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Abstract—This paper develops a novel particle swarm
optimiser algorithm. The focus of this study is how to
improve the performance of the classical particle swarm
optimisation approach, i.e., how to enhance its convergence
speed and capacity to solve complex problems while re-
ducing the computational load. The proposed approach
is based on an improvement of Particle Swarm Opti-
misation using Evolutionary Game Theory. This method
maintains the capability of the particle swarm optimiser
to diversify the particles’ exploration in the solution space.
Moreover, the proposed approach provides an important
ability to the optimisation algorithm, that is adaptation
of the search direction which improves the quality of the
particles based on their experience. The proposed algorithm
is tested on a representative set of continuous benchmark
optimisation problems and compared with some other
classical optimisation approaches. Based on the test results
of each benchmark problem, its performance is analysed
and discussed.

Index Terms—Optimisation methods, Operation Re-
search, Evolutionary Game Theory, Particle Swarm Op-
timisation, Replicator dynamics

I. INTRODUCTION

Over the last few decades, numerous scientists have
been inspired by the modelling of social interactions
of animals to solve NP-hard optimisation problems.
Although the communication among the different agents
is limited to an exchange of basic information, it results

in very effective team work. Particle Swarm Optimisa-
tion (PSO) is one of most well known and established
approaches using this concept. The aim of the original
PSO method proposed by Kennedy and Eberhart was to
reproduce this social interaction among agents in order
to solve non linear continuous optimisation problems [9]
[10].

The PSO principle is based on sharing simple infor-
mation such as fitness and position among neighbouring
particles in order to compute velocity and position of
a swarm of candidate solutions, named particles. The
movement of the particles is based on a random lin-
ear combination of their own current velocity, and the
relative position vectors of their own best position and
the best known position of the neighbouring particles
with respect to their current position. Random choice of
the three weighting parameters of the linear combination
keeps diversification of the particles’ search.

The study in this paper was initiated from the idea
that it could be possible to improve the convergence
behaviour of the particles by properly selecting the
three weighting parameters instead of randomly choosing
them within the typical interval. Thanks to Evolutionary
Game Theory (EGT), problem of choosing weighting
parameters in the PSO framework has been converted
into a mathematically well-defined problem. EGT has
the property to converge to Nash equilibria considering
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mixed strategies, i.e. probability distributions on the PSO
parameters. On this side, EGT allows to choose PSO
parameters in a more optimal way. One of the main
interests of using EGT for tuning PSO parameters is
that EGT ensures stability thanks to the Maynard-Smith
second property [14].

This idea was first introduced in our previous study
[11], [12]. The approach of combining PSO with EGT
is named EGPSO and the convergence properties of
such approach were investigated in our previous study
[13]. This study proved that EGPSO guarantees local
convergence. Although the previous study showed im-
provement of convergence speed, the proposed method
could suffer from premature convergence. The issue with
the approach in our previous study is that the particles
tend to be trapped in local optima as the dimension
of the problem increases. The proposed approach in
this paper, named C-EGPSO (Combined - Evolutionary
Game Particle Swarm Optimisation), handles this issue
by adapting the strategy of each particle instead of con-
sidering the same strategy for the entire swarm. Unlike
the previous study in which all particles use the same
method to compute weighting parameters, each particle
in the updated approach evaluates its own weighting
parameters and adapts the individual search directions.
Thus, the diversity of the swarm is guaranteed by an
adapted movement based on the particle’s history to
evaluate a given search direction and the interactions
with the other particles in the swarm, as well as the
intensification by optimising the search direction using
EGT. As a consequence, it is expected that, in the first
phase, the particles will explore and learn the solution
space, and then this will make the proposed method
more adaptive to optimisation problems and capable of
providing better convergence. Moreover the number of
calls of the cost function is sufficiently reduced compared
to the required computational time to obtain the best
strategy. Hence, the proposed approach in this study also
significantly reduces the computational load compared
with our previous EGPSO algorithm.

Note that the idea of C-ESPSO was first suggested in
our previous study [!3] after investigation of the conver-
gence properties of EGPSO. However, the previous study
provided only the rationale behind this proposition and
did not examine its performance over typical benchmark
test functions. As continuation of our previous work
in [13], this paper refines how to determine the three
weighting parameters from our previous work and per-
forms extensive empirical tests based on the well-defined
benchmark functions from the CEC-2015 conference [1]
to investigate the performance of the proposed C-EGPSO
algorithm.

The rest of the paper is organised as follows. The
proposed method will be introduced in Section II along

with a technical background for PSO and EGT. Section
IIT details the improvement performed by C-EGPSO
compared to SPSO 2011 and EGPSO. Then, the obtained
results of the proposed algorithm on a set of benchmark
functions will be analysed and compared to those from
other selected algorithms found in literature in Section
IV. Note that the set of benchmark functions are selected
from the CEC-2015 conference [!]. Finally, conclusions
of this study will be given in the last section.

II. DESIGN OF C-EGPSO

Since the authors are using SPSO 2011 proposed by
M. Clerc in [7] to design the proposed algorithm, the
principle of SPSO 2011 will be introduced in detail. The
following subsection describes SPSO 2011 that M. Clerc
designed in [7].

A. SPSO’s moving rules

Let X! = [z},2!y,...,2!p], where 2!, € R for
d = 1,...,D, be a particle in a population of N
particles. The velocity of this particle is denoted as V! =
[0}, VL, ..., ip], vt € R. Each particle communicates
with its neighbourhood according to a communication
network. This network (or topology) plays an important
role in the convergence speed and the exploration. The
analogy with Game Theory could be also made here
since the swarm can be considered as a population
of decision makers, where the frequency with which
a particular decision made can change over time in
response to the decisions made by all individuals in
the population. The studies carried out in [15] and [5]
describe in great detail the influence of the topology over
the ability of the algorithm to explore a solution space.

From this topology, the best position P; =
[Ph1>Pyas - - -, P, pl, among the informants is defined.
Each particle has a memory in which it saves the
best explored solution by itself. The vector P} =
[ply, plo, ..., ptp], denotes this position.

The state of one particle at the instant £+ 1 is obtained
from the three previously described components: the
current velocity V', its own memory P} and the best
position Pgt among the informants of the particles.

Note that Monson and Seppi exposed in [16] the bias
result from the dimension by dimension motion used in
the original PSO algorithm. Indeed, it was shown that
PSO performs better when the optimal region is located
on one of the referential axis. Therefore, Clerc proposed
to amend this motion equation in a geometric way to
avoid the referential dependence [7]. This explains the
introduction of the barycentre in the general motion
equation of the particles.

Let G denotes the iso-barycentre of the particles X/,
X!+ c P! and X! + co P!, where ¢; and co denote two
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real coefficients. The coordinates of the barycentre G can
be obtained as:

B Xt+ (Xf—FCl(Pit —Xf)-i—Xf-l—CQ(Pgt _th))

’ 1)
Then, a point X is randomly drawn in the hypersphere
H(G,||G — X;||), which is centred on G with a radius
equal to ||G — X;||. It results in the velocity update
equation:

G

‘/it+1 — w‘/it 4 X;t _ Xf (2)

where w denotes a real-valued coefficient representing
the inertia of the particle and X Z/ ¢ represents the randomly
drawn point in the hypersphere H(G, |G — X;||) at the
instant ¢.

The position update equation is given by:

X = w4 X! 3)
In the case where P} and X are the same particle, the

particle P; is simply ignored in the computation of G.
Then G becomes:

_ Xit"' (Xz‘t+cl(Pz‘t _Xz't))
2

Figure 1 shows the moving rules for the particle X!.

G “4)

-YH‘:
M.- f

Fig. 1. TIllustration of one possible particle move. X; represents the
particle in its current state, X; represents its memory and Xy denotes
the best particle among the neighbourhood. G is the iso-barycentre of
the three previously enumerated particles. X ; t is the randomly drawn
point in the hypersphere H(G, |G — X;||). wV;' denotes the inertia
of the particle. X f +1 represents the particle after the move.

In SPSO 2011 designed by M. Clerc [6], these co-
efficients are fixed to w = STog(@) and ¢ = ¢ =
0.5 + log(2). Note that these values were obtained by
mathematical analysis on the stagnation in the PSO (no

improvement in the best found solution). The proposed
algorithm is using this work as starting point but uses
a dynamical update of these coefficients to balance the
intensification and the diversification of the search in
the solution space. It will be detailed in the following
subsection.

B. Dynamical update of coefficients using Evolutionary
Game

1) Evolutionary stable strategies: In EGT, equilib-
rium is a key point to determine the output of a game.
This equilibrium point is called the Evolutionary Stable
Strategy (ESS).

An Evolutionary Stable Strategy is a strategy such
that, if all members of a population adopt it, then no
mutant strategy could invade the population under the
influence of natural selection [8] [18]. Assume that
we have a mixed population consisting of most of the
agents playing optimal strategy p* with a few individuals
using strategy p. That is, the strategy distribution in the
population is:

(I1—¢e)p” +ep

where € > 0 is the small frequency of p users in the
population. Let the fitness 7, i.e. payoff of an individual
using strategy ¢ in this mixed population, be

(g, (1 — e)p* + ep).

Then, an interpretation of Maynard Smith’s requirement
[14] for p* to be an ESS is that, for all p # p*,

m(p, (1 —¢e)p” +ep) > n(p*, (1 —€)p” +ep)

for all € > 0 “sufficiently small”, for agents minimizing
their fitness; note that the ESS always exists. However, it
can be either a mixed strategy of the available strategies,
or a pure strategy. A pure strategy means that the entire
population will adopt it after a sufficient time.

Replicator dynamics

A common way to describe strategy interactions is
using matrix games. Matrix games are described using
notations as follows. e; is the i*" unit line vector of
1=1,...,m.

A;; = m(e;, ej) is the m x m payoff matrix.

A™ = {p = P1,Pm) | D1 + o +DPm =
1, 0 < p; < 1} is the set of mixed strategies (probability
distributions over the pure strategies e;).

Then, 7(p, q) = p- Aq” is the payoff of agents playing
strategy p facing agents playing strategy q.

Another interpretation is mw(p,q) being the fitness of
a large population of agents playing pure strategies (p
describing the agent proportion in each behaviour inside
a population) with respect to a large g population.

The Replicator Equation (RE) is an Ordinary Differ-
ential Equation which was initially introduced by Taylor
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and Joncker in [20]. It expressed the difference between
the fitness of a strategy and the average fitness in the
population. Lower payoffs (agents are minimizers) bring
faster reproduction in accordance with Darwinian natural
selection process. The initial form was as follows:

pi = —pilei - Ap" —p- Ap")

The RE for ¢« = 1,...,m describes the evolution of
strategy frequencies p;. Moreover, for every initial strat-
egy distribution p(0) € §™, there is an unique solution
p(t) € 6™ for all ¢ > 0 that satisfies the replicator
equation. The replicator equation is the most widely
used evolutionary dynamics. It was introduced for matrix
games by Taylor and Jonker [20].

The reader is referred to [11] for more details about
the replication process of the replicator, the setting of
the payoff matrix and the convergence to an evolutionary
stable strategy.

2) Implementation in PSO: EGT has been designed
to explain common animal behaviours when they are
competing for some food resources for example. The
example of the Hawk and Dove game is among the most
famous examples in EGT and helps understanding of the
basis of the principle of individual adapting its strategy
accordingly to the rewards that were previously obtained.
Based on this principle, the analogy is made:

EGT Analogy in our method
Population —  Swarm
Individual — Particle
Strategies —  Follow the personal best par-
ticle, global best particle or
inertia
Payoff matrix —— Mean of the performance ob-

tained by following a specific
strategy

Then, each particle is a player having three available
strategies (following its memory, the best neighbour, or
moving using only the inertia). The payoff matrix is
defined by:

m(s1) —m(s2) m(s1) — m(s3)

7T($1) 2 2
| w(se) = 7(s1) m(s2) — m(s3)
I=| =5 mle) ——5——
m(s3) —m(s1) 7(s3) — m(s2) m(s3)
2 2 ’

®)

where 7(s;), ¢ € {1, 2, 3} denotes the payoff that

a particle can get by following only the strategy . The
payoff matrix II is built from the difference between the
average obtained result by following one pure strategy.
The numerical value of 7(s;) for each i is obtained
from the previous experience of the considered particle.
For the following equations, we are focusing on only

one particle of the swarm. Let S* = (Q}), i € {1, 2, 3}
be the evolutionary stable strategy obtained for a given
payoff matrix II. The coefficients Qf, i € {1, 2, 3},
represent the ratio of strategy 4 at time ¢. f(X*) denotes
the fitness of one particle at the time ¢. Then, the payoff
m(s;) for the strategy 4 is proposed as:

n(s) = 1;Q§-f(X’“) ©
=1

where the first term 1/¢ represents the mean value over
the time. The second term, 3, _, Q¥.f(X*) is the sum
of the ESS strategies multiplied by the corresponding
cost obtained for the particle X. The choice of these
payoffs can be explained by the fact that it represents the
mean value of the obtained gain by following a strategy.
Since this strategy can be sometimes mixed, the Q! term
enables the weight of the involvement of each strategy
in the performance of the particle move.

Once the payoff matrix is filled, the Replicator Dy-
namics equation is applied to a fictitious population in
order to obtain the associated ESS. This ESS is composed
by the 3 ratios of each strategy. These ratios is then
used to determine the three coefficients w, ¢; and cs.
The choice to use these coefficients in the proposed
method can be explained by the fact that they represent
a stable direction to follow. The stability feature of the
ESS is used to address the possible irregularity of the
solution space and make the exploration less susceptible
to the influence of local optima. Since the particles are
following a sort of instinct developed by their previous
experiences, they will be able to “shape” the solution
space to enhance the search direction.

To determine the convergence characteristics of the
algorithm, the ESS is weighted by three coefficients.
These coefficients were empirically tuned to improve the
convergence speed. The mapping from the ESS to the
three weighting parameters, w, c¢; and cg, is determined
as follows:

w = (CMAX — OESS) WPSO Q)
c1 = 3Q% ®)
Cr = —3Q4 +3 ©)

where Q! (i € {1, 2, 3}) denotes the obtained ESS and
wpso is the inertia coefficient of the SPSO 2011 algo-
rithm. Here, op;4x denotes the maximum value for the
standard deviation of mixed strategies that are bounded
in [0; 1] and oggs represents the standard deviation
of the triplet (Q}; Q%; Q%). In the proposed framework,
the maximum value of op;4x is, for instance, the stan-
dard deviation of the set [1,0,0] and is approximatively
equal to 0.5774. Note that this mapping is the main
difference of C-EGPSO from the original SPSO 2011
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[7] and our previous studies. Moreover, the proposed
mapping is updated from our previous works [1 1]-[13] to
further improve the convergence properties. The choice
of this function enables to keep the balance among mixed
strategies, and auto-eliminates those strategies with poor
survival in the population game.

C. The algorithm design

The proposed method uses a fixed number of parti-
cles. This number should be carefully selected reflecting
characteristics of the optimal problems. Moreover, this
number should not be high to allow each particle to
make a minimum number of moves within the number
of function calls. For later comparison with SPSO 2011,
the choice of this number comes from the study led by
M. Clerc in [7].

The topology of the communication network is identi-
cal to that of the SPSO 2011. Each particle communicates
with itself and has a probability pi,, = 1—(N — 1/N)*
to be an informant for the other particles. K represents
the maximum number of neighbours for one particle, so
each particle is informed by at most K other particles,
with K € [0, N]|NN.

To exploit the main benefit of EGPSO, i.e. the en-
hanced convergence speed, without suffering a premature
convergence, we propose a random selection of the role
that each particle follows. There are two possible roles:
EGPSO described in subsection II-B and the classical
SPSO 2011 described in subsection II-A. The role as-
signment is simply random, which implies that a particle
has a probability pr to follow the EGPSO process, and
1 —pg to follow SPSO 2011. Therefore, we could keep
the two key capabilities of PSO, i.e. exploration and
exploitation capabilities. The EGPSO algorithm could
help the intensification of the search from the improved
convergence speed, whereas SPSO 2011 could help to
diversify the search of the particles.

Figure 2 describes the principle of the proposed ap-
proach in the setting of optimal PSO coefficients. Note
that EGPSO is obtained from C-EGPSO by setting the
parameter pg to 1.

The probability pg is empirically tuned by investigat-
ing the effect of pr on the optimization performance.
Most of the CEC-2015 problems are tested for this
investigation. This subsection shows the effect of pr on
the optimization result over an example function, F5 of
CEC-2015 problems. This example function is described
in IV-A and its parameters for simulation are defined
in IV-B. Different values of pr, sampled through the
interval [0,1], were tested. The results are shown in
Figure 3. From the investigation, it is concluded that
the value of 1/3 is a good compromise between fast
convergence and exploration induced by game theory and
SPSO.

Note that an automatic selection algorithm of pg
should be a meaningful subject of the future study.

III. C-EGPSO IMPROVEMENTS FROM SPSO
A. Influence of EGT on particle’s exploration

The herein subsection describes the role played by
EGT in the exploration of the particles by analyzing the
convergence of the ESS coefficients on different classes
of problems.

Figure 4 is showing the convergence of particles
toward the minimum of a 2D sphere problem. The depar-
ture point of the swarm is displayed in blue (90, 90). The
swarm is composed of N=3 particles and 20 iterations are
displayed. Early iterations are plotted in green whereas
latter ones are in red. Two phases can be seen clearly,
a convergent phase where the swarm is descending to
the minimum in 4 or 5 iterations following the gradient
of the Sphere function. Then a latter phase where the
particles, in red, are exploring the space around the
minimum. Figure 5 shows quantitatively the evolution
of the strategy ratio for the simple sphere problem. It
can be seen that there are two stages in the choice of
the strategies. In the earlier part of the simulation, the
strategy that consists in following the best particle of
the neighbourhood is dominant over the others that do
not express at all. This can be explained by the global
structure of the sphere problem. Indeed, in this simple
unimodal problem, it is intuitive that sampling around the
best solution will most likely improve the fitness of the
particle. Then, in a second phase, when approaching the
global minimum the memory as well as the inertia start
appearing in the global strategy. This can be explained by
the fact that, when the particles are close to the optimum,
the swarm has converged and it improves the probability
of sampling a point that is worst than the current position
by following only the best particle. This demonstrates
that the particles adapt themselves to the situation to
always promote the strategy that will lead to the optimum
solution.

Figure 6 shows the evolution of the strategy ratio
when solving a Griewank’s plus Rosenbrock’s function
which includes multiple local minima. In this example,
we deliberately chose a failure case where the swarm
is trapped in a local minimum. So, as for the previous
example, there are two different phases in the strategy
evolution. First, the particle uses very different strategies
to quickly converge to a local minimum. Then, as soon
as particles are in this local minimum, it can be seen
that the strategies became balanced to stabilise around
[1/3,1/3,1/3]. This equilibrium means that no strategy
is prevalent over the others and it is logical to take into
account that the particle is trapped in local minimum.
Thus, whatever its next local move is, it will not improve
the quality of the current solution.
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Fig. 2. Diagram of the proposed method. The values F'ES and F E,q, denote the current number of cost function calls and the maximum of

authorised calls respectively.
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Fig. 3. Evolution of the mean, over 20 simulation runs, of the best
results on problem F5 according to different values of pg.

Hence, as illustrated by these two examples, it was
shown that the adaptation of the particles to the situation
was effective by using the EGT process. In the first
case, it enables a fast convergence to the interesting
area, then locally explores the area to find the global
optimum. In the second example, it was demonstrated
that the particles adopt a rational behaviour and if they
are trapped in a local minimum, they restart a global
exploration of the solution space by balancing the three
classical components of the PSO.

B. The local optima issue

This subsection studies, on two problems, how the
C-EGPSO overcomes a premature convergence issue
encountered by the previous versions of EGPSO [I1],
[12]. Figure 7 is plotted for problem F, of the CEC-
2015 benchmark respectively for D = 10 and D = 30.
F, features various local optima as well. It is a proper test
to see how the adaptation of the three ESS coefficients



IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, 201X

L ]
A0 i i i i "
00 <80 £ A0 20 o 20 40 B0 1]

100

Fig. 4. Convergence of the C-EGPSO algorithm on a 2D Sphere Problem. Color of the particles are evolving from green to red according to
the iteration number. The arrow indicates the convergence direction in early iterations.
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Fig. 5. Evolution of the strategies over the time for one randomly
chosen particle. This example shows the ratio of each strategy over the
time for a simple sphere problem.
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Fig. 6. Evolution of the strategies over the time for one randomly

chosen particle. This example shows the ratio of each strategy over the
time for a Griewank’s plus Rosenbrock’s function.

performs on complex problems. However, in order to
have conclusive results, the population size was chosen
as N = 40 and the maximum number of function calls
was set to 1000D. It shows, for the selected problems, the
evolution of the results for different numbers of function
evaluations (FES). The abscissa gives the percentage
progression of FES.

The upper graphic of Figure 7 gives the conver-
gence speeds of the compared methods for dimension
D = 10 on the problem Fj,. SPSO 2011 performs a
good exploration of the solution space with constant
coefficients. However these coefficients were obtained

D=10
—5— CEGPSO | ]
GPSO | ]
t SPSO 2011
—
- \\ -
1400 e 1
T
) 04 02 03 04 0s 6 07 08 0 1
maxFES(%)
D=30
8600 —&— C-£GPSO | ]
AR5 < EGPSO
£000 B SPSO 2011
500 | . ) ]
¥y h ¥ . . .
w0 4
o0t i&‘
£
c \
6000 1
5500 \\ J
5000 | \‘\ ]
N
N
4500 o q
o 04 02 03 04 05 06 07 08 09 1

maxFES(%)

Fig. 7. Comparison of the convergence of the best value for problem
Fy of CEC2015 benchmark in dimension D = 10 (top) and dimension
D = 30 (bottom).

by mathematical analysis on the stagnation in the PSO
[6] and are not fitted with the solution space for early
exploration. In this early exploration phase, C-EGPSO is
driven by EGT and converges faster than SPSO 2011.
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It can be noticed that EGPSO is trapped after 2000
iterations. This can be explained by the fact that EGT
proposes a locally optimal search direction. Thus, when
all particles are trapped in the same local optima, it is
more difficult for them to escape these areas. There is a
lack of exploration in this case. However, the exploration
properties of SPSO 2011 can be used to escape this local
optimum. Hence, combination of both approaches using
pr = 1/3 allows particles to have a good intensification
while keeping the advantages of SPSO 2011 exploration
property.

Taking the results of D = 30 displayed on the bottom
part of Figure 7, it is observed that C-EGPSO is less im-
pacted by the dimension on problem F than SPSO 2011.
Actually, the dimension increases the complexity of the
topology and thus enhances the ability of C-EGPSO to
surpass local optima while keeping an adaptation of its
coefficients to the topology of the problem.

To conclude this investigation, C-EGPSO improves
SPSO 2011 on functions with numerous local optima
especially on higher dimensions by using the mixed
role of SPSO 2011 and EGPSO. It is also noticeable
that the computational load remains almost unchanged
since the experience of the particles is modelled by the
storage of only 3 additional coefficients. This means
that the designed approach keeps the simplicity of the
interactions proposed in the initial PSO [9].

IV. BENCHMARK OF C-EGPSO
A. Definition of the CEC-2015 Benchmark

In order to support the efficiency of the proposed
method, the algorithm was tested on the benchmark
functions issued from the CEC-2015 congress [1]. This
includes two unimodal functions, seven multimodal func-
tions, three hybrid functions and three composed func-
tions. This heterogeneous set of problems can demon-
strate the efficiency of the proposed approach to escape
local minima and to converge to a global minimum in a
reduced time. Due to the benchmark rules, the proposed
approach is limited to 20 numerical simulations for each
function and for dimensions D = 10 and D = 30.
For each simulation, the number of cost function calls
was limited to 50D, i.e. 500 for D = 10 and 1500
for D = 30. Then, the obtained results are compared
to the other well-known competing algorithms results.
The benchmark definition is available in [4]. In order
to prevent algorithms from exploiting the symmetries of
the solution space and to avoid the classical problem
of the optimum value on the axis of the problem, the
global optimum is shifted to a value different from
zero and the function values of the global optima are
non-zero. Moreover, all problems are rotated to test if
the proposed method is using the coordinate system to

perform the exploration of the solution space. In the
proposed experiments, the tested functions are:

o F1, Rotated Bent Cigar Function,

e I5, Rotated Discus Function,

o I3, Shifted and Rotated Weierstrass Function,

o I}, Shifted and Rotated Schwefel Function,

o F7%, Shifted and Rotated Katsuura Function,

o Fj, Shifted and Rotated HappyCat Function,

o F%, Shifted and Rotated HGBat Function,

o F3, Shifted and Rotated Expanded Griewank’s plus

Rosenbrock’s Function,
e Fy, Shifted and Rotated Expanded Schaffer F6
Function,

e Fig, Hybrid Function 1 (N=3),

e F11, Hybrid Function 2 (N=4),

e [9, Hybrid Function 3 (N=5),

e Fy3, Composition Function 1 (N=5),

e Fy4, Composition Function 2 (N=3),

e Fy5, Composition Function 3 (N=5).

N.B.: here, N denotes the number of functions used to
obtain a hybrid or composed problem.

C-EGPSO will be compared to a Covariance Matrix
Adaptation Evolution Strategy algorithm (CMAES-R)
developed in [3], SPSO 2011 proposed by M. Clerc in
[7]1, iISRPSO based on Self Regulated Particle Swarm
Optimisation [19], HumanCog that is inspired by human
cognitive and metacognitive behavior and defined in [2],
and Mean-Variance Mapping Optimisation (MVMO) that
constitutes an emerging heuristic optimisation algorithm,
whose evolutionary mechanism adopts a single parent-
offspring pair approach along with a normalised range of
the search space for all optimisation variables [17]. The
choice to compare our method with the aforementioned
ones can be explained by the good results obtained by
these algorithms on the proposed benchmark functions.
Moreover, they represent different classes of algorithms
and their performance provides an overview to the actual
solutions of the problems of the benchmark.

For each problem, comparison will be made on the
best result over the 20 numerical simulations.

B. Experimental Setup

For the simulation tests, the number of particles is
set to N = 12, the maximum number of neighbours
each particle can have is set to be at most 3 neighbours,
and the probability to be assigned to an EGPSO role

is prg = =. The selection of the coefficient pg is
important to balance between the convergence speed
and diversification of the search direction to avoid local
optima while reducing exploration as it is described
in subsection II-C. In this study, this coefficient was
empirically tuned, i.e., we tried several values on sev-
eral problems, then selected the one that obtained the
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Fig. 8. Best values after 20 numerical simulations when running the CEC-2015 benchmark problems with parameter D equal to 10 and 30
Func Best Worst Median Mean Std CMAES-R Best | CMAES-R Mean
F 3.158e+06 | 3.268e+07 | 1.056e+07 | 1.268e+07 | 8.239e+06 1.106e+03 2.486e+06
F, 7.155e+03 | 6.802e+04 | 3.200e+04 | 3.418e+04 | 1.392e+04 9.478e+03 3.725e+04
F3 3.216e+00 | 1.135e+01 | 6.027e+00 | 6.526e+00 | 1.954e+00 3.033e+02 3.067e+02
Fy 9.851e+02 | 2.083e+03 | 1.755e+03 | 1.691e+03 | 3.095e+02 8.827e+02 1.912e+03
3 1.444e+00 | 3.742e+00 | 2.790e+00 | 2.713e+00 | 7.408e-01 5.010e+02 5.027e+02
Fs 2.002e-01 | 9.430e-01 | 5.482e-01 5.68%e-01 1.484e-01 6.003e+02 6.005e+02
I 2.831e-01 | 1.639e+00 | 5.374e-01 6.994e-01 3.706e-01 7.002e+02 7.009e+02
Fy 2.675e+00 | 7.560e+00 | 5.680e+00 | 5.677e+00 | 1.062e+00 8.037e+02 9.496e+02
Fy 3.179e+00 | 4.182e+00 | 3.857e+00 | 3.832e+00 | 2.564e-01 9.039¢+02 9.041e+02
Fip | 2.662e+03 | 2.215e+06 | 1.837e+05 | 3.348e+05 | 5.022e+05 2.680e+04 8.762e+05
Fi1 | 4529e+00 | 1.056e+01 | 6.442e+00 | 6.829e+00 | 1.517e+00 1.104e+03 1.108e+03
Fio | 4781e+01 | 3.759e+02 | 2.058e+02 | 1.883e+02 | 9.524e+01 1.235e+03 1.429e+03
Fy5 | 3.176e+02 | 3.614e+02 | 3.299e+02 | 3.316e+02 | 9.134e+00 1.618e+03 1.657e+03
Fyy | 1.880e+02 | 2.151e+02 | 2.035e+02 | 2.033e+02 | 6.743e+00 1.592e+03 1.603e+03
Fi5 | 1.334e+01 | 5.272e+02 | 4.166e+02 | 3.8762e+02 | 1.611e+02 1.514e+03 1.900e+03
TABLET

PERFORMANCE EVALUATION OF C-EGPSO ON D = 10. CEC-2015 BENCHMARK FUNCTIONS. COMPARISON WITH CMAES-R RESULTS.

best results. Note that intuitively, there might be a link
with the topology. Indeed, the topology used is the one
proposed by Clerc in his technical report [7], where the
number of neighbours is set to 3. Thus, this is probably
not a coincidence if using this topology where one third
of the particles are best particles of the neighbourhood.
However, we did not experiment for the case 4/4 and
more generally n/n to confirm this intuition. How to
select this coefficient in different optimisation problems
will be further investigated in a future study.

C. Experimental Results

The obtained results are compiled in tables I and II.
The best and mean results obtained by CMAES-R are
also displayed for comparison. The best fitness of each
function in the benchmark is computed following the
procedure described in subection IV. All the selected
problems are represented by their numbers in the CEC-
2015 benchmark. Figure 8 gives a graphical comparison
with the results of other algorithms and will be studied

through this subsection.

This investigation will deal with the ability of the
proposed algorithm to perform on the presented prob-
lems in both of the studied dimensions (D = 10 and
D = 30) and to compare with the results obtained from
other algorithms. Figure 8 provides a compilation of the
results obtained. They show the capacity of the proposed
algorithms to converge to the solutions of the benchmark
problems: C-EGPSO, CMAES-R, HumanCog, iSRPSO
and MVMO.

Figure 8 demonstrates that for the two unimodal
problems in the benchmark, the proposed algorithm
did not find the global optimum within the limitation
of 500 function calls. The ranges of values of these
two functions are large and tend to flatten the solution
area. Since there is no large difference between points
in a same neighbourhood, the EGT cannot promote a
specific search direction. It tends to equalize the three
ESS coefficients and converge slowly. Nevertheless, the
results should be scaled by the range of values.
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Func Best Worst Median Mean Std CMAES-R Best | CMAES-R Mean
Fy 2.005e+07 | 3.032e+08 | 1.554e+08 | 1.514e+08 | 9.342e+07 9.691e+03 1.289¢e+06
F 6.645¢+04 | 1.760e+05 | 9.940e+04 | 1.022e+05 | 2.345e+04 8.245e+04 1.416e+05
F3 2.095e+01 | 3.301e+01 | 2.773e+01 | 2.746e+01 | 3.739e+00 3.185e+02 3.253e+02
Fy 3.081e+03 | 7.986e+03 | 6.402e+03 | 6.003e+03 | 1.628e+03 3.209e+03 5.773e+03
F5 2.030e+00 | 4.705e+00 | 3.480e+00 | 3.376e+00 | 6.778e-01 5.005e+02 5.041e+02
Fs 3.631e-01 | 8.360e-01 | 5.791e-01 | 5.703e-01 1.350e-01 6.004e+02 6.007e+02
F; 2.303e-01 | 1.101e+00 | 3.706e-01 | 4.883e-01 | 2.640e-01 7.003e+02 7.006e+02
Fg 4.349e+01 | 3.651e+03 | 1.508e+02 | 3.911e+02 | 7.927e+02 8.195e+02 8.273e+02
Fy 1.259e+01 | 1.384e+01 | 1.334e+01 | 1.331e+01 | 3.686e-01 9.135e+02 9.139e+02
Fig | 6.784e+05 | 1.812e+07 | 3.297e+06 | 4.823e+06 | 4.661e+06 1.221e+06 4.122e+06
Fi1 | 2.069e+01 | 1.114e+02 | 2.437e+01 | 3.514e+01 | 2.610e+01 1.119e+03 1.136e+03
Fis 1.746e+02 | 8.914e+02 | 5.797e+02 | 5.631e+02 | 1.949e+02 1.482e+03 1.861e+03
Fis | 3.715e+02 | 4.714e+02 | 4.117e+02 | 4.151e+02 | 2.382e+01 1.671e+03 1.693e+03
Fiy | 2.253e+02 | 3.007e+02 | 2.535e+02 | 2.549e+02 | 1.764e+01 1.621e+03 1.635e+03
Fi5 | 8.513e+02 | 1.178e+03 | 9.887e+02 | 1.014e+03 | 8.678e+01 1.940e+03 2.296e+03

TABLE 1T

PERFORMANCE EVALUATION OF C-EGPSO oN D = 30. CEC-2015 BENCHMARK FUNCTIONS. COMPARISON WITH CMAES-R RESULTS.

Regarding the multimodal problems, C-EGPSO can
obtain results comparable to the MVMO algorithm and
outperforms CMAES-R on most of the selected prob-
lems. For functions with few and localised optima such
like the HappyCat function of problem Fj, the principle
to base the movement of the particles on the previous
experience leads to the conclusion that the proposed
approach enables the particles to “predict” this valley and
the direction to follow to escape from a local optimum
in order to converge to the global one. The problem Fjy
features a large number of local optima. It allows the
demonstration of the capacity of C-EGPSO to prevent
a premature convergence by optimising the search di-
rection. The particles are figuring out the shape of the
solution space by basing their “assumptions” on their
previous experiences and can shape a form of average
mean of the solution space curvature, therefore avoiding
to be trapped in local optima by selecting the best search
direction to improve their fitness as shown in subection
ITI-B. Moreover, basing the exploration on particle level
instead of swarm level improves the reactivity of C-
EGPSO to converge compared to CMAES algorithms on
multimodal functions.

The C-EGPSO efficiency on hybrid and composed
problems can be explained by its average good perfor-
mance on various types of multimodal functions and its
ability to self-adapt to the solution space characteristics.
However the adaptation of the three ESS coefficients
is related to the complexity of the solution space. This
could decrease the short-term performance of C-EGPSO
for expensive problems.

It is noticeable that the consideration of Figure 8,
which gives the results for D = 30, shows that C-EGPSO
keeps its quality on higher dimension even though the

complexity is increasing, i.e. it is not sensitive to problem
dimensionality.

Athough the MVMO algorithm obtains a better con-
vergence on some of the problems of the CEC2015
benchmark, it needs to maintain an archive which is
cost expensive whereas C-EGPSO only stores an updated
history of its three coefficients. Moreover, as suggested in
[17], the MVMO needs to tune numerous parameters to
obtain interesting results. Therefore, the results presented
in [17] were obtained with different parameters to opti-
mised specifically for each problem while the same set
of parameters was used by the C-EGPSO in this study.

V. CONCLUSION

The proposed algorithm introduces a new way to use
evolutionary game theory in order to improve the particle
swarm optimisation. The presented approach is based
on the ability of the evolutionary game to optimise the
search direction based on the previous experience of each
particle while exploiting all the benefits from a classical
particle swarm optimisation approach to avoid the local
optima and explore the solution space. The algorithm
has been tested on the benchmark functions found in
the CEC-2015 congress. Its ability to have competitive
performance on most of these problems has been demon-
strated, especially the algorithm shows good adaptation
skills. It can converge quickly to the optimum and can
overcome local optima by adapting its ESS coefficients
for each particle. In that extent, the C-EGPSO shows its
capacity to improve the convergence speed and the ability
to solve some deficiencies of SPSO 2011. This adaptibil-
ity also gives robust performance when the dimension
increases or on hybrid problems. However, on problems
featuring a plane topology, C-EGPSO converges more
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slowly, giving priority to space exploration. Taking into
account the recent advances in parallel programming,
this algorithm can be implemented in such a way that
particles having not common neighbouring informants
can perform their movements independently, hence the
proposed algorithm is computationally parallelisable.

In the future, it might be interesting to explore deeper
the evolutionary game element and look into the details
how evolves the evolutionary stable strategy according
to the initial state of the population. It could also be
interesting to investigate the stability of these points.
Since the selection of the criterion pr, which denotes
the probability for a particle to follow the classical SPSO
2011 or the proposed C-EGPSO, was empirically deter-
mined in this study, it could be interesting to investigate
the role of this parameter in the global performance of
the algorithm. The topology of the particles network
could also be investigated by studying the Shapley’s
value in order to determine what is the role played by
each particle in the entire swarm, then adapt the topology
accordingly.
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