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Abstract

The paper considers the case of a one-dimensional isentropic
unsteady compressible flow that is driven entirely by a distribution of sources
in the left-hand half space of an unbounded domain. The right-hand half-space
contains nosources, so that source-strength drops discontinuously to zero as
one crosses from left to right-hand space. Exact solutions are obtained for
those parts of the flow that remain isentropic. A shock forms and grows at the
right-hand head of the disturbances; the extent of the non-isentropic field
that it creates is established, and is shown not to interfere with some novel
developments that occur, some time after shock-formation, at the spatial
point at which source-flow ceases. On a distance-time graph the left-going
characteristics bifurcate at a cusp-locus on the time axis through the point
of discontinuity in the source strength for all times after a critical value
(provided that the source efflux is maintained). In physical terms the cusp-
locus corresponds to a Tine of locally sonic flow, so that the source-
provoked flow from left to right appears to ‘choke' at this point. From this
location onwards a segment of locally supersonic flow travels into the space

to the right of the socurces.

The probiem has a number of interesting features, all of which can be
analysed and exactly quantified. Consequently it provides a useful testing
ground for numerical-solution algorithms, especially for situations in which
source terms are present.

The problem is usefully illustrative of the sort of
transient wave systems and flows that are generated by Tocal massive
gasification, or the ignition of a high-explosive charge, within a long pipe.



1. Introduction

An effective method of generating, rapidly, large amounts of gas for a
variety of purposes is to burn a solid-propellant or high-explosive
substance. This material is often provided inthe form of bundles of grooved
sticks of explosive, and the propellants in solid rocket motors are usually
made up in the shape of hollow cyiinders. When only a part ofthe whole
tength of the propellant burns, gas is created that begins to flow aiong the
interstices or holes and there is an evident need to know how such flows
develop from the very moment of their initiation. A similar state of
affairs arises if a small high-explosive charge is ignited inside a pipe.
The Tocally-generated pressures can be exploited in order to join together
two (appropriately shaped) very long pipes, and it is clearly important to
be able to predict these local values, as well as such things as shock-wave
strengths in regions of the pipe far from the explosive charge. The overall
situation within a gun barrel and breech can also be included in this broad
category of configurations. The complete high-explosive charge acts as a
source of high-pressure gas to propel the shot down the barrel of the qun.
Transient pressure waves are generated during the early phases of propellant
ignition and continue to interact with the burning material as the shot moves
and burning continues,

To model such complex situations completely requires a study of the
behaviour of the solid explosive itself, coupled with that of the chemicatly-
reacting gases in which the propellant is bathed. This requires consideration
of the full set of three-dimensional unsteady, mul ticomponent, reacting-gas
Navier-Stokes equations. Even supposing that one could solve these equations,
there is clearly every motivation to look for simpler models, that isolate kKey
elements inthe processes, and illuminate important physical features.

Since the examples described above all involve flows in Tong slender
domains the simplification to a one-dimensional unsteady configuration is an
obvious first step to take. A second simplifying step is to represent the
generation of gas, that is solely responsible for the ensuing flow, by the use
of source terms in the Euler equations of mass, momentum and energy conservation.
Such terms are inthe form of known functions of Tocal gas properties, in
general, and circumvent the complexities of chemical reactions, phase changes
and so on. Such rationalisations are still widely used today in studies of
internal ballistics (see, for example, Krier and Summerfield (1979)). It is
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fair to say that numerical solutions of even the homogeneous forms of
these equations are still not without their difficulties, as described
by Roe (1986).

The development of tomputer codes for solution of the Euler equations
is greatly assisted by the existence of exact analytical solutions for a few
pertinent, perhaps idealised, configurations. Some current research on
problems that involve source terms, as described above, has highlighted the
absence of any exact solutions of these augmented Euler egquations, and has
stimulated the exercise whose results are reported here.

A problem that has the attributes of test-case and epitomiser of
physical events is described in the present paper. A one-dimensional
unsteady compressibie flow of an ideal inviscid gas is assumed to contain a
known distribution of sources in the left-hand half plane of an otherwise
unbounded space; flow in the right-hand half plane is conventionally source-
free. The actual charatter of the source distribution is chosen with an intention
to ease the analysis but, despite this, remains acceptable from a physical point
of view. OSome brief general observations about conservation equations and source
terms are made in Section 2, which also identifies the particular form of
source terms that make analytical solutions possiblie. Section 3 adopts the
hypothesis of isentropic flow and provides formal general solutions under
this proviso. Section 3 also introduces the final postulate about the source
terms, in the Tight of which it becomes a trivial matter to evaluate the
integrals that appear in the formal general solution.

Explicit analytical solutions are written down in Section 4, and these
begin to reveal details of the evolving flow field. Several features stand
out at this stage, but two deserve special mention. The source-filled part of
the field is dominated by rapidly-rising pressure, that is spatially uniform
until a signal arrives that emanates from the point of discontinuous fall to
zero in the source strength. To the right of this, the pressure falls as one
moves further tothe right and continues to do so until one crosses into the
source-free regions. Clearly there is an expansion wave propagating into the
source-filled regions from the Tow (and fixed ) pressure domains on the right
of the field; a compression wave travels from left to right into the low-
pressure areas, and this initially continuous isentropic compression steepens
to form a shock-wave at its head. This not unexpected feature is the first

of ©he two mentioned above. The matier znd some of its consequences is discussed
in Section 5.
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The second feature is novel, and owes its existence to the hypothesised
discontinuous drop in source strength between left and right-hand half planes,
Characteristics Tines of the left-going family on a distance-time piot have a
cusp-locus at the position of the discontinuity for times after a critical
value, and the phenomenon is also associated with the appearance of locally
sonic flow. It is important to note that the cusp-locus occurs within an
expansion in the present situation; it is therefore quite unlike the
phenomenon encountered in the formation of ‘envelope' shock waves. The
flow 'chokes' at the discontinuity in the source distribution after a certain
Tapse of time and a region of supersonic flow extends downstream from this location
and isolates the sources from anything other than strong disturbances that may be
generated in the homogeneous {(right-hand) parts of the flow. A full discussion
is given in Section 6.



2. Equations & Source Terms

The equations of conservation of mass, momentum andenergy are written
"in conservation form" as

&' . (fw}l = G , 2.1
(p=dy + (gt ) = F 2.2
ey, + Lre(s +P0l =M 2.3

where

) 2.4

and p,w, P , & are density, gas velocity, pressure and intrinsic energy.
The right-hand sides, &G, F, H of (2.1, 2 and 3) represent general
sources of mass, momentum and energy.

The square of the local sound speed in the medium is &a*, such that
=Y
at = Xp/e 2.5
where ¥ s assumed to be a constant. In the circumstances

Ye = &%&V»E}Q 2.6

Equations (2.2 and 3) can be rearranged with the aid of (2.4, 5 and 6) to
read

f/ut*“muu§ - Py = F~uwG e.7

B+ b, — 4"(;4& cup )= ("*QEH“G(E“‘”W(\)*“(“G'Fﬂ 2.8
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and it is clear that simplifications are provided by a suitable choice of
relaticnships between the various source terms. In particular both (2.7)
and (2.8) have zero right-hand sides if

F = uwa ; 2.9

H = (E +%/nG. 2-10
The Tatter choice means that (2.8) can be integrated to give
¥
o= kiydp 211

where kéyd is a function of 3pf9and a constant value of 4 defines a
particle path via the relation

3x - w
vl = : 2.17
ht}’*f

Of course the function k{w3} is the same as exp(sfcvﬁ, where s is specific
entropy and (Zv is the (constant} specific heat at constant volume. It is
important to remark that, when the source terms are related as in (2.10 and 11),

and provided that the differential~equation system (2.1 - 3) applies, entropy
remains constant for any given fluid particle. Restriction to the system

(2.1 - 3) means that shock waves, which are not described by these equations,
must receive special treatment and will Tead to entropy increases in any particle
that crosses them in the usual way.

Combination of (2.1) with {2.8) gives
2 2
P+ P A, = a G 2.13

when (2.9 and 10) apply and, in the same circumstances, the sum of *a times
(2.7) with (2.13) reveals the characteristics form of the system, namely

P+ (Kt@?x + (;A_Eut + i&‘}mxl = 2%+, . 2.14

Defining the characteristic parameters &, f so that

3¢ - —u - 2.15a
(?.) e = A o A ’
61 - — a— Z2.15b
(.--) = %ﬁ = LA & ’

S
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the pair of relations (2.14} can be re-written as

(v + u‘}g = b , 2.16a

where
o = (a(?/f& , 2.17
& o= AG/f . 2.18

Evidently {2.16a, b) can be integrated, formally at least, but it is
helpfu? to introduce two more postulates before carrying this process through.



3. The Model Problem

First, assume that klxp) is constant everywhere within the domain of
interest (equivalent to assuming that entropy is similariy constant).

As
a consequence (2.5, 11 and 17} show that

&

= 2
A Sl 3.1
Second, assume that the initial state of the gas is such that

W=0, a=a = covnstant - + = 0o

#

over some chosen, sufficiently long, interval in == .

Then equations {2.16)
integrate to give

&
A+ w = § 335‘[ , 3.2
Q %
vt 3.3
[«
where
- 2 - d
&:a(ﬁwao‘) -.:é& ; 3.4
and &’ 1is the increment in the local sound speed from its initialiy constant
value &, . It follows from (3.2 - 4) that (2.15a, b) are equivalent to
3 t . t_
x. - = -
(B, = 4 +F(G0f Bl + 4 3>§QC~»‘%’C€¢ # 3.5
¥ 1 (- &y L{x )§t-“‘at
(B, = % 503 tly - 300l a3, . 36

Evidently the flow field is driven entirely in the present case by the
mass sources in 2« Q.

The model problem in the present case is constructed by assuming that £§
{not &) is a simple piecewise-constant function of 2= &t .

In particular, the remainder of the present paper will be confined to
discussion of the case

G

it

conmstant (>0), x<o;
= O x>0,

&

3.7
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The integrals in (3.2 and 3} are then easily evaluated by calculating the
interval of time spent by w & ® —characteristics in domains of non-zero

& up to the chosen time € . The choice of piecewise constant values for
¢» is made solely for convenience of calculation in (3.2 and 3), and wil?

be shown to lead to some attractively simple analytical results.
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4. Solutions

(a) Region in which presure rises but no flow is induced

Referring to Fig. 1 it can be seen that for any =« & @ characteristics
that 1ie wholly to the left of the 1ine QOC, up to and including time ¢ ,
(3.2 and 3) give A*w both equal to Eit:, so that {NB (3.4) for definitions
of Aka')

w=0 Al = LN-NGt 4.1a,b

Since any point in the part of the domain that Ties to the left of the line OC

is unaware of the spatial nonuniformity in G that occurs at = =o it is

not surprising to find that no gas flow is initiated by the source. However, the
isentropic efflux from thesource gives rise to a compression when Cs s positive,
and it can be confirmed that the sound speed increment in (4.1b) is precisely

the same as the one calculated from (2.1} with a zero value for (fﬂw‘\ﬁ& B

coupled with (2.5) and (2.11), with k() equal to a constant in the latter.

The Tine OC  is the Tast & =constant 1ine that Ties wholly in =< O
from (3.6 and 7) the equation for QC 1s simply

% = —agt —LO-NT LY, 4.2

(b) Expansion wave travelling into %< O

For any {=,t} point in the domain OCE it can be seen from Fig. 1
that

Aaw = & |, A-w =§(t»t‘*i%‘s\} ; t;‘(u&‘) £t . 4.3a,b
Thus
W = '%__Gt“("\) ; 4. 43
a = 400k —Lg0)G 4.4b

where 25#) parameterises any particular o« = constant line in the OCE

. domain.
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Any & = constant line that lies in OCE | such as the one through B
(Fig. 1), has the equation

*x = —a, [}:» tﬁiuﬂ -_%(‘C-a)a[@t—{j(ﬁﬂ +_§(‘*‘ﬁg&\£& m%ﬁ(s&ﬁ . 4.5

It should be observed that w 1is constant whilst &’ increases with time on
any such characteristic.

it is interesting to note that

2o §

% I 4 ot -G
2y = 4T {4+ faEE - Tg] '

in OCE. This velocity gradient is finite, even as ¢ and hence, necessarily,
t*{u‘) approaches zero in OCE | The magnitude of (&wf%x% diminishes
monotonically as t  increases.

It is clear that the line OC is the head of an expansion wave that
propagates into the uniform domain in < O ; across which there is a jump
- NN
in the value of "o from zero (cf (4.1)) to the value g&{% a—ii*&ﬂ‘;&.t% o

(c) Compression wave travelling into = » @

Turning now to points within the domain OEG {(Fig. 1) it can be seen
from (3.2 and 3) that

Avw =8ty , Amw=0 ; t3EHR) -
#

Thus
#

w= §GEQRY = .&a 4.7

and the equation of a constant-g Tine in OEG , such as the one through the
point ¥, is

x = {a +§(%*v>at“(§s}£tw§<%3] : 4.8
The velocity gradient is given by
- - - @ §
) =18 {4« g R R - 40eyEE] -9

in these ¢ircumstances.

The flow in OEG , at least for early times, is undergoing isentropic
compressicn through & simple wave, as testified by the stratght-line character
of he constant~§ Tine in (4.8}, for example. The unperturbed fieid in =3O
into which the simple wave propagates is a field with constant sound speed &
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and zero flow velocity. The wave-head OG is given by = =at (put E/) =0
in 4.8)), and the simple isentropic compression wave that follows it will
only continue as such until W becomes unbounded. This occurs on the

simple-wave head at the time tstn. $ (4.9) shows that

b = 4, [(4+)E 4.10
More will be said about the shock wave,that must now lead the flow into the
right-hand domain = > ¢© , in due course.

Meanwhile it is important to observe a key feature of the flow field
that occurs, and remains, at least for some time, at the location ==
of the discontinuity in the source distribution & . On any line of constant-—s
or constant-§ , such as (4.5) or (4.8) in present circumstances, = approaches
zero as t approaches either t“(@ or £ (&) . Moreover, if € (Y
is equal to t*(?.) y ® =0 can be approached from either the left
(on o = constant) or the right (on & = constant) at the same instant of time
by letting t —» € (=) =t (8) -

First of all it is important to note from (4.4} and (4.7) that w & &’

are continuous at = =& . Second, it can be seen from (4.6) and (4.9)
that !
A im{dx -4 (3% fcﬁt% S e ) -
y — - =
A P— J, a
ey, = 48 g%.a_*{wa)cht% , X~ 4.12

Thus flow-velocity gradient suffers a discontinuous change across = = &
from positive and increasing magnitude as €  increases in % <® to negative
and decreasing magnitude in Tike circumstances in = > 0.

It can be seen from {4.7) that (AA'/éxf’)t_ is always equal to £(¥-1)
times (%w/éx)t in the domain ©EG, whence the value of (sa'/da),
as x —» O+ 1is evident from (4.12}. However it is necessary to calculate
(Sd/bx\t in OCE from (4.4 and 5). The result is readily seen to be
oy

(étf: - ~1 (69T %\b + 400Gt ~& 2(«»% . 4.13
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It therefore follows that as = -+ 0~ in OCE (which is achieved by
letting T~ & (x) in (4.13)),

Bd’ ¢ - P - 0 — O "
(Si)t - =20 n\G{a.e 10 Y‘mt} a 4 14

Thus a' and hence, in view of the isentropic character of the flow
at this stage, pressure and density too, will suffer a discontinuity in

slope, but not value, as = c¢rosses = =¢0.

(d) The critical time &. and the appearance of sonic flow

It is observed from (4.11) and (4.14) that both [w_{ and |a'

!
at = =0- grow without bound as the time t increases towards a va;Ze

tc given by 4%/(3_1)6} This remark relating to conditions as = —»= o~
is made on the suppositicn that ¥< 2, as indeed must be the case for gases.
It is therefore reiterated that [wu_ | % {&;J 5 s Simultanecusly as = =@

and ¢ hb-%', both from below, where

=,

t, = 44 [(2-¥)E . 4.15
As with the shock-wave that forms at time tﬂ‘L it 1s necessary to say
more (below) about what happens at and after t reaches tc . Meanwhile,
note that
t& > tsh 016

is always true since Y always exceeds unity.

It is important for the interpretation of what happens to the flow
field at and after time £, to remark that whem t=t_,uat = =0 is the
same as a at that location, since w 1is equal to iiit and &’ s
equal to j(¥~)at at = =0, ot < &, as can be seen from (4.4) or
(4.7). Thus locally sonic flow is first achieved at = =0 ,bt=E, .

{e) Summary of the main results so far

The principal results in this Section can be summarised in the form of the
elementary relationships that exist between w , & , = & ¢ that are
impiicit in (4.4 and 5) and (4.7 and 8). Thus, in OCE

* = mgae-_-u +,§f(~r..=‘aat?(i:m%) . 4.17
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A o= A 4 —%_(‘Cw-a*)(at —_ u.,B s 4,18
whilst in
- L — inm 4.19
% { & Q_(‘f-&- |')w%(‘\': = 5 )
a = a4+ %_(\g...g)u. . 4.20

{f) Illustrative results

Lan2k3d >
Figs. 2 and 3 illustrate the gas velocity and sound-speed distributions

at a time equal to 0.8 of the value qﬁ {eq. (4.15)) for Y equal to % .
The time tﬂkat which a shock-wave forms (at the right-hand end of the flow
field) is equal to 5ét2 under these circumstances. The multi-valuedness
that is apparent in both velocity w and sound speed & is therefore to be
expected; it is discussed in sufficient detail in Section 5 below, not
primarily in connection with the apperance of an "envelope" shock itself,

which 1s not a new phenomenon,but more for the influence that this will have
on the domain of isentropic flow.

The imminent appearance of multi-valuedness in both w and & at =0 at
and after time Q; is apparent on both Figs. 2 and 3. This heralds the
approach of a new phenomenon, that is to be fully described and analysed
in Section 6. That this new phenomenon is associated,not with a compression
as in = > 0O , but with an expansion process, can be appreciated from the
different combinations of w and a variations in % <¢© and in =5%0Q.
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5. The Shock Wave

The shock that forms at time tyh (see (4.10)) on = = a,T means
that the condition of isentropic behaviour will be violated in the flow field
from that moment on. However the region of strictly non-isentropic flow must
be bounded, on the right by the shock itself, of course, and on the left by
the  -characteristic that passes through the point t=t, , == ﬂbtshﬂ
Fig. 4 is a sketch of the situation that incorporates some of the facts already
elicited in Section 4 as well as some that must be validated here. This is
particuiariy true of the shape and disposition of the two & -Tines CB, for
which & has the value «, , and SA for which « is given by o, .

Since it is equal to w=-a, the derivative (3¢/3¢)_ 1is zero when w
is equal to a ; this Tocally sonic state is first achieved when £ s Q;
on the line = =0 (cf remarks that follow (4.16)). Thus characteristic 3
is tangent to the & -~axis at point £ 3its shape {as sketched in Fig. 4)
between C and point & , where it intersects the isentropic-compression
wave-head, is consistent with the known behaviour in domain QEG (see

Section 4(c)}.

The constant~R Tine, B = @S , that passes through point ¢ is

-

(see (4.7}). In view of {4.15) this value is ’Lao/(%-m‘s"} s and it is
readily seen from (4.7) that L a’ y Or a,has precisely this same value.

characterised by a constant value of w  in = » O given by iét&

Thus the ﬁs~]ine is a characteristic Tine that is also a senic line, as
indicated on Fig. 4. If the «,-line emanating from the shock-formation point &
lies to the right of =, ; as in the sketch, it will intersect @E at A  with
zero value of Bx/ét,,and the region of non-isentropic flow produced by the shock
will remain in 2 >0 . This supposes, as does Fig. 4, that w > a for -
values above the line €A . Both this supposition and the one about the
relative dispositions of points B and § can be substantiated, as will now be

seen.

(a) The shape of the & -characteristics in 2>¢

It is clearly necessary to calculate the shape of & -lines in the QEG
domain (Fig. 1) in order to resolve the issues raised above. From {2.15h)
and {4.7),

(), = =%+ a6o0n >
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The relationship between w % kt is found from (4.19) to be
('ﬁwi-qu.?- + (Q_a_o—w é(“{w)(_}t—Eu -+ (Ix@-&ot3(:§ = . 5.2

Solving this equation for & 4 and taking the positive sign for the square root,
Teads to the following differential equation for the variation of % with ©
on a constant-« 1ine in OEG

N )& ) 3
T L L GRS E P S

The manipulations required to solve {5.3) are described in Appendix A.
Although general conclusions, for any value of ¥, are not accessible

from the solution it is easy enough to demonstrate by direct numerical
calculation that the Tines =, & =, for ¥=7% are in the positions depicted
in the sketch in Fig. 4 (see Fig. A.1 for the numerical results).

Thus the assertions implicit in Fig. 4 regarding the domain of
non-isentropic flow are substantiated when ¥ = ¥4 -

(b} Estimate of shock path for times near to ts

b
Validation of the idea that w > &« in the region above the Tine

in Fig. 4 will be undertaken in the next Section. The present Section

will be c¢losed with some observations about the character of the shock that
forms at time t@h on 2=4at . Initially the shock will be very weak and

the changes of entropy from one particle-path that crosses the shock to

another will be small enough to be neglected, at least in a first approximation.
The isentropic simple compression-wave will provide an adequate description of
conditions behind the shock in these circumstances, and the weak-shock-fitting
theory of Whitham (1974, §2.8} can be used to show that the shock follows

a path

- < 3 E o \?
xmmd&("t).hao{t—;-?t;k(@ e‘)g ﬁ

th 5.4

at least in the early part of its history. The real finite-amplitude wave

will run ahead of the path (5.4) as ¥ more and more exceads Qﬁbm
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6. Cusp Locus for o -characteristics*

Continuation of the solutions derived in Section 4 into times in
excess of tc (see {4.15)) must be done with some care, at least in the
neighbourhood of =0 . Integration of &G along a line of constant @,
as required by (3.2), is straight-forward and A+ w is equal to E;t“(@)
for any points that lie to the right of = = © when € (g} exceeds € .
This situation is iTlustrated in Fig. 4, which supposes that w3 a in
the region BCAFE | Any constant—« 1line, such as one that 1ies between

o, A «, 5 for example, must have x, equal to zero where it crosses
the gss line, as explained in Section 5. Regardless of the direction that
it takes after crossing CA on gs s this same 1ine must continue for some
time in = » © and, accordingly, (3.3) makes A equal to w on the
x-1ine immediately above CA . Thus

A = WM = jigtkéﬁ}

for tﬁ(p:’l‘t: ,whence w > a  as a soleconsequence of the excess of t*{an
over tc . It follows that ¥, ona line of constant = above CA  must be
positive and the x~Tines inthis domain must be as sketched in Fig. 4, includinges, -

Now consider those «-lines that cross from =>0 into the domain =< C.
It is clear from the analysis to date that this can certainly happen for t*(«}
values (see Fig. 1} less than ta . Solutions for w & &’ under these
conditions are found in equations (4.4), which together show that

a-w = a + Ji(‘{a-ﬂat -#(”E-ﬁ-!‘)at*(*@ . 6.1

It is evident from (4.4) that a s least when £ s least, and egual to ‘i‘;*&}
in the present case; (6.1) then makes

Amw = 4y -LA-OE) 20, t =L,

0 [

and w is therefore less than a on any «~line that crosses into = £ O for
Ly« t , Evidently u=a at =0 when q‘(x):tc , with w<a everywhere
else along this x-Tline in x<Q. Accordingly, the slope 2, of ali a~T71ines
with €(«) < t_ is negative in x £ O § when t*(x)ea £ e, £ 0,
with equality occuring only at = = ©.
The situation in the neighbourhood of the critical point x=0,t =1
as revealed so far, is sketched in Fig. 5. The characteristic «  has a cusp
at the point C and continues in % > O along &+ and in %x<© along 8= .

[t appears that no w~1ine emanating from the initial line can penetrate into

* This particular cusp locus should not be confused with a 1imit line
(von Mises, 1958, Art, 19).
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the region between o + A o However, this remark ignores the character
of the source distribution given in (4.1}, for which & is undefined
at w = O.

It is useful to think of & as a continuous function that decays
rapidly, from a constant non-zero value in 2¢<© to zero in = > O 1in
the nearneighbourhood of % =0 . Then «-characteristics in a near
neighbourhood of o will pass through this region of continuous change in G
centred around =0, as a continuous distribution of curves covering the
whole space between % ~ and «,+ . This situation must persist as the
spatial interval within which & changes from its constant value toc zerc
shrinks towards zero around =~ = Q.

The x-characteristics in~between ®, & must all enter this region at
the cusp C (Fig. 5) in the Timiting case for which the region within
which G varies shrinks to zero-size around = =O | These characteristics
must eventually emerge into either =« <O or = >0 having, in general, spent
some time within the bundle of characteristic Tines that follow the ¢ -axis
above C. At this stage it is not possible to assess the contribution to gziétﬂx
that will arise from this time spent within the domain of changing G- However, it
must be remarked that if this time (and hence contribution to the integral)
turns out to be zero, then all x-lines in «, * must emanate from €. . There
are good reasons for supposing this not to be the case, based on the
conclusion from (4.4), with t_ in place of t;(n) s that w between o — b oae =0
will then remain constant at the value ifig} such a concliusion is, at the
least, physically implausible. The simple analysis that follows will be seen
to resolve all such matters in a satisfactory way.

Consider the line =~ that emerges into = <O at time t‘*(a) at
point & (Fig. 5). For any point on e~ above & (3.2 and 3} give
(Ne &2 £ Go0L)

,&\-P—u = Ext . 6.2a

A-w = &t -gto] « Fio 6.2b
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where T () 1is the value, unknown at this stage, of f@‘ét{x between £ & € (~).
A similar evaluation for any point on s+ above & gives

A 4 WKW = t‘ﬁ_d%) 4 6.3a

&
A—w = F (=), 6.3b

where F;(x) is the value of fa}t[dfor the o+ characteristic, and & » t‘@{x‘%,

.

If both + & «~ are to spend the time between points € and Z
on the t——axis,(éx/ét\x must be zero there in both cases, and (2.15b} shows
that w must be equal to a in this segment of the axis. In particular,
choose t equal to t (=) on «~ X on «+ (so that E (g} is also equal
te t ). Then (6.2 and 3) show that

F( =3 .3_:! at o = =
00 (‘S-M) *{‘“} %f o F:t—(&d Flx) 6.4
Using the definition of t‘a from (4.15), (6.4) can be rewritten as
F(°<> = i a ( t*(ﬁ) -1 6.5
ECR I N ‘

An important conclusion from (6.4) is that w and A (and hence P
etc) must be continuous at = =& in the present domain above point ..
Characteristics such as &% emerge from cusps at & , Just as the Timiting
« X characteristics do from C .

The time-axis above € is therefore a locus of cusps for the
o~ Characteristics. In addition, of course, this portion of the axis is a
sonic line.

It is now necessary to evaluate the complete character of the field in between
the characteristics o & , starting with the situation in % < O.

(a) The field in ®<C

[t follows at once from (6.2, 4 and 5) that

2 €, («Y 2 b () 6.6a
= {——-\a “k P . 2 L. W
* (Hf\) t (\fﬂ)%( 3 i\) ’
[ -4
. §.6b
— Yt = & () ¥t b
A = & 0 \a_ [8X otk ya [ B o
°+(2-\f)°( t £, >+<‘C«+t> "( &, g} ’
where t;t*(x);te_s Thus w s constant on any given «~line, and increases

with increasing t“(x‘) (cf Fig. 5). The flow defined by (6.6) is subsonic.



6>
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The shape of the w~lines inthe present domain is found from (2.15b)
and {6.8;

2
=f = ”(Eﬁﬁt"tﬁ“ﬂ % - 6.7

Since w in (6.6a) depends only upon t*(x),(6.7) can be rewritten to provide
an implicit relationship for w as a function of =,t in the present domain.

The general expression for (du/dx) at fixed t is particularly simple
in the present case, since it is found from (6.6 and 7} that

%)k - Q;/(iw‘}[twt*(&)} : 6.8

Fig. 5 makes it clear that as tb@d approaches £, from above, points on «~
approach points on x — fTrom within the « x domain or, in other words, from
the right. One can approach this same point on x, — from the Teft by letting
ti(“) in (4.6) approach tg from below; eliminating & in the resulting
expression by using (4.15) it can be demonstrated that (ku/éuaﬁt is the
same,and equal to

2 /(¢ Yt -t Y,
whichever way one approaches X =,

Note that (Bu./aﬂt becomes unbounded asone approaches w®=¢© from 22 <0,
since Fig.X makes it plain that tw--t*(u) in such circumstances: the
result follows from (6.8}.

The various features of the flow that have been described in this
section are illustrated for a specific case € > T, in Fig. 6.

(b) The field in %> Q

The results in (6.3, 4 and 5) show that in 2% > ©

w = (?%Bdot*(ﬁ _(3___>A(’t‘*{o<)__a> s | 6.9a

a = a +(H}4 b (B N (H‘)i(t’*(ﬂ __g> a 6.9b
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It is clear that in the present domain, between x=0 and the wﬁwTines the
sjtuation is more complicated than elsewhere in the present problem since wn
and a depend upon both e« and 8. This means that (2.15a and b) give

— oY tm Yoty BARY 6.10a
'Dc“ = (‘€+& rw’ 4 (3_\{) N-tg gaat“ 3

= A € 0 6.10b
:z.% = { i;:c - _&t& % d’atg R

and it is not a trivial matter to simultaneously integrate this pair of

equations. The method used to find w and a (orwv) as functions of = and €

is described in Appendix B. The results, (B12 and 13), give the answer in
implicit form. Examples of the velocity and sound-speed distributions in the
space between 2 =0 & == + , derived by the methods described in Appendix B,
are given in Fig. 7 for the same conditions as those used to construct Fig. 6.

(c) General properties of the solution near x}+»

It is important to examine behaviour in the neighbourhood of = + in
a more general way than can be done through the medium of essentially iilustrative

numerical results.

To start with, w and &’ must still obey (4.7} in the domain §>§S%a< Pt
Since the actual path taken by a p-line in the space between == O koot = v 4
is not readily calculable, being concealed in the rather awkward impiicit
results given in Appendix B, the §~1ines in @:»Fg s K> 4y do not obey (4.8),
although (4.7) guarantees that they will be straight lines. Recalling (4.15},
it is clear that w ka are continuous across o, + 43S can be seen by comparing
(4.7) with (6.9), with t;(us equal to ﬁ; in the latter. Gradients, such as
(du/3=), for example,are not continuous at e+ , as shown in Fig. 7 and as

we now proceed to demonstrate.
It can be shown that
2a (u ), = (Mt-\’é ~ ("
Writing [#1 to indicate the jump in ¥ across an «-characteristic, it follows
from the continuity of w &k a  that

1o E(%x‘)t] = L(“‘t\)g,.]
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on X +. But (4.7) shows that ('utx% is zero in A >Rt whilst (6.%a}
shows that,in =« <& + 3 .

(hdg = {24, [ t(.q/tcg s

where t (Y is the time-rate- of change of € (=) on a line of fixed g -

It is evident from Fig. 3 that t (¢} <O s whence (“bf)% > 0
in « < o+ , and

Llwd ] <o 6.11

The result in (6.11) is general, and indicates that the general form of the
profiles of w and a versus = at a fixed t, exemplified in Fig. 7, will
persist for £t on e 4.

(d) The p-characteristics in § >, , x> =+

It should be noted that the shape of the line x,
as described in Appendix A for @-values Tess than ﬁs (Fig. 5). MWhen §>|as s

is (properly) found

and the =-characteristics are cusped on x=C, their shape in =,t space

will be deducible from the work of Appendix B. In view of the continuity

of u and & at «+ it must follow that (bx/§b')u.+ is as shown in {5.1),
whether one approaches e+ from the left or right. Thus the Tine o +

can be continued into f» g.s by the integration described in Appendix A.

The @-1Tines in @> R , o> o+ must now be found from

iy B
x-x () = {1+ (55 ___,E alt-t®) , 6.12
where ':.+,t+ is a point on o+ (Fig. 5) that changes with change in B .

Fig. 7 shows the behaviour of w as a function of = at a fixed time ¢,
as calculated from (6.12) and (4.7). The result is given by the full Tine
to the right of « 4+ and, for comparison, a calculation made with (4.8) is
indicated by the dashed line in Fig. 7. The difference between the two results
is certainly small and the error committed by using (4.8) in place of the
correct result in (6.12} is not Targe at the chosen time. Clearly the
discrepancy will increase as € increases, and even the small difference on
Fig. 7 is interesting insofar as it demonstrates that the influence of the
advent of sonic conditions at ==0 for £ 2 &t extends into the domain

[
bounded on the right by & (Fig. 5).
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Finally, note the position of characteristic &, on Fig. 7; to the
left of «, the flow remains isentropic, as explained in Section 5. To the

right of «, the shock, whose strength is rising steadily with increasing

z
time, makes the real flow non-isentropic, the analytical predictions must

begin to fail in these regions,
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7. Conclusions

By choosing a particular form for the source terms that appear in the
conservation equations for continuous compressible one-dimensional unsteady
motion an exact solution for the whole source-driven flow field has been
derived, up to the time of shock formation at the right-going wavehead. The
consequent domain of non-isentropic flow has been determined.

Exact solutions have been continued into times up to and beyond the
appearance of sonic flow, which is associated with some novel characteristic
behaviour at part of the sonic Tocus, where the characteristics are cusped.
The flow out of the source regions 'chokes', after a lapse of time that
depends on source strength (see (4.15)}, at the plane = = O which
marks the division in the field between 'sources' and ‘no sources'. Provided
that source-output continues, a widening patch of supersonic flow extends
downstream of 2= O 4 eventually extending up to the shock wave. This
has the effect of insuTating the source region from anything other than strong
disturbances, that may be created in = = o (e.g. by ending the tube, in
which the flows described here are presumed to be confined, and discharging
into an ambient atmosphere). The fact that the sources (or propellants)
can continue to discharge gas unhampered by any but strong external influences
can have important practical consequences.

The exact solutions contain a number of salient features, which means
that they also provide a useful problem on which to test numerical algorithms.
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Figure Captions

The characteristic families o = constant and @ = constant on the
=,t diagram. The figure also defines the parameters t*(w§
and Fk(ﬁ}a

Gas velocity w as a fraction of the initial unperturbed sound

speed & versus "‘/%t‘, , where b is defined in (4.15), at
tim &t =0-%t and Y = 14 . The picture is broadly
typical of all times up to, but not beyond, ¢ = E_.
Multivaluedness only exists at the right-hand end of the wave system
for t > %t . The changes that appear at =x=o0 for & =t ,
and spread into = 2 & for & » i:‘c_ are explained in Section 6
and illustrated in Figs. 6 and 7.

As for Fig. 2, with a/a in place of w/e, where a  is
the Tocal sound speed.

Disposition of some critical flow-field features associated with
the appearance of the shock wave.

Characteristic lines on the =« ,t plane in the neighbourhood of the
cusp locus.

Gas velocity versus distance in <o for ¢ % t£ . The full
Tine shows the exact solution derived from (6.6a) and {6.7) for time
t = 2»F;98‘b¢ - The dashed 1line is calculated from (4.17)

and is exact to the left of o - at this same time.

Gas velocity and local sound speed in = > o for £t -
The exact solutions are indicated by the full lines for time t =

2138t between x =0 and w, + the solutions
are found in themanner described in §6(b) and Appendix B: for
positions to the right of « + they are found from (6.9) and
{6.12). The dashed line is calculated from (4.8).

Between «, and the shock the flow is not isentropic; the full-
line curves no longer give the exact solution.
Note that the whole flow, between

the "throat" at = = &  and the shock is supersonic for the particular

case illustrated.



fi =const .
D  E F
C
B t*(cx_
N = —t¥m) H
A 0 4 x
G0 G=0

Fig.1.



o't

D/p




0t

UwOﬁNx

"¢ ‘B4

L= Plp




> B

1F Bs

sonic lisﬁf;j;.

3 Non isentropic
tc"" C fiow
BS
. Shock
Isentropic \
fiow tsﬁ_______ — g
X =0a,t
5 |
A2 B 3 a2 & & 3 4 § & 8 § 5. 5 A h’
0 Ooton x
G %0 G=

Fig.4.



i
D

0 x (®)

G+0

Fig.5.



18

Fig.®6.




240
¥o/,
0°€ 07 ol 0

0=%X W D=n




- 26 -

Appendix A. Shape of the &~ Characteristics

Defining y k = via

y* = (b + tgm}? — 4xt, A, Al
' = i-¥ \é..'t.%t
2 (m{E BT A2

D,
%ﬂli + oy o= Cz , C =2 nggﬁm ! A.3

where u’ is written for dg/dza Defining
YV o=y, A4
rewriting (a.3a} in the form

_ C=

and differentiating (A.5) with respect to = gives the following separable
differential equation for Y ,

S eyl et

The sclution of (A.6) is
(A.6) Vﬁjl\ih&ty:fj
‘Y-a—& P+ 2% —-\H-&—ﬁ(l - E
(V&Y -c | ts2ya+ 34 K (a0
where K(x) is a constant that fixes the particular =~Tine whose shape is

now given in parametric form, with % as parameter, by (A.5 and 7), coupled
with {A.1 and 2) of course.

A7

General conclusions about «-~1ine shape are hard to draw from this parametric
form of the solution, but it is perfectly straightforward to choose a specific
value for ¥ and proceed numerically. The =, and «, lines (Fig. 2) for ¥ =%t
are calculated in this way and are depicted in Fig. A.1.



Appendix B The Field Between x=0 and =

]

The reguired sclution can be Tound by using The methods described by

yon Mises in Articie 12 of his book (1958}, The o

the need here to treat a boundary-value problem, as opposesd

specifically described which analivse cases for which either

characteristic data are given. A brief accouni of sali { the
solution follows.
Equations (2.7 and 13} can be re-writien inthe forms
Wy wu Ay = D YohwR e aw, o= O . 5.1

ey

Since & vanishes in = % O, transformaiion to the

(von Mises, 1958, page 162) leads to the pair of exact

equations,

ﬁt‘u* L tm R o . 5 Ty B
Defining a potential W so that
‘ f o8 -
wx o ol o " 4 — AL = %ﬁr 5 B3
. ¢ . 7 . .
it can be shown from (B2) that ¥ satisfies the linear second-orde epquation
& L
\f e, \f e Sug ( %g } Ep \%; - & g a i@
e i - U '

The numerical coefficient onthe right-hand side of {B.4} fzkes the valus 4 5T
¥=¥s . Restricting further work to this value of ¥  the seneral sotution of
(B.4) is

-l Yy Iy
\f t‘\!{/%bwﬁ} = oy %}@fﬁi\r«%ﬁ(j"z% %wnié%fﬂg \.

where

[P
¥ PR

Low ey : v o o A,
Room U e A 3 905 Y e B.6G

oL . R : , £ :
and € ) indicates differentiation with respect to the argumeni of the funciion

Boundary-value information in the physical plane iz givern by

S 5 £

el
L s B s e f e BT I el R - oo o e B.7
LER & ,}{ ¥ gm. B om @ 3 L el “e @



The solutions in (6.9} show that when w=a  these velocitiss wmust bntl

o

have the vaiue

8.8

when Y is“%g‘m These statements transiate into

. y f : & .
\f = - ot 5 R E»_« R ; R, G
A ; L =

when

- & Q.%
= 5

Rratan
izi
g

in the speedgraph w,w QTaﬂﬁ¢ Use of {(E.9) or (B 5 shows, SOIME
rather tedious algebra, that
& & , oy 4
- ) =4 “ ‘;%F 5 e ﬁ E #
’g{§> = % %« A= % % - AN ﬁg i ?w L g 810

where

i &

- = 4 .
%g = 3 % o

L B.i1
£ . _lbst R . q = MWQF B
6 LEGED a ! b bETO A

i

The solution for gas velocity w and scund speed & = & -
function of = k& £  in the domain between a;w,ﬁﬁ and e om W

therefore given in the fmplicit form

[
i1
pas

L5

3 & % fe e \
(% =ub)w = ~5E g(’% @--2@ +5g 9 (’?*m + 9}

BE.1
SRR SR ) e P P
%%%%‘ﬁﬁ»@ﬁgﬁﬁﬁgﬁﬁ}+§%§§@§%%Jgﬁﬁ%gﬁe%

(]

in order fo Tind «w as a function of = at a fixed & one can start by
selecting values of v in the range é?ﬁ@ € v £ m_gz,%=%5 ;53 and first
solving (B.13} To find the corresponding § 4 the secant method for finding the
roots of an eguation is most effective herz. The value of 22 at the chosen
value of £ then follows from (B.12) for each paiv of associated € & v, values,
as do the values of wk -« of course {see (B.6)).




