the SBCE process. Thus, the 

need for a detailed work could be eliminated. The activities within each step of 

the process for generating physics-based ToCs are described in detail in this 

section. 

5.4.1 Step 1: Understand the first design-set 

Activity 1.1: Use the developed set of design solutions from the SBCE process 

Objective: In order to evaluate the design-set and narrow it down, the design 

team must ensure that it is available in the correct format. 

Method: The design team should obtain the identified design-set to use 

during the SBCE process. This set is obtained from the designs that 

were developed by using one or a combination of the generated 

knowledge-based ToCs, from R&D, from simulations, and from 

prototyping and testing. Should no such ToCs exist, the design 

team can generate designs by using the knowledge obtained from 

understanding the physical characteristics and functionality of the 

product. 

Activity 1.2: Use the identified customer requirements and decision criteria  

Objective: In order to achieve an optimal design solution that addresses the 

needs of the customer(s), the customer requirements and decision 

criteria must be understood by the design team.  

Method: The design team obtains the identified customer requirements and 

decision criteria identified for knowledge-based ToCs for the same 

project. If such records are unavailable, the design team refers back 

to the customer requirements and decision criteria that were 

identified at the start of the SBCE project. Should no such data exist, 

the design team should follow the process laid out in subsection 
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5.3.1, step 1, to identify customer requirements and decision 

criteria. 

5.4.2 Step 2: Understand physics of the product 

Activity 2.1: Understand the physical characteristics/features of the product 

under development:  

Objective: This activity provides confidence for the design team to evaluate 

different design solutions. It is essential to understand the purposes, 

functions, and working environments of the product.  

Method: Fundamental features and the physical characteristics of the 

product under development should be investigated by referring to 

the laws of physics, and considering the identified customer 

requirements and decision criteria. Required information can be 

obtained from literature, industrial practices, and physics 

applications. A new set of ToCs, based on the obtained physics 

knowledge, could then be generated. 

Activity 2.2:  Identify new design parameters to generate physics-based ToCs  

Objective: As mentioned in section 5.3 in activity 1.3, design parameters are 

essential elements of trade-off curves. This activity identifies new 

design parameters that are representing the physical features and 

characteristics of the product. 

Method: Conflicting new design parameters should be identified based on an 

understanding of the physics of the product, and by considering the 

identified customer requirements and decision criteria. 

Activity 2.3: Evaluate the relations between the design parameters  

Objective: This activity is to provide designers with sufficient confidence for 

decision-making while comparing and narrowing down the design-

set. Thus, designers will be able to eliminate those solutions that 

are not meeting the customer requirements and decision criteria.  
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Method: The design parameters should be reviewed and understood in 

relation to the product physics. The type of relationship between 

design parameters should be identified.  

Activity 2.4: Generate non-scale ToCs based on the obtained physics 

knowledge:  

Objective: This activity generates non-scale physics-based ToCs that are 

presenting only the relationships between design parameters 

identified in activity 2.3, without numeric values. These ToCs 

facilitate communication among stakeholders, even without 

requiring a detailed engineering background, which enables 

decision-making, especially on the management level. 

Method: The design team should project the relations evaluated in activity 

2.3 against the non-scale ToCs. These relations could depict 

several forms of trend such as increasing, decreasing, linear, 

exponential, etc.  

5.4.3 Step 3: Test and analyse 

Activity 3.1: Turn non-scale ToCs into scaled ToCs based on physics knowledge 

Objective: In order to evaluate the design solutions within the developed 

design-set and make an accurate selection of the feasible designs, 

the non-scale ToCs must be turned into scaled physics-based ToCs 

that are representing real data based on physics knowledge.  

Method: The design team should collect real data of the identified design 

parameters from the individual solutions in the design-set, as well 

as from the simulations and testing that have been carried out. 
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Activity 3.2: Identify the feasible area and/or an optimal point in the physics-

based ToCs associated with the specific design parameter 

Objective: This activity identifies the area of design solutions that are meeting 

customer requirements and decision criteria, or are close to being 

an optimal design.  

Method: The design team should analyse the effects of changing design 

parameters on the performance of the product. As a result of 

understanding the product’s physics, designers can identify the 

optimal point in the physics-based ToCs associated with the specific 

design parameter, and/or the feasible area on each ToC.  

5.4.4 Step 4: Compare the solutions of the design-set 

Activity 4.1: Represent the data of the selected design-set on the generated 

physics-based ToCs 

Objective: This activity prepares the physics-based ToCs for the design team 

to start evaluating and comparing the design-set. 

Method: The values of the design parameters of each solution in the selected 

design-set are plotted against the generated physics-based ToCs. 

Thus, the design team identifies the differences between the 

physical features of the developed design solutions and the 

identified feasible solutions. 

Activity 4.2: Communicate and compare the design solutions 

Objective: A comparison is required to distinguish the high-quality designs 

from the low-quality solutions, in order to achieve/obtain a robust 

optimal solution.  

Method: The projection of the design parameter values of every solution in 

the physics-based ToCs will provide visualisation of each solution. 

This helps to compare each solution with the identified customer 

requirements and decision criteria. The design team can then make 
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a decision and narrow down solutions. Moreover, the design team 

will understand the differences and similarities between generated 

design solutions by using the physics-based ToCs generated in 

“Step 3: Test and Analyse”.  

Activity 4.3: Expand the feasible area if possible 

Objective: This activity is to increase the possibility of achieving the optimal 

design and thereby to improve the design performance and 

innovation level of the product. 

Method: In order to explore all possible design solutions as an alternative to 

the optimal design, the feasible area could be expanded. At this 

stage, the thorough understanding of the physical and product 

constraints will help to expand the feasible area that was defined in 

activity 3.2. However, the feasible area expansion is not a 

parametric extension, which would mean an equal expansion of all 

directions of the feasible area. Instead, expansions are undertaken 

on a case by case basis, according to the project under 

consideration. 

5.4.5 Step 5: Select and narrow down designs 

Activity 5.1: Select the design solutions in the feasible area or close to the 

identified optimal point 

Objective: The intention of this activity is to select quality designs for further 

narrowing down, since the design team intends to trade-off and 

narrow down the set of design solutions through the SBCE process. 

ToCs provide an objective tool to accomplish this task.  

Method: Those design solutions that fall in the feasible area should be 

selected. In addition, those designs that do not fall in the feasible 

area but meet the requirements partly and show relatively satisfying 

performance should also be selected to understand whether it is 

possible to improve these designs.   
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Activity 5.2: Second stage of narrowing down 

Objective: This activity helps to further narrow down the selected design 

solutions resulting from activity 5.1.  

Method: Design solutions are evaluated and compared to each other in order 

to obtain more optimised values of the design parameters that were 

identified in activity 2.2. From the selected design solutions, 

design(s) performing below the desired optimal point should be 

discarded. Discarded solutions are not compatible with the 

company benefits or have constraints at any stage of the product 

lifecycle. Designs should be selected for further development 

through the SBCE process if they perform at or above the customer 

requirements and meet the decision criteria. Thereby, the design 

team will be able to further narrow down the design solutions. 

5.4.6 Step 6: Enhance design 

Activity 6.1: Explore the opportunities for creating a new, improved design 

based on combining and/or modifying solutions from the selected 

designs 

Objective: This activity explores the generation of a new, enhanced design.  

Method: The design team should explore the opportunities for enhancing the 

design solution by combining the best performances of different 

design solutions that are included within the narrowed down design-

set. This enables the selection of complimentary features of the 

selected design solutions, and to generate a new design that takes 

advantage of each solution’s strengths. 

Activity 6.2: Capture and store the obtained knowledge  

Objective: The knowledge obtained throughout this process should be 

captured and stored for future reuse. In order to complete this 

activity, a software is required for organising and storing the 

knowledge in a systematic manner. Developing this software is out 
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of the scope of this PhD research, however, it is being developed 

under the name of “knowledge-shelf” concept by a member of the 

LeanPPD research team at Cranfield University (Suwanda, no 

date).  

Figure 5-7 illustrates an overview of the process for generating physics-based 

ToCs.  

 

Figure 5-7: Overall view of the process for generating physics-based ToCs 

As shown in Figure 5-7, the physical characteristics of the product are explored 

and understood to generate ToCs representing each physical characteristic. The 

design team then evaluates and compares the possible design solutions in order 

to narrow down the design-set considering the related design parameters. Then, 

optimal design solution(s) from each ToC are selected for further use within the 

SBCE process. Selected design solutions are improved and enhanced in order 

to achieve a final optimal design. 

5.5 The Process for Using ToCs in the SBCE Process Model 

The two processes presented in sections 5.3 and 5.4 focus on generating trade-

off curves by using different sources of data. Implementing these two processes 

in industrial case studies raised the following questions by the industrial 

collaborators, practitioners and academics: 

1. How to use knowledge-based ToCs within the SBCE process model, 

2. How to use physics-based ToCs within the SBCE process model, 

3. Is it possible to combine knowledge-based and physics-based ToCs within 

one trade-off curve? 
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In order to address these questions, this section presents a process for the use 

of ToCs that enable the key SBCE activities, as shown in Figure 5-8. Review of 

the related literature (Chapter 3), industrial field study results (Chapter 4) and 

experience gained from the applications in industrial case studies (Chapter 6) 

showed that the following key activities of the SBCE process model are enabled 

by using ToCs.  

1. Identify feasible design area, 

2. Generate a set of design solutions, 

3. Compare possible design solutions, 

4. Narrow down the design-set, 

5. Achieve the optimal design solution. 

 

Figure 5-8: The process for using ToCs in the SBCE process model 

Table 5-1 shows interactions and relations between the two processes. It 

describes how to use ToCs, and which type of ToCs should be applied in which 

activities of the SBCE process. The first column presents the sequential steps of 

the process for the use of ToCs, which is shown in Figure 5-8. The second column 

presents the associated activities of the SBCE process model as shown in Figure 

3-7, which can be effectively supported by using ToCs. The third column presents 

the types of trade-off curves to be used in order to enable the SBCE activities. 
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Each step of Figure 5-8 is explained in detail in the following subsections. The 

sequence of the process may change depending on the complexity of the 

product, detail, level of innovation, and requirements of the designers during the 

product development process. 

Table 5-1: Interactions and relations between activities of ToCs and the SBCE process 

Steps of the process for 
using ToCs in SBCE 

(Figure 5-8) 

SBCE activities to be 
supported by ToCs 

(Figure 3-7) 

Type(s) of ToCs to be 
used 

1.  Identify key value  
     attributes 

1.2.  Explore customer value 
1.4.  Translate value to  
        designers 

 

2.  Select previous projects   

3.  Identify the feasible  
     design area 

2.3.  Define feasible regions  
        of design space 

Knowledge-based ToCs 

4.  Develop the design-set 
3.1.  Pull design concepts 
3.2.  Create sets for each  
        subsystem 

Knowledge-based ToCs 

5.  Compare and narrow  
     down the design-set on  
     the component/ 
     subsystem level 

3.4.  Capture knowledge and  
        evaluate 
3.5.  Communicate set to  
        others 

Physics-based ToCs 

6.  Compare and narrow  
     down design-set on the  
     system level 

4.2.  Explore system sets 
4.6.  Converge on final set of  
        sub-system concepts 

Knowledge-based and 
physics-based ToCs 

7.  Achieve the optimal  
     design solution 

 
Combined knowledge-based 
and physics-based ToCs 

5.5.1 Step 1: Identify key value attributes  

Objective: Customer value should be defined so that the final optimal design 

solution can represent the required performance and meet the 

customer needs. The term “key value attributes (KVAs)” is a 

representation of customer requirements and decision criteria, both 

of which are important to generate trade-off curves as explained in 

subsections 5.3.1 and 5.4.1. This activity uses the terminology of 

KVAs in the ToC context in order to relate to the SBCE process 

model. 
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Method: The design team explores, understands and identifies the key value 

attributes of the product. These KVAs are used to generate 

knowledge-based and physics-based ToCs, which in turn identify 

the feasible design area that is described in subsection 3.2.1.  

5.5.2 Step 2: Select previous projects 

Objective: The aim of this activity is to provide the design team with the existing 

designs from previous projects, which may have been successful, 

failed, complete or incomplete. Thus, the design team can generate 

knowledge-based ToCs, which represent the historical data of 

previous projects, in a more resource-efficient manner.  

Method: Considering the KVAs of the current project, the design team 

identifies the similar previous projects that are stored in the 

company’s database. The similarity could be related to the duration, 

cost or size of the project. A member of the team should be 

dedicated to retrieving data from the company’s database. Previous 

projects identified during this activity can be reused for the current 

project. 

5.5.3 Step 3: Identify feasible design area 

Objective: The aim of this activity is to identify the feasible design area and to 

develop a design-set by using the data of previous projects. As 

explained in subsection 3.2.1, the identification of feasible design 

area is the first step in generating the design-set. This activity 

explores the alternative design solutions on the component or 

subsystem level of the product. 

Method: The design team generates knowledge-based ToCs considering 

the KVAs identified in step 1. They then use these generated 

knowledge-based ToCs to define feasible regions of the design 

space, as described in subsection 5.3.4, and to create design-sets 

for each subsystem.  
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5.5.4 Step 4: Develop design-set: 

Objective: The aim of this activity is to develop a set of design solutions to be 

used in the early stages of the SBCE process model. 

Method: The design team uses the generated knowledge-based ToCs to 

create design-sets for each component/subsystem. In order to 

complete this step, subsection 5.3.5 can be referred to. If lacking 

knowledge from previous projects, the design team can refer to the 

process for generating physics-based ToCs.  

5.5.5 Step 5: Compare and narrow down the design-set on the 

component/subsystem level 

Objective: The aim of this activity is to compare possible design solutions and 

to narrow down the design-set by using the knowledge of the 

physical characteristics of the product. This activity evaluates and 

compares alternative design solutions on the component or 

subsystem level.  

Method: The design team generates physics-based ToCs considering the 

KVAs identified in step 1. They then proceed to use these generated 

physics-based ToCs in order to capture knowledge and evaluate 

the design-set, as well as to communicate the set to stakeholders 

of the current project. 

5.5.6 Step 6: Compare and narrow down the design-set on the system 

level 

Objective: The aim of this activity is to evaluate and compare alternative 

design solutions on the system level. The system is developed as a 

result of using the SBCE process model.  

Method: Initially, the design team is required to apply the SBCE process 

model in an effort to converge on a system that combines the 

components/sub-systems of the product. After developing the 

design-set on the system level, the design team generates 
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knowledge-based and physics-based ToCs – or reuses the 

generated ToCs – in order to evaluate, compare and narrow down 

the converged design-sets. In this step, the design team can refer 

to the processes for generating knowledge-based and physics-

based ToCs as described in sections 5.3 and 5.4, respectively. 

5.5.7 Step 7: Achieve an optimal design solution 

Objective: The aim of this activity is to achieve an optimal design solution that 

meets all KVAs.  

Method: By employing the SBCE process model, the design team reuses the 

generated ToCs and continues comparing and narrowing down the 

design-sets until achieving the best design solution. If required, new 

ToCs may also be generated as a combination of historical data and 

physics data. In this step, ToCs can be generated by using the data 

from both existing knowledge and understanding the physics of the 

product. Thus, a combined trade-off curve can represent the 

historical data and the physical functionality of the product in the 

same graph. 

5.6 Summary of Chapter 5 

This chapter described how to create and visualise a knowledge-environment 

systematically by using trade-off curves. Knowledge-environments are key 

enablers of the SBCE process model. Three processes were developed and 

described in detail, in order to create the knowledge-environment. It was 

explained how to collect historical data and physics data that is then represented 

on ToCs. Finally, the utilisation of ToCs in enabling key activities of the SBCE 

process model was presented. 
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6 INDUSTRIAL CASE STUDIES AND EXPERT 

JUDGEMENTS FOR VALIDATION 

6.1 Introduction 

This chapter presents the application and the validation of the processes 

developed and presented in chapter 5. Figure 6-1 illustrates the structure of this 

chapter.  

 

Figure 6-1: Structure of chapter 6 

Section 6.2 provides an outline for each of the case studies that were used to 

develop and validate the processes. Section 6.3 presents the application of the 

initial version of the process for generating ToCs, which is shown in Figure 5-2, 

with an aerospace case study. Section 6.4 explains an application of the 
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improved version of the process for generating knowledge-based ToCs, as 

shown in Figure 5-3, through an automotive case study. Section 6.5 describes 

the validation of the finalised version of the process for generating knowledge-

based ToCs, as shown in Figure 5-4. The process for generating physics-based 

ToCs is validated by an electronics case study in section 6.6. Section 6.7 shows 

how to use generated knowledge-based and physics-based ToCs in an SBCE 

application in oil and gas industry. Finally, experts’ judgements are presented in 

section 6.8. 

6.2 Industrial case studies 

This section presents a brief outline of each case study, as they are shown in 

Table 6-1. There are five case studies in total. The first two industrial case 

studies, with Rolls-Royce and SiTech, helped the author to improve the proposed 

process in the early stages of this PhD research. In addition, three industrial case 

studies have then been conducted in order to validate the proposed processes 

for knowledge creation and visualisation that enable SBCE activities, which were 

presented in chapter 5. 

1.  Rolls-Royce Case Study:  

This hypothetical case study was completed in order to observe the 

potential benefits of generating and using knowledge-based trade-off 

curve practices in an industrial environment, as well as to identify the gaps 

within the process for further improvement. Rolls-Royce was the 

collaborating company, and the case study was part of the CONGA project 

(refer section 1.4). As mentioned in section 1.4, the aim of CONGA was to 

develop set based design and collaborative tools and methods, with 

example data to show how a noise requirement could be met. Although 

CONGA was not a project “to reduce the noise level of the engine”, this 

case study considered a turbofan engine in order to demonstrate the initial 

version of the proposed process for generating knowledge-based ToCs, 

as shown in Figure 5-2. Observations and obtained knowledge helped the 

author to improve the process. Detailed explanations on this case study 

are provided in section 6.3.  
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No. Case Study Complexity 
Design 
level 

ToC Types Process used Aim of the Case Study 

1 
Rolls-Royce 
Turbofan jet 

engine 
High System 

Knowledge-based 
ToCs 

Initial process for 
generating ToCs 

• To demonstrate and to improve 
the proposed initial process for 
generating ToCs 

2 
SiTech 
Car seat 
structure 

Medium Subsystem 
Knowledge-based 

ToCs 

Improved version 
of the process for 
generating ToCs 

• To visualise a knowledge-
environment using ToCs 

• To support decision-making 
through the SBCE process 

3 
Paxton 

Proximity Card 
Reader 

Simple Component 
Knowledge-based 

ToCs 

The process for 
generating 

knowledge-based 
ToCs that enable 

SBCE 

• To identify the feasible design 
area 

• To generate a design-set 

4 
Paxton 

Proximity Card 
Reader 

Simple Component Physics-based ToCs 

The process for 
generating physics-

based ToCs that 
enable SBCE 

• To compare the possible design 
solutions of the design-set 

• To narrow down the design-set 

5 
Caltec 

Surface Jet 
Pump 

Medium System 

Knowledge-based 
ToCs 

Physics-based ToCs 
Combined 

knowledge-based 
and physics-based 

ToCs 

The process for 
using generated 
ToCs within the 
SBCE process 

model 

• To achieve an optimal design 
using knowledge-based and 
physics-based ToCs within the 
SBCE process model 

Table 6-1: Outline of the content of case studies 

7
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2.  SiTech Case Study: 

This case study aimed to demonstrate an application of knowledge-based 

ToCs that enable SBCE activities in a research environment, by using real 

data. The requirement in this case study was to select an appropriate 

material for a new car seat structure as well as to achieve a hypothetical 

optimal design. Following this case study, it was understood that 

knowledge-based ToCs support the design decision-making, although the 

process as it is shown in Figure 5-3 needed further improvement. Detailed 

explanations on this case study are provided in section 6.4.  

3.  Paxton Case Study: Knowledge-based ToCs: 

This case study demonstrated the generation and the use of knowledge-

based ToCs that enable the below key activities of SBCE:  

• Identifying the feasible design area,  

• Developing a design-set from previous projects.  

The product under development was a proximity card reader, which is 

considered to be a simple product. This case study was focused on only 

one component of this product, the front cover. It demonstrates the 

application and the validation of the proposed process for generating 

knowledge-based ToCs, as it is shown in Figure 5-4. Detailed explanations 

on this case study are provided in section 6.5.  

4.  Paxton Case Study: Physics-based ToCs: 

This case study demonstrated the generation and the use of physics-

based ToCs, as it is shown in Figure 5-6, that enable further key activities 

of SBCE: 

• Comparing possible design solutions,  

• Narrowing down the design-set.  

This case study was conducted as a continuation of the Paxton case study: 

Knowledge-based ToCs. The product, as well as the requirements for the 
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product, remained the same. Detailed explanations on this case study are 

provided in section 6.6. 

5.  Caltec Case Study: 

This case study demonstrated the validation of the process for using ToCs 

in the SBCE process model, as it is shown in Figure 5-8. The main 

objective of this case study was to achieve the optimal design solution by 

using both knowledge-based and physics-based ToCs throughout the 

SBCE application. The product under development was a surface jet pump 

used in the oil and gas industry. As the functional principles of a surface 

jet pump are highly complex, but the device itself has only few 

components, it was classified as a product of medium complexity. This 

case study is unique in that it shows the application of knowledge-based 

and physics-based ToCs on both the component and the system level. 

Detailed explanations on this case study are provided in section 6.7. 

The following sections describe and explain these industrial case studies in more 

detail. Confidential data and information have been removed or modified. 

6.3 Rolls-Royce Case Study 

This is a research-based case study carried out in order to understand the initial 

process, which is presented in Figure 5-2, to generate useful ToCs to support 

SBCE. This hypothetical case study demonstrates example data to show how to 

generate trade-off curves based on the knowledge obtained from historical data. 

Rolls-Royce Plc. is a British company headquartered in London. The company 

provides power systems and services for aviation and other industries. The Bristol 

branch builds on the history of the aircraft industry in Bristol. Rolls-Royce Bristol 

was engaged with during the initial stages of the research. Feedback and 

comments from the senior managers in the company helped the researcher with 

developing the process for generating knowledge-based trade-off curves. 

However, although Rolls-Royce provided support in developing a process, this 

case study is research-based and does not necessarily reflect Rolls-Royce’s view 

on the choice of parameters being compared, or on the conclusions being drawn 
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from the generated ToCs. The developed process was implemented in a 

hypothetical case study of a turbofan jet engine. Members of the research team 

who contributed to and were involved in conducting this case study are presented 

in Appendix B. An overview and the characteristics of a turbofan jet engine, which 

is the product under consideration in this case study, is presented in the following 

subsection.  

6.3.1 Overview and characteristics of a turbofan jet engine 

A jet engine is an integral part of an aircraft, as it generates thrust by jet 

propulsion. The jet engine’s most common form, in commercial aircraft, is the 

turbofan engine. Figure 6-2 illustrates an example of a turbofan jet engine and its 

components. In a turbofan engine, the forward force is generated by accelerating 

the entering gas (air) between the entrance and the exit of the engine, thereby 

creating a forward force.  

 

Figure 6-2: An illustration of a turbofan jet engine and its key components (Olympus, no 

date) 

The acceleration of the gas within the engine requires combustion, and therefore 

fuel. In order to reduce fuel burn but maintain thrust, designers have devised 

engines in which only a small amount of gas passes through the engine core and 

is accelerated. A much larger amount of gas bypasses the engine core and is 
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combined with the exhaust gas behind the engine. The bypass ratio is defined as 

the ratio between the air passing outside and the air passing through the engine 

core. Behind the engine, a small amount of high-velocity gas (from the engine 

core) combines with a large amount of low-velocity gas (from the bypass). 

The combination of the gases results in a velocity transfer from the high-velocity 

gas to the low-velocity gas. The combined velocity, however, is larger than the 

common velocity at the entrance of the engine.  

Thus, turbofan engines use a small amount of fuel to affect a moderate velocity 

change of a large amount of gas, thereby creating thrust reasonably efficiently. 

6.3.2 Demonstrating the initial version of the process for generating 

ToCs that enable SBCE 

The main objective of this hypothetical research-based case study was to reduce 

the engine noise level, in order to meet the night operations regulations of London 

Heathrow Airport. In this research-based exercise, the initial version of the 

process for generating ToCs, as shown in Figure 5-2, was followed step-by-step 

and is presented below. This case study was established based on the author’s 

observations, understanding and judgement according to the knowledge 

obtained from several CONGA project meetings. 

6.3.2.1 Step 1: Define decision criteria for a low noise jet engine 

The author hypothetically identified the following decision criteria, in order to 

demonstrate the process for generating ToCs: 

1. Low noise:  

The take-off noise level of the new product should be lower than the noise 

levels of existing products. 

2. Reliability: 

The new product should operate 24/7 without significant downtime. 

3. Durability:  

The new product should be durable enough to be able to operate on an 

aircraft capable of carrying 150 passengers. As all aircraft must be able to 
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fly with only half their engines operating, each engine on a twin-engine 

aircraft must be capable of carrying all passengers. 

4. Cost:  

Fuel consumption should not be higher than the consumption of existing 

turbofan jet engine solutions. 

It became apparent during the case study that only identifying the decision criteria 

was not sufficient in order to start generating trade-off curves. The need for the 

representation of each decision criteria also emerged. That was a contribution of 

this case study to improving the initial process. In this research-based case study, 

the analysis of decision criteria helped the author to identify design parameters 

and possible conflicting relations between these design parameters as shown in 

Table 6-2. Knowledge-based ToCs were generated in order to visualise these 

conflicts and identify the best balance compromise between the design 

parameters. 

Table 6-2: Conflicting relationships between the design parameters of a low noise jet 

engine  

No. Relationships Conflicts between the design parameters 

1 Thrust vs.  

Take-off Noise Level 

Engine noise was defined as 100% of the aircraft take-

off noise. As aircraft take off with full power, thrust and 

fuel consumption are at a maximum. It was surmised 

that the noise level is related to the amount of thrust 

generated. 

2 Bypass Ratio vs. 

Take-off Noise Level 

In order to achieve high thrust but low noise, the bypass 

ratio of the engine can be increased. A higher bypass 

ratio produces higher thrust at lower noise levels. 

3 Fan Diameter vs. 

Take-off Noise Level 

In order to increase the bypass ratio, the fan diameter 

can be increased. This increases air intake. However, a 

larger fan results in the engine being heavier. 

4 Engine Weight vs. 

Take-off Noise Level 

In general, larger and heavier aircraft engines produce 

more noise than lighter engines. Through increasing the 

bypass ratio by increasing the fan diameter, the engine 

weight will also increase. 

5 Engine Weight vs. 

Fuel consumption 

A bigger fan means a heavier engine, and a heavier 

engine results in more fuel consumption. This increases 

operating cost. 
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6.3.2.2 Step 2: Get the data related to each of the decision criteria of the 

low noise engine 

Data was collected from publicly available data sources. Due to confidentiality 

issues, the collaborating company was not in a position to provide data from their 

previous projects. Table 6-3 shows the data collected from previous projects, 

which were released to market as successful commercial products and for which 

data is available for public use. 

Table 6-3: Data collected from successful previous projects (ICAO, 2016) 

6.3.2.3 Step 3: Generate different trade-off curves for the low noise 

turbofan jet engine 

The author plotted the data against ToCs, as illustrated in Figure 6-3. Only four 

trade-off curves were generated, instead of the five defined in the previous step 

in Table 6-2, as data for the fuel consumption was not publicly available in the 

required detail. In Table 6-2, relationship 5 features fuel consumption as a design 

parameter, and was thus not generated in a ToC. Figure 6-3 illustrates the 

Engine 
Take-off 

noise 
[EPNdB] 

Thrust 
[kN] 

Bypass 
Ratio 

Engine 
Weight 

[lb] 

Fan 
diameter 

[in] 

Fuel 
consumption 

[lb/lbf 
thrust/hr] 

Trent 1000-G 90.6 297.8 10.5 11,924 112 

Not publicly 
available 

Trent 553-61 95.4 235.8 7.6 10,400 97.4 

Trent 556-61 95.8 249.1 7.6 10,400 97.4 

Trent 560-61 96.8 266.9 7.6 10,400 97.4 

Trent 768-60 96.9 300.3 5.2 10550 97.4 

Trent 772-60 97.4 316.3 5.1 10550 97.4 

Trent 875 95.8 333.6 6.3 13,100 110 

Trent 877 96.1 342.5 6.2 13,100 110 

Trent 884 95.9 373.6 6 13,100 110 

Trent 890 91.5 400.33 6.4 13,100 110 

Trent 892 98.1 400.3 6.4 13,100 110 

Trent 895 98.4 415.4 5.8 13,100 110 

Trent 970 94.2 311.4 8.8 13,842 116 

Trent 972 94.5 320.3 8.8 13,842 116 

Trent XWB-84 91.5 374.5 9.1 16,043 118 
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available four trade-off curves, which were generated based on the available 

data: 

1. ToC 1 – Thrust vs. Take-off Noise Level 

2. ToC 2 – Bypass Ratio vs. Take-off Noise Level 

3. ToC 3 – Fan Diameter vs. Take-off Noise Level 

4. ToC 4 – Engine Weight vs. Take-off Noise Level 

After generating ToCs, a trendline was added to each ToC except for ToC 1 in 

Figure 6-3(a), as it did not show a plausible trend between the design parameters 

of thrust and take-off noise level. ToC 1 should be analysed among different 

departments in order to identify the reason for such a scattered relation. Due to 

resource constraints, this task could not be completed in this case study. 

6.3.2.4 Step 4: Get the requirements (customer) and plot these against the 

ToCs 

The requirement for a low noise turbofan jet engine was identified as it having to 

be lower than 84 EPNdB. The author noticed that the customer requirements 

were obtained very late throughout the case study when the initial version of the 

process was followed. Consequently, the author modified the process for ToC 

generation to ensure that customer requirements are identified as the first step of 

the process, before identifying the decision criteria. As shown in Figure 6-3, all 

turbofan engines considered in this case study have take-off noise levels above 

the customer requirement of 84 EPNdB. 

6.3.2.5 Step 5: Define feasible/infeasible design area 

In order to define the feasible and infeasible design areas, the value of the 

customer requirement of 84 EPNdB was plotted against the generated 

knowledge-based ToCs. In Figure 6-4, straight lines at the value of 84 EPNdB on 

the X axis of each trade-off curve represent the customer requirement. The area 

to the left of the line represents the feasible area, since the take-off noise level is 

required to be below 84 EPNdB. The area to the right of the line shows the 

infeasible area, which means that the designs with their data in this area do not 

meet the current customer requirement.
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Figure 6-3: Knowledge-based ToCs generated for the low noise turbofan jet engine
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Figure 6-4: Feasible and infeasible areas of knowledge-based ToCs for the low noise turbofan jet engine

(a) Feasible/Infeasible areas for Thrust vs. Take-off Noise Level (b) Feasible/Infeasible areas for Bypass Ratio vs. Take-off Noise 

(d) Feasible/Infeasible areas for Engine Weight vs. Take-off Noise (c) Feasible/Infeasible areas for Fan Diameter vs. Take-off Noise 
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6.3.2.6 Step 6: Extract/locate the design solution 

After plotting the customer requirements against the generated trade-off curves, 

it was seen that there was no design solution within the feasible area. However, 

the author suggests that design solutions out of the feasible design area might 

be helpful for developing a new design, if the reasons are explored and 

understood by the designers and engineers. The author made her own 

justification and presented her own conclusions in order to demonstrate how 

ToCs can be analysed, and how the comparison can be executed by using ToCs.  

Obtaining publicly available information helped the author to select following 

designs from each ToC in Figure 6-4: 

1. Trent 1000-G from all trade-off curves in Figure 6-4, since it has the 

lowest noise level and highest bypass ratio when compared to other 

designs. 

2. Trent 553-61 from the ToC in Figure 6-4(d), since it is the lightest 

engine when compared to other designs. However, it has the lowest 

thrust, which should be taken into account regarding the durability and 

reliability decision criteria. 

6.3.2.7 Step 7: Develop a set of potential solutions that might be helpful 

for the product under consideration 

Selected design solutions were investigated, and the data of these designs was 

analysed by using the ToCs in Figure 6-4. It was determined that some designs 

might be used to create new, potentially feasible designs by combining a number 

of characteristics from several existing designs. In order to be a potentially 

feasible solution, existing designs might need to undergo one of the following 

(see 5.3.4): 

1. Minor modifications 

2. Major modifications 

3. Complete re-design 

This analysis was performed for the selected designs in step 6 above, and the 

results are presented below: 
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a) Take-off Noise Level:  

The author focused on the data that shows the lowest take-off noise level, 

which is 90.6 EPNdB for the design Trent 1000-G. Then, the author 

understood the key features and characteristics of the Trent 1000-G 

design, related to noise. Characteristic features of the Trent 1000 series 

are: 

• Ultra-efficient, swept fan blades enable a quieter operation and 

optimal engine core protection. 

• A Trent 1000 powered Boeing 787 at full take off power is 3 dB 

quieter than the previous generation engine. 

While it was understood from the ToCs that the Trent 1000-G cannot be 

used as a whole system concept, the Trent 1000 fan design might be an 

inspiring idea for a new design.  

b) Engine Weight: 

The author focused on the data that shows the lightest engine in Figure 

6-4(d). This design solution is the Trent 553-61, with an engine weight of 

10,400 lbs. A characteristic feature of the Trent 500 series is: 

• Lightweight, hollow titanium wide chord fan for low noise and high 

efficiency.  

If the same material as used in the Trent 553-61 can also be used in a new 

design, this might decrease the engine weight of the new product design. 

In fact, Trent 500 series engines power the Airbus A340 aircraft. This 

aircraft is configured with four engines. It is apparent that four engines will 

be noisier than two engines. In addition, the total weight of an aircraft with 

four engines would be higher than an aircraft with two engines. Heavier 

aircraft also emit more noise. Therefore, the design of the Trent 553-61 

could be reused if the fan diameter is increased (which reduces engine 

noise), and the number of engines is reduced from four to two. 

Furthermore, the passenger capacity of the Trent 553-61 is more than 300 

passengers, which is more than the customer requirement for passenger 

capacity in this study (150 passengers). Hence, it can be investigated if 
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noise decreases when the design of Trent 553-61 engines is simulated for 

150 passenger capacity. 

This step proves that knowledge-based ToCs provide an environment to create 

knowledge by using the data and features of existing products.  

6.3.2.8 Step 8: Convert these potential solutions to a viable solution 

Two design solutions, Trent 1000-G and Trent 553-61, can be considered as the 

basis of future designs. As explained above, a combination of their characteristics 

may lead to the emergence of a viable solution that meets the customer 

requirements. Converting these designs to a useful solution requires the use of 

the SBCE process model. Due to resource limits and data availability restrictions, 

this step was not applied in this case study.  

6.3.3 Debriefing of the Rolls-Royce case study 

The existing design solutions Trent 1000-G and Trent 553-61 can be considered 

hypothetically to be reused, after modifications, in order to develop a design-set 

for the SBCE application of a low noise turbofan jet engine. Feedback received 

from the industrial collaborators helped the author to identify the gaps in the initial 

process for generating ToCs, and to improve this process. The next section 

applies the revised process in an industrial case study of a car seat structure.  
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6.4 SiTech Case Study 

This section demonstrates the application of the improved version of the process 

for generating knowledge-based ToCs, as presented in Figure 5-3. This case 

study aims to visualise a knowledge-environment using ToCs, and to support 

decision-making through the SBCE process. An overview and characteristics of 

the car seat structure is presented in the following subsection. The term for 

“design or design solution” refers to a hypothetical design which does not have 

all technical details, but the design data to be used in order to develop a new 

design.  

SiTech Sp. z o.o., the collaborating company, is a car seat manufacturer with 

production plants in Poland, Germany and China. The company is a supplier of 

Volkswagen AG. The researcher was able to reuse collected real data in order to 

validate the proposed process for generating knowledge-based trade-off curves 

that enable key activities of SBCE. Members of the research team who 

contributed to and were involved in conducting this case study are presented in 

Appendix B. 

6.4.1 Overview and characteristics of a car seat structure 

Recently, the automotive industry has focused on manufacturing more fuel 

efficient and lightweight cars due to the carbon emission reduction regulations. 

Several components are impacting the vehicle weight, one of which is the seat 

structure. The seat structure is the ‘skeleton’ of the seat system, which is 

assembled to later fit into the body of the car. Figure 6-5 illustrates an example 

for a car seat structure. Regarding the contribution to weight, the material type is 

the most essential part of the seat structure. Using a lightweight material can 

reduce the weight, however, durability constraints might apply. On the other hand, 

using a material that is both lightweight and strong might increase the material 

and manufacturing costs. In order to find a balance between these conflicting 

issues, ToCs are used in this case study for selecting an appropriate material.  
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Figure 6-5: An example of a car seat structure 

6.4.2 Selecting an appropriate material for a new car seat structure 

The main objective of this case study was to develop a new design solution for a 

passenger car seat that is both strong and light weight. The process implemented 

in this case study was the improved version of the process for generating ToCs 

that enable SBCE applications, as it is shown in Figure 5-2. The systematic 

application of the process steps for generating ToCs in this case study is 

described below, with the car seat structure being referred to as the “final 

product”. 

6.4.2.1 Step 1: Decision criteria for the new car seat structure 

1.1. Get customer requirements:  

The following are the given customer requirements for the car seat: 

1. Light and strong metal material  

2. Durability 

3. Low manufacturing cost 

4. Small seat size 
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1.2. Define decision criteria:  

The analysis of the customer requirements helped to identify the following 

decision criteria: 

1. High durability: The final product should be durable with regards 

to regular operational load as well as in crash events. 

2. Low cost: This is the cost of the final product, which includes the 

material cost and the manufacturing cost.  

3. Low weight: The final product should be as light as possible, while 

still providing the required strength. 

4. Small package area: Dimensions of the final product should not 

exceed the determined area within the car. 

1.3. Define design parameters:  

The design parameters were identified by breaking down the final product into 

parts: material type, joining process and shape of the product. For example, 

material type and joining process affect the durability, cost and weight of the 

product while the shape would have an impact on package size. In this case 

study, the main focus was on defining design parameters that were related to 

the material type.  

1. Maximum tensile strength: Durability is related to the maximum 

tensile strength: A higher tensile strength results in a stronger and 

more durable material. 

2. Material cost: Product cost is related to material cost: Different 

types of material affect the cost, depending on the elements they 

include or their production method.  

1.4.  Define the relations between defined design parameters:  

In this case study, the following pairs of parameters provide the knowledge 

for plausible relationships to be presented in trade-off curves: 

ToC 1 –  Material cost vs. maximum tensile strength:  
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The relationship between the material cost and maximum tensile 

strength will show the conflicts between the durability and cost 

decision criteria.  

6.4.2.2 Step 2: Data Collection for the new car seat structure 

2.1.  Collect the data of the defined design parameters:  

Data was collected from material providers. Table 6-4 presents the 

collected metal data, which includes different material types. However, the 

data for the material cost was not available in the required format. The 

following activity explains how data was obtained in order to represent the 

material cost.  

2.2.  Filter and refine the data:  

Due to data for the material cost being unavailable, an alternative design 

parameter was considered to represent the cost decision criteria. “Price 

increase on identical dimension in percentage” was identified as the new 

design parameter. It is related to the price increase when the volume of 

the material is stable but the maximum tensile strength and density of the 

material vary. Data is presented in Table 6-4. 

2.3. Prepare the final filtered data:  

In this case study, activity 2.3 was not required as the data was made 

available in the required format in activities 2.1 and 2.2. 

Table 6-4: Metal data for the car seat structure collected from material providers 

No. Sheet Metal 
Max Tensile 

Strength [N/mm2] 
Density 
[Kg/dm3] 

Price increase on 
identical dim. in 

% 

1 Material 1 270 2.7 0 

2 Material 2 380 7.85 2 

3 Material 3 545 7.85 12 

4 Material 4 580 7.85 16 

5 Material 5 615 7.85 22 
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6.4.2.3 Step 3: ToCs generation for the new car seat structure 

3.1. Plot the data of the corresponding design parameters:  

A trade-off curve, as mentioned in activity 1.4, was generated by using the 

corresponding data in Table 6-4 according to the defined relationship 

between the related design parameters. Generated knowledge-based ToC 

is presented in Figure 6-6.  

3.2.  Plot the customer requirements against generated ToCs: 

Customer requirements were not provided as numeric values in this case 

study. They can therefore not be plotted against the axes of the ToC. In 

the absence of predetermined requirements, in order to demonstrate the 

improved version of the process, an achievable realistic system target was 

identified. This target is based on the product and market knowledge, 

assuming that it is a good approximation of an implicit customer 

requirement. This implicit customer requirement is quantified as below: 

• Maximum tensile strength should be between 350 and 550 N/mm2. 

 

Figure 6-6: ToC 1 – Knowledge-based ToC representing the data for the durability and 

cost decision criteria 
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6.4.2.4 Step 4: Feasible solutions for the new car seat structure 

4.1. Define the feasible and infeasible area:  

The implicit customer requirement identified in the previous activity was 

plotted against the generated ToC, and the feasible area is highlighted in 

Figure 6-7.  

4.2. Identify the design solutions within the feasible area:  

After identifying the feasible area, feasible solutions could be located. It 

was found that out of five material types in total, there were two viable 

materials extracted from the generated ToC. These are Material 2 and 

Material 3, which meet durability and cost decision criteria. 

4.3. Develop a set of potential design solutions:  

Ideally, a design-set should be developed by using the data of Material 2 

and Material 3. Due to limited resources, the author reused the data that 

was previously captured based on 15 previous design solutions as shown 

in Table 6-5, so that weight and package area decision criteria could also 

be addressed. 

 

 Figure 6-7: ToC 1 – Knowledge-based ToC representing the feasible area for the 

durability and cost decision criteria 
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6.4.2.5 Step 5: Optimal solution for the new car seat structure 

5.1. Generate new ToCs:  

New design parameters were identified related to the weight and package 

area decision criteria. These design parameters are:  

1. Sheet metal thickness: Increasing the sheet metal thickness 

increases the strength of the material, and thus the durability of the 

product. On the other hand, thicker sheet metal causes additional 

material cost and increases the weight of the final product.  

2. Weight/package area ratio: This is the amount of the sheet metal 

that falls into an identified package area. Due to weight 

considerations of the final product, this ratio is required to be low.  

After identifying new design parameters, the following relationship 

between them was defined as below: 

ToC 2 –  Sheet metal thickness vs. weight/package area ratio:  

These design parameters have an impact on weight and package 

size of the car seat structure. The author aimed for a low weight/ 

package area ratio, while simultaneously achieving sufficient 

sheet metal thickness. The ToC which was created based on this 

relationship was used to narrow down the set of possible design 

solutions. 

Table 6-5 presents the data of weight/package area ratio with different sheet 

metal thicknesses that is reused from previous design solutions. Data in Table 

6-5 is plotted in ToC 2, as shown in Figure 6-8. 
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Previous Design 
Solutions 

Sheet Metal Thickness 
[mm] 

Total Design Weight to 
Package Area Ratio [Kg/m2] 

Design 1 0.5 4.51 

Design 2 0.9 2.65 

Design 3 0.6 5.33 

Design 4 0.6 5.06 

Design 5 0.5 4.2 

Design 6 0.6 5.05 

Design 7 0.6 4.59 

Design 8 0.5 3.81 

Design 9 0.9 2.29 

Design 10 0.5 3.81 

Design 11 0.6 4.89 

Design 12 0.8 7.34 

Design 13 0.8 6.21 

Design 14 0.8 7.2 

Design 15 0.8 6.15 

Table 6-5: Data reused from previous design solutions 

 

Figure 6-8: ToC 2 – Comparison of 15 design solutions for weight and package area 

decision criteria 
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5.2. Compare and trade-off developed design-set:  

This activity was completed in parallel with the next activity, 5.3. 

5.3. Narrow down the design solutions: 

ToC 2, shown in Figure 6-8, was generated to be able to compare and 

narrow down the possible design solutions. A lower ratio of 

weight/package area provides a better solution. On the other hand, 

increasing the sheet metal thickness may increase the durability, however, 

the material cost also increases accordingly. Based on this knowledge, the 

following conclusions were made by the author: 

• Design 2 and Design 9 should be eliminated from the design-set, 

since they have the highest sheet metal thickness compared to 

other designs, which may cause an increase in material cost.  

• Design 12, 13, 14 and 15 should be eliminated since they have very 

high sheet metal thickness (0.8mm), and also the highest 

weight/package area ratio. This leads to the consideration of final 

product weight. The optimal design should be lightweight. 

• Design 3, 4, 6, 7 and 11 should also be eliminated since they show 

lower performance than Design 1, 5, 8 and 10 considering the 

weight/package area ratio and sheet metal thickness. 

As a result of comparing the possible design solutions to each other, and 

narrowing down the design-set, there were four selectedr designs: 

1. Design 1 

2. Design 5 

3. Design 8 

4. Design 10 

5.4  Select the optimal design solution:  

In order to select the best design solution among these four designs in the 

design-set, a new ToC can be generated. The author identified the 
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following possible relationship between the design parameters for a new 

ToC: 

ToC 3 –  Crash Performance vs. Weight:  

These design parameters have an impact on durability and weight of 

the car seat structure. The author aimed for a lightweight final 

product, while simultaneously achieving sufficient strength against 

any crash incidents.  

Due to limited resources, this relationship is hypothetically represented in 

ToC 3 as shown in Figure 6-9, in order to demonstrate the improved 

version of the process for generating ToCs that enable SBCE applications. 

Thus, the remainder of this case study includes hypothetical conclusions 

by the author, which do not necessarily reflect SiTech’s view on the 

selection of designs.  

 

Figure 6-9: ToC 3 - Crash performance analysis for achieving optimal design solution 

As shown in Figure 6-9, data of four different design showed different 

weight and crash performance results. It can be approximated that the 

relationship between weight and crash performance was roughly linear. A 

heavier product is expected to show better crash performance (a trend 

which was observed in three out of four designs). Ideally, the decision 

would be to select the highest crash performance, which was Design 5. 
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However, Design 5 was too heavy to meet the decision criteria of weight. 

On the other hand, Design 1 was the lightest design solution (with low 

weight being a customer requirement), but its crash performance did not 

meet the durability decision criteria. Since the data of Design 8 met all the 

identified decision criteria and customer requirements for the current 

project, it was hypothetically selected as an optimal design. 

6.4.3 Debriefing of the SiTech case study 

Material 2 was selected as an appropriate material type for the new car seat 

structure, and data of Design 8 was selected from the developed design-set to 

be used in developing an optimal design. This case study provided a better 

understanding of the industrial applications of using ToCs that enable SBCE 

activities. Moreover, decision-making was supported by ToCs representing a 

knowledge-environment. The process for generating knowledge-based ToCs 

was also further refined to its final form, as it is depicted in Figure 5-4.   
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6.5 Paxton Case Study: Knowledge-based ToCs 

This section presents the application and the validation of the process for 

generating knowledge-based ToCs that enable SBCE, as presented in Figure 

5-4. This case study aims to present the utilisation of knowledge-based ToCs to 

identify the feasible design area and to develop a set of design solutions, which 

are the key activities of SBCE.  

Paxton designs and manufactures market leading IP access control, door entry 

and building intelligence systems for smart buildings. The company develops 

systems for the mid-market (such as education, healthcare, retail, leisure, 

commercial and public sector) and provides solutions suitable for a wide range of 

sites and requirements. The members of “the research team” that took part in this 

case study, and their contributions to it, are defined in Appendix B. An overview 

and characteristics of the card reader, which is the subject of this case study, is 

presented in the following subsection.  

6.5.1 Overview and characteristics of the proximity card reader 

Access control is the selective restriction of access to a place or other resource. 

An example of an access control system is illustrated in Figure 6-10. The specific 

product for this case study is commonly known as a “proximity card reader”, which 

is referred to as “card reader” in this case study. It is an important part of an 

electronic access control system. The card reader identifies the different users 

trying to access the system and sends this information to another device, which 

verifies if the users are allowed to have access. Thus, the customer company will 

be able to gather information about the entries into the system (e.g. the number 

and identity of people accessing the system within a specific time-period, and 

also the number of people within the system for fire, life, safety considerations). 
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(a) Electronic access control system diagram      (b) The card reader 

Figure 6-10: An example of a card reader within the electronic access control system 

A card reader consists of seven components, as illustrated in Figure 6-11. The 

front cover protects the electronic part of the product, while the back-plate 

facilitates the installation of the product on a wall or door. The remaining five 

components – the reader’s module, the coil, the main PCB, the exciter, the power 

connection – are internal components that provide a magnetic area and facilitate 

the recognition of the credentials of the users.  

 

Figure 6-11: Components of an electronic access card reader  



Chapter 6 – Industrial Case Studies and Expert Judgements for Validation 

105 

6.5.2 Developing a design-set for a vandalism resistant card reader 

The main objective of this case study is to present and validate the application of 

the process to generate several ToCs based on historical data. This enables the 

identification of the feasible design area and the generation of a design-set for 

the SBCE application. The aim is to design a card reader that is resistant to 

vandalism. Vandalism is defined as deliberate damage being inflicted on the 

product, for instance a removal of the card reader by hand, blows to the card 

reader with any object, intentional fire damage, and damage resulting from 

liquids, sand or stones. The process for generating knowledge-based ToCs, as 

shown in Figure 5-4, was followed. Its application is presented below. 

6.5.2.1 Step 1: Decision criteria for the new card reader 

1.1.  Get customer requirements:  

The following customer requirements have been identified by examining 

the customer feedback about the current products of the company, as well 

as by brainstorming and interacting with designers and engineers in 

Paxton:   

1. Resistant to vandalism. 

2. 250,000 activations during the product life (5 years): The card 
reader must work for a minimum of 250,000 times within five years. 

3. Minimum operational distance of 10 mm: The card reader must 
be activated by the electronic cards at a minimum of 10mm 
distance. 

4. Maximum operational distance of 50 mm: The card reader must 
be activated by the electronic cards at a maximum of 50mm 
distance. 

5. The new card reader’s manufacturing cost must not exceed the 
amount that the customer identified (due to confidentiality issues, 
the required amount could not be provided in this thesis). 

1.2.  Define decision criteria:  

The following decision criteria were identified by analysing the customer 

requirements and brainstorming with designers and engineers in Paxton:  
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1. Durability:  

The new card reader must be durable against vandalism, 

violation, burning, and breaking. 

2. Reliability: 

The new card reader should work as intended, and with the 

required read operational distance of 10-50mm, for at least 

250,000 times during the product life of 5 years. 

3. Cost Efficiency:  

The manufacturing cost of the new card reader is identified 

as a percentage of the retail price of the product as per 

company policy (due to confidentiality issues, the 

percentage could not be provided in this thesis). 

1.3.  Define design parameters:  

The following design parameters have been identified by analysing the 

features and characteristics of the card reader in order to identify 

relationships with each of the decision criteria defined in activity 1.2: 

1. Coil size 

2. Coil shape 

3. Coil wire length 

4. Coil magnetic area 

5. Operation distance 

6. Front cover material type 

7. Manufacturing cost 

8. Front cover material cost  

1.4.  Define the relations between defined design parameters:  

The research team conducted a brainstorming meeting to determine the 

conflicting relationships between the characteristics of the design 

solutions, which will support the creation of a design-set to provide a 

knowledge-environment for the SBCE application. These relationships are 

based on the understanding of the product’s characteristics to create 
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meaningful knowledge, as well as an overview of potential conflicts 

between them. As a result of the brainstorming meeting, it was understood 

that shape and wire length of the coil have an influence on the magnetic 

area created by the coil, which affects the operation distance of the 

product. The operation distance is also affected by the size of the coil. 

Regarding the cost efficiency and durability aspects of the new product, 

the research team was interested in the relationships between the material 

type of the front cover and the manufacturing cost, as well as the material 

cost. Table 6-6 illustrates the identified relationships by showing the 

related decision criteria. 

Table 6-6: Plausible and conflicting relationships between identified design parameters  

6.5.2.2 Step 2: Data collection for the new card reader 

2.1.  Collect the data of the defined design parameters:  

Once the design parameters were identified, the required data was 

collected by the research team from previous, successful commercial 

projects. The sources for the data included final detailed designs, product 

installations and operations manuals, among others. Figure 6-12 

illustrates the previous products for a card reader, namely P38, P50, P75, 

P200, Metal reader, Architect reader, Backbox reader, and the Marine 

reader. Table 6-7 shows the design parameter data collected of these 

No. Parameters for X axis Parameters for Y axis 
Related Decision 

Criteria 

1 Coil shape Coil magnetic area Reliability 

2 Coil wire length Coil magnetic area Reliability 

3 Operation distance Coil magnetic area Reliability 

4 Operation distance Coil size Reliability 

5 Front cover material type Manufacturing cost Durability and Cost 

6 Front cover material type Front cover material cost Durability and Cost 
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previous products. In Table 6-7, the design parameters defined in activity 

1.3 are listed in the left column, and confidential data has been labelled 

with “X”. 

 

Figure 6-12: Images of previous products that were used for data collection (Paxton, 

2017) 

    Previous Projects 

No. Design Parameters P38 P50 P75 P200 
Metal 
reader 

Architect 
reader 

Backbox 
reader 

Marine 
reader 

1 Coil size X X X X X X X X 

2 Coil shape X X X X X X X X 

3 Coil wire length Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown 

4 Coil magnetic area Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown 

5 Operation distance 60 80 110 200 50 50 125 40 

6 
Front cover material 

type 

ABS  ABS  ABS  ABS Zamak3 
and PC 
window 

ABS  ABS  
Steel 

and PC  

Plastic Plastic Plastic Plastic Plastic Plastic window 

7 
Product retail price 

[£] 
110 110 110 110 165 220 150 220 

8 
Front cover material 

cost 
Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown 

Note:    Product retail prices are for reference only and may not represent the actual retail prices. 

                X: Confidential Data 

Table 6-7: Design parameter data collected from previous projects 

2.2.  Filter and refine the data:  

It was noticed that some of the identified design parameters had no data, 

since it was not recorded for the previous projects. The data that could not 
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be sourced was defined as “unknown”. The parameters with unknown data 

were removed. Design parameters with unknown data are the coil wire 

length, the coil magnetic area and the front cover material cost. Table 6-8 

shows the filtered and refined data of the design parameters. 

    Previous Projects                                                

N
o 

Design 
Parameters 

P38 P50 P75 P200 
Metal 
reader 

Architect 
reader 

Backbox 
reader 

Marine 
reader 

1 Coil size X X X X X X X X 

2 Coil shape X X X X X X X X 

3 
Operation 
distance 

60 80 110 200 50 50 125 40 

4 
Front cover 

material type 
ABS 

Plastic 
ABS 

Plastic 
ABS 

Plastic 
ABS 

Plastic 

Zamak3 
and PC 
window 

ABS 
Plastic 

ABS 
Plastic 

Steel and 
PC window 

5 
Product retail price 

[£] 
110 110 110 110 165 220 150 220 

Note:    Product retail prices are for reference only and may not represent the actual retail prices. 

             X: Confidential Data 

Table 6-8: Filtered and refined design parameters data from the previous projects of 

the card reader 

2.3.  Prepare the final filtered data:  

During the data collection activity, the research team was unable to obtain 

the data in the format that they required. For example, the required data 

of the coil size was captured in the form of coil dimensions 

(height*width*thickness) in millimetres [mm]. However, the research team 

needed the volume of the coil size in cubic centimetres [cm3]. Therefore, 

the coil size was derived from the coil dimensions by multiplying the height, 

width and thickness and then converting into cm3. Similarly, the material 

type and the coil shape did not have numeric values. In order to plot these 

design parameters on ToCs, the research team assigned numeric values 

for different material types and coil shapes (e.g. 1 for steel, 2 for Zamak3 

and 3 for ABS Plastic). Furthermore, the manufacturing cost was derived 

from the product retail price as the required data was unavailable. 

Manufacturing cost was assumed as being a defined percentage of the 

product retail price, as per the collaborating company’s policy. This 

percentage is not presented in this thesis for reasons of confidentiality. 
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Finally, the data spreadsheet was reorganised in order to facilitate the 

generation of knowledge-based ToCs, as shown in Table 6-9. Highlighted 

rows are representing the derived data. 

  Previous Projects                                                

No. Design Parameters P38 P50 P75 P200 
Metal 
reader 

Architect 
reader 

Backbox 
reader 

Marine 
reader 

 
Coil dimensions 

(height*width*thickness) 
[mm] 

X X X X X X X X 

1 Coil size [cm3] X X X X X X X X 

 Coil shape X X X X X X X X 

2 
Coil shape (numeric 

values: 1 to 3) 
1 1 1 1 2 2 1 3 

3 Operation distance [mm] 60 80 110 200 50 50 125 40 

 Front cover material type 
ABS 

Plastic 
ABS 

Plastic 
ABS 

Plastic 
ABS 

Plastic 

Zamak3 
and PC 
window 

ABS 
Plastic 

ABS 
Plastic 

Steel 
and PC 
window 

4 
Front cover material type 
(numeric values: 1 to 3) 

3 3 3 3 2 3 3 1 

 Product retail price [£] 110 110 110 110 165 220 150 220 

5 Manufacturing cost [£] X X X X X X X X 

Note:    Product retail prices are for reference only and may not represent the actual retail prices. 
             X: Confidential Data 

Table 6-9: Final filtered and reorganised design parameter data required to start 

generating knowledge-based ToCs 

6.5.2.3 Step 3: ToCs generation for the new card reader 

3.1.  Plot the data of the corresponding design parameters: 

In this activity, relations between the defined design parameters were 

referred to, which were developed in activity 1.4. Initially, there were six 

relationships before the commencement of data collection. However, due 

to unavailable data, only two relationships were available for generating 

knowledge-based ToCs. These are highlighted in Table 6-10 and listed 

below. 

1. ToC 1 –  Coil size vs. Operation distance  

2. ToC 2 –  Material type vs. Manufacturing cost 
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Table 6-10: Relationships to be used for generating knowledge-based ToCs for the 

new car reader 

The data of the design parameters was plotted against two trade-off curves as 

shown in Figure 6-13. The relationship between operation distance and coil size 

is presented in ToC 1 in Figure 6-13(a), and the relationship between 

manufacturing cost and material type is shown in ToC 2 in Figure 6-13(b). 

3.2.  Plot the customer requirements against generated ToCs:  

The customer requirements captured in activity 1.1 were plotted on the 

generated knowledge-based ToCs and presented in Figure 6-15. The 

dashed lines in Figure 6-14 illustrate the customer requirements. Figure 

6-14(a) is related to the customer requirements of 10mm minimum and 

50mm maximum operational distance. Similarly, Figure 6-14(b) is related 

to the customer requirement of the card reader's manufacturing cost.   

 

No. Parameters for X Axis Parameters for Y Axis 
Related Decision 

Criteria 

 Coil shape Coil magnetic area Reliability 

 Coil wire length Coil magnetic area Reliability 

 Operation distance Coil magnetic area Reliability 

1 Operation distance Coil size Reliability 

2 Front cover material type Manufacturing cost Durability and Cost 

 Front cover material type Front cover material cost Durability and Cost 
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(a) ToC 1, depicting the reliability decision criteria by illustrating the relationship between coil 

size and operational distance 

 

(b) ToC 2, depicting the durability and cost efficiency decision criteria by illustrating the 

relationship between material type and manufacturing cost 

Figure 6-13: Generated knowledge-based ToCs related to the decision criteria of 

durability, reliability and cost efficiency 
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(a) Customer requirements mapped on ToC 1 for reliability 

 
(b) Customer requirements mapped on ToC 2 for durability and cost 

Figure 6-14: Generated knowledge-based ToCs presenting the customer requirements 

6.5.2.4 Step 4: Feasible solutions for the new card reader 

4.1.  Define the feasible and infeasible area:  

After plotting the customer requirements, feasible areas were identified as 

highlighted in Figure 6-15. The feasible area in Figure 6-15(a) lies between 
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the customer requirements of 10mm and 50mm operational distance. The 

feasible area in Figure 6-15(b) lies between the Y axis and customer 

requirement of the manufacturing cost. 

 

(a) Feasible area of ToC 1 for reliability 

 

(b) Feasible area of ToC 2 for durability and cost 

Figure 6-15: Generated knowledge-based ToCs presenting the feasible design area 
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4.2.  Identify the design solutions within the feasible area:  

Identifying the feasible area revealed two feasible design solutions in ToC 

1 related to reliability (Figure 6-15(a)), while there were six design 

solutions found in the feasible area of ToC 2 related to durability and cost 

efficiency (Figure 6-15(b)). Table 6-11 presents the selected design 

solutions from the generated ToCs. It is apparent that one design solution 

– the Metal reader – meets all customer requirements and decision criteria. 

Table 6-11: Feasible design solutions selected from each knowledge-based ToC  

4.3.  Develop a set of potential design solutions:  

The research team generated a set of possible design solutions by using 

the feasible designs identified in activity 4.2. There were eight feasible 

designs, as the metal reader was a common design in both ToCs. Table 

6-12 presents the evaluation of these eight feasible solutions and shows 

that a set of six conceptual designs could be put forward for consideration 

during further development in the SBCE environment. The table also 

presents the recommended action and the rationale behind it. For 

example, D1 is the “Marine reader” from the previous project, the design 

data of which meets requirements for reliability, and the material of the 

front cover component meets the durability criteria. However, it does not 

Related ToC that the 
design solutions were 

selected 

Possible design 
solutions from previous 

projects 

Related decision criteria 
that the design meets 

ToC 1: 
Coil size vs. 

Operation Distance 

Marine reader 

Reliability Metal reader 

Architect reader 

ToC 2: 
Front Cover Material 

type 
vs. 

Manufacturing Cost 

Metal reader 

Durability and 
Cost Efficiency 

P38 

P50 

P75 

Backbox reader 

P200 
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meet the cost requirement and therefore requires a major design change 

until the criteria is met. Another example is the design D2 - Metal reader – 

which meets all customer requirements and decision criteria. Therefore, 

the data of this design could be reused, as it is, to develop a new design-

set. The rest of the feasible solutions follows the same logic, as shown in 

Table 6-12. 

Table 6-12: Potential design solutions identified from previous projects, and 

recommended actions for proposing a set of design for SBCE application 

No. 
Previous 
Projects 

Recommended 
Action 

Rationale 

D1 
Marine 
reader 

Major changes 

Meets the reliability decision criteria. The material type 
of the product meets the durability decision criteria, 
however fails to satisfy the cost requirement. Major 
design changes might help to reduce the cost, meet 
the decision criteria. 

D2 
Metal 
reader 

Reuse the 
existing design 

solution 
Meets all customer requirements and decision criteria. 

D3 
Architect 
reader 

Used to inspire 
creating new 
conceptual 

design solutions 

Meets the reliability criteria, however its material type 
is not resistant to vandalism. Thus, it meets neither the 
durability nor the cost criteria. 

D4 P38 Minor changes 

Very close to meeting the operational distance 
requirement. The shape of the product, with minor 
changes, is suitable for a vandalism-resistant design. 
These changes will increase the cost slightly, but the 
solution will remain within the feasible area. 

D5 P50 Minor changes 

Very close to meeting the operational distance 
requirement. The shape of the product, with minor 
changes, is suitable for a vandalism-resistant design. 
These changes will increase the cost slightly, but the 
solution will remain within the feasible area. 

D6 P75 

Used to inspire 
the creation of 

new conceptual 
design solutions 

Meets the cost criteria, however its material type is not 
sufficiently resistant to vandalism. Thus, it meets 
neither the durability nor the reliability criteria. 

D7 
Backbox 
reader 

Not to be 
considered 

Far from meeting both decision criteria and 
requirements. 

D8 P200 
Not to be 

considered 
Far from meeting both decision criteria and 
requirements. 
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The research team took the recommended actions as shown in Table 6-12 

and followed the SBCE process model. Thus, nine new design solutions 

were generated and are presented in Figure 6-16. Design A1 illustrates 

the existing design solution to be developed and improved throughout the 

SBCE application in order to meet the customer requirements and 

decision critera. Conceptual designs in the design-set, as depicted in 

Figure 6-16, are coded by using the letter “A” in order to differentiate them 

from the design solutions of previous projects, which are coded with “D”.  

 

Figure 6-16: Design-set developed through the application of knowledge-based ToCs 

throughout the SBCE process 
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6.5.2.5 Step 5: Optimal solution for the new card reader 

5.1. Convert these potential solutions to a final optimal solution using the SBCE 

process model:  

The generated design-set was used to compare and narrow down 

throughout the further application of the SBCE process model, which is 

demonstrated in section 6.6. 

6.5.3 Debriefing of the case study 

Knowledge-based ToCs were generated by using data from previous projects. 

Knowledge-based ToCs were used throughout the SBCE process model and 

supported the development of a design-set consisting of nine new conceptual 

design solutions.   
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6.6 Paxton Case Study: Physics-based ToCs 

This section describes the validation of the process shown in Figure 5-6. The 

process was developed in order to generate ToCs based on the physics of the 

product, and subsequently using these physics-based ToCs to compare the 

possible design solutions and narrow down the design-set, which are the key 

activities of SBCE. This case study is a research-based case study using realistic 

data. The product under development was a proximity card reader, the details of 

which are presented in subsection 6.5.1 above. Members of the research team 

who contributed to and were involved in conducting this case study are presented 

in Appendix B. 

6.6.1 Comparing and narrowing down the design-set for a vandalism 

resistant card reader  

This case study is a continuation of the case study presented in section 6.5. The 

difference between the two case studies is the process that is used for generating 

ToCs. The previous study implements the process for generating knowledge-

based ToCs, while this case study uses the process for generating physics-based 

ToCs, as it is presented in Figure 5-6. The application of that process is 

demonstrated, step-by-step, below. 

6.6.1.1 Step 1: Understand the first design-set of the new card reader 

1.1  Use the developed set of design solutions from SBCE process: 

The design-set taken into consideration in this case study was generated 

in the previous case study and is shown in Figure 6-16. The set consists 

of ten front covers, including one existing design and nine new conceptual 

designs. Since there is no change required in other components of the 

product, designs were created only for the front cover, which is mostly 

affected by vandalism. 

1.2  Use the identified customer requirements and decision criteria:  

Since the same product as in the previous case study was under 

consideration for this case study, the customer requirements and decision 
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criteria were adopted from step 1 of subsection 6.5.2. Customer 

requirements and decision criteria will hereafter be referred to as “key 

value attributes (KVAs)”. As the process for identifying customer 

requirements and decision criteria has been demonstrated in subsection 

6.5.2, the KVAs in this case study are as below: 

1. Durability,  

2. Reliability,  

3. Cost efficiency. 

6.6.1.2 Step 2: Understand physics of the card reader 

2.1 Study the physical characteristics/features of the product under 

development: 

The physical characteristics were studied to understand the parameters 

that affect the product’s features. The certainty about the KVAs (durability, 

reliability and cost efficiency) facilitated the identification of the design 

parameters. These design parameters are described below: 

1. Durability-related design parameters: 

• Fire resistance:  

The product might be damaged when it is exposed to fire. 

The possible action with fire considered in this case study is 

an attempt to burn the product with a lighter. 

• Impact resistance: 

The product might be cracked or damaged by hitting, 

punching or kicking.  

2. Reliability-related design parameters: 

• Read range: 

The read range is defined as the usable distance of the 

magnetic area created by the reader’s module. Once the 

electronic card reaches the read range, the electronic 

access system is activated by receiving magnetic signals. 
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3. Cost efficiency-related design parameters: 

• Cost:  

The manufacturing cost of the product is depending on the 

type and amount of the material used. 

2.2.  Identify new design parameters to generate physics-based ToCs:  

Physics knowledge obtained in activity 2.1 was employed to identify new 

design parameters. As it is shown in Figure 6-17, the wall thickness, depth 

and geometry of the front cover have effects on fire resistance, impact 

resistance, read range and cost. Changing the numeric values of wall 

thickness and depth affects the performance of the design solution. 

Similarly, different front cover geometries, like some of the possible 

shapes shown in Figure 6-17, affect the design parameters identified 

during activity 2.1. Relationships between these design parameters are 

described in the next activity.  

 

Figure 6-17: The new design parameters (wall thickness, depth, front cover geometry) 

2.3.  Evaluate the relations between the design parameters: 

  Information was captured and is presented below: 

• Fire resistance: 

Increasing the wall thickness and depth will increase the fire 

resistance. A front cover with higher wall thickness and depth 

prolongs the time needed by the flame to damage the product and 

reach the reader’s module, which improves the durability and 

reliability of the product. 
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• Impact resistance: 

Increasing the wall thickness and depth will increase the impact 

resistance. A thicker and wider front cover protects the product from 

being damaged easily by hitting, kicking or punching. Moreover, 

different angles of the front cover geometry will protect the product 

against the vandalism actions more effective than a flat geometry.  

• Read range: 

Increasing the wall thickness and depth will affect the read range in 

a negative way. It will cause an increase in the distance between 

the reader’s module and the surface of the front cover. 

• Cost:  

A design solution with a thicker and wider front cover will require 

more material, which leads to an increase in cost.  

2.4.  Generate non-scale ToCs based on the obtained physics knowledge: 

The relations identified in activity 2.3 helped the author to generate non-

scale ToCs in order to see the relationships and interactions between the 

design parameters in a single diagram (Figure 6-18). Due to resource 

constraints, in this activity the focus was on the relationships between the 

wall thickness and fire resistance, impact resistance, read range and cost 

only.   

 

Figure 6-18: Non-scale ToC illustrating the relationships between design parameters 
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As depicted in Figure 6-18, increasing the wall thickness of the front cover 

will improve the resistance to impact and fire. However, these enhancements 

are achieved at the expense of rising device cost caused by increasing 

material requirements. Furthermore, the read range of the device will 

decrease as a thicker wall will weaken magnetic signals passing through the 

product.  

6.6.1.3 Step 3: Test and analyse the possible designs of the new card 

reader 

3.1.  Turn non-scale ToCs into scaled ToCs based on physics knowledge: 

As explained in step 2, wall thickness and depth have significant effects 

on the identified design parameters. Due to limited amount of data 

available, only impact and fire resistance of the designs were analysed 

further in this case study. The analysis was carried out by using structural 

and thermal simulations. The structural analysis was focused on 

simulating the impact of a hammer, while the thermal analysis was focused 

on simulating the impact of a lighter flame. “Ansys” software was used for 

the simulations. The input parameters of the simulations are shown in 

Table 6-13. 

Table 6-13: Structural and thermal simulations inputs 

Input Parameters Input Values 

Applied temperature 1400oC 

Area of hammer 0.000314 m2 

Mass of hammer + arm 7.4 kg 

Approx. velocity of hammer coming down 5 m/s 

Estimated bounce back 1m/s 

Impact time 0.01s 

Acceleration (V1-V2)/t 600m/s2 

Force 4500N 
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In order to turn non-scale ToCs into scaled physics-based ToCs, the 

following indicators were used as result of the structural and thermal 

analyses. 

1. Indicators for the structural analysis: 

• Highest stress level (MPa) (related to the impact resistance) 

• Deformation scale (related to the impact resistance) 

2. Indicators for thermal analysis: 

• Highest temperature level (oC) (related to the fire resistance) 

Figure 6-19 illustrates the physics-based ToCs that were generated 

according to the knowledge gained from the non-scale ToCs as shown in 

Figure 6-18. These are: 

1. ToC 1 –  Highest stress level vs. Wall thickness 

2. ToC 2 –  Deformation scale vs. Highest stress level 

3. ToC 3 –  Depth vs. Highest temperature level 

3.2. Identify feasible area and/or an optimal point in the physics-based ToCs 

associated with the specific design parameter:  

The optimal point for the thermal analysis was defined as 230oC. The 

cover would be accepted as flame resistant if it was above this 

temperature. Therefore, the performance of the design solution was 

required to be higher than 230oC.   

Regarding the impact resistance, designs were expected to be durable up 

to at least 450MPa, which is a value that could reasonably be considered 

as a vandal action. In addition, a lower deformation scale represents a 

better impact resistance.  

Feasible areas for the ToCs were identified according to these targets, and 

are illustrated in Figure 6-19.  
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6.6.1.4 Step 4: Compare the solutions of the design-set of the new card 

reader 

4.1. Represent the data of the selected design-set on the generated physics-

based ToCs:  

Data was collected from the structural and thermal simulations and 

presented in Table 6-14. This data was plotted against the generated 

physics-based ToCs, as shown in Figure 6-19 (Illustrations of the analyses 

are included in Appendix C). The front cover design A1 was excluded from 

the design-set, as it was the existing design that required improvement. 

Table 6-14: Collected data of the design parameters of each front cover design. 

Figure 6-19 below depicts the scaled physics-based ToCs created in this 

case study, after activities 3.1, 3.2 and 4.1 have been carried out. 

Design-
Set 

Front Cover 
Thickness 

[mm] 

Depth 
[mm] 

Highest 
Stress 

Level [MPa] 

Highest 
Temp. 

Level [0C] 

Deformation 
Scale 

A2 2 20 460 502 0.72 

A3 2 25 706 352.05 12.95 

A4 2 20 534 563.05 1 

A5 4 25 272 604.05 2.29 

A6 2 30 1110 29.65 42.97 

A7 2 25 610 -9.95 31.13 

A8 2 30 472 128.95 49.71 

A9 3 30 362 216.05 4.9 

A10 2 25 537 114.25 25.92 
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(a) ToC 1 – Highest stress level vs. Wall thickness 

 
(b) ToC 2 – Deformation scale vs. Highest stress level 

 
(c) ToC 3 – Depth vs. Highest temperature level 

Figure 6-19: Physics-based ToCs related to the impact and fire resistance performance 

of the product 
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4.3.  Communicate and compare the design solutions: 

After generating the physics-based ToCs and identifying the feasible 

design area of each ToC, as shown in Figure 6-19, the possible design 

solutions were selected and are presented in Table 6-15. 

Table 6-15: Selected design solutions from the feasible area of physics-based ToCs  

Table 6-15 shows that there are five different possible designs selected 

from the generated physics-based trade-off curves.  

4.4.  Expand the feasible area if possible:  

As demonstrated in Figure 6-19(a) and Figure 6-19(b), the feasible design 

area could be expanded by setting the target for the highest stress level at 

500MPa rather than 450MPa. Thus, two more design solutions would be 

included in the feasible area. These designs are A2 and A8, since their 

highest stress levels are slightly higher than 450MPa (460MPa and 

472MPa, respectively). Similarly, if the highest temperature level is 

decreased from 230oC to 200oC in the ToC shown in Figure 6-19(c), 

design solution A9 would be included in the feasible area.  

6.6.1.5 Step 5: Select and narrow down the design-set of the new card 

reader 

5.1. Select the design solutions in feasible area or close to the identified 

optimal point: 

The result of comparing alternative design solutions showed that there 

were six different possible designs in the design-set which could be 

considered for further narrowing down. Table 6-16 illustrates these six 

possible designs: A2, A3, A4, A5, A8, and A9.  

Related physics-based ToC Selected design solutions 

ToC 1 (Figure 6-19(a)) A5 and A9 

ToC 2 (Figure 6-19(b)) A5 and A9 

ToC 3 (Figure 6-19(c)) A2, A3, A4 and A5 
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Table 6-16: Selected design solutions from the expanded feasible area of physics-

based ToCs  

5.2.  Second stage of narrowing down:  

Six design solutions were evaluated and compared to each other, results 

of which have been presented in Table 6-17. Eventually, there were three 

design solutions selected (A2, A5, and A9) for further development of the 

final optimal design solution.  

6.6.1.6 Step 6: Enhance design of the new card reader  

6.1.  Explore the opportunities of creating a new improved design based on 

combining and/or modifying solutions from the selected designs:  

Due to limited amount of data available, this activity could not be completed 

in this PhD research. However, A9 could be considered for enhancement 

since the design parameter values show a promising performance in order 

to meet requirements for the impact resistance and fire resistance. For the 

enhancement of the design solution, actions could be taken as described in 

activity 4.3 in subsection 5.3.4. 

6.2. Capture and store the obtained knowledge: 

As mentioned in activity 6.2 of subsection 5.4.6, this activity has been 

considered as a future work. 

 

 

 

Related Physics-based 
ToCs 

Selected design 
solutions in the 

feasible area 

Selected design 
solutions in the 

expanded feasible area 

ToC 1 (Figure 6-19(a)) A5 and A9 A2 and A8 

ToC 2 (Figure 6-19(b)) A5 and A9 A2 and A8 

ToC 3 (Figure 6-19(c)) A2, A3, A4 and A5 A9 
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Design Decision Rationale 

A2 
Selected 
(Minor 

modification) 

Although A2 meets only the fire resistance 
requirement, the design can be improved by employing 
minor modifications as mentioned in activity 4.3 in 
subsection 5.3.4. The new design data can then be 
used to achieve the optimal design solution. 

A3 Eliminated 

Although A3 meets the requirement for fire resistance, 
it is not resistant against the impact applied during the 
structural analysis. The highest stress level of A3 is 
706MPa, while the target should be less than 450MPa. 

A4 Eliminated 

Although A4 meets the requirement for fire resistance, 
it is not resistant against the impact applied during the 
structural analysis. The highest stress level of A4 is 
534MPa, while the target should be less than 450MPa. 

A5 
Selected 
(As it is) 

A5 is the only common solution in the feasible area of 
all physics-based ToCs, thereby meeting all 
requirements. 

A8 Eliminated 

The deformation scale of A8 (49.71) is very high 
compared to other design solutions. Moreover, the 
highest temperature level is 128.95 which is much 
lower than the requirement of 230oC. 

A9 
Selected 
(Minor 

modification) 

Although A9 meets the requirement for impact 
resistance, it does not meet the fire resistance 
requirement as it stays out of the feasible area as 
shown in Figure 6-19(c). However, since the highest 
temperature level of design A9 (216.05oC) is slightly 
lower than the identified highest temperature level 
(230oC), this design solution was selected to be 
considered after applying minor changes as described 
in activity 4.3 in subsection 5.3.4.  

Table 6-17: Results of evaluation and the second stage of narrowing down 

6.6.2 Debriefing of the case study 

Physics-based ToCs were generated by using the data obtained from the 

understanding of the physics of the card reader. Physics-based ToCs were used 

throughout the SBCE process model and supported the activities of comparing 

and narrowing down the design-set. As a result, design A5 was selected, without 

modifications, while making the decision on an optimal design. Designs A2 and 

A9 were also selected, under the condition of applying minor modifications.  
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6.7 Caltec Case Study 

This section presents the application and the validation of the process for using 

generated knowledge-based and physics-based ToCs within the SBCE process 

model, as shown in Figure 5-8. Implementing this process enabled the key 

activities of the SBCE process that are listed below: 

1. Identifying the feasible area, 

2. Developing a design-set, 

3. Comparing possible design solutions, 

4. Narrowing down the design-set, 

5. Achieving optimal design solution. 

Caltec Limited is an engineering company that provides engineering solutions for 

the oil and gas industry. The company consists of a small team of high-tech 

specialists, backed by the global resources of a major oilfield services company. 

The researcher was involved in a research project including six researchers and 

a supervisor from Cranfield University and two engineers from Caltec (co-founder 

and designer). The members of “the research team” contributing to this case 

study are introduced in Appendix B. An overview and characteristics of the 

surface jet pump, which is the product under consideration in this case study, is 

presented in the following subsection. 

6.7.1 Overview and characteristics of the surface jet pump (SJP)   

Surface jet pumps are relatively simple devices used to increase the production 

rate in the oil and gas industry, and to revive dead oil/gas wells or such with low 

pressure. The function of an SJP is to boost the pressure of low pressure (LP) 

fluids, a function which is needed at different stages of the production process. 

Compared to traditional methods, such as increasing the pressure with 

compressors, SJPs are highly cost-efficient solutions that provide the same 

performance. SJPs utilise the Venturi effect (Munson et al., 2010), in which kinetic 

energy from a high pressure (HP) source is used to increase the pressure of the 

LP fluid (Beg and Sarshar, 2009). This effect is not too dissimilar from the velocity 

transfer in a turbofan jet engine (section 6.3.1). 
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The key components of an SJP are listed below and shown in Figure 6-20: 

1. The HP and LP inlet of the fluid provides the connection between the 

wells with high pressure and low pressure. 

2. The nozzle increases the velocity of the HP fluid by creating a Venturi 

effect to suck in the LP fluid. 

3. The mixing tube transfers the energy and momentum between the HP 

and LP fluid streams. 

4. The diffuser reduces the velocity and recovers the pressure. 

5. The body integrates and protects the internal components and 

provides a suitable flow direction to the fluid. 

6. The discharge outlet connects the SJP to the rest of the infrastructure, 

releasing the combined HP and LP fluid. 

  

Figure 6-20: Key components of a surface jet pump (SJP) (Beg and Sarshar, 2014) 

6.7.2 Developing a new surface jet pump 

The main objective of this project was to develop a new surface jet pump with 

reduced manufacturing cost and improved design performance, when compared 

to the current product. To achieve this aim, the process described in section 5.5 

was employed and the SBCE process model was applied in this case study. The 

following sub-subsections present the detailed implementation of this process 

(refer to Figure 5-8). 
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6.7.2.1 Step 1: Identify key value attributes of the SJP 

Key value attributes (KVAs) were identified during brainstorming sessions with 

the collaborating company. The customer requirements, when compared to the 

existing product, were established at this stage and are listed below: 

1. High mechanical performance, 

2. Lower manufacturing cost and time, 

3. Material: Carbon steel, 

4. Light in weight, 

5. Maximum allowable pressure is 571 psi, 

6. Removable nozzle,  

7. Mixing tube fixed with diffuser, 

8. Meeting oil and gas standard ASME B31.3. 

Considering these customer requirements, 38 value attributes were identified by 

the research team as shown in Figure 6-21(Column B), and these values were 

communicated to the collaborating company. Values that represented similar 

characteristics were classified into a single value for ease of communication and 

proceeding through the SBCE process. For instance, values 34 – “Corrosion 

resistance”, 35 – “Erosion resistance”, 36 – “Stable in subsea environment”, 37 – 

“Strong type of material”, 38 – “Hard surface inside the SJP” were classified as 

“Durability”, as presented in Figure 6-21. Similarly, all other values were classified 

as shown in Figure 6-21(Column C). The resulting classification is listed below: 

1. Cost,  

2. Manufacturability, 

3. Design Performance, 

4. Reliability, 

5. Installation, 

6. Customisation,  

7. Durability. 
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Figure 6-21: Identification of key value attributes (Mohd Maulana et al., 2016)
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Classified values were prioritised in order to focus on improving the key 

characteristics of the product. The analytical hierarchy process (AHP) tool was 

used to prioritise the values and identify the KVAs. Results of the AHP are shown 

in Figure 6-21(Column D), and the following KVAs were identified: 

1. Design Performance 

Determines the production rate of the SJP at constant initial 

conditions. 

2. Manufacturability 

Relates to the complexity of the design and the required 

manufacturing process. 

3. Cost  

Describes the manufacturing cost of the product. 

The KVAs that were identified indicated that the focus of improvement should 

be on the following components: nozzle, mixing tube and body. 

6.7.2.2 Step 2: Select previous projects of the similar SJP product 

The company has 120 SJP products installed in different locations around the 

world. Most of them share a similar design. Due to the similarity of the design of 

the nozzle, the company provided data of one SJP to be the reference design. 

6.7.2.3 Step 3: Identify feasible design area of the SJP 

Due to limited access to the data from previous projects of Caltec, this step is not 

applicable in this case study. 

6.7.2.4 Step 4: Generate a design-set for the SBCE process of the SJP 

The research team developed a set of design solutions, as shown in Figure 6-22, 

by using the SBCE process model. As it was required by Caltec, the main focus 

was on three components of the SJP: nozzle, mixing tube and body.  

Designs N1, MT1 and B1 in Figure 6-22 are the original designs of the SJP that 

was provided by Caltec. This original design was used in order to compare it with 

other designs in the following steps of this case study. 
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Figure 6-22: Design-set for key components of an SJP: Nozzle, mixing tube and body  
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As each type of nozzle can be combined with each type of mixing tube and body, 

there were 60 possible designs in the design-set (10 nozzles x 2 mixing tubes x 

3 bodies = 60 possible designs). This design-set was then analysed and 

developed throughout the SBCE process model. Designs were compared and 

narrowed down by using physics-based ToCs. 

6.7.2.5 Step 5: Compare and narrow down the design-set of SJP 

components 

In order to start generating physics-based ToCs, the research team analysed the 

fundamental features and physical characteristics of an SJP. Figure 6-23 

illustrates the relationships between different design parameters: HP velocity, HP 

pressure, LP velocity, LP pressure, combined HP and LP fluid velocity, and 

combined HP and LP fluid pressure.  

 

Figure 6-23: Schematic illustration of fundamental physics features of an SJP (Beg and 

Sarshar, 2014) 

As shown in Figure 6-23, when the high-pressure fluid passes through the nozzle, 

its velocity increases significantly as the result of potential energy (pressure) 
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being converted to kinetic energy (velocity). This reduces the downstream 

pressure from the nozzle and generates a low-pressure zone which causes the 

flow of the fluid from the LP well. The HP motive flow carries the LP fluid through 

the mixing tube, causing a transfer of energy and momentum between both fluid 

streams. At the outlet of the mixing tube, the mixture is discharged through the 

diffuser in order to gradually reduce the velocity and pressure recovery (Beg and 

Sarshar, 2009).   

Using the obtained physics-knowledge as explained above, non-scale physics-

based ToCs were generated for each component. These trade-off curves are 

presented in Figure 6-24: 

1. ToC 1 –  Nozzle: Nozzle downstream velocity against pressure drop and

       production rate 

2. ToC 2 –  Mixing tube: Mixing tube length vs. manufacturing cost and time 

3. ToC 3 – Body: Cost against manufacturing complexity, weldability, and

       allowable stress 

Figure 6-24(a) visualises that a higher nozzle downstream velocity increases the 

drop of the pressure and the suction of the entrained LP fluid. Thus, the 

production rate increases. Figure 6-24(b) shows that manufacturing cost and 

complexity of the mixing tube are determined by the body-length. Increasing the 

length beyond five meters (5m), however, will cause difficulties in manufacturing 

with the tools available at the current manufacturer. Therefore, the mixing tube 

would need to be cut in half and manufactured in two parts. MT2 is a design that 

is manufactured in two parts. Since the length of the mixing tube is required to be 

less than 5m by the customer in this case study, where the target value was 1.3m, 

design MT2 was eliminated. Figure 6-24(c) illustrates the physics-knowledge of 

the body component. It is apparent that different designs of the LP inlet affect the 

HP/LP pressure ratio, allowing to obtain the desired discharge pressure with less 

pressure from LP. Thus, design performance is increased. However, both 

manufacturing cost and complexity of the body increase significantly. 
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(a) ToC 1 - Nozzle 

 
(b) ToC 2 - Mixing tube 

  
(c) ToC 3 - Body 

 Figure 6-24: Non-scale physics-based ToCs for each key component of an SJP 
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Analysing these three non-scale physics-based ToCs for each component 

facilitated decision-making about the feasible solution for the mixing tube. After 

selection, ten nozzles, one mixing tube (MT1) and three bodies remained in the 

design-set. Multiplying the possible design solutions provided 30 possible 

configurations (10 nozzles x 1 mixing tube x 3 bodies = 30). For evaluating these 

possible designs and for further narrowing down, additional trade-off curves for 

each component were generated to help designers with the decision-making on 

the best designs among the design-set. Knowledge for these ToCs was obtained 

from both understanding the physics of the SJP and experience of the 

manufacturing supplier. Thus, knowledge-based data and physics-based data 

was presented in a single ToC. 

1. Generating ToCs for comparing nozzle designs: 

The design parameters for evaluation and comparison of nozzle designs were 

identified considering the KVAs and are listed below: 

• Nozzle downstream velocity – (KVA: Design performance): 

Data for this design parameter was collected based on the physics 

of the product, considering the KVA of design performance. 

Autodesk inventor software was used for design modelling and 

Ansys software was used for CFD simulations. The results are 

represented as a three-dimensional trade-off curve in Figure 6-25. 

Input parameters were identified as shown in Table 6-18. 

Table 6-18: CFD analyses inputs 

Input Parameters Input Values 

HP Flow rate 10.33 kg/s 

Nozzle Outlet Pressure (Atmospheric) 196 psi 

Nozzle inlet Temperature 88 °C 

Properties of gas Natural Gas 

HP Molar Weight 24.89 kg/kmol 

Specific Heat 2340 J/kg*K 

Dynamic viscosity 1.03971 e-10 kg/m*s 
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• Manufacturing complexity – (KVA: Manufacturability): 

This design parameter was identified considering the KVA of 

manufacturability. The values of manufacturing complexity were 

scaled from 1 to 5. Table 6-19 provides the basis of this scale. Data 

for manufacturing complexity was collected from a manufacturing 

supplier of the collaborating company (Reddecliffe, G., Works 

Manager, Woodfield Systems Ltd, personal communication, August 

2016). Results are presented in Table 6-20. 

 Manufacturing complexity scale 

1 No changes of manufacturing method and operations 

2 
Low - Slight changes of geometry, arrangement, assembly 
required additional operation(s) 

3 
Medium - Major changes of geometry, arrangement, 
assembly required new machining operations 

4 
High - changed subsystem design, required new technology 
and/operations/prototyping 

5 
Very high - Changed subsystem design, required complex 
machining operations/new technology and prototyping 

Table 6-19: Manufacturing complexity scale 

• Manufacturing cost – (KVA: Cost Efficiency): 

This design parameter was identified considering the KVA of cost 

efficiency.  The values of manufacturing cost were scaled from 1 to 

5. In this scale, 1 represents low cost and 5 represents high cost. 

Data for manufacturing cost was collected from the manufacturing 

supplier (Reddecliffe, G., Works Manager, Woodfield Systems Ltd, 

personal communication, August 2016). Results are presented in 

Table 6-20. 
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Design 
code 

Manufacturing 
cost (1-5) 

Manufacturing 
complexity (1-5) 

Velocity (m/s) 
(CFD) 

N1 1 1 485.187 

N2 2 3 834.252 

N3 3 4 429.3 

N4 1 1 546.56 

N5 4 4 255.094 

N6 3 5 494.994 

N7 1 2 194.681 

N8 5 5 593.586 

N9 2 2 500.2 

N10 2 2 772.627 

Table 6-20: Data collected for each of the nozzle designs 

Figure 6-25 illustrates a three-dimensional trade-off curve, which was 

generated by using the data collected from understanding the physics as 

well as from the manufacturing supplier’s experience and knowledge. 

 

Figure 6-25: Three-dimensional ToC based on physics and knowledge of the nozzle 
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Following the evaluation and comparison of nozzle designs in Figure 6-25, 

it is apparent that N3, N5, N6 and N8 have high manufacturing cost and 

complexity, while the velocity is even lower than the original design N1. 

Therefore, these four designs were eliminated from the design-set of the 

nozzle. Although N7 shows sufficient performance in manufacturing cost 

and complexity, the velocity is low when compared to other design 

solutions. Thus, N7 was also eliminated. N9 was another design to be 

eliminated as the design performance was lower than N1. The final output 

of this evaluation showed that N2, N4 and N10 are designs that have the 

potential to meet the key value attributes. 

2. Generating ToCs for comparing mixing tube designs: 

There was only one mixing tube, which is the original design, MT1. 

Therefore, MT1 was retained in the design-set for further narrowing down. 

3. Generating ToCs for comparing body designs: 

The design parameters for evaluation and comparison of body designs were 

identified considering the KVAs as listed below: 

• HP/LP pressure ratio – (KVA: design performance): 

Data for this design parameter was collected based on 

understanding the physics of the product. Ansys software was used 

for CFD simulations to collect data. The results are presented in 

Figure 6-26. A higher ratio value means maintaining the same 

discharge pressure while using less LP pressure, and therefore 

higher performance of the design. 

• Manufacturing cost and complexity – (KVA: Manufacturability and Cost 

Efficiency): 

This design parameter was identified considering the KVAs of 

manufacturability, and cost efficiency. The values were scaled from 

1 to 5. Data was collected from the manufacturing supplier of Caltec 

(Reddecliffe, G., Works Manager, Woodfield Systems Ltd, personal 

communication, August 2016). A scale was provided separately for 
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manufacturing cost and manufacturing complexity of the body 

designs. The average value of the scales for each body design are 

illustrated in Figure 6-26.  

 

Figure 6-26: Physics-based and knowledge-based ToCs for evaluation and comparison 

of body designs 

Figure 6-26 shows a two-dimensional trade-off curve that represents data of 

physics on the X axis and data of experience on the Y axis. Due to resource 

constraints, only body 1 and body 2 were simulated using CFD software. For 

the design of body 3, four ranges of the HP/LP ratio values were considered: 

1. HP/LP < 1.9 – lower than the original (body 1) design,  

2. HP/LP = 1.9 – equal to the original design, 

3. HP/LP > 1.9 – higher than the original design, 

4. HP/LP >> 1.9 – significantly higher than body 1. 

As shown in Figure 6-26, Body 2 shows a higher performance than the original 

design (Body 1), however, it has higher manufacturing cost and complexity. 

On the other hand, Body 3 has the highest manufacturing cost and complexity. 

Thus, its HP/LP ratio must present the highest value and a significant 

improvement compared to other body designs in order to be considered as a 
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feasible design. In this case study, body 3 was excluded from the design-set 

due to its high cost and manufacturing complexity. However, it is suggested 

that this design should be considered in the future. 

As a result of comparing and narrowing down the design-set at the 

component/subsystem level, the new design-set consists of eight possible 

design configurations to be evaluated throughout the SBCE application (4 

nozzles x 1 mixing tube x 2 bodies). 

6.7.2.6 Step 6: Compare and narrow down the design-set of SJP 

converged systems 

The research team needed to generate more ToCs in order to evaluate eight 

design configurations on the system level. The following design parameters were 

identified based on the knowledge obtained during earlier project stages: 

• Inlet LP pressure,  

• Inlet HP pressure,  

• HP/LP pressure ratio.  

Data for these design parameters was collected from CFD simulations, and 

results are presented in Table 6-21. Subsequently, a physics-based trade-off 

curve was generated, as shown in Figure 6-27, for enabling the comparison and 

evaluation of design configurations on the system level. 

No. 
Design 

Configuration 

Inlet HP 
Pressure 

[psig] 

Inlet LP 
Pressure 

[psig] 

HP/LP 
Pressure 

Ratio 

Design A N1+MT1+B1 550.22 283.34 1.9 

Design B N1+MT1+B2 552.25 263.8 2.1 

Design C N2+MT1+B1 2343.37 169.73 13.8 

Design D N2+MT1+B2 2377.57 164.71 14.4 

Design E N4+MT1+B1 464.71 341.55 1.4 

Design F N4+MT1+B2 464.5 341.74 1.4 

Design G N10+MT1+B1 2466.93 170.63 14.5 

Design H N10+MT1+B2 2665.25 170.75 15.6 

Table 6-21: CFD simulation results of each design configuration  
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Figure 6-27 shows that design configurations with Body 2 (B2) provide similar 

performance as design configurations with Body 1 (B1). For example, the 

difference between HP pressure of Design E and F is only 0.21psig, which does 

not have a significant impact on design performance. Nevertheless, it was 

previously found in Figure 6-26 that B2 had a higher manufacturing complexity 

and cost compared to B1. Therefore, the research team decided to eliminate 

design configurations with B2 from the design-set. Additionally, Design A also 

was removed from the design-set since it is identical to the existing product. Thus, 

there were three designs remained to be evaluated in order to achieve the optimal 

design solution: Design C, Design E, and Design G.   

 

Figure 6-27: Physics-based ToCs on the system level 

6.7.2.7 Step 7: Achieve an optimal design solution 

In order to achieve an optimal design from the design-set, the research team 

generated another trade-off curve that presents the performance of design 

configurations according to the KVAs.  

 



Chapter 6 – Industrial Case Studies and Expert Judgements for Validation 

146 

• Discharge pressure – (KVA: Design Performance): 

A higher discharge pressure reflects a higher design performance. 

Data for discharge pressure was obtained through CFD simulations. 

• Manufacturing complexity and cost – (KVAs: Manufacturability and Cost): 

Lower values of this design parameter are required to achieve a simple 

and cost efficient product, which at the same time features a high 

design performance. Design configurations consist of the same mixing 

tube (MT1) and body (B1). Only nozzle designs are different in each 

design configuration of the narrowed down design-set. Therefore, data 

was reused from Table 6-20 by calculating the average value of 

manufacturing complexity and manufacturing cost of the nozzle 

designs. For example, the manufacturing cost for N2 is “2” while the 

manufacturing complexity is “3”, which means the average value is 

“2.5”. 

 

Figure 6-28: Knowledge-based and physics-based ToC to achieve the optimal design 

Following the evaluation and comparison of these three designs as shown in 

Figure 6-28, it was identified that Design G is the best design configuration in the 

design-set. Table 6-22 describes the evaluation of each design. 
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Table 6-22: Decisions made for the selection of optimal design 

Eventually, it was determined that Design G fully meets the KVAs of design 

performance, manufacturability and cost. Figure 6-29 illustrates a technical 

drawing, measurements of which are removed due to confidentiality. This final 

optimal solution showed a better performance than the existing product. Although 

the manufacturing cost and complexity stayed the same, the design performance 

increased by around 60% (refer to Mohd Maulana et al., 2017 for further details).  

Design Decision Rationale 

Design C Eliminated 

Although there is but a slight difference between the 

discharge pressure of Design C and Design E, the 

manufacturing cost and complexity of Design C is higher 

than Design E. 

Design E Eliminated 

Design E shows a reasonable performance in discharge 

pressure and has the lowest manufacturing cost and 

complexity. However, HP and LP pressures are 

significantly lower than Design C and Design G as shown 

in Figure 6-27. 

Design G Selected 

Design G shows the best performance compared to 

Design C and E and has a reasonable manufacturing 

cost and complexity value. Figure 6-27 also presents that 

Design G has better values in HP and LP pressures and 

HP/LP pressure ratio. 
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Figure 6-29: Technical drawing of the final optimal design of the SJP 

6.7.3 Debriefing of the case study 

Knowledge-based and physics-based ToCs were generated to support achieving 

an optimal design of a new surface jet pump while proceeding through the SBCE 

process model. The research team developed a design-set consisting of 60 

possible designs. As a result of comparing and narrowing down this design-set 

on the component level, initially 30 and then eight possible configurations were 

selected for further development in SBCE. Selected eight designs were evaluated 

on the system level, and five designs were eliminated from the design-set. Finally, 

the remaining three designs were evaluated in order to achieve an optimal 

design. As a result, the configuration of N10, MT1 and B1 was selected as the 

optimal design, and presented in Figure 6-29. The design performance of this 

optimal design increased by nearly 60%. 
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6.8 Industrial Expert Judgement 

Expert opinions on the processes, which were developed for the generation and 

application of ToCs, were captured and documented in this section. Two experts, 

who have specialised in product development and each have several years of 

experience, were identified to capture their feedback and comments on the 

following processes: 

1. The process for generating knowledge-based ToCs (section 5.3) 

2. The process for generating physics-based ToCs (section 5.4) 

3. The process for using the generated ToCs in the SBCE process model 

(section 5.5) 

These three processes are subsequently referred to as “the processes” in order 

to facilitate a clear flow of this section. For the same reason, and to aid 

confidentiality, the masculine form has been chosen to refer to all experts. 

Each expert judgement session commenced with a brief definition and overview 

of trade-off curves, as described in section 3.2.1. Thereafter, the proposed 

processes, as listed above, were explained briefly. After the presentation, 

questions were asked of the experts in order to incentivise a discussion. During 

the discussion, feedback and comments from the experts were received and 

captured. In order to facilitate a constructive and results-oriented session, a semi-

structured questionnaire was developed as presented in Appendix D.  

Expert 1 is a technology director in Caltec, with more than 20 years of experience 

in the field of petroleum engineering, multiphase flow metering, surface jet pump 

and separation technology. The expert is holding a number of patents and has 

authored and co-authored numerous technical papers in his area of expertise. He 

has also won national and international awards for innovation. 

Expert 2 is a retired former director of the research and development department 

of Rolls-Royce with decades of experience in aviation industry. Presently, he is a 

professor and continues to work in the area as a special advisor.  

The following subsections present the documented expert judgements. 
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6.8.1 Expert Judgement 1 

Expert 1 was asked to comment regarding the structure of the processes. He 

found the processes easy to understand and follow, and also well-structured. He 

indicated that his company had always carried out similar activities based on 

personal experience, but not systematically. Therefore, he appreciated having a 

systematic process for knowledge creation and visualisation as described in 

chapter 5. On the other hand, regarding the level of detail in the processes, his 

opinion was that when one looks at the process, they might think that the 

processes appear to be overlapping or to be having too many steps and activities. 

However, according to expert 1, when one starts applying a process, detailed 

guidance may initially be required. Later on, some of the activities can be 

removed depending on the need of the designers. Having said that, he expressed 

that this detailed process would be helpful for capturing the main decision point 

and would provide a guidance to collecting data.  

In terms of the practicability aspect of the processes, the expert expressed his 

opinion as below: 

“I am impressed. You turned such a complex method into a fairly streamlined 

approach.” 

Furthermore, the expert said that he would consider using these processes in his 

company, as they present a systematic way to speed up the product development 

and a solution that they are looking for. Since, in his opinion, the patience of staff 

in R&D is generally very low, he thinks that such a documented process would 

support them by reducing the time spent on designing. Therefore, the expert 

thinks that the processes do not seem difficult to implement in a company, as 

long as they are incorporated with the existing quality management systems of 

the company, which seems quite possible. 

Regarding the knowledge creation and visualisation using ToCs, expert 1 thinks 

that the processes are very valuable by referring to the saying “a picture paints a 

thousand words”. Additionally, he believes that having such well-structured 
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processes provides the practitioners with more control throughout the product 

development process.  

The expert added an important point to the effect that trade-off curves can also 

be considered in the concept of environmental quality management systems. 

ToCs focus on optimising the design parameters in order to eliminate waste, 

which indirectly affects the environment. 

6.8.2 Expert Judgement 2 

The expert thinks that customer needs should be explored, however, innovative 

companies should also stimulate customer needs. Since the customer 

sometimes does not know what they really want, there should be an action taken 

to develop innovative products. Therefore, it was discussed that defining decision 

criteria before generating trade-off curves provides the designers and engineers 

with an environment where they can explore the opportunities of innovative 

designs by using their creativeness. Furthermore, understanding the physics of 

the product could also help with identifying the customer value. However, the 

expert suggested that before the final decision is made, the possible designs 

should be dialogued with the customer. The advantages of ToCs in facilitating 

communication with different stakeholders can be used in this dialogue. 

The expert asked how the proposed processes handle uncertainty in terms of 

data accuracy, measurement accuracy and other uncertainty, particularly while 

turning non-scale ToCs into scaled physics-based ToCs. Additionally, he pointed 

out the fact that in real life, it is not possible to always get a complete data set. In 

order to address these issues, the process for generating knowledge-based ToCs 

provides the step of data collection as described in sub-subsection 5.3.2. In case 

of missing data in the dataset, the process suggests taking actions such as 

filtering and refining data and preparing the dataset for generating ToCs. The 

suggestion of expert 2 was to make assumptions around those missing data in 

order to get a full dataset. Thus, math-based ToCs, as described in sub-

subsection 3.2.3.1, could be a part of the knowledge-based ToCs. Due to the 

scope of this PhD research, the expert’s suggestion is considered to be a viable 
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future work by the author: Different types of ToCs, math-based, knowledge-based 

and physics-based, could be combined in only one ToC. 

Regarding the structure of the processes, the expert thinks that the steps and 

activities of the processes are in a logical order, and easy to understand and 

follow. Moreover, he thinks that the processes are very applicable. On the other 

hand, he stated his opinion that knowledge-based and physics-based ToCs are 

an additional tool to the traditional approaches for decision-making, not 

necessarily an alternative tool. They can be used alongside the other prototyping 

processes. 

In terms of the processes being difficult to implement and the time required, he 

thinks that it depends on the simplicity of the product. The more complex the 

product, the more depth the designers may require. For a basic product, not as 

many iterations might be needed as for a complex product, such as an aircraft 

engine. 

The expert thinks that knowledge creation and visualisation in the form of ToCs 

is very important. Especially in the beginning of a big project, having ToCs can 

facilitate the communication between the members of a large product 

development team. The chief engineer can use them to visualise the trade-offs 

and targets. In case of the targets or customer requirements changing throughout 

the product development process, the chief engineer can always refer back to the 

generated ToCs, identify the new compromise and communicate it with the team 

members. Therefore, the expert thinks that having knowledge displayed in ToCs 

will facilitate the understanding of the current project among the team members.  

On the other hand, the expert thinks that to a certain extent trade-off curves with 

slightly different names and dimensions have been used in the past, so it is not 

totally a new approach. However, the combination of the knowledge-based and 

physics-based ToCs proposed by the author is seen as a crucial contribution to 

the product development process. 
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6.9 Summary of Chapter 6 

This chapter presented five industrial case studies in which knowledge-based 

and physics-based ToCs were used to create a knowledge-environment. It was 

also demonstrated that ToCs can support key activities of the SBCE process 

model, as well as decision-making and communication. Results of each industrial 

case study are discussed in section 7.2. Finally, the opinions of experts, each of 

whom has more than 20 years-experience in the subject area, were presented. 
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7 DISCUSSION, CONCLUSIONS AND FUTURE WORK 

7.1 Introduction 

This chapter, as is illustrated in Figure 7-1, summarises the research conducted 

for this PhD thesis. Section 7.2 discusses the results obtained from the literature 

review, industrial field study, industrial case studies and expert judgements. 

Research limitations are presented in section 7.3, and contributions of this thesis 

to the knowledge are provided in section 7.4. Implications, conclusions and future 

work are detailed in sections 7.5, 7.6 and 7.7, respectively. 

 

Figure 7-1: Structure of chapter 7 

7.2 Discussion of Research Results 

Research results indicated that the questions identified in section 1.3 have been 

addressed. This section provides the discussions of the findings of this research. 

Reviewing the related literature showed that there is a need for a knowledge-

environment to be used throughout the set-based concurrent engineering 

process. It is a core enabler of the lean product and process development model. 

Scholars, academics and practitioners indicate that trade-off curves are 

considered to be useful tools in order to provide this knowledge-environment, and 

thereby enable SBCE applications. However, it was found that trade-off curves 
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mentioned in the literature were commonly generated by using the data from 

mathematical equations and formulas. Such trade-off curves are referred to as 

math-based ToCs in this thesis. Differences and characteristics between different 

types of ToCs are outlined in section 3.2.3.  

SBCE requires a reliable knowledge-environment that is created from already 

existing knowledge. The knowledge-environment ensures that designers do not 

“reinvent the wheel”, but simply reuse the existing knowledge. This reduces the 

resources required during the new product development process. Therefore, 

knowledge-based ToCs are preferred by academics and practitioners. However, 

the definition of such ToCs was not previously clearly stated. The author critically 

aggregated the available definitions in the literature and proposed a new, detailed 

definition which is described in subsection 3.2.1. However, how to generate such 

trade-off curves was a question that remained to be addressed. Although there 

were initiatives in generating ToCs that enable SBCE, a systematic approach or 

process was not described in the literature. Therefore, the author addressed this 

gap by developing a process for generating knowledge-based ToCs that enable 

SBCE applications, which is described in detail in section 5.3. 

Furthermore, the role of knowledge-based ToCs within the SBCE environment 

was not clearly explained in the literature. It remained unidentified, for example, 

which activities of SBCE can be enabled by using knowledge-based ToCs. In 

order to clarify how to use knowledge-based ToCs to enable SBCE applications, 

the author compiled the information from several journal papers that are 

published in the related subject area. The results are presented in section 3.3. 

They suggest that ToCs can be applied in order to identify the feasible design 

area and to develop a design-set for trading off and narrowing down, until 

achieving an optimal design solution within the SBCE process model. In this 

context, the author developed a systematic process for using generated ToCs 

within the SBCE environment. This process facilitates ToC applications for 

practitioners, and is described in section 5.5.  

From interactions with industrial collaborators and interviews using a semi-

structured questionnaire, the need emerged to generate an understanding of the 
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physics of the product under development. According to the practitioners, this 

understanding can reduce the resources required during the product 

development process significantly. Although representing the physics knowledge 

is important for the practitioners, it was obvious that the literature did not address 

this need. Therefore, the author developed a process for generating physics-

based ToCs that enable SBCE applications. This process is described in section 

5.4. 

The following sections discuss the results of the case studies, which are 

presented in chapter 6.  

7.2.1 Discussion of the Rolls-Royce case study results 

The implementation of the initial version of the process for generating ToCs, 

which is shown in Figure 5-2, helped the author to improve the process in 

numerous areas. These are described below: 

1. The first step “1. Define decision criteria” required explanation in more 

detail, in order to guide the designers on how to identify design parameters 

and how to relate these design parameters to each other. Thus, designers 

can start collecting data to be plotted against the ToCs. 

2. Customer requirements should be obtained at the beginning of the 

process. This enables designers to understand the requirements upfront, 

and to define decision criteria accordingly. Thus, it is ensured that any 

optimal design actually fully addresses the customer’s needs. 

3. The process activities are categorised into steps in order to facilitate a 

smooth flow throughout the process. 

4. Activities are described within each step in order to guide designers along 

a systematic approach to creating ToCs. 

The focused product of this case study was a turbofan jet engine.  Since it 

consists of thousands of components, turbofan engine is considered as a high 

complexity product. During the case study, it was understood that ToCs can be 

generated even for visualising the conflicting design parameters of a high 

complexity product. However, the need for physics knowledge emerged in this 
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case study, as it helps designers in dealing with the conflicts between design 

parameters. Furthermore, for high complexity products, generating ToCs in a 

multidimensional form appears to be helpful for designers, in order to see several 

conflicting design parameters in a single diagram and find the balance between 

them. 

7.2.2 Discussion of the SiTech case study results 

The case study of a passenger car seat structure presented that ToCs can be 

used as a decision support tool, while enabling the SBCE process model. Figure 

7-2 illustrates the overall approach, step-by-step, which was used in this industrial 

case study.  

After the definition of the decision criteria, a trade-off curve was generated, by 

using data collected from material providers, in order to select an appropriate 

material that could meet durability, cost and weight requirements. Two materials, 

Material 2 and Material 3, were selected as suitable solutions from feasible areas 

of the generated knowledge-based ToCs. Identifying the feasible area is one of 

the key activities of SBCE. It was found that ToCs are suitable tools to complete 

this activity, as well as to develop a set of design solutions. In the case study, 

ToCs enabled the evaluation of a design-set consisting of 15 previous designs. 

The data of these designs was visually displayed in order to compare the possible 

designs (ToC 2, Figure 6-8). It was understood that ToCs are able to support 

communication within the organisation, since the knowledge is represented in a 

visual manner. Additionally, ToCs facilitate the presentation of the relations 

between conflicting design parameters, hence the designers can eliminate the 

design solutions that are showing lower performance than others. Thus, the 

design-set is narrowed down. 

After narrowing down, there were four conceptual designs that met the identified 

decision criteria. However, in order to select the best design, ToC 3 (Figure 6-9) 

was generated, which represented the knowledge for decision-making based on 

durability and weight. Finally, Design 8 was selected hypothetically as the final 

optimal design since it satisfied all customer requirements and decision criteria.  
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Figure 7-2: Overall approach to generating knowledge-based ToCs for the SBCE of the seat structure 
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The SiTech case study describes how to generate ToCs, as well as how to use 

the generated ToCs to enable the SBCE process. However, it was found that the 

activities of comparing and narrowing down should be explained in more detail, 

and that physics knowledge should be obtained for an accurate decision-making 

process that achieves the optimal design. Furthermore, it shows that the 

knowledge stored in ToCs can be reused in future projects; hence preserving the 

useful knowledge and saving resources during future design cycles. 

This case study provided insights for improving the process for generating 

knowledge-based ToCs, and created awareness of the need for an 

understanding of the physical characteristics of the product under development. 

As a result of this case study, the process for generating knowledge-based ToCs 

was improved and validated by an industrial case study, which is presented in 

section 6.5. Additionally, since the need for understanding the physics of the 

product emerged, the author developed the process for generating physics-

based ToCs, which was described in 5.4 and then validated by an industrial case 

study as shown in section 6.6. 

7.2.3 Discussion of the Paxton case studies results 

There were two case studies related to the development of a new card reader 

that is resistant to vandalism. The results of these case studies, as presented in 

sections 6.5 and 6.6, are discussed in this subsection. Figure 7-3 presents an 

overall view of the results of these two case studies.  

As shown in Figure 7-3, the decision criteria were identified considering customer 

requirements, and data representing the design parameters was collected from 

previous projects of the company. It was noticed that the data collection period 

was tedious and time consuming. The collaborating company established that 

they were discarding the reusable knowledge from previous projects, which has 

a considerable value in making decisions for current and future projects. 

Therefore, initiating the process for generating ToCs in the company created an 

awareness of the importance of storing relevant data of previous products. 

Additionally, having a systematic data system might help designers and 
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engineers to retrieve the required data quickly. However, once knowledge-based 

ToCs are generated, the data can also be stored in the form of trade-off curves.  

Knowledge-based ToCs generated in section 6.5 helped the research team to 

develop a new design-set inspired by the identified feasible design solutions from 

previous projects. Knowledge-based ToCs, shown in Figure 6-15, provided data 

for the research team to reuse for developing conceptual design solutions. In 

order to evaluate, compare and narrow down the developed design-set, further 

information about the product was required. The process for generating physics-

based ToCs, as described in section 5.4, provided guidance to the research team 

that an understanding of the physics of the product was required. The knowledge 

obtained of the physics of the card reader helped to generate a non-scale, 

physics-based ToC as shown in Figure 6-18. Consequently, it was understood 

that non-scale physics-based ToCs are helpful for understanding the physical 

characteristics of the product, and communicating the conflicting relations 

between the design parameters.  

After comparing and narrowing down the design-set, six conceptual designs were 

selected as they had potential to meet the decision criteria of durability, reliability 

and cost efficiency. In order to evaluate these six conceptual designs and select 

the most appropriate ones, physics-based trade-off curves were generated as 

shown in Figure 6-19. The author compared these selected designs to each other 

in order to extract the solutions that showed higher performance than the others. 

It was thus understood that conceptual design A5 could be reused without 

applying modifications to the design while selecting the optimal solution. 
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Figure 7-3: Overall view of the SBCE process for a card reader using knowledge-based and physics-based ToCs 
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Moreover, the data of conceptual designs A2 and A9 showed a good performance 

in meeting some decision criteria, but minor modifications were needed in order 

to fully address all decision criteria and customer requirements. 

Finally, three conceptual designs remained in the design-set for further 

development. By using the Pugh matrix method at the last stage of SBCE process 

model, the research team decided that the conceptual design A5 was the optimal 

solution for the current project. However, the Pugh matrix provided a subjective 

manner of evaluating the design-set. The need emerged for an objective tool for 

creating the knowledge-environment, in order to achieve the optimal solution. 

Therefore, the author developed the process for using the generated ToCs in the 

SBCE process model as shown in Figure 5-8. The next subsection discusses the 

results of applying this process to developing a new surface jet pump. 

7.2.4 Discussion of Caltec case study results 

The Caltec case study showed the utilisation of generated knowledge-based and 

physics-based ToCs through the SBCE process model to support achieving the 

optimal design solution in an objective manner. Figure 7-4 illustrates an overall 

view of the SBCE for the surface jet pump. Understanding the physics of the 

product helped the design team to develop a design-set. 60 possible conceptual 

designs were generated, as shown in Figure 6-22. Non-scale physics-based 

ToCs were generated for each component (Figure 6-24) with data collected from 

understanding the physics of the product as well as the experience of the 

collaborating company’s manufacturing suppliers. The ToC in Figure 6-18(b) for 

the mixing tube component supported the research team in making a decision on 

eliminating the conceptual design MT2. This decision was made without testing 

and prototyping, which shows how ToCs are contributing to saving resources 

such as time and cost. Similarly, conceptual design B3 was eliminated from the 

design-set using the ToC in Figure 6-26. Its manufacturing cost and complexity 

were much higher than the other two body designs (B1 and B2). However, it was  
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Figure 7-4: Overall view of the SBCE process for a surface jet pump using knowledge-based and physics-based ToCs 
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found that B3 can be reused in future projects if they require the length of the 

body to be above 5m. In such cases, data of B3 will be useful for designers. This 

particular incident shows that ToCs have the capability of knowledge creation. 

Evaluating the set of 60 alternative design solutions using a traditional approach 

would have been very resource intensive. The application of knowledge-based 

and physics-based ToCs allowed the gradual narrowing down of the design-set 

in a considerably short period of time. Thus, it enabled a significant enhancement 

of the product development process, compared to its previous performance, by 

considering different design solutions in parallel. Additionally, generated trade-off 

curves saved a significant amount of resources by providing sufficient knowledge 

for the research team to make their decisions. Furthermore, the need for 

prototyping was eliminated through the use of both knowledge-based and 

physics-based ToCs. The design performance of the selected optimal design 

increased by nearly 60%. This case study also showed how to generate ToCs 

not only on the component level, but also on the system level. 

7.3 Research Limitations 

As it is very common in a research environment, six limitations were encountered 

throughout this thesis. These research limitations are listed below:  

1. The scope of the research  

There are several product development approaches and processes in 

the literature, for example:  

• Tollgate systems, 

• Global product development, 

• Concurrent engineering, 

• Design for six sigma.  

SBCE is an efficient product development approach which addresses 

the PD challenges while eliminating waste. Therefore, SBCE has been 

applied in this thesis, as the research scope is outlined in section 1.1. 

However, the use of knowledge-based and physics-based ToCs is not 

investigated in other PD approaches. The reason for this limitation is, 
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firstly, the necessity of having a specific and certain research topic, 

and secondly the constraints of conducting research in a specified time 

period.  

2. Employed research approach  

As described in sections 2.2 and 2.3, qualitative research methods 

were employed in this thesis. Qualitative research inherits bias, which 

is inevitable. However, in order to reduce the negative consequences 

of bias, the author took necessary actions, such as triangulation. 

Triangulation in this thesis involves the literature review, interactions 

with industrial collaborators, interviews, case study validation and 

expert judgements. The results of these methods are analysed and 

cross-checked in order to achieve reliable conclusions. 

3. The developed processes  

Although using ToCs through the SBCE process reduces time 

significantly, data collection for generating ToCs may be hectic, 

especially if the company does not have an established data platform. 

Therefore, initiating the use of ToCs may be resource intensive. 

However, once knowledge-based and physics-based ToCs are 

generated, the data will be naturally stored in the form of ToCs and will 

be available for reuse in future projects.  

4. Data access  

Collaborating with industry resulted in limitations while carrying out the 

research. One limitation was the access to the data required for 

conducting the industrial case studies due to confidentiality issues. 

Since the aim was to represent real data using ToCs, in the cases of 

limited data access, the author collected publicly available data, which 

is still real-life data but has no confidentiality.  

5. Time constraint  

The PhD research is limited to a specific time-period. Accordingly, the 

time invested for industrial case studies was relatively short. However, 

working as a research team mitigated the time constraint in order to 

obtain tangible and sufficient results in the end of each case study. 
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6. Skills constraints 

During the industrial case studies, it was noted that certain skills, 

background and knowledge are required for developing each product 

that are the focus in industrial case studies. This challenge was 

eliminated through the use of knowledge-based and physics-based 

ToCs. While generating these ToCs, the author gained sufficient 

background and knowledge to be able to carry out the research. 

7.4 Research Contributions 

In the light of the research aim and objectives of this thesis, the author conducted 

an extensive literature review (Chapter 3) and an industrial field study (Chapter 

4). Consequently, research gaps were identified as shown in section 3.5. This 

PhD research addressed these research gaps and contributed to the scientific 

knowledge in several aspects. The overall contribution to the body of knowledge 

is that the proposed three processes, as listed below and explained in chapter 5, 

are the first comprehensively structured, step-by-step approach to generating 

and utilising trade-off curves that enable applications of SBCE. 

1. A process for generating knowledge-based trade-off curves that enable 

set-based concurrent engineering applications.  

2. A process for generating physics-based ToCs that enable SBCE 

applications.  

3. A process for using generated ToCs in the SBCE process model.  

Another contribution of this PhD research to the knowledge is a comprehensive 

definition of trade-off curves in the context of SBCE. The trade-off curves clearly 

defined for the first time in this research are generated using data from 

experience and an understanding of the physics of the product under 

development. 

7.5 Research Implications 

The three processes defined in this thesis address several challenges that 

designers face throughout their product development activities. Generated 

knowledge-based and physics-based trade-off curves can be utilised by 
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designers, engineers, senior managers (including the ones without engineering 

backgrounds), product development/design team members and R&D 

departments.  

The managerial implication of this PhD research is that knowledge-based and 

physics-based ToCs help the PD manager to have a more systematic and 

methodological approach in visualising key data and converting them into 

knowledge in the form of curves to support the product design and development 

from the conceptual stage onwards.  

The methodological implication of this PhD research is that there are three 

different processes generating ToCs and utilising them in a systematic approach 

in order to provide a step-by-step guide to the company on how to manage 

manage certain aspects of the PD knowledge cycle. 

Knowledge-based trade-off curves provide guidance to understanding customer 

requirements and identifying decision criteria for visualising conflicting design 

parameters. Additionally, they guide the collection of historical data for reuse in 

current projects. This reduces the resource requirements of the PD process. 

Physics-based ToCs provide guidance to understanding the physics and 

functions of the product under development. Thus, they support communication 

and decision-making without the need for prototyping and testing. 

7.6 Conclusions 

As the result of the comprehensive research presented in this thesis, the following 

conclusions were drawn: 

1. The finding of the literature review endorsed the statement that set-based 

concurrent engineering is a more efficient approach to new product 

development activities within companies when the knowledge-

environment is provided. Trade-off curves have the capability of creating 

such an environment.  
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2. The findings of the research showed that there are different types of trade-

off curves, which are generated by using different data sources: math-

based and knowledge-based ToCs.  

3. Generated knowledge-based and physics-based ToCs support: 

a. Decision-making throughout the product development, 

b. Communication between different stakeholders, 

c. Creativity of designers. 

4. Generated knowledge-based and physics-based ToCs enable the 

following key activities of SBCE: 

a. Identifying the feasible design area, 

b. Developing a set of conceptual design solutions, 

c. Comparing the possible designs, 

d. Narrowing down the design-set, 

e. Achieving the optimal design solution. 

5. Industrial applications of both knowledge-based and physics-based ToCs 

showed that ToCs are helpful tools for creating awareness in several 

aspects. These include: 

a. Identifying and understanding the customer value, 

b. Visualising conflicting issues related to the product design, 

c. Supporting designers to find a balance between conflicting issues, 

d. Creating knowledge, 

e. Storing useful data, 

f. Reusing existing knowledge, 

g. Obtaining knowledge from suppliers and customers. 

6. Knowledge-based and physics-based ToCs are applicable in the 

development of a wide range of products, depending on their level of 

complexity. 

7. Having already generated ToCs allows practitioners to save time, which 

can be invested in identifying the essential design parameters. It also 

prevents the possible failure of overlooking important conflicting design 

parameters during the product development process. 
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8. Trade-off curves have the capability of responding quickly to dynamic 

changes throughout the product development processes. 

7.7 Future Work 

Despite the promising results and conclusions of this thesis, the author 

recommends that further research be undertaken to investigate the following: 

1. The knowledge, obtained from evaluation and comparison of the design 

data in ToCs, should be captured and stored using a well-established 

software. 

2. A business model should be developed in order to incorporate the 

implementation of knowledge-based and physics-based ToCs into the 

current product development strategy of the company. 

3. Further industrial applications of knowledge-based and physics-based 

ToCs should be investigated in different manufacturing sectors, such as 

chemical and biological products. 

4. Further applications of knowledge-based ToCs in the service sector, such 

as healthcare, telecommunications and catering should be explored. 

5. The potential role of knowledge-based ToCs in the sustainable 

manufacturing concept should be investigated. Such a study may provide 

a resource-saving approach to waste elimination that directly affects the 

environment.  

6. A combination of math-based ToCs, knowledge-based ToCs and physics-

based ToCs can be investigated for future work. 

7. Further investigation is needed in order to update generated ToCs with the 

obtained new data. 
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Introduction 

The objective of this questionnaire is to investigate some of the most 
common challenges that organisations are facing in today’s rapidly 
evolving environment. These are related to product development, use and 
creation of trade-off curves to enable effective product development and 
collaboration with the commercial department. 

This will help to set a case about the importance of introducing the lean 
product development and set-based concurrent engineering practices to 
enhance the performance of the current product development process. 
 

The questionnaire comprises of three parts covering: 

1. Product Development Process 

2. Trade-off Curves 

3. Collaboration Between Commercial and Engineering Teams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Participant's details: 

1. Name: 

2. Company: 

3. Position: 

4. Years of experiences: 

5. Country: 

6. Industry sector: 

7. E-mail: 

 

 

 

 

NOTE: The results of this questionnaire are expected to be available on 31st October 2014 
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Trade-off Curves to Enable Effective Product Development 

This questionnaire is designed to investigate companies’ best 
practises regarding the knowledge creation and provision in 
form of trade-off curves during the early stages of product 
development process. 
 

 

 

TERMINOLOGY: 

IMPORTANCE: It refers to the importance of 
the activity to achieve an objective 
1.  Very low: Not important at all 
2.  Low: Not very important 
3.  Medium: Somewhat important 
4.  High: Important 
5.  Very high: Very important 

 
EFFECTIVENESS: How effective is the current 
method in delivering the service 
1.  Very poor: Not effective at all 
2.  Poor: Not very effective 
3.  Good: Somewhat effective 
4.  Very good: Effective 
5.  Excellent: Very effective 

 
NOTE:  

Trade-off curves are a knowledge-based (knowledge from prototyping, testing, etc. rather than 
simulation based) approach to support decision making throughout the product development 
process.  

If the trade-off curves are currently not being used, please indicate your opinion at each question. 

Decision criteria refers to decision making in a new product development project based on the 
characteristics of product which is under development in order to propose a complying design solution. 

Feasible area/design solutions refer to possible conceptual design solutions that meet the decision 
criteria and the customer requirements for the related project. 

Infeasible area/design solutions refer to conceptual design solutions that do not meet the decision 
criteria and the customer requirements for the related project. 
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Value X-Axis 

Feasible 

Infeasible 

Design solution from previous 
project or/and R&D 

Each axis represents 
one of the parameters 

Curve represents the 
boundary between feasible 
and infeasible area 
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OPTIONS 

IMPORTANCE 
EFFECTIVENESS OF 

YOUR PRACTICE 
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1. Defining decision criteria that have impacts on 
making key decisions throughout the PD process. 

          

2. Defining the key parameters that are related to 
decision criteria to be plotted on the ToC axis. 

          

3. Collecting data from previous projects, R&D, 
suppliers, simulations and eng. calculations. 

          

4. Plotting customer requirements against ToCs.           

5. Defining feasible and infeasible design solutions 
which are illustrated below as an example. 

          

6. Other (please specify): 
 

          

 

1. HOW WOULD YOU DESCRIBE THE USE OF TRADE-OFF CURVES (ToCs) IN THE CURRENT 
PRODUCT DEVELOPMENT (PD) PROCESS WITHIN YOUR COMPANY? 

(Please select one statement)   

1. ToCs do not exist and we are not aware of their importance. 
2. We are aware of the importance of the use of ToCs but they are currently not used. 
3. We have initiated a project of creating and introducing the ToCs. 
4. ToCs are loosely used in some projects. 
5. ToCs are formally in use throughout the PD process and in the most of the projects. 

 

2.  WHICH OF THE FOLLOWING DESCRIPTIONS IS THE CLOSEST TO YOUR COMPANY’S 
INTERPRETATION OF TRADE-OFF CURVES IN THE CONTEXT OF EARLY STAGES OF THE 
PRODUCT DEVELOPMENT P? (Please select one statement)  

1. ToCs are a tool to understand the relationships between various design characteristics. 
2. ToCs characterise the relationship between two or more key parameters that relate 

design decision(s) to factor(s) that customers care about over a range of values. 
3. ToCs are a tool to enable identification, capture, compare, and reuse of knowledge for the 

new projects. 
4. ToCs describe the limits of performance that are possible with a given design approach in 

a simple visual form. 
5. Other (please specify):  

 

1. HOW IMPORTANT DO YOU FIND THE FOLLOWING ACTIVITIES IN GENERATING TRADE-
OFF CURVES AND HOW EFFICIENT DO YOU IMPLEMENT THESE ACTIVITIES 
THROUGHOUT THE EARLY STAGES OF THE NEW PRODUCT DEVELOPMENT PROCESS? 
(Select as appropriate) 
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4.      HOW DO YOU DEFINE DECISION CRITERIA FOR GENERATION OF ToCs? 

 (Select as appropriate) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.     HOW DO YOU OBTAIN THE REQUIRED DATA TO GENERATE TRADE-OFF CURVES? 

(Select as appropriate)   
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1. Key designers and engineers subjectively define 
decision criteria. 

          

2. We define decision criteria using experiences 
from previous projects, such as conflicting issues 
and encountered problems. 

          

3. We define decision criteria by implementing 
multi-objective optimisation. 

          

4. We define decision criteria by extracting from 
customer requirements. 

          

5. We define decision criteria by interviews with 
customers. 

          

6. Other (please specify): 
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1. We collect data manually from previous projects 
and R&D, simulation and engineering 
calculations. 

          

2. We dedicate people to collect data.           

3. We collect data by automatically extracting from 
our current database. 

          

4. We create data by simulations / prototyping as 
we need it in related project. 

          

5. We collect data from material providers and 
suppliers. 

          

6. We obtain data by following a process (Process is 
illustrated below) 

          

7. Other (please specify): 
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1. We use ToCs to generate a set of conceptual 
designs in the early stages of the PD process. 

          

2. We use ToCs to narrow down the conceptual 
designs to achieve an optimal design solution. 

          

3. We use ToCs to enable key decision-making 
throughout the process of product development. 

          

4. We use ToCs to identify the feasible area where 
the possible design solutions are located. 
(Feasible and infeasible area are illustrated in the 
graph below.) 

          

5. We use ToCs to compare the possible conceptual 
design solutions regarding the related decision 
criteria and customer requirements. 

          

6. Other (please specify): 
 

          

Collect available data 
(from material provider, equipment and tool provider, engineering and 

legislation associations, etc.) 

Generate Trade-off Curves 

Analyse the collected data 

Identify the point of interest and missing data 

Fill the gap from Previous Projects/R&D 

6. IN WHICH STEPS/TASKS/ACTIVITIES OF YOUR CURRENT PRODUCT DEVELOPMENT 
PROCESS WOULD YOU USE TRADE-OFF CURVES? 
(Select as appropriate) 
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Appendix B Members of the Research Teams 

Academic supervisor for all research teams is Dr Ahmed Al-Ashaab. 

Case study 
Member of the 
research team 

The role in the research 

Rolls-Royce 

Zehra Canan Araci  

PhD Researcher Investigating the development of a 

knowledge-environment to support the 

application of set-based design. Esraa Al-Ali  

MSc Student (Erasmus) 

Dr. Muhammed Khan 

Research Fellow 
Developing new multi-disciplinary SBCE 

capabilities that can deploy new aircraft 

and engine designs and configurations 

more quickly and with greater 

confidence. 

Matic Golob 

Research Fellow 

Dhuha Qays 

MSc Student (Erasmus) 

Dr. John Oyekan 

Research Fellow Developing a knowledge-shelf structure 

to support the set-based design 

implementation Emmanuelle Ithier 

MSc Student 

SiTech 

Zehra Canan Araci 

PhD Researcher Generating knowledge-based trade-off 

curves to support decision-making and 

communication Dr. Maksim Maksimovic 

PhD graduate 

Paxton 

Zehra Canan Araci 

PhD Researcher 

Developing the processes for generating 

knowledge-based and physics-based 

ToCs that enable SBCE applications 

César García Almeida 

MSc Student 

Set-based concurrent engineering 

application of a proximity card reader 

Jakub Wojciech Sitek 

MSc Student 
Supporting the design modelling, and 

structural and thermal analysis 
Younes Laoui 

MSc Student (Erasmus) 



Appendix B Members of the Research Teams 

190 

 

 

Case study 
Member of the 
research team 

The role in the research 

Caltec 

Zehra Canan Araci 

PhD Researcher 
Creating and visualising a knowledge-

environment, by using knowledge-based 

and physics-based trade-off curves, to 

enable the SBCE applications. 
Piotr Wojciech Lasisz 

MSc Student 

Muhd Ikmal Isyraf Mohd 

Maulana 

PhD Researcher 

Justification of introducing the SBCE as 

a new product development approach 

and investigating the benefits of applying 

the SBCE process model. Jakub Wiktor Flisiak 

MSc Student 

Supriana Suwanda 

PhD Researcher Developing a software to capture the 

design rationale throughout the SBCE 

applications. Noodhir Sharma Sobun 

MSc Student 
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Appendix C Structural and Thermal Analysis for Paxton 

Case Study 



Appendix C Structural and Thermal Analysis for Paxton Case Study 
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Appendix D Caltec Case Study – Nozzle Designs and CFD Simulation Results 
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Appendix E Semi-Structured Questionnaire for Expert 

Judgement 

 

Question 1: How would you assess the use of these processes from the 

perspective of a practitioner (Both regarding their structure and their 

practicability)? 

Structure: 

i. Easy to understand 

ii. Easy to follow 

iii. Well structured 

iv. Too many steps and activities 

v. Looks crowded 

Practicability: 

vi. Applicable 

vii. An alternative tool to traditional approaches for decision-making 

viii. Powerful tool for the work 

ix. Useful tool for the work 

x. Difficult to implement 

xi. Time consuming. if yes, why? 

1. Data collection is tedious 

2. There are easier tools for knowledge creation and visualisation (if so 

what are they?) 

 

Question 2: To what extent do you think it is important to create knowledge 

using ToCs while developing a new product? 

Answers on a scale from 1 (Very low) to 5 (Very high) 

 

Question 3: To what extent do you think it is important to visualise knowledge in 

the form of ToCs while developing a new product? 

Answers on a scale from 1 (Very low) to 5 (Very high)
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Question 4: To what extent would these processes add value to your product 

development process? 

Answers on a scale from 1 (Very low) to 5 (Very high) 

 

Question 5: To what extent would you consider using these processes in 

developing a new product? 

Answers on a scale from 1 (Very low) to 5 (Very high) 

 

Question 6: To what extent do you think ToCs are useful tools to enable the 

following: 

Each of the below is to be answered on a scale from 1 (Very low) 

to 5 (Very high) 

 

a. Creating awareness in identifying and understanding the customer 

value 

b. Visualising the conflicting issues related to the product design 

c. Supporting designers to find a balance between the conflicting issues 

d. Creating awareness in storing useful data 

e. Creating awareness in reusing existing knowledge 

f. Creating awareness in understanding the physics of the product 

g. Supporting decision-making 

h. Supporting communication between different stakeholders 

i. Supporting communication between the supplier and the company 

j. Supporting communication between the customer and the company 

 


