
 1

Thermal dependence of the strain response of optical fibre Bragg gratings 
 

Martin J. O'Dwyer*, Chen-Chun Ye, Stephen W. James and Ralph P. Tatam. 

Optical Sensors Group 

Centre for Photonics and Optical Engineering 

School of Engineering  

Cranfield University 

Bedfordshire 

MK43 0AL 

UK 

E-mail: r.p.tatam@cranfield.ac.uk  

Tel. 01234 754630 

Fax. 01234 752452 

*presently with the Optics and Applications group in the Department of Physics and Astronomy the 

University of Glasgow, Glasgow, G12 8QQ. 

 

 

Abstract 

The temperature dependence of the strain sensitivity of fibre Bragg gratings written into a number of 

different fibre types was investigated. It was found that the strain response changed on average by 

0.21±0.03fm µε-1°C-1 over a range of temperatures between 100-400°C. These results were in agreement 

with predictions based on material parameters. 
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Introduction 
 
One of the most significant developments in the field of optical engineering over the last two decades has 

been the emergence of the fibre Bragg grating (FBG), which has found major applications in 

telecommunications and sensor systems [1]. 

 

FBGs are formed by modulating the refractive index of the core of an optical fibre. This modulation can be 

achieved by exposing the fibre to a UV interference pattern [2]. The presence of the modulation, of period of 

order 0.5 μm, results in the coupling of the forward propagating mode of the fibre to a backward propagating 

mode at a wavelength that satisfies the Bragg condition, 

Λ= effB n2λ     ( 1) 

 
Where λB is the Bragg wavelength, neff is the effective index of the propagating mode and Λ is the period of 

the refractive index modulation.  A change in the period of the modulation or in the effective index of the 

propagating mode in response to the local environment thus gives rise to a change in the Bragg wavelength. 

The determination of the wavelength change is then the basis of operation of FBG sensors. The primary 

measurands for FBG sensors are temperature and strain. 

 

The sensitivity of the Bragg wavelength to temperature arises from the change in period associated with the 

thermal expansion of the fibre, coupled with a change in the refractive index arising from the thermo-optic 

effect. The strain sensitivity of the Bragg wavelength arises from the change in period of the fibre, coupled 

with a change in the refractive index arising from the strain-optic effects.  Recent studies have shown that 

the response to temperature exhibits a small non-linearity [3]. 

 

Some industrial and aerospace applications require sensors to operate at elevated temperatures for extended 

periods of time. If the strain sensitivity of FBG sensors exhibits a temperature dependence, then operation of 

this sensor type could be problematic if it were to be operated at a temperature that is significantly different 
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from that at which it was calibrated. A thermal dependence of the strain sensitivity of a FBG would result 

from the temperature dependence of the materials’ parameters of silica glass. Previous research [4] has 

shown that the stress-optic coefficient of vitreous silica demonstrates a negligible temperature dependence. 

However, Morey et al [5] measured a 5 % decrease in the slope of the stress response for Germanium doped 

silica fibre at 650°C. A change of 8 % had been expected, based on Young’s modulus data. This discrepancy 

was attributed to a change in the stress-optic coefficient, which they suggest represents approximately 22 % 

of the Bragg wavelength shift with load. A more detailed examination of the temperature dependence of the 

strain response of FBGs written into a number of different fibre types is presented here. 

 

The positive thermal expansion coefficient in glasses results in a decrease in both the density and the 

refractive index with increasing temperature. However, the electron polarizability increases  and produces an 

increase in the refractive index [6][7]. The electron polarizability dominates in silicate glasses, but the 

magnitude of its temperature sensitivity can vary by a factor of ten depending on the composition of the 

glass. Another possible factor affecting the refractive index is the differential expansion of the core and 

cladding due to their slightly different compositions. This effect could influence any changes in the fibre’s 

density and in the electron polarizability. The fibre’s composition will also affect its mechanical properties 

[8].   

 

The strain sensitivity of the Bragg wavelength is generally assumed to be independent of temperature. 

However, it is known that the material parameters that determine the strain sensitivity, the strain optic 

coefficients and Poisson ratio, are themselves temperature dependent [7-9]. This paper aims to investigate 

the effect of the thermal sensitivity of these parameters upon the strain sensitivity of FBG sensors.   
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THEORY 

Barlow and Payne [9] demonstrated that the stress-optic coefficient of optical fibre decreases with increasing 

temperature. Assuming an equivalent effect in the strain-optic coefficient it might be expected that the strain 

sensitivity of a FBG would increase at elevated temperatures. A theoretical analysis of the temperature effect 

has been performed to estimate the magnitude of the change in the strain response of a typical FBG. The 

dependence of the Bragg wavelength upon strain and temperatures changes is given by [10]: 
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Where no is the unperturbed fibre refractive index, υ is Poisson’s ratio, p12 and p11 are Pockels strain optic 

coefficients, ε  is the axial strain,  T is the temperature, ξ is a thermal coefficient, including thermo-optic and 

thermal expansion contributions. λB is the initial Bragg wavelength such that equation 2 describes the 

modified Bragg wavelength resulting from applied strain and temperature changes. Using equation 2, the 

axial strain sensitivity may be determined to be 
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The thermal dependence of the FBG strain sensitivity arises from the temperature sensitivity of the strain 

optic coefficients and of Poisson’s ratio. Using the previously reported temperature sensitivity of these 

parameters, in conjunction with well established values for the material parameters, Equation 3 was used to 

simulate the effects of temperature on the strain response. The following parameters were used to this end: ν 

(Poisson’s ratio) = 0.25 and dν/dT ≅ 2.5×10-4 % °C-1 [8], λB = 850 nm and dλB/dT = 7 ×10-12 m  °C-1, neff = 

1.5[7], dn/dT (for silica glass) = 10.8×10-6 °C-1 [7], p12 = 0.252 and p11 = 0.133 [11] and dpi/dT = -0.134×10-3   

°C-1 (predicted from [9]). 



 5

Figure 1 shows the temperature induced change in the strain response of an FBG with a Bragg wavelength of 

850 nm calculated using the parameters given above. The gradient of this graph leads to is predicted value of 

the temperature dependence of the strain sensitivity to be 0.2 fm με-1 °C-1. 

 

EXPERIMENT 

The experimental configuration is shown schematically in figure 2. The output from a fibre pigtailed 

superluminescent diode, SLD, with a central wavelength of 840 nm, a bandwidth of approximately 20nm, 

and a fibre coupled power of 0.5 mW, was used to illuminate the FBGs via a directional coupler. The 

reflected Bragg wavelengths were monitored using a tuneable filter based upon a scanning fibre Fabry-Perot 

(FFP) interferometer[12], manufactured by Micron Optics, with an FSR measured to be 2.3±0.7×104 GHz, 

which is approximately equivalent to 47 nm at a centre wavelength of 830nm. The finesse was 220. The 

transmission of the FFP was monitored using an avalanche photodiode, APD (C5460-01, Hamamatsu 

Photonics). A voltage ramp was applied to the scanning FFP, and the spectrum was determined by 

monitoring the output from the APD in conjunction with the voltage applied to the FFP, which was 

calibrated such that it allowed the instantaneous resonant wavelength of the FFP to be determined.  

 

The tensile load was applied to the FBG by anchoring it between a fixed block and the moveable platform of 

a translation stage, initially separated by 185 ± 0.5 mm.  The moveable platform was subsequently displaced 

by applying a voltage to an internal PZT stack. The fibre, stripped of its polyacrylate buffer jacket, was 

attached to the anchoring points using a cyanoacrylate strain gauge adhesive. The experimental 

configuration was constructed such that a tube furnace was positioned between the fibre fixing points. The 

FBG was located at the central region of the tube furnace, in which the temperature profile varied by ± 5 °C 

along its axis over the central 4 cm of the furnace. The furnace could operate between ambient temperature 
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and 900°C. The oven used a PID circuit to maintain the desired temperature with an accuracy and stability of 

± 1 °C. 

 

The FBGs were fabricated in hydrogen loaded optical fibre using a UV holographic technique [13]. The 

fibres used are listed in Table 1. The FBGs, each of length 5mm, had bandwidths in the range 0.2-0.4 nm, 

and reflectivities of 30 % - 80 %. Since the concentrations and types of dopants utilized during fibre 

fabrication will vary between manufacturers, a number of different fibres were tested, each from a different 

manufacturer. 

 

Care was taken to eliminate as many possible influences upon the characterisation of the FBG strain 

sensitivity. Following FBG fabrication, the fibre was maintained at room temperature and pressure for a 

period in excess of two weeks, allowing the hydrogen to diffuse out of the fibres [14]. Tests have shown 

that, under normal conditions, the refractive index modulation of FBGs fabricated in hydrogen loaded fibre 

decreases by ~ 15 % in the initial few weeks following FBG fabrication, corresponding to a decrease in 

reflectance of ~ 9 % over the first 14 days. This change is not observed in FBGs fabricated in optical fibres 

that were not hydrogen loaded [15].  

 

The FBGs were then annealed at a temperature of 500 °C for seven hours. This temperature was chosen 

because it lies at the beginning of the transition range for silica glass, and it is likely that the fibre will 

behave inelastically above it. Consequently, the strain response of the FBGs will prove non-linear in the 

transition range and above. In fact, FBGs have been shown to exhibit hysteresis in the transition range [5], 

and so 500 °C may be considered to be the upper temperature limit for the operation of FBGs. All fibres 

were annealed under the same conditions, as previous studies have shown that the response to annealing is 

largely independent of fibre composition [15].  
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Annealing can be considered to occur in two steps: Firstly, internal stresses are removed through heat 

treatment, and secondly, cooling is performed at such a rate as to prevent their return. Without this internal 

strain relief, changes in refractive index at different temperatures may have been misconstrued as a cross-

sensitivity effect. In addition, Young’s modulus for glass will be lower if there is residual strain present [16]. 

Both of these effects may introduce additional error into the measurements. Annealing not only removes 

mechanical strain, but also brings the glass to a condition approximating an internal equilibrium. Heat 

treatment, even below the annealing temperature, can result in a change in Young’s modulus, with the value 

of Young’s modulus increasing with decreasing annealing temperature. Morey [16] suggests that a period of 

5 hours appears to be sufficient for most glasses to stabilize. 

 

The linearity of the scan over the FSR of the FFP used in this work was investigated. The experimental 

arrangement comprised an APD that monitored the output from the FFP as it is scanned through a spectrum 

generated by a passive Fabry-Perot etalon. The rationale of the experiment was to analyse the linearity of the 

PZT displacement by monitoring a spectrum in which the constituent fringes had a constant optical 

frequency separation. Any deviation from a constant separation of the fringes would indicate a non-linearity 

in the PZT response, which could then be quantified. A passive FP etalon was formed between the ends of 

two fibres mounted on two separate translation stages; consequently, the cavity was adjusted easily to 

produce a spectrum with the desired fringe separation. The SLD was used to illuminate the etalon. The ramp 

waveform applied to the FFP and the resulting transmission spectrum were monitored simultaneously. The 

results showed a linearity within the manufacturers specifications (2 %) over the operational range used in 

the subsequent characterisation of the FBG strain response. All measurements were made relative to a 

temperature stabilised reference FBG spectrum. Slight modification of the finesse over the FSR arising from 

changes in the reflectivities of the dielectric films, over the full FSR was specified by the manufacturers to 

be less than two percent [17].  
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Another possible source of uncertainty was the method used to place the FBG under tensile strain. Although 

the PZT used to apply the strain was operated over its nominally linear region, it was important to avoid 

nonlinearity or hysteresis in the application of the strain. The FBG, on the other hand, is known to show no 

significant nonlinearity in wavelength shift as a function of applied strain, even if stretched up to breaking 

point [18]. To minimise the influence of these issues, the displacement of the stage was measured using a 

Michelson interferometer in which one reflector was mounted on the moveable stage. Any variation of the 

output of the interferometer from a perfect sinusoidal output could then be detected. As an additional 

precaution, the buffer coating was removed from the full length of fibre to be strained to eliminate any effect 

it might have on the FBG response 

 

The Michelson interferometer employed a Coherent 200 single frequency He-Ne laser. The laser was 

temperature stabilised to eliminate ambient temperature induced shifts in the emitted wavelength. The laser 

was specified to have a stability of ≤ ± 1 MHz per 5 minutes. The advantage of using the interferometer set-

up was that linearisation of the applied strain was achieved in an absolute and independent fashion.  

 

The resolution of the system was optimised by reducing the amplitude of the ramp applied to the FFP, such 

that the wavelength scan of the filter was limited to the maximum wavelength range expected for the level of 

applied strain. Thus, given the limited sampling frequency of the data acquisition card, the acquired 

spectrum contained the maximum possible number of samples. A scan frequency of 6.06 Hz was applied to 

the FFP, and the acquisition card sampled at 104 samples per second. The Bragg wavelengths were 

determined from the captured spectrum by fitting a quadratic polynomial to a group of consecutive data 

points and subsequently differentiating the fitted polynomial to determine if the group contained a 

maximum. The quadratic fit moved over the spectrum as a sliding window. The fitting routine interpolated 

between points. The overall resolution of the system, of 0.59 ± 0.04 pm, corresponding to 0.96 ± 0.07 µε, 

was achieved over 26 % of the FSR; consequently, this system provides a dynamic range of 45 dB. The 
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calibrated interrogation and demodulation scheme was then used to investigate the temperature effects on the 

strain response of a number of FBGs written into three different fibre types.  

 

In order to predict the magnitude of change in response it was necessary to determine experimentally the 

thermal responses of the gratings. This was achieved by measuring the resonant wavelength of an FBG at a 

range of different temperatures, as shown in figure 3, for Fibrecore PS750.  The sensitivity measured, (7.0 ± 

0.2) pm / °C, is typical of the thermal sensitivity of FBGs. 

 

The strain sensitivity was characterised at the highest temperature first. The temperature was subsequently 

decreased before the next set of readings. The measurements were performed in this fashion to ensure that 

any permanent thermal effect on the FBG resultant from the high temperature treatment would be the same 

for each subsequent temperature regime. The fibre was allowed to reach thermal equilibrium before any 

measurements were made. This was done to eliminate thermally induced stress due to temperature gradients 

through the fibre. This should be achieved for a 125 micron diameter fibre in about 30 seconds [19]. 

 

RESULTS AND DISCUSSION 

The temperature dependence of the strain response was obtained for each of the fibres by measuring the 

strain response at a range of temperatures from 100°C to 400°C. The results for the Fibrecore fibre are 

shown in figures 4a-4e. Each data point is the average of 40 readings. The gradient of a straight line fitted 

through each of these sets of data points is then used to plot the strain response as a function of temperature. 

The results for this are shown for each fibre type in figures 5-7 and summarised in table 1. The gradient of a 

straight line fitted through these points then provides the thermal dependence of the strain response of each 

fibre type. These graphs show good linearity over the range of temperature used. The measurements show 

that there is a change in the response of the FBG at different temperatures, though the magnitude of this 

change is such that its effect would only be significant over large temperature or strain ranges (~0.5 % over a 

1000 °C). The experimental results indicate that the temperature dependence of the strain sensitivities of the 
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various fibre types investigated lie within the range 0.20 – 0.21 fm με-1 °C-1, in agreement with the 

theoretical prediction of 0.2 fm με-1 °C-1, within the bounds of the experimental errors quoted.  

 

It is important to consider the influence of the experimental procedure upon the results. The variation in the 

temperature along the length of the tube furnace, ± 5 °C over the central 4 cm, and the problem of ensuring 

that each FBG tested was at the same location in the furnace, complicates the comparison with the results 

obtained for the different fibres. However, for any given fibre, the location of the FBG within the furnace 

was maintained throughout the strain sensitivity characterisation ensuring self consistent results. 

 

Another complication when applying a tensile load to the fibre at higher temperatures is an error introduced 

by the inelastic behaviour of the fibre, effectively further drawing the fibre. This will have the effect of 

changing the mechanical properties and the pitch of the FBGs. Further reason for not characterising the 

strain sensitivity at  higher temperatures are cross-sensitivity effects which result in measurement errors that 

increase in proportion to the product of strain and temperature [20]. As a result, strain sensitivity 

characterisation performed at high temperatures will be inherently more erroneous than that performed at 

lower temperatures. The hysteresis effect previously observed for prolonged strain application at 650 °C [5] 

was not observed in these experiments. This is probably a result of the lower temperatures employed, which 

avoid the transition range for silica fibre, where the application of a tensile load may result in the further  

drawing of the fibre.  

 

A potential improvement in the measurement of the variation in the strain response with temperature might 

be to include a second reference in the oven to account for miscellaneous temperature effects. It is possible 

that thermal fluctuations could be misinterpreted as strain. This internal reference FBG would experience a 

similar thermal environment to the sensor under strain making it possible to separate out additional factors 

other than applied strain that affected the response of the sensor. 
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CONCLUSIONS 

The temperature effects on the strain responses of in-fibre Bragg gratings (FBGs) written into three differing 

fibre types has been investigated. It was found that these responses changed on average by 0.21 ± 0.03 fm 

µε-1 °C-1 over a temperature range of 100-400 °C. The results obtained are in agreement, to within the 

experimental error, with  predictions based on material parameters. 
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Table 1. Measured temperature dependence of the strain sensitivity of the fibres studied in the 

temperature range 100-400 oC. 

 

Fibre Type Temperature sensitivity 

(pm°C-1) 

Temperature dependence of 

strain sensitivity 

(fm με-1 °C-1) 

3M 34LB3102 (80μm diameter cladding) 7.84 ± 0.04 0.20 ± 0.03 

Lightwave Technology FO808C 7.7 ± 0.3 0.21 ± 0.03 

Fibrecore PS750 7.0 ± 0.2 0.21 ± 0.02 
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Figure Captions 

 

Figure 1: Simulation of the temperature induced change in the strain response of an FBG with a Bragg 

wavelength of 850 nm. The temperature dependence of the strain sensitivity of FBG sensors is predicted to 

be 0.2 fm με-1 °C-1. 

 

Figure 2: A schematic of the experimental configuration. FFP – fibre Fabry Perot scanning filter, APD – 

Avalanche photodiode, SLD Super luminescent diode, CRO – oscilloscope. 

 

Figure 3: Temperature response of a FBG fabricated in PS750 Boron-Germania co-doped photosensitive 

optical fibre. The line is a linear regression fit to the data. The temperature sensitivity was found to be 7.0 ± 

0.2 pm °C-1. 

 

Figure 4: Strain response of Fibrecore PS750 Boron -Germania co-doped photosensitive optical fibre at a 

range of temperatures: a) 100°C, b) 175°C, c) 250°C, d) 325°C, e) 400°C. Each data point is the mean of 40 

readings. The strain responses are: a) (0.617 ±0.007) pm/µε; b) (0.628 ± 0.005) pm/µε; c) (0.644 ± 0.008) 

pm/µε; d) (0.653 ±0.006) pm/µε; e) (0.68 ±0.01) pm/µε. 

 

Figure 5: The strain sensitivity of Fibrecore PS750 Boron-Germania co-doped photosensitive optical fibre 

plotted as a function of temperature. The strain sensitivity was found to change by 0.21 ± 0.02 fm με-1 °C-1. 

 

Figure 6: The strain sensitivity of Lightwave technology fibre, FO808C, plotted as a function of 

temperature. The strain sensitivity was found to change by 0.21 ± 0.03 fm με-1 °C-1. 
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Figure 7: The strain sensitivity 3M 80μm cladding diameter optical fibre plotted as a function of 

temperature.  The strain sensitivity was found to change by 0.20 ± 0.03 fm με-1 °C-1. 
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