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ABSTRACT 

The degradation of a carbon fibre reinforced epoxy resin with an acetone/water mixture and 

ZnCl2 catalyst was investigated. The solvent/catalyst system achieved a resin removal yield in 

excess of 94% after 1.5 h at 290°C and 45 min at 300°C. Single fibre tensile testing indicated 

an increase in fibre strength after the recycling process. The strongest fibres were recovered 

using a reaction temperature of 290°C and exhibited a strength of 3.21 ± 1.10 GPa. The 

technique developed therefore appears to recover high quality fibres while reducing the 

temperature by 30°C and process time by 25% when compared to earlier work. 

1. INTRODUCTION 

The current and expected growth within the manufacturing and use of carbon fibre reinforced 

composites (CFRCs) has been well described [1-3], however, this growth is driving a need for 

improved recycling techniques. Although pyrolysis processes are able to recover fibres with 

similar mechanical properties to virgin material [4, 5], the polymer matrix is incinerated 

resulting in the loss of up to 50 wt.% of the composite and generating significant quantities of 

emissions. Solvolytic technologies have the potential to also recover organic compounds from 

the matrix, thereby potentially improving resource efficiency and reducing environmental 

impact. Under low temperature and pressure (LTP, < 200°C, ~ 1 bar) conditions, strong acids, 

alkalis and/or oxidising agents are necessary to fully decompose the resin. Use of these 

substances, however, results in particularly hazardous organic liquid products which are 

difficult to reuse or dispose of [1, 6-9].  

Alternatively, generally recognised as safe (GRAS) solvents such as short chain alcohols and 

acetone can be used at near- or supercritical conditions, either alone or mixed with water, to 

degrade thermoset polymer matrices [10-17]. Use of alkaline and weak Lewis acid catalysts 

have also been shown to be effective under these conditions [9], with more recent research 

suggesting that the presence of chloride ions can accelerate the degradation reaction [18]. It is 

possible to recover fibres with similar mechanical properties to virgin material after processing 

at temperatures in the range of 300 to 400°C [13, 14], however, the effect of chloride ions on 

fibre quality has not been previously studied. This work aims to determine the effect of 

combining a weak Lewis acid with an acetone/water mixture on the degradation of a 

commercial CFRC and to assess the influence of the process conditions on virgin fibres. 
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2. EXPERIMENTATION 

2.1 Materials 

The degradation reaction was investigated using samples of CFRC measuring (10 x 10 x 6) ±1 

mm3 with a fibre volume content of 53 ± 1%. This consisted of 20 plies of woven Toray T700 

6k carbon fibre and an RTM6 epoxy resin. As one of the hardest polymers to degrade, if the 

developed process is able to recover fibres from this material, it should be applicable to a wide 

range of CFRCs. The resin content was calculated to be 36 wt.% using densities of carbon fibre 

and epoxy resin of 1.80 and 1.14 kg.m-3 respectively [19, 20]. This value was confirmed using 

thermogravimetric analysis (TGA) with an Exstar 6000 supplied by Seiko Instruments Inc.  

The effect of the recycling conditions on the fibre quality was assessed using virgin Toray T700 

carbon fibre. The fibres had been sized, but not used to make a composite material. 

Analytical research (AR) grade acetone and zinc chloride (ZnCl2) were supplied by Sigma 

Aldrich. Acetone was mixed with water from the mains supply in a ratio of 80:20 v/v before 

adding ZnCl2 to make solutions with a concentration of 0.05 and 0.10 M. 

2.2 Fibre Recovery 

All experiments were realised with an electrically heated, 100 mL tubular batch reactor 

provided by Parr Instruments Inc. 4.17 ± 0.02 g of the CFRC and a 120 ± 10 mm length of the 

virgin fibre were placed into a stainless steel basket before loading into the reactor with 50 mL 

of the  solvent /catalyst system.  This equated to a resin concentration of  30 ± 1 mgresin. mLsolvent
-

1. The process consisted of heating, reaction and cooling phases; the times taken for each are 

shown in Table 1, along with the process conditions investigated with the 0.05 M ZnCl2 

solution.  

Target 

Temperature 

(± 2°C) 

Induced 

pressure 

(± 2 bar) 

Time (± 1 min) 

Heating phase Reaction phase Cooling phase 

270 105 26 

0, 10, 20, 30, 60, 90, 

120, 150 

25 

280 120 28 25 

290 140 30 27 

300 160 32 0, 10, 20, 30, 45, 60 28 

Table 1. Process conditions investigated with the 0.05 M ZnCl2 solution and associated 

heating, reaction and cooling times. 

2.3 Fibre Characterisation 

2.3.1 Resin Removal Yield (RRY) 

To determine the resin removal yield (RRY) of the CFRC, two independent methods were 

used. In Method 1, samples were weighed before and after processing and it was assumed that 

the difference in mass was equivalent to the mass of resin removed by the recycling process. 

The RRY was then calculated with Equation (1). Method 2 involved calcining the recovered 

fibres at 500°C in air using a muffle furnace. Samples were removed from the furnace, cooled 
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to room temperature and weighed at regular intervals. After between 3 and 20 minutes 

depending on the sample, the reduction in mass was negligible and it was therefore assumed 

all remaining organic material had been removed. The resin content after processing (before 

calcining) was calculated using Equation (2) and the RRY then determined with Equation (3). 

An average was taken from the RRY given by Method 1 and Method 2 to determine the final 

value. 

 𝑅𝑅𝑌 % =  
𝑚𝑖 − 𝑚𝑝

𝑚𝑟
 × 100 (1) 

 

 𝑅𝑓% =  
𝑚𝑝 − 𝑚𝑓

𝑚𝑝
 × 100 (2) 

 

 
𝑅𝑅𝑌 % =  

𝑅𝑖 − 𝑅𝑓

𝑅𝑖
 × 100 (3) 

 

Where: RRY = Resin removal yield (%), mi = Initial mass of the sample (g), mp = Mass of the 

sample after processing (g), mr = Initial mass of resin present, mf = Mass of sample after 

calcination, Rf = Resin content after processing (%)and Ri = Initial resin content (%).  

2.3.2 Scanning Electron Microscopy (SEM) 

Fibres were recovered after processing for 1 h at 300°C with 0.05 and 0.10 M ZnCl2 catalyst 

solution and were inspected using SEM with a Philips XL30 FEG ESEM. Samples were 

mounted onto adhesive stub mounts and coated with platinum using an EMSCOPE SC500 low-

vacuum sputter coater. Although carbon fibres are electrically conductive, a metallic coating is 

able to improve image quality. Samples were loaded individually into the ESEM and images 

were taken at magnifications in the range of 1,500 to 8,000 with an acceleration voltage of 20 

kV. 

2.3.3 Single Fibre Tensile Testing (SFTT) 

The tensile strength of the recovered fibres was examined through single fibre tensile testing 

(SFTT) as specified in ISO 11566:1996 [21]. A single fibre was isolated and mounted across a 

paper frame with a gauge length of 20 mm. Optical microscopy at x40 magnification was used 

to indicate the frame contained one filament only and to measure the fibre diameter. This was 

taken to be the same as the manufacturer’s data (7 µm) and there was no discernible difference 

between samples. Each specimen was clamped in the grips of an Instron 5566 tensile testing 

machine and the sides of the paper frame were cut away leaving the fibre suspended. Tensile 

tests were conducted with a 10 N load cell and an extension rate of 0.2 mm.min-1. The force-

displacement curves were recorded and the failure load was measured with Bluehill software. 

At least 30 fibres were examined for each of the reactor conditions given in Table 2. The tensile 

strength was then calculated with Equation (4).  

 
𝜎𝐹 =  

𝐹𝑚𝑎𝑥

𝐴𝑓
=  

4𝐹𝑚𝑎𝑥

𝜋𝑑𝑓
2  (4) 

Where σf = Fibre strength (Pa), Fmax = Maximum recorded load (N), Af = Fibre cross-sectional 

area (m2), and df = Fibre diameter (m).  
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Sample 
Reaction Temperature 

(± 2°C) 

Induced Pressure 

(± 2 bar) 

Reaction time 

(± 1 min) 
No. of samples 

1 Virgin fibres 35 

2 290 140 90 30 

3 300 160 45 30 

Table 2. Recycling conditions of fibres used in single fibre tensile testing. 

3. RESULTS 

3.1 Fibre Recovery 

The effect of increasing temperature and reaction time on RRY is shown in Figure 1 with the 

error bars indicating the maximum and minimum values calculated when using Methods 1 and 

2. The two values obtained were generally within 5% of each other with the largest variation 

at 270°C, 150 min where there was a difference in RRY given by the two methods of 10%.  

 
Figure 1. Resin removal yield obtained at various process times and temperatures with a 0.05 

M ZnCl2 solution. 

At 270 and 280°C, it was not possible to fully strip the resin from the fibre surface in the 

reaction times investigated; as both of these curves appear to plateau at 75.5% and 86.1% 

respectively, the results suggest that this temperature must be exceeded in order to fully degrade 

the resin. Figure 2a also demonstrates that at 280°C, it was not possible to separate the plies 

into individual tows, however, by raising the temperature to 290°C, clean fibres are recovered, 

as shown in Figure 2b. With a reaction time of 1.5 h, a RRY of 94.1% is achieved while a 

similar yield (95.0%) is observed in half the reaction time at 300°C, demonstrating the strong 

relationship between temperature and degradation rate. This could be due to operating within 

the supercritical region of the solvent mixture under these conditions. Here, the di-electric 

constant is dramatically reduced due to the breaking of hydrogen bonds between molecules 

[17]. This gives rise to a higher diffusivity and lower viscosity which in turn facilitates better 

mass transfer of organic products, improved solvent efficiency and enhanced reactivity. The 

critical point is likely to lie between that of acetone (235°C, 48 bar) [22] and water (374°C, 
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220 bar) [23], however, it was not possible to find data regarding the critical point of this 

mixture in the literature. Compared to earlier work [15], the data presented demonstrates that 

the inclusion of a 0.05 M ZnCl2 catalyst facilitates a reduction in reaction temperature from 

320 to 290°C while also reducing process time by 25%. Similar effects of ZnCl2 have 

previously been reported, however, less severe conditions and longer reaction times were 

investigated [18]. 

 

a) 

 

b) 

 

c) 

Figure 2. Samples of carbon fibre reinforced epoxy resin after processing with a 0.05 M 

ZnCl2 catalyst and acetone/water solvent at a) 280°C, 2.5 h; b) 290°C, 1.5 h; and c) 300°C, 

45 min. 

3.2 Scanning Electron Microscopy  

Following the degradation process, a light blue sheen was visible on the surface of some fibre 

tows. Closer inspection with SEM (Figure 3) revealed the presence of small deposits on the 

fibre surface. This is likely to be a deposit of the catalyst which may affect adhesion to a new 

resin. When rinsed with water, this deposit was easily removed, thus facilitating the recovery 

of clean fibres. Furthermore, it was also not possible to identify any surface defects or fractures 

within the fibres which suggests little damage to the material. However, the current data does 

not show any change in the surface functional groups. Previous work analysing virgin and 

recycled material has demonstrated that a reduction in oxygen concentration results in the loss 

of the interfacial shear strength of the fibres [24]. Therefore, further work is necessary to 

determine whether this solvent/catalyst system causes a change in the surface chemistry which 

may in turn influence adhesion to a new resin. 

3.3 Single Fibre Tensile Testing  

The mechanical integrity of virgin and recovered fibres was investigated through tensile 

strength measurements, the results of which are displayed in Figure 4. As surface defects act 

as failure points and are randomly distributed along the fibre length, there is a large range of 

values recorded as indicated by the error bars. Fibres processed at both 290 and 300°C represent 

a significantly increased tensile strength compared to virgin fibre of 81.7 and 22.9% 

respectively. Although this is a relatively large difference between virgin and recycled fibres, 

increases in strength have previously been noted in earlier work [24, 25]. This is possibly due 

to the removal of weak graphitic planes (and therefore some surface defects) [6], thereby 

resulting in an increase in tensile strength. 

Raising the process temperature from 290 to 300°C causes a decrease in tensile strength from 

3.21 ± 1.10 to 2.25 ± 1.63 GPa. There is also a much larger range of values given by the higher 

process temperature, indicating a wider variability in fibre quality. For these reasons, the 

10 mm 10 mm 10 mm 
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current data suggest that it is beneficial to minimise the operating temperature although this 

results in doubling the necessary reaction time to achieve sufficient resin degradation. 

 
a) 

 

 
b) 

 

 
c) 

 
d) 

 

Figure 3. SEM images of fibres recovered after processing with an acetone/water solvent and 

ZnCl2 catalyst at a concentration of a) 0.05 M; b) and c) 0.10 M and d) 0.10 M with light 

wash with water. 

 

Figure 4. Single fibre tensile tests of carbon fibres recovered after processing at 290°C, 90 

min and 300°C, 45 min 
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4. CONCLUSIONS 

The current work demonstrates that a 0.05 M solution of ZnCl2 is able to enhance the 

degradation of a carbon fibre reinforced epoxy resin using an acetone/water solvent. After 

processing at 290°C for 1.5 h or 300°C for 45 min, it was possible to recover strong, clean 

fibres with a RRY in excess of 94%. The research presented therefore demonstrates ZnCl2 is 

able to reduce process temperature and reaction time by 30°C/30 min or 20°C/75 min when 

compared to previous studies [15]. This represents significant energy, time and financial 

savings when considering an industrial scale process. 

SEM images of fibres recovered after processing at 300°C showed a slight deposit of the 

catalyst on the fibre surface. Although this may affect adhesion to a new resin, all residue was 

easily removed with water. There was no indication of any surface fractures, however, SFTT 

suggests that a lower reaction temperature of 290°C facilitates the recovery of higher strength 

fibres. Under these conditions, there was an increase in strength of 81.7% when compared to 

virgin material suggesting that the developed technique is able to recover fibres suitable for 

reuse in a new composite material. 
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