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Abstract 
This paper investigates the effect of surface roughness on the fluid viscosity using Molecular 

Dynamics simulations. The three-dimensional model consists of liquid argon flowing 

between two solid walls whose surface roughness was modelled using fractal theory. In 

tandem with previously published experimental work, our results show that, while the 

viscosity in smooth channels remains constant across the channel width, in the presence of 

surface roughness it increases close to the walls. The increase of the boundary viscosity is 

further accentuated by an increase in the depth of surface roughness. We attribute this 

behaviour to the increased momentum transfer at the boundary, a result of the irregular 

distribution of fluid particles near rough surfaces. Furthermore, although the viscosity in 

smooth channels has previously been shown to be independent of the strength of the solid-

liquid interaction, here we show that in the presence of surface roughness, the boundary 

viscosity increases with the solid’s wettability. The paper concludes with an analytical 

description of the viscosity as a function of the distance from the channel walls, the walls’ 

surface roughness, and the solid’s wetting properties. The relation can potentially be used to 

adjust the fluid dynamics equations for a more accurate description of microfluidic systems. 

I. Introduction 
Owing to an increasing number of potential applications, the field of micro- and nano-fluidics 

is becoming an area of significant academic interest. A body of experimental and 

computational work has shown that under spatial restrictions of micro- and nano-meter 

characteristic lengths, the fluid properties and flow field differ significantly compared to their 

macroscopic counterparts. Therefore, models that bridge discrepancies between disparate 

scales are required for the design of optimal micro- and nano-fluidic devices. 

So far, much of the attention has been turned on the boundary velocity in nanochannels. 

Investigations considering atomically smooth channel walls provided evidence indicating that 

the no-slip condition, frequently employed in Computational Fluid Dynamics (CFD) 

simulations, is often inaccurate [1, 2, 3, 4, 5]. Subsequent studies have shown that under more 

realistic conditions where surface roughness is considered, the velocity close to the channel 

walls diminishes [6, 7, 8, 9, 10].  The different behaviour between smooth and rough channel 

walls has been attributed to the increased momentum transfer at the boundary layer [11], a 

result of the chaotic distribution and motion of liquid atoms next to irregular geometries [10]. 

A related yet relatively unexplored area is the nature of the viscosity of confined liquids. Past 

simulations have shown that that the shear stress and viscosity are anisotropic and that the 

viscosity increases closer to the channel walls [12, 13]. Furthermore, experiments have 

shown that in micro-channels, the viscosity close to the channel walls increases with the 

depth of surface roughness, an observation which led to analytical models for the viscosity as 

a function of the depth of surface roughness and distance from the channel walls [11, 14]. 

li2106
Text Box
Physical Review E, Volume 95, March 2017, Article number 033108DOI:10.1103/PhysRevE.95.033108

li2106
Text Box
Published by American Physical Society. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  The final published version (version of record) is available online at DOI:10.1103/PhysRevE.95.033108.  Please refer to any applicable publisher terms of use.



2 

 

Molecular Dynamics (MD) studies further examined how the nature of the surface geometry 

affects viscosity. An MD investigation used sinusoidal-shaped walls to model surface 

roughness in order to study the Couette flow of hexadecane through a channel [15]. The 

conclusion was that the viscosity increases with increasing amplitude of the sine-wave, i.e. 

depth of roughness, while it decreases marginally with increasing wavelength. Subsequent 

MD studies considered the effect of rectangular protrusions and concluded that the length of 

the protrusions affects the viscosity [6]. 

Modeling surface roughness as a single periodic function is effective in selectively studying 

the relation of specific parameters on the viscosity. However, the morphology of realistic 

surfaces generally lacks such a high level of symmetry and is more appropriately described as 

stochastic irregularities that span a large range of scales. Therefore, studies have proposed the 

use of fractals as means for modeling realistic surface geometries [16, 17, 18]. In this 

investigation, we have used MD simulations to study the effect of realistic surface roughness 

on the viscosity of fluids close to the channel walls. Fractal theory was used for the design of 

the surface roughness, allowing us to capture the different scales and stochastic nature of 

solid surfaces.  

Agreeing with the present literature, our results suggest that while the viscosity at the center 

of the channel remains unchanged, the boundary viscosity close to the solid surfaces 

increases with increasing roughness depth. Furthermore, we show that in the presence of 

surface roughness the boundary viscosity increases with the strength of the solid-liquid 

interactions, a dependence that is absent in smooth channels. This knowledge guided the 

derivation of an analytical relation that calculates the viscosity in nano-channels as a function 

of the distance from the channel wall, the average depth of roughness, and the strength of the 

solid-liquid interactions. This relation is essentially a mesoscale model of the near-wall 

region, which can be used to refine continuum simulation models, thus allowing a more 

accurate description of  near-wall micro flows . 

II. Simulation Method 
Our model consists of liquid argon confined by two silver walls. The dimensions of the 

simulation box in the 𝑥, 𝑧 and 𝑦 directions are 𝐿𝑥 = 𝐿𝑧 =  7.4 𝑛𝑚, and 𝐿𝑦 =  14.4 𝑛𝑚 

respectively. Prior to the inclusion of any roughness, the silver walls consist of eleven (1 1 1) 

Face Centred Cubic (FCC) lattice planes placed parallel to the 𝑥z plane and perpendicular to 

the y direction. The lattice constant was set to 4.086 Å corresponding to the atomic spacing of 

silver. The open-source molecular dynamics simulator LAMMPS [16] was employed to 

perform the MD simulations.  

 

The surface roughness was then modeled using the multivariate Weierstrass-Mandelbrot (W-

M) function [19, 20]:  
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𝑦(𝑥, 𝑧) = 𝐶 ∑ ∑ 𝛾(𝐷𝑠−3) {cos 𝛷𝑚,𝑛

𝑛𝑚𝑎𝑥

𝑛=0

𝑀

𝑚=1

− cos [
2𝜋𝛾𝑛√(𝑥2 + 𝑧2)

𝐿𝑀𝐴𝑋
. cos (𝑡𝑎𝑛−1 (

𝑧

𝑥
) −

𝜋𝑚

𝑀
) + 𝛷𝑚,𝑛]} 

(1) 

The function embeds 𝑀 surfaces, each of which is a superposition of nmax different 

frequencies. Each frequency on each surface, indexed by the integers 𝑛 and 𝑚 respectively, is 

offset by a random phase 𝛷𝑚,𝑛. The value of 𝛾 defines the frequency density and 𝐿𝑀𝐴𝑋 is the 

size of the sample; in our case 𝐿𝑀𝐴𝑋 =  𝐿𝑥 = 𝐿𝑧. The parameter 𝐷𝑠 is the fractal dimension, 

an indication of the fractal’s ability to fill up space. For a three-dimensional fractal, 2 < 𝐷𝑠 <

3. Finally, 𝐶 is a scaling factor and determines the average amplitude of the waves. It is 

defined by the equation 

𝐶 = 𝐿𝑀𝐴𝑋 (
𝐺

𝐿𝑀𝐴𝑋
)

𝐷𝑠−2

(
𝑙𝑛𝛾

𝑀
)

1 2⁄

 (2) 

where 𝐺 is called the roughness parameter, a parameter of interest to this investigation as it 

can be adjusted to obtain different depths of roughness.  

In the theoretical limit, a perfect fractal corresponds to an infinite number of frequencies, i.e. 

𝑛𝑚𝑎𝑥 → ∞. However, a more practical value can be selected by using the relation 

𝑛𝑚𝑎𝑥 = [
𝑙𝑜𝑔(𝐿𝑚𝑎𝑥 𝐿𝑚𝑖𝑛⁄ )

𝑙𝑜𝑔 𝛾
] (3) 

where 𝐿𝑚𝑖𝑛 is the smallest wavelength used in the system. Equation 3 ensures that the used 

wavelengths span the entire range from 𝐿𝑚𝑖𝑛 to 𝐿𝑚𝑎𝑥. The frequency density can generally 

take any value greater than one. Here, we use 𝛾 = 1.5, which does not result in repeated 

wavelengths (another commonly used value is 𝛾 = 5). For the fractal dimension, we have used 

𝐷𝑠 = 2.5, which corresponds to a highly irregular topography.  

For the roughness parameter, we have chosen the values 𝐺 = 0, 𝐺 = 0.75 and 𝐺 = 1.5, 

with 𝐺 = 0 corresponding to an atomically smooth wall and 𝐺 = 1.5 corresponding to the 

geometry with greatest depth of roughness. Starting with the atomically perfect planes and a 

centre-plane, we calculate the W-M function. We then remove all solid atoms that are on the 

side of the liquid with respect to this function (Fig. 1). Using this procedure, we first create the 

lower wall. The upper wall is then a mirror image obtained through reflection about the x-z plane 

of the simulation box. 
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Fig. 1: MD model illustrating liquid argon (cyan) confined by two solid walls (pink). The surfaces to 

the right show walls of different values of the roughness parameter corresponding to a) G=0, b) 

=0.75 and c) G=1.5, respectively 

The liquid atoms are then placed randomly between the walls; minimization of energy is 

performed in order to avoid any overlapping of the atoms. Since the volume of the channel 

differed significantly between cases of different roughness, we used dynamic Voronoi 

tessellation to estimate the available volume and in turn, insert a correct number of atoms to 

yield a constant density equal to 𝜌 = 1.39 𝑔 𝑐𝑚3⁄ . 

The wall-fluid and fluid-fluid interactions were modeled using the 12-6 Lennard-Jones (LJ) 

potential 

𝑣𝑖𝑗
𝐿𝐽 = 4𝜀 [(

𝜎

𝑟𝑖𝑗
)

12

− (
𝜎

𝑟𝑖𝑗
)

6

] (4) 

where 𝜀 is the depth of the potential well and quantifies the strength of the interaction; 𝜎 is 

the van der Waals radius; and 𝑟𝑖𝑗 is the distance between particles 𝑖 and 𝑗. The wall atoms 

were modeled using the EAM potential: 

𝑣𝑖
𝐸𝐴𝑀 = ∑ 𝑣𝑖𝑗

𝑁𝑖

𝑗=1

+ 𝑓(𝜌𝑖) (5) 

where 𝜌𝑖  is the local electron density and 𝑓 an embedding function. 
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The LJ parameters for the interactions between the various elements are given in Table I. The 

silver and argon masses were set equal to 𝑚𝐴𝑔 = 107.9 𝑔/𝑚𝑜𝑙 and 𝑚𝐴𝑟 = 39.948 𝑔/𝑚𝑜𝑙 

respectively. 

Interaction 𝜎 (Å) ε (eV) 

Ag-Ag 2.551 0.408 

Ar-Ar 3.405 0.0104 

Ar-Ag 2.978 0.010 

Table I. Molecular interaction parameters 

The temperature of the system was controlled entirely through Langevin thermostats applied 

on each of the four solid planes furthest from the liquid on both walls, which were set to 

115K. We did not tamper with the liquid atoms as this can result in unphysical behaviour 

[15].  

The Verlet method was used to integrate Newton’s laws of motion and the timestep used was 

equal to 5 ∙ 10−2
 𝑝𝑠. Following an initial equilibration phase, the simulation was performed 

for 7 × 106 timesteps to calculate the liquid properties. 

The Mean Square Displacement (𝑀𝑆𝐷) of the liquid atoms, used here for a qualitative 

understanding of the diffusive properties of the liquid, was calculated in the micro canonical 

(NVE) ensemble by 

〈|𝒓(𝑡) − 𝒓(0)|2〉 = 𝑀𝑆𝐷(𝑡) =
1

𝑁
∑(|𝒓𝑖(𝑡) − 𝒓𝑖(0)|2)

𝑁

𝑖=1

 (6) 

Where 𝑁 is the total number of liquid atoms in the system; 𝒓𝑖(0)is the position of the 𝑖th 

liquid atom at the beginning of the calculation (after the equilibration phase); and 𝒓𝑖(𝑡) is the 

position of the atom at time 𝑡. 

The spatial variation of the shear viscosity was measured by dividing the nano-channel into 

100 bins across the width of the channel (y-direction), resulting in a bin-width of 1Å. The 

pressure in each bin was estimated using equation 8. Due to the complex geometry of the 

walls, we used Voronoi tessellation to calculate the volume of each bin (𝑉𝑏𝑖𝑛). 
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Fig. 2: Velocity profiles in the  x and y channel directions. 

For the calculation of the viscosity we used non-equilibrium molecular dynamics. After 

equilibration, we applied a force equal to 10−5 𝐾𝑐𝑎𝑙/(𝑚𝑜𝑙𝑒 ∙ Å) on each fluid particle to 

develop a Poiseuille flow in the x-direction. The viscosity was then calculated by 

𝜂 =
𝑃𝑥𝑦

�̇�
 (7) 

where 𝑃𝑥𝑦 is the component of the symmetric pressure tensor acting in the 𝑥 direction on a 

plane normal to the 𝑦 direction, and �̇� is the shear rate. The shear rate is given by �̇� =
𝜕𝑉𝑥

𝜕𝑦
+

𝜕𝑉𝑦

𝜕𝑥
 , where 𝑉𝑥 and 𝑉𝑦 are the velocity components in the 𝑥 and 𝑦 direction, respectively. The 

velocity profiles of 𝑉𝑥 and 𝑉𝑦 (Fig. 2) have been obtained by averaging the velocities across 

the bins in the x- and z-directions; the 𝑉𝑦 component is of the order of 10−6, i.e. its 

contribution is negligible compared to 𝑉𝑥.  Note that the values of 𝑉𝑦 are also of the order of 

10−6 across each bin in the 𝑥 direction. Therefore,  
𝜕𝑉𝑦

𝜕𝑥
 is also negligible.  

The pressure tensor of Eq. (7) is obtained from the virial theorem, which calculates the 

pressure at the boundary of a volume, by averaging the thermal energy and interatomic forces 

acting on the liquid atoms contained within the volume. The component of the symmetric 

pressure tensor 𝑃𝑥𝑦 is given by [21] 

𝑃𝑥𝑦 =
1

𝑉𝑏𝑖𝑛
[𝑁𝑘𝑏𝑇 +

1

2
∑ ∑ 𝑟𝑖𝑗𝑥

𝑁𝑝

𝑗

𝑁

𝑖=1

𝐹𝑖𝑗𝑦] (8) 

where 𝑟𝑖𝑗𝑥 is the interatomic distance between atoms 𝑖 and 𝑗, and 𝐹𝑖𝑗𝑦 is the component of the 

force in the 𝑦 direction between the two atoms. The summation over 𝑖 iterates over all the 

liquid atoms contained in the volume 𝑉𝑏𝑖𝑛.The summation over 𝑗 iterates over all the 
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neighbors of atom 𝑖, including atoms outside the volume, as well solid atoms. Therefore, the 

calculated stress is that of the liquid atoms in the volume due to their interaction with all 

other atoms within the cut-off distance.  

From a statistical-mechanical point of view, the virial stress is strictly correct in 

homogeneous systems in equilibrium. In practice, however, it is effective in calculating the 

pressure even in highly inhomogeneous systems [21], such as in the vicinity of shockwaves 

[22]. Furthermore, any errors due to inhomogeneities tend to smooth out in fluid systems 

because of the constant fluctuation of the atoms [23]. We take advantage of these fluctuations 

by time-averaging over a large number of timesteps (7 × 106𝜏). Finally, errors due to 

inhomogeneities can be alleviated by increasing the number of included atoms [24]. The bins 

used in the calculation of the viscosity contained more than a hundred atoms, whereas bins 

containing a smaller number of atoms were neglected to avoid spurious oscillations.  

III. Results and Discussion 
The introduction and increasing depth of surface roughness results in significant changes in 

the fluid structure close to the channel walls. Under surface roughness, the localised, equally 

spaced, parallel liquid layers found next to smooth solid surfaces (Fig. 3(a)) transform into 

arbitrary shaped structures spread over a larger percentage of the channel width (Fig. 3(b)). 

This breakup of layers is a result of the anisotropic potential generated by the irregular 

geometry of the walls. We now show that this mixing of layers next to rough walls increases 

the viscosity closer to the solid surfaces. 

  
(a) G = 0 (b) G = 1.75 

Fig. 3: Density isosurfaces for 𝜌 = 1.525 𝑔 𝑐𝑚3⁄  for (a) smooth and (b) rough channel walls 

The MSD - and therefore diffusion coefficient - qualitatively demonstrates this increase in 

viscosity. The rate of change of the MSD in the x direction (Fig. 4a) decreases with 

increasing depth of surface roughness, an indication of hindered atomic mobility (the z-

direction exhibits identical behaviour). The viscosity, inversely proportional to the diffusion 

coefficient, must therefore increase with increasing depth of roughness. In accordance with 

the literature [12], the MSD in the y direction (Fig. 4b) quickly reaches a plateau due to the 

spatial restriction imposed by the channel. Therefore, it does not provide sufficient insight 

into the diffusion coefficient in the perpendicular direction. 
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(a) x-direction (b) y-direction 

Fig. 4: Mean square displacement in the a) x, b) y directions. The MSD in the z direction is identical 

to that in the x direction and was omitted. 

With the introduction of surface roughness, we find that the strain rate, required for the 

calculation of the viscosity, exhibits a non-linear behaviour close to the channel walls and 

decreases with increasing depth of roughness (Fig. 5a). The shear stress also decreases 

between the three cases, albeit significantly less than the decrease of the strain rate (Fig. 5b). 

We attribute this slight decrease to the breakup of the structured layers close to the walls: the 

close packing of the liquid atoms in the structured layers results in stronger forces between 

them. As roughness breaks these layers, the interactions weaken and start to resemble those 

of free liquid atoms. 

  
(a) Strain rate (b) Shear stress 

Fig. 5 (a) Strain rate and (b) shear stress of the liquid across the channel width for different values of 

the average depth of roughness 

In turn, we see that the viscosity close to the channel walls increases with increasing depth of 

roughness, an observation consistent with previous experimental results [11]. Furthermore, 

the viscosity decreases exponentially with the distance from the channel walls, and reaches 

the value of argon’s bulk viscosity at the center of the channel.  

We attribute the increasing boundary viscosity with increasing roughness to the immobile 

fluid atoms next to rough surfaces: In smooth channels the structured boundary layers occupy 

a separate region along the channel width, compared to that occupied by the free fluid 

particles. This allows the flowing atoms to “glide” over the boundary layer with minimal 

interaction. On the contrary, in rough channels, the boundary layers intrude the flow region. 
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Therefore, flowing atoms collide with these liquid protrusions. Such collisions restrict fluid 

flow and in turn give rise to greater viscosity. 

 

Fig. 6: Viscosity profiles for different values of the roughness parameter G 

Finally, while the strength of the solid liquid interaction, 𝜀𝑤𝑓, does not affect the viscosity in 

smooth channels [25], we have found that it becomes increasingly important as the depth of 

roughness increases. This is because, as roughness is introduced, collisions with the immobile 

boundary structures are affected significantly by the binding energy of the boundary layer 

which increases with increasing  𝜀𝑤𝑓. 

We therefore believe that current viscosity models, which do not take the solid-liquid 

interactions into account, are incomplete. Indeed, although previously derived relations 

qualitatively captured the exponential decay of the viscosity, they failed to accurately fit our 

data [11]. By adjusting this pre-existing model to account for the strength of the solid-liquid 

interactions, we concluded with the relation: 

𝜇(𝑦) = 𝜇𝑏𝑢𝑙𝑘 +
𝐴

𝐿𝑦
4 𝐺(𝜀𝑤𝑓 + 2 × 10−4) |(

𝐿𝑦

2
− 𝑦)|

3

(1 − 𝑒
|
𝐿𝑦

2
−𝑦|

)

2

 (9) 

where 𝜇𝑏𝑢𝑙𝑘 is the bulk shear viscosity of argon and 𝐴 = 30 
𝑃𝑎∙𝑠

𝑒𝑉∙Å
 is a constant. From the 

relation, the significance of the strength of the solid-liquid interaction decreases with 

decreasing roughness depth and completely diminishes in smooth channel walls. The 

expression captures our results very well, for cases of different roughness and wetting 

properties 𝜀𝑤𝑓. 

To give credence to our viscosity model, we considered a Couette flow, initiated by 

translating the top wall at a velocity 300 m/s. The surface of the moving wall was smooth, as 

the motion of a fractal surface would result in viscous heating. The (lower) stationary wall 

was identical to the previous cases with 𝐺 = 1.5. The calculated viscosity profile is very 

similar to the corresponding Poiseuille-flow case and is well captured by Eq. (9) (Fig. 7d). 
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Eq. 9 provides a mesoscale model of the viscosity in the near wall region, which can be used 

in conjunction with continuum CFD models to provide a more accurate description of micro 

flows in the vicinity of walls of micro and nano channels [26, 27, 28]. 

  
(a) εwf=0.002 eV (b) εwf=0.006 eV 

  
(c) εwf=0.01 eV (d) εwf=0.01 eV (Couette Flow) 

 

Fig. 7: Viscosity profiles for different values of the roughness parameter G for a) εwf=0.002 eV,  b) 

εwf=0.002 eV, c) εwf=0.010 eV, and εwf=0.010 eV (Couette Flow) 

IV. Conclusions 
We have investigated the effect of realistic surface roughness on the boundary viscosity. In 

agreement with experimental results, we have found that the viscosity close to the channel 

walls increases with increasing depth of roughness. Moving away from the channel walls, the 

effect of roughness diminishes and becomes unimportant at the centre of the channel, where 

the viscosity of bulk argon is realised. Furthermore, although previous investigations have 

found that, in smooth channels, the viscosity is unaffected by the solid’s wetting properties, 

here we show that under surface roughness the strength of the solid-liquid interactions affects 

the boundary viscosity and becomes increasingly important as the depth of roughness 

increases. The information obtained from the simulations was moulded into an analytical 

relation expressing the viscosity in micro- and nano-channels as a function of the distance 

from the wall, the depth of roughness, and the strength of the solid-liquid interaction. The 

expression can potentially be used to tailor the momentum and energy equations of fluid 

dynamics for micro- and nanofluidics.  
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