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A Unified Closed-Loop Stability Measure for
Finite-Precision Digital Controller Realizations

Implemented in Different Representation Schemes

Jun Wu, Sheng Chen, James F. Whidborne, and Jian Chu

Abstract—A computationally tractable unified finite word length
closed-loop stability measure is derived which is applicable to fixed-point,
floating-point and block-floating-point representation schemes. Both the
dynamic range and precision of an arithmetic scheme are considered
in this new unified measure. For each arithmetic scheme, the optimal
controller realization problem is defined and a numerical optimization
approach is adopted to solve it. Numerical examples are used to illustrate
the design procedure and to compare the optimal controller realizations
in different representation schemes.

Index Terms—Closed-loop stability, digital controller, finite word length,
number representation format, optimization.

I. INTRODUCTION

In recent years, there has been a growing interest in digital controller
implementation which reduces the finite word length (FWL) effects
on closed-loop stability (see [1], [2], and the references therein). It is
well known that a control law can be accomplished with different re-
alizations and that the parameters of a controller realization are repre-
sented by a digital processor of finite bit length in a particular format,
namely fixed-point, floating-point, or block-float-point format. Pre-
vious works [3]–[8] have derived various FWL closed-loop stability
measures for these three formats separately and defined corresponding
optimal controller realization problems based on these measures. How-
ever, all these previous measures are only linked to the precision bits
of the respective representation schemes used and they do not consider
the dynamic range bits. Arguably, a better approach is to consider some
measure which has a direct link to the total bit length required. The
main contribution of this note is to derive a unified FWL closed-loop
stability measure that can accommodate both the dynamic range and
precision requirements and is applicable to all the three schemes.

II. REPRESENTATIONSCHEMES

The fixed-point format with a bit length� = 1+�g+�f represents a
real numberx 2 R by assigning 1 bit for the sign,�g bits for the integer
part, and�f bits for the fraction part ofx. Assuming no overflow, which
means thatjxj � 2� , x is perturbed to

Q1(x) = x+ �1 j�1j < 2�(� +1)
: (1)

Any x 2 R can be expressed uniquely asx = (�1)s � w � 2e,
wheres 2 f0; 1g is the sign ofx, w 2 [0:5; 1) is the mantissa of
x, e = blog2 jxjc + 1 2 Z is the exponent ofx, Z denotes the set
of integers and thefloor functionbxc is the closest integer less than or
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equal tox. The floating-point format with a bit length� = 1+�w+�e
representsx by assigning 1 bit fors, �w bits forw and�e bits for e.
Let e ande be the lower and upper limits of the exponent, respectively.
Clearly,e � e = 2� � 1. Denote the set of integerse � e � e as
Z[e;e]. Assuming that no underflow or overflow occurs, which means
that the exponent ofx is withinZ[e;e], x is perturbed to [7]

Q2(x) = x+ x�2 j�2j < 2�(� +1)
: (2)

In the block-floating-point format, a set of real numbersS is first
divided into some blocks. For an illustrative purpose, consider the case
of dividingS into the two nonempty and nonoverlapped subsetsS1 and
S2. Let�1 2 S1 be the element inS1 that has the largest absolute value,
and�2 2 S2 be the element inS2 that has the largest absolute value.
Then, anyx 2 S can be expressed uniquely asx = (�1)s � u� 2h,
whereu 2 [0; 1) is the block mantissa ofx, and the block exponent of
x is

h
�
=

blog2 j�1jc + 1; for x 2 S1

blog2 j�2jc + 1; for x 2 S2
: (3)

When all the elements inS are presented in the block-floating-point
format of bit length� = 1+�u+�h, the bits are assigned as follows:
1 bit for the sign,�u bits foru which is represented in fixed-point with
the two’s complement system, and�h bits for h. Let h andh be the
lower and upper limits of the block exponent, respectively. Obviously,
h � h = 2� � 1. Denote

r(x)
�
=

2�1; for x 2 S1

2�2; for x 2 S2
: (4)

Assuming no underflow or overflow, i.e., the block exponent ofx is
within Z[h;h], it can be shown thatx is perturbed to

Q3(x) = x+ r(x)�3 j�3j < 2�(� +1)
: (5)

It is easily seen that in each representation format the total bit length
always consists of three parts. Sign occupies one bit. The dynamic
range of representation is defined by�g , �e, or �h bits, and the preci-
sion of representation is determined by�f , �w, or �u bits, depending
on which scheme is actually chosen. For notational conciseness, we
introduce the “generalized” dynamic range bit length�r and precision
bit length�p for the three representation schemes. It is understood that
�r = �g, �e, or �h and�p = �f , �w or �u, depending on which
format is actually used.

III. PROBLEM STATEMENT

The discrete-time linear time-invariant plantP is described by

x(k + 1) = Ax(k) +Be(k)

y(k) = Cx(k)
(6)

with A 2 R
n�n, B 2 R

n�p, andC 2 R
q�n. The generic digital

controllerC is described by

v(k + 1) = Fv(k) +Gy(k) +He(k)

u(k) = Jv(k) +My(k)
(7)

with F 2 R
m�m,G 2 R

m�q, J 2 R
p�m, M 2 R

p�q, andH 2

R
m�p. Lete(k) = q(k)+u(k) with the command inputq(k). Then,

P andC form a discrete-time closed-loop control system.
Assume that a realization (F0, G0, J0, M0, H0) of C has been

designed. It is well-known that the realizations ofC are not unique.
All the realizations ofC form the realization set

Sc
�
= (F;G;J;M;H) : F = T�1F0T;G = T�1G0

J = J0T;M =M0;H = T�1H0 (8)

whereT 2 R
m�m is any real-valued nonsingular matrix, called a

similarity transformation. LetwF
�
=Vec(F), whereVec(�) denotes the
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column stacking operator. The vectorswF ,wG,wG ,wJ ,wJ ,wM ,
wM ,wH , andwH are similarly defined. Denote

w = [w1 � � �wN ]T
�
= w

T
Fw

T
Gw

T
Jw

T
Mw

T
H

T

;

w0
�
= w

T
F w

T
G w

T
J w

T
M w

T
H (9)

whereN = (m+p)(m+q)+mp andT is the transpose operator. We
also refer tow as a realization ofC. The stability of the closed-loop
system depends on the eigenvalues of the matrix

A(w)
�
=

A+BMC BJ

GC+HMC F+HJ

=
I 0

0 T�1
A(w0)

I 0

0 T
(10)

where0 and I denote the zero and identity matrices of appropriate
dimensions, respectively. All the different realizationsw have the same
set of closed-loop poles if they are implemented with infinite precision.
Since the closed-loop system is designed to be stable, the eigenvalues
j�i(A(w))j = j�i(A(w0))j < 1;8i 2 f1; . . . ; m+ ng.

Define the index� of representation formats

� =

1; fixed-point format is adopted
2; floating-point format is adopted
3; block-floating-point format is adopted

: (11)

The controller realizationw is implemented in format� of �r dynamic
range bits,�p precision bits and one sign bit. In the remainder of this
note, it is assumed that ifw is stored in the block-floating-point format,
it is divided into “natural” blocks ofwF ,wG,wJ ,wM andwH . Let
�F 2 wF be the element inF which has the largest absolute value.
The elements�G, �J , �M and�H are similarly defined. Denote

kwkmax
�
= max
j2f1;���;Ng

jwj j

�(w)
�
=minj2f1;���;Ng fjwj j : wj 6= 0g

z(w)
�
=[�F �G �J �M �H ]T : (12)

Firstly, the dynamic range of�r bits must be large enough forw. We
define a dynamic range measure for controller realizationw in format
� as


(w; �)
�
=

kwkmax; � = 1

log2
4kwk
�(w)

; � = 2

log2
4kz(w)k

�(z(w))
; � = 3

: (13)

Proposition 1: The realizationw can be represented in format� of
�r dynamic range bits without overflow(� = 1) or without underflow
or overflow (� = 2; 3), if 2� � 
(w; �).

Proof: The proof is straightforward. Here, we only give the case
of � = 3. When2� � log2(kz(w)kmax=�(z(w))) + 2, we have

2� � 1 � log2
kz(w)kmax

�(z(w))
+ 1 � log2 kz(w)kmax + 1

� (blog2 � (z(w))c+ 1) : (14)

According to the results of Section II, this means that�F , �G, �J ,
�M and�H can all be represented without underflow or overflow and,
therefore,w can be represented in the block-floating-point format of
�h block exponent bits without underflow or overflow.

Let �min
r be the smallest dynamic-range bit length that, when used

to implementw, does not cause overflow or underflow. This minimum
dynamic-range bit length can easily be computed by

�min
r (w; �) =

dlog2kwkmaxe; �=1

dlog2(blog2kwkmaxc�blog2 �(w)c+1)e; �=2

dlog2(blog2kz(w)kmaxc�blog2 �(z(w))c+1)e; �=3

(15)

where theceiling functiondxe denotes the closest integer greater than
or equal tox 2 R. Note that the measure
(w; �) defined in (13)
provides an estimate of�min

r as�̂min
r (w; �)

�
=dlog2 
(w; �)e. It can

easily be seen that̂�min
r � �min

r .
For a vectorx, letd(x) be the vector of the same dimension whose

elements are all 1’s, and denote

� (x)
�
=

0; x is a zero vector
1; x is a nonzero vector

: (16)

For two vectorsx = [xj ] andy = [yj ] of the same dimension, define
the Hadamard product ofx andy asx �y

�
=[xjyj ]. When the dynamic

range is sufficient, according to the results of Section II,w is perturbed
tow + r(w; �) �� due to finite�p where

r(w; 1) =

� (wF )d(wF )

� (wG)d(wG)

� (wJ)d(wJ)

� (wM)d(wM)

� (wH)d(wH)

r(w; 2) =w

r(w; 3) =

2�Fd(wF )

2�Gd(wG)

2�Jd(wJ )

2�Md(wM )

2�Hd(wH)

: (17)

Each element�j of � is bounded by�2�(� +1), that is,k�kmax <
2�(� +1). With the perturbation�,�i(A(w)) is moved to�i(A(w+
r(w; �)��)). If an eigenvalue ofA(w+r(w; �)��) is outside the
open unit disk, the closed-loop system, designed to be stable, becomes
unstable with the finite-precision implementedw. Therefore, it is crit-
ical to know when the FWL error will cause closed-loop instability.
This means that we would like to know the largest open “hypercube”
in the perturbation space within which the closed-loop system remains
stable. Based on this consideration, a precision measure for realization
w of format� can be defined as

�0(w; �)
�
= inf k�kmax : A (w + r(w; �) ��) is unstableg :

(18)
From the previous definition, the following proposition is obvious.

Proposition 2: A(w + r(w; �) � �) is stable if k�kmax <
�0(w; �).

Thus, under the condition that the dynamic range is sufficient, that
is, �r � �min

r , the perturbationk�kmax and therefore the preci-
sion bit length�p determines whether the closed-loop remains stable.
Let �min

p be the smallest precision bit length such that8�p � �min
p ,

the closed-loop system is stable withw implemented by�p precision
bits. The precision measure�0(w; �) provides an estimate of�min

p as

�̂min
p0 (w; �)

�
=�blog2 �0(w; �)c�1. It can be seen that̂�min

p0 � �min
p .

Define the minimum total bit length required in the implementa-
tion ofw as�min�=�min

r + �min
p + 1. Clearly,w implemented with

a bit length� � �min can guarantee a sufficient dynamic range and
closed-loop stability. Combining the measures
(w; �) and�0(w; �)
results in the following true FWL closed-loop stability measure for the
given realizationw with format�

�0(w; �)
�
=
�0(w; �)


(w; �)
: (19)

An estimate of�min is given by �0(w; �) as �̂min
0 (w; �)

�
= �

blog2 �0(w; �)c + 1. It is clear that�̂min
0 � �min. The following

proposition summarizes the usefulness of�0(w; �) as a measure for
the FWL characteristics ofw in representation format�.

Proposition 3: The controller realizationw implemented in format
� with a bit length� can guarantee a sufficient dynamic range and
closed-loop stability, if2��+1 � �0(w; �).
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Computing the value of�0(w; �), however, is an unsolved open
problem. Thus, the true FWL closed-loop stability measure�0(w; �)
has limited practical significance. In the next section, an alternative
measure is developed which not only can quantify FWL characteristics
of w in format� but also is computationally tractable.

IV. A T RACTABLE FWL CLOSED-LOOPSTABILITY MEASURE AND

ITS OPTIMIZATION

First,8i 2 f1; . . . ;m + ng

�i A (w+r(w; �) ��) = �i A(w) +

G

@j�ij

@�
d� (20)

where G is the oriented curve from0 to �. For the derivative
(@j�ij)=(@�) = [(@j�ij)=(@�j)], define

@j�ij

@�
1

�
=

N

j=1

@j�ij

@�j
: (21)

Further define the precision measure for realizationw in format�

�i(w; �)
�
= min

i2f1;���;m+ng

1� �i A(w)

@j� j
@�

�=0 1

: (22)

Obviously, ifk�kmax < �1(w; �) and

�i A (w + r(w; �) ��)

� �i A(w) � k�kmax
@j�ij

@�
�=0 1

(23)

thenj�i(A(w+r(w; �)��))j < 1 which means that the closed-loop
remains stable under the FWL error�. As discussed in [5] and [6], the
condition (23) is satisfied, provided that�0(w; �) is small enough. The
assumption of small�0(w; �) is generally valid, as it does not make
much sense to study the FWL effects on the closed-loop stability for
those situations where the closed-loop systems have a very large sta-
bility robustness. Hence, (23) is not restrictive. Thus, with a sufficient
dynamic range, the closed-loop can tolerate those FWL perturbations
�whose normsk�kmax are less than�1(w; �). Similar to�0(w; �),
from the precision measure�1(w; �), an estimate of�minp is given as

�̂minp1 (w; �)
�
= � blog2 �1(w; �)c � 1.

Comment: In (20), G should be chosen to avoid those points
where derivative(@j�ij)=(@�) do not exist, and the derivative
(@j�ij)=(@�)j�=0 must exist. From the results of [5] and [6],
(@j�ij)=(@�)j�=0 exist if A(w) has m + n distinct nonzero
eigenvalues. IfA(w) has multiple repeating closed-loop eigenvalues,
some of(@j�ij)=(@�)j�=0 may not exist, and in this case�1(w; �)
is not defined. However, in practical control system designs, it is very
rare thatA(w) has multiple repeating eigenvalues. As for the case
of �i = 0, since the zero eigenvalue has the largest stability margin
1 � j�ij, it is harder to move across the unit circle under the FWL
effects, compared with the other nonzero eigenvalues. Hence, for
thoseA(w) having zero eigenvalue,�1(w; �) may be modified such
that it only minimizes(1 � j�i(A(w))j)=(k@(j�ij)=(@�)j�=0k1)
for those nonzero eigenvalues. Alternatively, the more conservative
measures of [4] and [5] could be used for cases where there are zero
eigenvalues.

Obviously, �1(w; �) is an approximation of�0(w; �). How-
ever, unlike the measure�0(w; �), the value of�1(w; �) can be
computed explicitly. It is easy to see that(@j�ij)=(@�)j�=0 =
r(w; �) � (@j�ij)=(@w) and from the results of [6], it can be shown
that

@ �i A(w)

@F
=[0 I]Li(w)

0

I

@ �i A(w)

@G
=[0 I]Li(w)

CT

0

@ �i A(w)

@J
=[BT

H
T ]Li(w)

0

I

@ �i A(w)

@M
=[BT

H
T ]Li(w)

CT

0

@ �i A(w)

@H
=[0 I]Li(w)

CTMT

JT
(24)

with

Li(w)
�
=
Re ��i A(w) y�i A(w) pTi A(w)

�i A(w)
(25)

wherepi(A(w))andyi(A(w))are the right and reciprocal left eigen-
vectors related to�i(A(w)), respectively,� denotes the conjugate op-
eration andRe[�] the real part. Replacing�0(w; �) with �1(w; �) in
(19) leads to a computationally tractable FWL closed-loop stability
measure

�1(w; �)
�
=
�1(w; �)


(w; �)
: (26)

From �1(w; �), an estimate of�min is given as�̂min1 (w; �)
�
= �

blog2 �1(w; �)c + 1. Compared with the existing FWL measures
[1]–[8], �1(w; �) has at least two advantages. First,�1(w; �) can be
used in different representation formats while the existing measures
are only valid for a particular format. For example, the measures
presented in [3]–[6] are fixed-point measures and the measure in
[7] is a floating-point one. The measure�1(w; �) offers a unified
framework to compare the FWL characteristics of a realizationw

in different formats. Second and more critically, unlike the existing
measures which are precision measures only and imply an unlimited
dynamic range,�1(w; �) is made up of a dynamic range measure and
a precision measure and is therefore a true FWL measure capable of
handling closed-loop stability as well as the underflow and overflow
aspects.

In a given format�, different realizationsw yield different values of
�1(w; �). It is of practical importance to find an “optimal” realization
wopt(�) that maximizes�1(w; �) for the format�. The controller
implemented with this optimal realizationwopt(�) in format� needs
a minimum bit length and has a maximum tolerance to the FWL error.
This optimal realization problem is formally defined as

v(�)
�
= max
w2S

�1(w; �): (27)

Considering thatw is a function ofT, r(w; �) and
(w; �) depend on
T and�, we can define the following optimization criterion in format
�:

�(T; �)
�
= min

i2f1;���;m+ng

1� �i A(w0)

r(w; �) � @j� j
@w

1

(w; �)

= �1(w; �): (28)

The optimal realization problem (27) can then be posed as the following
optimization problem:

v(�) = max �(T; �): (29)

As the optimization problem (29) is highly nonlinear, global optimiza-
tion algorithms, such as the genetic algorithm [9] and adaptive simu-
lated annealing [10], can be adopted to provide a (sub)optimal simi-
larity transformationTopt(�). Global optimization methods are how-
ever computationally demanding. Local optimization algorithms, such
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as Rosenbrock and Simplex algorithms [11], are computationally sim-
pler but run more risks of only attaining a local solution. Our expe-
rience with the optimization problem (29) suggests that, unlike opti-
mizing the precision measure�1(w; 1) alone [6], the dynamic range
measure
(w; �) in the criterion�1(w; �) helps to bound the solution
set and the cost function�(T; �) appears to behave better. It also help
to choose a “good” initial controller realization, such as the open-loop
balanced realization [12] or Li’s closed-loop suboptimal realization [4],
as the initial guess for the optimization routine.

With Topt(�), the corresponding optimal realizationwopt(�) in
format� can readily be computed. By setting� = 1; 2; 3, respectively,
in the optimization problem (29), we can attain an optimal fixed-point
realizationwopt(1), an optimal floating-point realizationwopt(2) and
an optimal block-floating-point realizationwopt(3) for a digital con-
troller. It is worth reiterating that the optimization problem (29) yields a
true optimal controller realization, as the solutionTopt(�) minimizes
the required�p as well as�r and, therefore, minimizes the required
total bit length�. This should be compared with the existing “optimal”
realization problems [1]–[8], which only try to minimize the required
precision bit�p and, as a consequence, do not necessarily minimize the
required total bit length�.

It is interesting to compare our approach with eigenstructure orthog-
onalization, which is also based on eigenvalue sensitivities [1]. For a
complex-valued matrixU, letkUk2 represent its largest singular value.
The following lemma summarizes three properties ofk � k2.

Lemma 1: kUk2 � kRe[U]k2; k[ U
U

]k2 � kU1k2;
k[U1 U2]k2 � kU1k2.

For an illustrative purpose, we consider the case of� = 1 (fixed-
point format) withF,G, J andM being nonzero matrices andH = 0
in (7). Denote the controller realization

X
�
=

M J

G F
: (30)

In this case,X is perturbed toX+�X due to the FWL effects, and

@j�ij

@�X �

=
@j�ij

@X
=

@j� j
@M

@j� j
@J

@j� j
@G

@j� j
@F

=
BT 0

0 I
Li(w)

CT 0

0 I
: (31)

Applying Lemma 1 to (25) brings about

kLi(w)k
2
=

Re ��i A(w) y�i A(w) pTi A(w)
2

�i A(w)

�
��i A(w) y�i A(w) pTi A(w)

2

�i A(w)

� y
�
i A(w)

2
p
T
i A(w)

2
: (32)

Then

@j�ij

@�X � 2

�
BT 0

0 I
2

kLi(w)k
2

CT 0

0 I
2

�' y
�
i A(w)

2
p
T
i A(w)

2
(33)

where

'
�
=

BT 0

0 I
2

CT 0

0 I
2

: (34)

Applying Lemma 1 to (33) for them+ n eigenvalues results in

max
i2f1;���;m+ng

@j�ij

@�X �
2

� 'kYk2kPk2 (35)

where

Y
�
=[y�1(A(w)) . . .y�m+n(A(w))]

and

P
�
=[p1(A(w)) . . .pm+n(A(w))]T :

Noting the relationshipY = P�1 between right eigenvectors and left
eigenvectors, we can see that

max
i2f1;���;m+ng

@j�ij

@�X �
2

� 'kP�1k2kPk2 (36)

which gives an upper bound of the sensitivities of the eigenvalues.
Based on (36), making the eigenvalues insensitive needs to find those
eigenvectorsP which minimize�(P)

�
= kP�1k2kPk2. The results

of [13] show that if and only ifP is a normal matrix,�(P) takes the
minimal value. If this happens,P andY can be scaled to give an or-
thonormal basis ofCn, and�(P) = 1. This is the idea of eigenstructure
orthogonalization for finding the realizations which have closed-loop
eigenvalues of low sensitivities.

A comparison of our approach with eigenstructure orthogonalization
can now be made. Firstly, our approach directly adopts the eigenvalue
sensitivities while eigenstructure orthogonalization adopts the bound
�(P) of the eigenvalue sensitivities. This implies that eigenstructure
orthogonalization is conservative in comparison with our approach.
Secondly, our approach considers both the stability margins and the
eigenvalue sensitivities in (22) and is, therefore, able to evaluate the
FWL stability of a system accurately while eigenstructure orthogo-
nalization only considers a bound of the eigenvalue sensitivities and
cannot provide any estimate of the required bit length. Finally, it should
be pointed out that for most practical systems, owing to the limited de-
grees of freedom, there does not exist any feasible controller realization
achieving orthogonal closed-loop eigenstructure. Thus, for the purpose
of minimizing�(P), the eigenstructure assignment techniques (see for
example [14]) are employed instead to choose eigenvectors which are
as mutually orthogonal as possible. The resulting realizations are ob-
viously more conservative.

V. DESIGN EXAMPLES AND RESULT COMPARISON

Example 1: This example was taken from [6]. The discrete-time
plant was given by (37), shown at the bottom of the next page. The
initial realization of the digital controller was given by

F0 =
0 1:0000e+ 0

�9:3303e� 1 1:9319e+ 0

G0 =
4:1814e� 2 2:7132e+ 2

3:9090e� 2 1:0167e+ 3

J0 = [3:0000e� 4 5:0000e� 4]

M0 = [0 6:1250e� 1]

H0 =
7:8047e+ 1

7:3849e+ 1
:

Based on the proposed unified FWL closed-loop stability measure, the
optimization problem (29) was formed. Using the MATLAB routine
fminsearch.m, which is a local optimization routine, this optimization
problem was solved for� = 1; 2; 3, respectively, to obtain the optimal
similarity transformation in fixed-point formatTopt(1), the optimal
similarity transformation in floating-point formatTopt(2) and the op-
timal similarity transformation in block-floating-point formatTopt(3).
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TABLE I
VARIOUS MEASURES ANDESTIMATED BIT LENGTHS FOR THEFOUR

REALIZATIONS IN THREE DIFFERENTFORMATS OFEXAMPLE 1

These in turn provided the three corresponding optimal controller real-
izationswopt(1),wopt(2), andwopt(3).

Example 2: In this example, the discrete-time plant taken from [1]
was given by

A=

3:7156e+ 0 �5:4143e+0 3:6525e+0 �9:6420e�1

1 0 0 0

0 1 0 0

0 0 1 0

B=[1 0 0 0]T

C=[1:1160e�6 4:3000e� 8 1:0880e�6 1:4000e�8]:

The initial realization of the digital controller, which was a modifica-
tion of the initial output-feedback controller in [1] by a similarity trans-
formation, was given by (38), shown at the bottom of the page. Using

TABLE II
VARIOUS MEASURES ANDESTIMATED BIT LENGTHS FOR THEFOUR

REALIZATIONS IN THREEDIFFERENTFORMATS OFEXAMPLE 2

the same method for Example 1, the three optimal controller realiza-
tionswopt(�) were obtained for� = 1; 2; 3.

Tables I and II list, for Examples 1 and 2, respectively, the values
of the measures�1, �1, and
 for the three different representation
schemes together with the corresponding estimated bit lengths for
the initial realizationw0, the optimal fixed-point realizationwopt(1),
the optimal floating-point realizationwopt(2) and the optimal
block-floating-point realizationwopt(3). In these two tables, the
various estimated bit lengths were computed from their respective
measure values. Some observations can readily be made from the
results in Tables I and and II.

As far as the robustness of FWL closed-loop stability is concerned,
given an arbitrary realization, floating-point representation is not nec-
essarily better than fixed-point or block-floating-point one. For ex-
ample, floating-point is the best format to implement the initial real-

A =

3:2439e� 1 �4:5451e+ 0 �4:0535e+ 0 �2:7003e� 3 0

1:4518e� 1 4:9477e� 1 �4:6945e� 1 �3:1274e� 4 0

1:6814e� 2 1:6491e� 1 9:6681e� 1 �2:2114e� 5 0

1:1889e� 3 1:8209e� 2 1:9829e� 1 1:0000e+ 0 0

6:1301e� 5 1:2609e� 3 1:9930e� 2 2:0000e� 1 1:0000e+ 0

B = [1:4518e� 1 1:6814e� 2 1:1889e� 3 6:1301e� 5 2:4979e� 6]T

C =
0 0 1:6188e+ 0 �1:5750e� 1 �4:3943e+ 1

1:0000e+ 0 0 0 0 0
: (37)

F0 =

2:6963e+ 2 �4:2709e+ 1 2:2873e+ 1 2:6184e+ 2

2:5561e+ 2 �4:0497e+ 1 2:1052e+ 1 2:4806e+ 2

5:6096e+ 1 �8:5715e+ 0 5:2162e+ 0 5:4920e+ 1

�2:3907e+ 2 3:7998e+ 1 �2:0338e+ 1 �2:3203e+ 2

G0 =

�4:6765e+ 1

�4:5625e+ 1

�9:5195e+ 0

4:1609e+ 1

J0 = [�2:5548e+ 2 � 2:7185e+ 2 � 2:7188e+ 2 2:7188e+ 2]

M0 = [0]

H0 = [0 0 0 0]T : (38)
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TABLE III
TRUE MINIMUM REQUIRED BIT LENGTHS FOR THEFOUR REALIZATIONS IN

DIFFERENTFORMATS OFEXAMPLE 1

TABLE IV
TRUE MINIMUM REQUIRED BIT LENGTHS FOR THEFOUR REALIZATIONS IN

DIFFERENTFORMATS OFEXAMPLE 2

izationw0 of Example 1 while fixed-point is the best format to im-
plementw0 of Example 2. In fact, for Example 2, we had deliberately
chosenw0 as the transformation of the initial controller realization in
[1] by a similarity transformation matrix to favor a fixed-point imple-
mentation. However, as expected, the optimal floating-point realiza-
tionwopt(2) implemented in floating-point format is always the best
in terms of robustness to FWL errors. Also, the results in Table I show
that fixed-point format is better than block-floating-point format to im-
plementwopt(�) of Example 1 for1 � � � 3, while the results of
Table II indicate that the opposite is true for Example 2. This simply
confirms the fact that the performance of block-floating-point scheme
critically depends on how to dividew into blocks. With a proper di-
vision, block-floating-point scheme should beat fixed-point scheme in
terms of robustness to FWL errors. The results also show that the pro-
posed optimization procedure is very effective. This can be seen by
comparing the values of the measure forw0 andwopt(�) implemented
in a same format�.

Table III compares the true minimum required bit lengths�min
r ,

�min
p and�min of the initial realizationw0 implemented in the three

different schemes with those of fixed-point implementedwopt(1),
floating-point implementedwopt(2) and block-floating-point imple-
mentedwopt(3) of Example 1. It can be seen that the floating-point
implementedwopt(2) requires at least 12 bits to ensure closed-loop
stability which is much better than minimum 22 bits needed by
fixed-point implementedwopt(1) or minimum 23 bits needed by
block-floating-point implementedwopt(3). Table IV summarizes the
minimum required bit lengths�min

r , �min
p , and�min for fixed-point

implemented wopt(1), floating-point implementedwopt(2) and
block-floating-point implementedwopt(3) of Example 2 together with
those forw0 in the three formats. It can be seen that the floating-point
implementedwopt(2) needs at least 13 bits to maintain closed-loop
stability which is again better than minimum 19 bits needed by
fixed-point implementedwopt(1) or minimum 16 bits needed by
block-floating-point implementedwopt(3).

Notice that any realizationw 2 SC implemented in infinite preci-
sion (unlimited�r and infinite�p) will achieve the exact performance
of the infinite-precision implementedw0, which is the designed con-
troller performance. For this reason, the infinite-precision implemented
w0 is referred to as the ideal controller realizationwideal. In Example

Fig. 1. Unit impulse response ofy (k) for w , 15-bit floating-point
implementedw (five exponent bits and nine mantissa bits), and 15-bit
floating-point implementedw (2) (five exponent bits and nine mantissa bits)
of Example 1.

Fig. 2. Unit impulse response ofy(k) forw , 33-bit block-floating-point
implementedw (two block exponent bits and 30 block mantissa bits), and
33-bit block-floating-point implementedw (3) (three block exponent bits and
29 block mantissa bits) of Example 2.

1, there are two outputsy(k) = [y1(k)y2(k)]
T . Fig. 1 compares the

unit impulse response of the first plant outputy1(k) of Example 1 for
the ideal controllerwideal with those of the 15-bit floating-point imple-
mentedw0 (five exponent bits and nine mantissa bits) and the 15-bit
floating-point implementedwopt(2) (five exponent bits and nine man-
tissa bits). Fig. 2 compares the unit impulse response of the plant output
y(k) of Example 2 forwideal with those of the 33-bit block-floating-
point implementedw0 (two block exponent bits and 30 block mantissa
bits) and the 33-bit block-floating-point implementedwopt(3) (three
block exponent bits and 29 block mantissa bits). These results clearly
show that, for a chosen�, the corresponding optimal realization is al-
ways much better than the initial realization.

Fig. 3 compares the unit impulse response ofy1(k) of Example 1
for wideal with those of the 22-bit fixed-point implementedwopt(1)
(�g = 3 and�f = 18), the 22-bit floating-point implementedwopt(2)
(�e = 5, and�w = 16) and the 22-bit block-floating-point imple-
mentedwopt(3) (�h = 2 block and�u = 19). Fig. 4 compares the unit
impulse response ofy(k) forwideal with those of the 18-bit fixed-point
implementedwopt(1) (�g = 8 and�f = 9), the 18-bit floating-point
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Fig. 3. Unit impulse response ofy (k) for w , 22-bit fixed-point
implementedw (1) (three integer bits and 18 fractional bits), 22-bit
floating-point implementedw (2) (five exponent bits and 16 mantissa bits),
and 22-bit block-floating-point implementedw (3) (two block exponent bits
and 19 block mantissa bits) of Example 1.

Fig. 4. Unit impulse response ofy(k) for w , 18-bit fixed-point
implementedw (1) (eight integer bits and nine fractional bits), 18-bit
floating-point implementedw (2) (four exponent bits and 13 mantissa bits),
and 18-bit block-floating-point implementedw (3) (three block exponent
bits and 14 block mantissa bits) of Example 2.

implementedwopt(2) (�e = 4 and�w = 13) and the 18-bit block-
floating-point implementedwopt(3) (�h = 3 and�u = 14) of Ex-
ample 2. It is obvious from these two figures that the response with
floating-point implementedwopt(2) is the closest to the ideal perfor-
mance.

VI. CONCLUSION

We have proposed a design procedure for optimal controller realiza-
tions in different representation schemes. The procedure provides de-
signer with useful quantitative information regarding finite precision

computational properties, namely robustness to FWL errors and esti-
mated minimum bit length for guaranteeing closed-loop stability. This
allows designers to choose an optimal controller realization in an ap-
propriate representation scheme to achieve the best computational ef-
ficiency and closed-loop performance.
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