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A Unified Closed-Loop Stability Measure for equal tar. The floating-point format with a bit length = 1+ 3., + 3.
Finite-Precision Digital Controller Realizations represents: by assigning 1 bit fos, 3., bits for w andj. bits fore.
Implemented in Different Representation Schemes Lete ande be the lower and upper limits of the exponent, respectively.

Clearly,e — e = 2°¢ — 1. Denote the set of integers< ¢ < € as
Jun Wu, Sheng Chen, James F. Whidborne, and Jian Chu 2. . Assuming that no underflow or overflow occurs, which means
that the exponent af is within Z}. 77, = is perturbed to [7]

Abstract—A computationally tractable unified finite word length Qu(r) =x+ oy |62 <2 (Putl), )
]cc:llosc_ed-loop stab(ijllitglmzla(a;ure_ is derived which is a‘pplicaﬁle to fixed-ﬁoir?t, In the block-floating-point format, a set of real numbérss first
d;ﬁgrrﬁcp?;r:]tgaen andogrec?:i‘gggo?o;‘t ;?ﬁ;?:ggéats'gﬂesrﬁeeggségnostidérsd d|V|(_je_d_|nto some blocks. For an illustrative purpose, consider the case
in this new unified measure. For each arithmetic scheme, the optimal ©f dividing S into the two nonempty and nonoverlapped subSetsnd
controller realization problem is defined and a numerical optimization S..Lety; € S; be the elementif§; that has the largest absolute value,
approach is adopted to solve it. Numerical examples are used to illustrate andz, € S, be the element i, that has the largest absolute value.
the design procedure and to compare the optimal controller realizations Then, any: € S can be expressed uniquelyas= (—1)* x u x 2h

in different representation schemes. whereu € [0, 1) is the block mantissa of, and the block exponent of
Index Terms—Closed-loop stability, digital controller, finite word length, .. s
number representation format, optimization.
hé{ log, ||l + 1, forz € 5,

[log, |n2]] +1, forze So° 3

|. INTRODUCTION

\When all the elements i§ are presented in the block-floating-point

. Inrecent ygars, there has been a groyving interest in digital Coerl*SFmat of bitlength3 = 1 + 3. + 3, the bits are assigned as follows:
implementation which reduces the finite word length (FWL) effecti bit for the sign 3., bits for« which is represented in fixed-point with

on closed-loop stability (see [1], [2], and the references therein). It e two's complement system, anid bits for 7. Let h andT be the

wgll Known that a control law can be accomplished V‘,”th pln‘ferent "fower and upper limits of the block exponent, respectively. Obviously,
alizations and that the parameters of a controller realization are repte- ; _ 98 _ 1. Denote

sented by a digital processor of finite bit length in a particular format, 5 forz € S
namely fixed-point, floating-point, or block-float-point format. Pre- v-(x)é{ > i ' 4
vious works [3]-[8] have derived various FWL closed-loop stability , 212, for v e S .
measures for these three formats separately and defined corresponfiffyMing no underflow or overflow, i.e., the block exponent:ds
optimal controller realization problems based on these measures. HYANIN 2y, 7. it can be shown that is perturbed to

ever, all these previous measures are only linked to the precision bits Os(z) =z + r(2)85  |65] < 27 Puth), (5)

of the respective representation schemes used and they do not consider ) . . .

the dynamic range bits. Arguably, a better approach is to consider som Is easily seen thatin each reprgsentatloq format thg total bit Iengt.h
measure which has a direct link to the total bit length required. Tﬁtéways consists of t_hre(_e part_s. Sign ,OCCUD,'ES one bit. The dyr_lamlc
main contribution of this note is to derive a unified FWL closed-loofi‘?mge of representation is defined By, /3., or 3» bits, and the preci-

stability measure that can accommodate both the dynamic range aifdf (;‘f rﬁpre;entat!on ISt delrerrrp]lned,@lyl,:ﬁw, otr /:.“ bltls’ depgndlng
precision requirements and is applicable to all the three schemes. on which sc iame IS ac ue,l, y chosen. For nota |qna conciseness, we
introduce the “generalized” dynamic range bit lengthand precision

bit length3, for the three representation schemes. It is understood that

B = By, Be, Or 3y and 8, = By, B Or Bu, depending on which
The fixed-point format with a bitlength = 1+3,+ 3¢ represents a format is actually used.

real number: € R by assigning 1 bit for the sigi, bits for the integer

part, and3; bits for the fraction part of . Assuming no overflow, which Ill. PROBLEM STATEMENT

means thale| < 2%, = is perturbed to

Il. REPRESENTATIONSCHEMES

The discrete-time linear time-invariant plafitis described by
Oi(w)=a+6 |6] <2 PrtD), (1) {x(k +1) = Ax(k) + Be(k)

(6)
Any z € R can be expressed uniquely as= (—1)* x w x 2, y(k) = Cx(k) o
wheres € {0.1} is the sign ofz, w € [0.5,1) is the mantissa of With A € R""", B € R"*?, andC € R**". The generic digital
x, e = |log, |z|] + 1 € Z is the exponent of, Z denotes the set controllerC' is described by
of integers and th#étoor function || is the closest integer less than or {V(k‘ +1) =Fv(k)+ Gy(k) + He(k)
u(k) = Jv(k) + My(k)
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column stacking operator. The vectws, , wg, Wa,, W7, Wi, Wir,
W, , Wi, andwiyr, are similarly defined. Denote

]

A

o ) T O
W = [Lb1 s LUN] WrWeW i Wy Wl o,

T
Hy

)

Al T _T T T
Wo= Wy Wi Wy W W

whereN = (m+p)(m+q)+mpand” is the transpose operator. We

also refer tow as a realization of’. The stability of the closed-loop
system depends on the eigenvalues of the matrix
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where theceiling function[+] denotes the closest integer greater than
or equal tox € R. Note that the measurg(w, «) defined in (13)
provides an estimate af™" as ™" (w, o) [log, 7(w, a)]. It can
easily be seen that™» > gmin,

For a vector, letd(x) be the vector of the same dimension whose
elements are all 1's, and denote

A [0, xisazerovector
2 { ]

; : (16)
X IS a nonzero vector

For two vectors = [¢;] andy = [y;] of the same dimension, define

Twyd | A+BMC BJ the Hadamard product ef andy asx o y=[z,y,]. When the dynamic
A(w)= : . ; .
GC+HMC F+HJ range is sufficient, according to the results of Sectiowlls perturbed
I 0 | I 0 tow + r(w, a) o A due to finite3, where
= A 1 ,
[o T—l] (wo) {0 T] (10) - (we)d(w)
where0 andI denote the zero and identity matrices of appropriate m(wg)d(we)
dimensions, respectively. All the different realizationhiave the same r(w,1)= | 7(w;)d(wy)
set of closed-loop poles if they are implemented with infinite precision. T(war)d(war)
Since the closed-loop system is designed to be stable, the eigenvalues L r(wrr)d(wrr)
[Ni(A(w))| = |Ni(A(wo))| < 1,Vi € {1,....,m + n}. r(w,2)=w
Define the indexv of representation formats r 2npd(we)
1, fixed-point format is adopted 2ned(we)
a = ¢ 2, floating-point format is adopted (11) r(w,3)= | 2nsd(wy) 17)
3, Dblock-floating-point format is adopted 2nard(war)
The controller realizatiow is implemented in format of 3, dynamic L 2nud(we)

range bits;3, precision bits and one sign bit. In the remainder of thi
note, it is assumed that¥f is stored in the block-floating-point format,
it is divided into “natural” blocks ofw -, w¢, w,, wir andwy . Let
nr € wr be the element i which has the largest absolute value
The elementgq, .7, nas andnyr are similarly defined. Denote
[Wllnas = max |
" eqi Ny

W(W)éminje{l,...,N} {lw;|: wj # 0}
(12)
Firstly, the dynamic range af. bits must be large enough far. We

define a dynamic range measure for controller realizaton format
a as

A T
z(W)=[nr NG nr nu i) -

Wl @ =1
y(w, )2 { log, Wlme=a =2 (13)
log, el — 3

w(z(w)) ’

Proposition 1: The realizationw can be represented in formaof
3, dynamic range bits without overflogex = 1) or without underflow
or overflow (@ = 2, 3), if 2°7 > y(w, «).
Proof: The proof is straightforward. Here, we only give the cas
of a = 3. When2?» > log, (||2(W)||max /7 (2(W))) + 2, we have

[12(W) |

'/T(Z(W)) ) +12 ([logz ||Z(w)”maxJ + 1)
— ([logy 7 (z(w))] +1). (14)

According to the results of Section Il, this means that »«, 1.,

2% —1 > log, <

Each element; of A is bounded byt2~ %>V that is, || A [|max <

2~ (B» 1) With the perturbatiom\, \; (A (w)) is moved to\; (A (w+
r(w,a)o A)). If an eigenvalue oA (w +r(w, o) o A) is outside the

open unit disk, the closed-loop system, designed to be stable, becomes
unstable with the finite-precision implemented Therefore, it is crit-

ical to know when the FWL error will cause closed-loop instability.
This means that we would like to know the largest open “hypercube”
in the perturbation space within which the closed-loop system remains
stable. Based on this consideration, a precision measure for realization
w of formata can be defined as

po(w, a:)éinf {llAllmax : A (w +r(w,a) o A) is unstabl¢ .

(18)
From the previous definition, the following proposition is obvious.

Proposition 2: A(w + r(w,a) o A) is stable if||A|[max <
Ho (W7 (1)

Thus, under the condition that the dynamic range is sufficient, that
is, B» > (™™, the perturbatior| A |lm.x and therefore the preci-
sion bit length3,, determines whether the closed-loop remains stable.
Let 32" be the smallest precision bit length such thag > g,
the closed-loop system is stable withimplemented by3, precision
gits. The precision measure (w, o) provides an estimate qﬂ; as
i (w, a)2 = [log, pio(w, @) | —1. It can be seen thats™ > gmin,

Define the minimum total bit length required in the implementa-
tion of w as ™4™ 4 gmin 4 1. Clearly,w implemented with
a bit lengthg > #™™ can guarantee a sufficient dynamic range and
closed-loop stability. Combining the measutgsv, o) anduo (w, )
results in the following true FWL closed-loop stability measure for the

nar andnz can all be represented without underflow or overflow andjiven realizationw with formata

therefore,w can be represented in the block-floating-point format of

3r block exponent bits without underflow or overflow.

Let 5" be the smallest dynamic-range bit length that, when u
to implementw, does not cause overflow or underflow. This minimu
dynamic-range bit length can easily be computed by

B (w.a) =

Mog[ Wl . a=1
Mog (| g liax J—[log, 7(w) ] +1)1. a=2 (15)
Moy Log[2(W) max [0z, 7 (2(w)) | +1)]. a=3

sed .
n esti 0
n%ogQ po(w, )| + 1. It is clear thatg,

’ A o (w, «)

po(wW, o (29)

min A

) o (Wﬂ(}‘): -
o > 8™, The following
proposition summarizes the usefulnesgefw, o) as a measure for
the FWL characteristics ok in representation format.

Proposition 3: The controller realizatiosw implemented in format
« with a bit length can guarantee a sufficient dynamic range and
closed-loop stability, i 77+ < po(w, a).

mate of ™" is given by po(w.a) as 3
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Computing the value ofio(w, ), however, is an unsolved open & |)\,- (K(W))| —[0 T|Li(w) cT|
problem. Thus, the true FWL closed-loop stability measuiev, o) oG - ilw 0
has limited practical significance. In the next section, an alternative _ -
measure is developed which not only can quantify FWL characteristics I\ (A(w))] =B" H'|L:(w) 0
of w in formata but also is computationally tractable. oJ |1
a1\ (A(w) , [T
IV. A TRACTABLE FWL CLOSED-LOOP STABILITY MEASURE AND (571\,[” Z[BT HT]Li(W) 0
ITS OPTIMIZATION . L
o 9 |Xi (A(w))] c'm’
First, Vv 1,..., N . WA R i
i€ {l,....,m+n} . SH [0 I]L;(w) o (24)
A (A (wete(w, o) 0 &)=\ (Bw) |+ [2ilaa 20) witn
) A Re[A7 (A (A (Al
: (a2 T (AW (Aol (Aw))]

where G is the oriented curve fron® to A. For the derivative |)\z' (X(W))|

(@IA:])/(0A) = [(9]Ai])/(95;)], define wherep, (A (w)) andy; (A(w)) are the right and reciprocal left eigen-

N vectors related ta; (A (w)), respectively; denotes the conjugate op-

Ol a2\ o1 ! . . :
A | = Z 35, | (21)  eration andRe[-] the real part. Replacingo (w, o) with i (w, ) in
o=t (19) leads to a computationally tractable FWL closed-loop stability
Further define the precision measure for realizatiom format« measure
N ~ 1—|Xi (A(w))| Apm(w, o)
; )= . ,a)= . 2
wi(w, o) i o] (22) piL(w,a) ~(w, o) (26)
OA A=olly
Obviously, if | Aljmax < p1(w,a) and From p1 (w. ), an estimate of™" is given as3{"™(w,a)2 —
\ (A A llog, p1(w,a)] + 1. Compared with the existing FWL measures
Ai (A(w+r(w,a)0A))| [11-[8], p1(w, ) has at least two advantages. Fiyst{w, «) can be
— |, (A(W))| < 1A s ;| | (23) used in dlffe_rent representatlon formats while the existing measures
IA A ol are only valid for a particular format. For example, the measures

presented in [3]-[6] are fixed-point measures and the measure in
[7] is a floating-point one. The measupe(w, «) offers a unified
framework to compare the FWL characteristics of a realization

then|\;(A(w+r(w, a)o A))| < 1 which means that the closed-loop
remains stable under the FWL errr. As discussed in [5] and [6], the
condition (23) is satisfied, provided tha(w. ) is small enough. The in different formats. Second and more critically, unlike the existing

assumption of smalky(w, «) is generally valid, as it does not make . L . L
. easures which are precision measures only and imply an unlimited
much sense to study the FWL effects on the closed-loop stability fQr . ; .
N namic rangep: (w, «v) is made up of a dynamic range measure and
those situations where the closed-loop systems have a very large Sta-~ . .
- . Py . .°.” 3 precision measure and is therefore a true FWL measure capable of
bility robustness. Hence, (23) is not restrictive. Thus, with a sufficie ; P
andling closed-loop stability as well as the underflow and overflow

dynamic range, the closed-loop can tolerate those FWL perturbations

S aspects.
A whose normy A ||...x are less tha , «o). Similar to o), ) . L . .
. :H I pi(w, 9) .”0(.W’ ) In a given formaty, different realizationsv yield different values of
from the precision measuye (w, ), an estimate of;""" is given as . L . P N
Amin A p1(w, a). Itis of practical importance to find an “optimal” realization
pi (W, @)= = [logy pi(w, )] = 1. wopt (@) that maximizesp; (w, o) for the formata. The controller

Comment: In (20), ¢ should be chosen to avoid those points,
where derivative(d|);|)/(0A) do not exist, and the derivative
(8|Xi])/(0A)|a=0o must exist. From the results of [5] and [6],
(8]\i])/(0A)|a=o exist if A(w) hasm + n distinct nonzero
eigenvalues. A (w) has multiple repeating closed-loop eigenvalues, 1)((1')2 max p1(w, @). 27
some of(9|\;]|)/(0A)|a=o may not exist, and in this cage (w, «) wese
is not defined. However, in practical control system designs, it is veonsidering thatv is a function ofT', r(w, o) andy(w, a) depend on
rare thatA (w) has multiple repeating eigenvalues. As for the casE and«, we can define the following optimization criterion in format
of \; = 0, since the zero eigenvalue has the largest stability margin

plemented with this optimal realizatiom.,; («) in formata needs
a minimum bit length and has a maximum tolerance to the FWL error.
This optimal realization problem is formally defined as

1 — |A¢|, it is harder to move across the unit circle under the FWL ) A ) 1— |\ (K(WO)H
effects, compared with the other nonzero eigenvalues. Hence, for T, )= ie{l}?}.lg@Ml} ) N
thoseA (w) having zero eigenvalug, (w, o) may be modified such o Hr(w, a)o 5o | 7w, a)

that it only minimizes(1 — |\;(A(w))|)/([[2(|A:])/(0A)|a=o]|1) =p1(w, ). (28)

for those nonzero eigenvalues. Alternatively, the more conservative ) o )
measures of [4] and [5] could be used for cases where there are ~Ehg optimal realization problem (27) can then be posed as the following
optimization problem:

eigenvalues.
Obviously, 1 (w,«) is an approximation ofguo(w, «). How- v(a)= max &(T,a). (29)
ever, unlike the measurg, (w, a), the value ofu:(w,a) can be TeRmXm ’

det(T)#0

computed explicitly. It is easy to see th&d|\:|)/(0A)|a=o o L . -
r(w,a) o (9|\:])/(dw) and from the results of [6], it can be shownAS the op'_clmlzatlon problem (29) |s'h|ghly r_10n||near, global optlml_za-
that tion algorithms, such as the genetic algorithm [9] and adaptive simu-

_ lated annealing [10], can be adopted to provide a (sub)optimal simi-
9 |/\i (A(W))} =[0 IJL, (w) 0 larity transformatioril's,, («). Global optimization methods are how-
JF I ever computationally demanding. Local optimization algorithms, such
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as Rosenbrock and Simplex algorithms [11], are computationally sinthere

pler but run more risks of only attaining a local solution. Our expe-

rience with the optimization problem (29) suggests that, unlike opti- Y[y (A(W)). ..y en(A(W))]
mizing the precision measugg (w, 1) alone [6], the dynamic range

measure;(w, «) in the criterionp: (w, o) helps to bound the solution gpq

set and the cost functic§{'T, o) appears to behave better. It also help

to choose a “good” initial controller realization, such as the open-loop Pé[pl(K(w)) e Poin (X(w))]T.
balanced realization [12] or Li’s closed-loop suboptimal realization [4],

as the initial guess for the optimization routine.

With Top¢(«), the corresponding optimal realization, («) in
formata can readily be computed. By setting= 1, 2, 3, respectively,
in the optimization problem (29), we can attain an optimal fixed-point
realizationw,,. (1), an optimal floating-point realizatiow,,, (2) and
an optimal block-floating-point realizatiow.,: (3) for a digital con-
troller. Itis worth reiterating that the optimization problem (29) yields fhich gives an upper bound of the sensitivities of the eigenvalues.

true optimal controller realization, as the solutlBo,. («) minimizes Based on (36), making the eigenvalues insensitive needs to find those
the requireds, as well asg, and, therefore, minimizes the requiredei envector® which minimizer:(P) N P~Y|[2|[PJ2. The results
total bit length3. This should be compared with the existing “optimal™ 2 — L

realization problems [1]—[8], which only try to minimize the require(Pf. [13] show that if and only if? is a normal matrixs:(P) takes the

- Ny Lo =0~ minimal value. If this happen® andY can be scaled to give an or-
precision bit3, and, as a consequence, do not necessarily minimize the o L . .

- . : honormal basis af”, andx(P) = 1. This is the idea of eigenstructure
required total bit lengthy.

L . L orthogonalization for finding the realizations which have closed-loop
It is interesting to compare our approach with eigenstructure ortho

- S - N Slgenvalues of low sensitivities.
onalization, which is also based on eigenvalue sensitivities [1]. For . o o
) . ) A comparison of our approach with eigenstructure orthogonalization
complex-valued matriXJ, let||U||. representits largest singular value.

. . : can now be made. Firstly, our approach directly adopts the eigenvalue
The following lemma summarizes three propertie§ of|-. _— o 0
g - U, . sensitivities while eigenstructure orthogonalization adopts the bound
Lemma 1:|[U]l> > [[Re[Ulll2; [I[g, lll2 2 0l2; #(P) of the eigenvalue sensitivities. This implies that eigenstructure
I[U; Uil > |[UL2. > elgeny VILES. plies that eig
= . ) orthogonalization is conservative in comparison with our approach.
For an illustrative purpose, we consider the case 6f 1 (fixed-

. . . . Secondly, our approach considers both the stability margins and the
5}0?;; fODr;nnagzgvt';ZFécS]t'iIiierldrlg/;?ze;ggnnonzero matrices ali = 0 eigenvalue sensitivities in (22) and is, therefore, able to evaluate the

FWL stability of a system accurately while eigenstructure orthogo-
N {M J] nalization only considers a bound of the eigenvalue sensitivities and

Noting the relationshifY’ = P~' between right eigenvectors and left
eigenvectors, we can see that

Al

< o|P72||P|2 36
9A < ollP12(IPl2 (36)

max
i€{1,---,m+n
{ smtn} Ax—o 2

X= G F (30) cannot provide any estimate of the required bit length. Finally, it should
be pointed out that for most practical systems, owing to the limited de-

In this caseX is perturbed t&X + Ay due to the FWL effects, and 9r€es of freedom, there does not exist any feasible controller realization
achieving orthogonal closed-loop eigenstructure. Thus, for the purpose

A\ A\ alAil 214l of minimizing x(P), the eigenstructure assignment techniques (see for
i _ JIl | Tam ‘T?J ) . .
A |, X [ ()fl}g;‘ )AFA } example [14]) are employed instead to choose eigenvectors which are
x=o BY o FCT 0 as mutually orthogonal as possible. The resulting realizations are ob-
= ; viously more conservative.
5 TEem |G S e vy
Applying Lemma 1 to (25) brings about V. DESIGN EXAMPLES AND RESULT COMPARISON
HRe [\f (A(w))y: (A(w))p! (A(w))] || Example 1: This example was taken from [6]. The discrete-time
1L (W), = N (Aw)] 2 plant was given by (37), shown at the bottom of the next page. The
o t\ w) E— initial realization of the digital controller was given by
N (BGw) y: (Aw) b (AGn)], 0 1.0000e + 0
- i (A(w _ . e
o (T(_m Fo {—9.330:%— 1 1.9319e+0]
< Jlvi A, o &) - (32) G [41814e—2 27132 42
Then ® 7 3.9090¢ — 2 1.0167e + 3
AN BT o _ c’ o Jo =[3.0000e — 4 5.0000¢ — 4]
o <7y Tl Il
Xlax_oll, 2 2 M, =[0 6.1250e — 1]
<ollyi @A), [of A, @3 H, - [Z:ngjf + 1] _
where r-5549¢ +
T T
= ased on the proposed unifie closed-loop stability measure, the
LA|IBT O Ct o (34) Basedonth d unified FWL closed-I bili h
0 Ij,ll 0 I, optimization problem (29) was formed. Using the MATLAB routine

fminsearch.mwhich is a local optimization routine, this optimization
problem was solved for = 1, 2, 3, respectively, to obtain the optimal
similarity transformation in fixed-point forméf'.,.(1), the optimal
< oY NIP]l2 (35) §|m|Iar.|ty.tra.nsf0rmat|on in ﬂogtmg-pomt folrmafol?t (2) and the op-
timal similarity transformation in block-floating-point format, . (3).

Applying Lemma 1 to (33) for the: + » eigenvalues results in

A\l
Ay

max
ig{L, - mtn}

Ax=olls
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TABLE |
VARIOUS MEASURES AND ESTIMATED BIT LENGTHS FOR THEFOUR
REALIZATIONS IN THREE DIFFERENT FORMATS OF EXAMPLE 1
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TABLE I
VARIOUS MEASURES AND ESTIMATED BIT LENGTHS FOR THEFOUR
REALIZATIONS IN THREE DIFFERENT FORMATS OF EXAMPLE 2

Wo Wopt (1) Wopt(2) Wopt(3) Wo Wopt (1) Wopt (2) Wopt(3)
pi(w,1) | 2.5150e —9 | 1.1386e — 7 | 2.7728¢ —8 | 1.086le —7 p1(w,1) | 1.2312e — 10 | 1.2003e — 6 | 1.0580e —7 | 1.1321e —6
B (w, 1) 30 25 27 25 B (w, 1) 34 21 25 21
p(w,1) | 2.5569¢ —6 | 5.0795e —7 | 2.5937e —5 | 1.7450e —7 p(w,1) | 3.3474e—8 | 2.3082e —4 | 9.6673¢ —5 | 2.2287e —4
Bmin(w, 1) 18 20 15 22 Bmin(w, 1) 24 12 13 12
y(w, 1) 1.0167e +3 | 4.4612e +0 | 9.3543¢ +2 | 1.6066e + 0 y(w,1) 2.7188e+2 | 1.923le+2 | 9.1370e +2 | 1.9687¢ +2
B (w, 1) 10 3 10 1 Brim(w, 1) 9 8 10 8
p1(w,2) | 1.3134e—17 | 1.920de —5 | 1.9593e —5 | 3.3365¢ — 7 p1(w,2) | 2.9062e —11 | 7.6826e —6 | 9.5931le — 6 | 8.5778 — 6
B (w, 2) 24 17 17 23 B (w, 2) 37 18 18 18
1 (w,2) 3.1118e — 6 | 4.3127e —4 | 4.3127e —4 | 5.4490e — 6 p1(w,2) | 2.2389e—10 | 9.5628¢ —5 | 1.5229e —4 | 1.1822¢e —4
Brin(w,2) 18 11 11 17 B (w, 2) 32 13 12 13
(w,2) 2.3692e+1 | 2.2458¢+1 | 2.2012e+1 | 1.6332¢ + 1 y(w,2) 7.7038e +0 | 1.2447e+1 | 1.5875e+1 | 1.3782 +1
B (w, 2) 5 5 5 5 Bmin (w, 2) 3 4 4 4
p1(w,3) | 9.2076e — 10 | 5.3779¢ —9 | 2.8185¢ —9 | 1.3362¢ — 8 p1(w,3) | 1.4347e —11 | 3.2975e —6 | 3.6938¢ —7 | 3.5012e — 6
BT (w, 3) 32 29 30 28 B (w, 3) 38 20 23 20
pi(w,3) | 2.1343e —8 | 5.7385¢ —8 | 5.7266e —8 | 5.4549e — 8 pwi(w,3) | 6.5127e —11 | 2.7666e —5 | 2.9985¢ —6 | 3.0083e — 5
Brin (w, 3) 25 24 24 24 Bmin(w,3) 33 15 18 15
¥(w,3) 2.2955e+1 | 1.067le+1 | 2.0318¢+1 | 4.0823e+0 (w,3) 4.5395e +0 | 8.3902¢+0 | 8.1176e+0 | 8.5923e + 0
oy | s i 5 3 ey | : ‘ 4

These in turn provided the three corresponding optimal controller rel{}& Same method for Example 1, the three optimal controller realiza-

IZ&IIOI’]SWopL (1)1 Wopt (2)1 andwopt (3)~

tionsw,,+ () were obtained forv = 1,2, 3.

Example 2: In this example, the discrete-time plant taken from [1] Tables | and Il list, for Examples 1 and 2, respectively, the values

was given by

3.7156¢ +0 —5.4143e4+0 3.6525¢+0 —9.6420¢—1
1 0 0 0
A= 0 1 0 0

0 0 1 0
B=[1 0 0 0"
C=[1.1160e—6 4.3000e —8 1.0880e—6 1.4000¢—8].

of the measureg, i1, and~ for the three different representation
schemes together with the corresponding estimated bit lengths for
the initial realizationw, the optimal fixed-point realizatiow.: (1),
the optimal floating-point realizationw,,(2) and the optimal
block-floating-point realizationw,pt(3). In these two tables, the
various estimated bit lengths were computed from their respective
measure values. Some observations can readily be made from the
results in Tables | and and 1.

As far as the robustness of FWL closed-loop stability is concerned,

The initial realization of the digital controller, which was a modificagiven an arbitrary realization, floating-point representation is not nec-

tion of the initial output-feedback controller in [1] by a similarity

trans-essarily better than fixed-point or block-floating-point one. For ex-

formation, was given by (38), shown at the bottom of the page. Usiagnple, floating-point is the best format to implement the initial real-

[3.2430c — 1 —4.5451e +0 —4.0535¢+0 —2.7003¢ — 3 0
1.4518e¢ —1 4.9477¢ —1 —4.6945¢ -1 —3.1274e —4 0
A= |16814e—2 1.649le—-1 9.668le —1 —2.2114e -5 0
1.1889¢ — 3 1.8209¢ — 2 1.9829¢ — 1 1.0000e + 0 0
[6.1301e — 5 1.2609¢—3  1.9930c —2  2.0000¢ —1  1.0000¢ + 0
B =[1.4518¢ —1 1.6814e—2 1.1889e —3 6.130le —5 2.4979¢ — 6]7
0 0 16188¢+0 —1.5750c—1 —4.3943¢+1
€= 11.0000c+0 0 0 0 0 S
[ 2.6963¢4+2 —4.2709¢4+1 2.2873e+1 2.6184e + 2
F, — 2.5561le4+2 —4.0497e4+1 2.1052e+41 2.4806e 4 2
5.6096¢+1 —8.5715¢+0 5.2162¢+0 5.4920e 4 1
[ —2.3907e +2  3.7998¢+1 —2.0338¢+1 —2.3203¢ + 2
[—4.6765¢ + 1
Gy = —4.5625¢ + 1
~9.5195¢ + 0
| 4.1609¢ + 1
Jo =[-2.5548¢ +2 —2.7185e+2 —2.7188e+2 2.7188e+ 2]
M, =[0]
Ho=[0 0 0 0], (38)
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TABLE Il 150 ; '
TRUE MINIMUM REQUIRED BIT LENGTHS FOR THEFOUR REALIZATIONS IN
DIFFERENT FORMATS OF EXAMPLE 1 100f
Realization Format g™ " e 50} ]
wo fixed-point 23 12 10 : ' ' :
Wopt (1) fixed-point 22 18 3
wo floating-point 16 10 5 <
Wopt(2) floating-point 12 6 5 = -50p
wo block-floating-point 28 22 5
Wopt(3) block-floating-point 23 20 2 -100f
-150} -
TABLE IV — W
TRUE MINIMUM REQUIRED BIT LENGTHS FOR THEFOUR REALIZATIONS IN ~200f] ....... floating-point implemented w, ]
DIFFERENT FORMATS OF EXAMPLE 2 . floating-point implemented wopt(z)
Realization Format g min min 2% 500 1000 1500
P T k
Wo ﬁxed-po?nt 31 21 9 Fig. 1. Unit impulse response af; (k) for wig..;, 15-bit floating-point
Wopt (1) fixed-point 19 10 8 implementedw, (five exponent bits and nine mantissa bits), and 15-bit
wo floating-point 33 29 3 floating-point implementeslv . (2) (five exponent bits and nine mantissa bits)
Wopt (2) floating-point 13 8 4 of Example 1.
wo block-floating-point 33 30 2
Wopt(3) | block-floating-point 16 12 3 o 107
: — Yideal
3.5+ ..... block-floating—point implemented w, H
ization wo of Example 1 while fixed-point is the best format to im- | - block-floating-point implemented w__(3)

plementw, of Example 2. In fact, for Example 2, we had deliberately
choserw as the transformation of the initial controller realizationin 2.5
[1] by a similarity transformation matrix to favor a fixed-point imple-
mentation. However, as expected, the optimal floating-point realiza

tion wop¢(2) implemented in floating-point format is always the best § 15
in terms of robustness to FWL errors. Also, the results in Table | shov

that fixed-point format is better than block-floating-point format to im-
plementw, («) of Example 1 forl < o < 3, while the results of 0.5
Table Il indicate that the opposite is true for Example 2. This simply
confirms the fact that the performance of block-floating-point scheme
critically depends on how to divider into blocks. With a proper di- -05
vision, block-floating-point scheme should beat fixed-point scheme ir -
terms of robustness to FWL errors. The results also show that the pr( 0 100 200 300 200 500
posed optimization procedure is very effective. This can be seen b k

comparing the values of the measuresarandw.,,,: () implemented Fig. 2. Unitimpulse response gfk) for wig..1, 33-bit block-floating-point
in a same formatv. implementedw, (two block exponent bits and 30 block mantissa bits), and

Table Ill compares the true minimum required bit Ieng,t’ﬁ%in, 33-bitbIock-ro_ating-pointimplementedopt(3) (three block exponent bits and
min min L o . . 29 block mantissa bits) of Example 2.
gy and 3™ of the initial realizationw, implemented in the three
different schemes with those of fixed-point implemented, (1),
floating-point implementedv,,:(2) and block-floating-point imple- 1, there are two outputs(k) = [y1(k)y2(k)]. Fig. 1 compares the
mentedw,(3) of Example 1. It can be seen that the floating-poinanit impulse response of the first plant outgut®) of Example 1 for
implementedw.,,. (2) requires at least 12 bits to ensure closed-loojhe ideal controllew:;q..: with those of the 15-bit floating-point imple-
stability which is much better than minimum 22 bits needed byentedw, (five exponent bits and nine mantissa bits) and the 15-bit
fixed-point implementedw,,:(1) or minimum 23 bits needed by floating-point implementesv. (2) (five exponent bits and nine man-
block-floating-point implementesk.,; (3). Table IV summarizes the tissa bits). Fig. 2 compares the unitimpulse response of the plant output
minimum required bit lengths™™, ,3;‘1“, and ™" for fixed-point (k) of Example 2 forw;q..; with those of the 33-bit block-floating-
implemented w,,.(1), floating-point implementedw,,;(2) and pointimplementedv, (two block exponent bits and 30 block mantissa
block-floating-point implementedr,, .. (3) of Example 2 together with bits) and the 33-bit block-floating-point implemented,. (3) (three
those forwy in the three formats. It can be seen that the floating-poitock exponent bits and 29 block mantissa bits). These results clearly
implementedw,,. (2) needs at least 13 bits to maintain closed-loophow that, for a chosen, the corresponding optimal realization is al-
stability which is again better than minimum 19 bits needed byays much better than the initial realization.
fixed-point implementedw.:(1) or minimum 16 bits needed by Fig. 3 compares the unit impulse response dft) of Example 1

block-floating-point implemented,, . (3). for widea1 With those of the 22-bit fixed-point implementee,,,. (1)
Notice that any realizatiow € S implemented in infinite preci- (8, = 3 and3; = 18), the 22-bit floating-point implementes, . (2)
sion (unlimited3,- and infinite3,) will achieve the exact performance (5. = 3, andf.. = 16) and the 22-bit block-floating-point imple-

of the infinite-precision implementesdt,, which is the designed con- mentedw.,,(3) (5, = 2 block and3., = 19). Fig. 4 compares the unit
troller performance. For this reason, the infinite-precision implementédpulse response @f k) for wiq..1 with those of the 18-bit fixed-point
wy is referred to as the ideal controller realizat®fie.:. In Example implementedw.,:(1) (3, = 8 and3y = 9), the 18-bit floating-point



822

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

computational properties, namely robustness to FWL errors and esti-
mated minimum bit length for guaranteeing closed-loop stability. This
allows designers to choose an optimal controller realization in an ap-
propriate representation scheme to achieve the best computational ef-

(1]

(2]

-60f “ — ideal 1
I PP fixed-point implemented wop‘(1) [3]
~70} \‘ floating—point implemented w (2) H
\ _ _ . block-floating—point implemented wopt(3)
- ! T T 4
&, 500 1000 1500 [4]
Fig. 3. Unit impulse response of:(k) for wiqea, 22-bit fixed-point [5]
implementedw, .. (1) (three integer bits and 18 fractional bits), 22-bit
floating-point implementeav, . (2) (five exponent bits and 16 mantissa bits),
and 22-bit block-floating-point implemented, . (3) (two block exponent bits [6]
and 19 block mantissa bits) of Example 1.
[71
_3
14'x 10 i . i .
— Widea 8]
124 ... fixed—point implemented w, (1) g
floating—point implemented w 2)
10, floating—point i 1
_ . block-floating—point implemented wopt(s) 9]
8t B
[10]
6} 4
] [11]
(12]
4} A [13]
-6+ k
: [14]
_80 100 200 300 400 500

Fig. 4. Unit impulse response of(k) for wiqea, 18-bit fixed-point
implementedw, (1) (eight integer bits and nine fractional bits), 18-bit
floating-point implemented,, .. (2) (four exponent bits and 13 mantissa bits),
and 18-bit block-floating-point implementest,(3) (three block exponent
bits and 14 block mantissa bits) of Example 2.

implementedw,+(2) (3. = 4 and3,, = 13) and the 18-bit block-
floating-point implementedv,,(3) (3, = 3 andj3, = 14) of Ex-
ample 2. It is obvious from these two figures that the response with
floating-point implementedv,, . (2) is the closest to the ideal perfor-
mance.

VI. CONCLUSION

We have proposed a design procedure for optimal controller realiza-
tions in different representation schemes. The procedure provides de-
signer with useful quantitative information regarding finite precision

ficiency and closed-loop performance.
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