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Tuneable and switchable dual wavelength lasers using optical fibre 

Bragg grating external cavities 

  

S.P. Reilly, S.W. James and R.P. Tatam 

 
 
 
Two novel external cavity lasers are demonstrated experimentally. The first utilises a 

Bragg grating fabricated in highly birefringent optical fibre and offers the ability to 

switch between modes that are separated in polarisation and wavelength. The second 

utilises two spatially separate Bragg gratings fabricated in mono-mode fibre. Both can be 

used for tuneable beat frequency generation. 

 

Introduction: Fibre Bragg grating (FBG) external cavity semiconductor lasers have been 

investigated as stabilised continuous wave and modulated laser sources, and as tuneable 

sources [1]. These lasers can offer narrow linewidths and a viable cost effective 

alternative to distributed feedback laser diodes and distributed Bragg reflector laser 

diodes. Dual wavelength lasers have also been the subject of considerable research 

interest as sources capable of producing beat signals at microwave frequencies, which is 

desirable for electronic signal processing systems [2-4]. Beat frequencies have been 

generated previously using separate laser cavities [3,4]. However, systems employing 

separate cavities can suffer from phase noise and drift, making a single cavity dual 

wavelength laser preferable for producing stable beat frequencies. In this paper two novel 

FBG external cavity lasers are experimentally demonstrated. Both use the light reflected 

from the FBGs to force the lasers to operate at the Bragg wavelengths.  
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Hi-Bi laser: The first laser configuration considered is based on High Birefringence (Hi-

Bi) fibre and exploits the difference in the wavelength of the Bragg reflection of light 

populating the orthogonally linearly polarised eigenaxes of Hi-Bi fibre. Feedback from a 

FBG written in Hi-Bi fibre then results in the laser operating on two linearly polarised 

longitudinal modes that are separated in both wavelength and polarisation. A Hi-Bi fibre 

with a beat length of ≈ 1.6mm will produce a corresponding wavelength separation of ≈ 

0.3nm between the orthogonally linearly polarised modes of the reflection from the FBG. 

The fibre used was Fibercore bow-tie, (HB 750) with a numerical aperture of 0.15. The 

fibre was hydrogen loaded for 7 days in a pressure vessel at 130 bar. The FBG was 

subsequently fabricated using a wavelength tuneable UV source and phase mask based 

interferometer [5]. The FBG had a centre wavelength of 810nm, a reflectivity of ≈ 40% 

and a bandwidth of 0.15nm (FWHM) and was located 250mm from the end of the fibre. 

The fibre end was angle polished to reduce unwanted reflections into the active laser 

cavity that could de-stabilise the laser. Light was coupled into the fibre using anti 

reflection (AR) coated lenses. The output from a 150mW, SDL 5420, non-AR coated 

810nm laser diode was coupled into the angle polished end of the fibre. A coupling 

efficiency of ≈ 40% was achieved. The optical length of the external cavity was ≈ 

320mm. A half wave plate was used to adjust the orientation of the polarisation of light 

with respect to the eigenmodes of the fibre. Tuning of the wavelength separation between 

the modes was demonstrated by transversely loading the FBG [6]. This altered the 

birefringence, via the strain-optic effect, of the fibre at the location of the FBG, altering 

the wavelength separation of the two modes. A series of weights were used to apply a 

transverse load to the fibre. The weights were placed on a glass slide that was positioned 
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on the FBG parallel to another fibre of the same type that also had its coating removed. 

Applying the load in line with the slow axis reduced the birefringence of the fibre by 

decreasing the effective refractive index in the slow axis. The corresponding strain in the 

fast axis increases its effective refractive index thus lowering the birefringence as in [6], 

with a concomitant decrease in the wavelength separation of the two modes.  

 

Results: The FBG feedback was observed to reduce the laser threshold to 16mA, a 

reduction of 46%. The spectrum was observed using an Ando AQ-6310b optical 

spectrum analyser with a resolution of 0.1nm. Fig. 1 plots the relative intensity of each 

mode during rotation of the waveplate, where the laser can be seen to switch the 

wavelength and polarisation of its output. The laser operated in 3 states, in state A and C 

the laser operated in a single longitudinal mode, orthogonally polarised for each state. In 

state B both orthogonally linearly polarised modes co-exist, since the eigenaxes of the 

fibre are equally populated. The laser was seen to be mode hop free in all three states and 

temperature tuning of the diode could be used to ensure the switchable modes were of 

equal intensity. No mode or intensity instabilities were seen over a period of several 

hours. The wavelength separation of the two modes was 0.3nm, which matches the 

separation expected from a FBG written in Hi-Bi fibre with a beat length of 1.6mm at 

810nm. Fig. 2 shows the dependence of the lasing wavelengths upon the transverse load 

applied to the FBG, with the orientation of the fibre and direction of transverse load also 

shown. Loads of up to 0.34 N/mm were applied to the fibre, and a linear dependence of 

the wavelength separation upon the load was observed. These loads can be increased to 

increase the range over which the wavelength separation can be tuned. 
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Two FBG laser: The second laser configuration employs two spatially separated FBGs. 

The FBGs were fabricated in single mode fibre at two different wavelengths, forcing the 

laser to lase on two longitudinal modes. As the two FBGs were not co-located, strain 

could be applied independently to each FBG, making both modes independently 

tuneable. The interference between these two modes can be used to create a beat signal, 

the frequency of which is a function of the separation in wavelength of the two modes.  

This results in the beat frequency being tuneable across a wide range. The FBGs were 

fabricated with a physical separation of approximately 150mm such that each FBG could 

be individually tuned. The FBGs were fabricated in hydrogen loaded fibre, Spectran (FS-

SMC-A0780B), with the same technique as outlined earlier [5]. The Bragg wavelengths 

were separated by 2nm, the FWHM of each FBG was ≈ 0.2nm and reflectivity was ≈ 

25%. The end of the fibre was angle polished to prevent de-stabilising reflections. The 

coupling efficiency was ≈ 35%. The first FBG, fabricated at 808nm, formed an external 

cavity approximately 400mm in length, the second FBG at 810nm formed a cavity 

approximately 650mm long.  

 

Results: As an axial strain was applied to the first FBG the wavelength separation of the 

two longitudinal modes of the laser decreased. When the two modes are separated by less 

than ≈ 0.3nm, mode competition effects collapsed both modes into one forming a single 

longitudinal mode laser, (Fig. 3). The single longitudinal mode continued to dominate the 

spectrum until the FBGs were tuned to a spectral separation exceeding 0.3nm, when the 

two tuneable modes reappear. This 0.3nm separation generated the lowest beat frequency 

achieved of ≈ 130GHz with a corresponding synthetic wavelength of 2.3mm. The 
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maximum beat frequency was >2.28THz, which has a corresponding synthetic 

wavelength of <0.131mm. Operation was mode hop free over the entire injection current 

range as demonstrated by Fig. 4 where a dual FBG external cavity laser is compared to 

the same laser diode under the same conditions but with no optical feedback.  

 

Summary: Two novel external cavity lasers have been demonstrated. Both lasers were 

shown to be mode hop free and a high degree of stability was observed over several 

hours. The Hi-Bi fibre based laser demonstrated stable operation on two orthogonally 

polarised longitudinal modes. The laser could be switched between modes by the rotation 

of a waveplate, allowing the output of the laser to be switched in both the polarisation 

and wavelength domains. Alternatively the laser could operate simultaneously on the two 

modes. Transversely loading the fibre allowed the wavelength separation of the two 

modes to be controlled. As the wavelength separation between switchable modes of the 

laser is defined by the fibre birefringence it is readily calibrated, which has applications 

in multiple wavelength sensing signal processing techniques. Use of a polariser at the 

output of the laser would allow interference between the modes and thus create a tuneable 

beat frequency.  It also offers a new method for producing a synthetic wavelength for use, 

for example in the signal processing of sensing systems [2]. Using an electro-optic liquid 

crystal device to define the polarisation of the light coupled into the fibre would permit 

the laser to be controlled electronically. 

       The second system employing spatially and spectrally separated FBGs allowed 

independent tuning of the two longitudinal modes. The lowest beat frequency achieved 
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was ≈ 130GHz with a corresponding synthetic wavelength of 2.3mm. It is thought that 

this frequency can be lowered significantly by the use of narrower bandwidth FBGs. 

        The methods presented here have advantages over alternative techniques such as 

distributed feedback and distributed Bragg reflector laser diodes as they are spectrally 

stable and the emission wavelength is stable for the injection current variation. In 

addition, they are advantageous due to their significantly lower cost, in that the 

technology can be applied to a low cost non-AR coated laser diode. 
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Fig. 1 Relative intensity of the orthogonally polarised modes as the polarisation is 

rotated.  

             Fast axis mode 

             Slow axis mode 

 

Fig. 2 The dependence of the lasing wavelengths upon the applied transverse load. The 

direction of transverse load application to the fibre is also indicated. 

 
Fig. 3 The centre wavelengths of the two modes as the first FBG fabricated at 808nm is 

strained. Region A shows where the laser operates on a single longitudinal mode.  

 
Fig. 4 The spectral stability of the both modes of the dual FBG laser in comparison with 

the same laser diode stabilised to the same temperature with no optical feedback. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Laser diode with no optical feedback 

Modes of dual FBG external cavity laser 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
 

 


