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I. Introduction
In recent years, there have been great and continuous efforts in producing new values using data in various

industries [1]. It is recognized that the aerospace industry is one of the areas having greatest potential in exploiting the

values of data [2]. The operation and maintenance of aircraft generate various types of data in extensive quantities

such as the digital flight data recorder (FDR) data [3], aircraft condition monitoring system (ACMS) data, weather data,

maintenance data, fault record data, aircraft safety reports, and pilot reports (PIREP) [4]. The value of these data comes

from the fact that they contain evidence of potential issues in the aircraft operation and maintenance. This implies that

the results of data analysis can be used to improve aircraft stability and aircraft operation/maintenance process.

Thanks to its potential, airline companies have a number of dedicated departments for data analysis, endeavouring

to fully exploit values of data. However, many of these companies used to manually handle data and find difficulties

in analyzing vast amount of data. Automating data analysis in the aerospace industry has drawn a great attention as

it could greatly assist engineers and operators. Accordingly, in recent years, research has been actively conducted to

improve aircraft operation and maintenance process by automatically analyzing extensive amounts of data. In previous

research [1, 5–8], the detection of abnormal operations or flights due to mechanical or human factor problems was

performed using the FDR data. Data analysis development has been proposed to detect unexpected trends in maintenance

demands using maintenance history log data [9]. In previous study [10], the authors have suggested the data analytics

to detect failure modes using ACMS dataset as well as maintenance report dataset. Data analysis method has been

proposed to estimate required man-hours for certain types of maintenance tasks [11]. In the air safety report [12] and

maintenance text message [13], a text mining technique has been devised to extract new information. In previous

works [14, 15], a text mining algorithm has been devised to classify maintenance reports. Using repair messages, the

author of [16] proposed a data analysis approach to investigate the relationship between the nature of damage and the

time span of repair services. The authors in [17] suggested a method of identifying recurring faults and classifying

maintenance reports.

Accordingly, based on the above-mentioned aspect, this study aims to propose automatic data analysis framework
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for a new type of data (i.e., fault history record data of aircraft fleets called airman data provided by TAP Portugal),

with the purpose of supporting aircraft operation and maintenance process. Generally, certain types of faults occur

frequently on certain aircraft if there are potential problems with relevant aircraft or if there exist potential problems in

the corresponding maintenance process. Because the fault history record data are most likely to contain the evidence for

this information, the potential problems can be indirectly identified through analysis of the occurrence pattern of faults.

Since the analysis results of this data can provide different information from the existing viewpoint, it can be used as a

complement to conditional based maintenance (CBM) or prognostics health management (PHM) approaches to improve

aircraft operation and maintenance process.

In this paper, we extend the concept of the research work [9] and develop new methods to extract useful information

from the fault history record data. The key enablers for revealing the useful information will be selection of key features

and data analysis approaches. Therefore, the focus of our analysis is design of key features and selection of appropriate

data analytics, given the fault record data. The baseline approach adapted in this study is pattern analysis of the fault

occurrences. The pattern in this study refers to the distribution of aircraft fault frequency across the aircraft fleet for

each fault type. The analysis then identifies the candidates of fault types exhibiting abnormal patterns in the distribution.

To this end, the pattern is first modeled as a probability mass function (PMF), and the similarity between PMFs is

measured using the probability-based distance such as the Bhattacharyya distance [18]. Then, similar patterns and

unusual patterns are analyzed using the DBSCAN (density-based spatial clustering of applications with noise) [19]

clustering technique. The pattern analysis results can provide information on whether there is a potential problem in the

maintenance phase of the aircraft or whether a specific fault type is a fault associated with a specific aircraft only.

This study also performs correlation analysis: the correlation of occurrence time patterns for each fault type is

investigated. First, the occurrence time patterns for each fault type is converted to a binary vector. The similarity

between binary vectors is then measured using the correlation-based distance such as the Jaccard coefficient [20]. If a

certain type of faults is correlated to other types of faults in time, the proposed correlation analysis should be able to

uncover their correlation and also the time interval in their occurrences. Therefore, the correlation analysis will enable

detection of the occurrence possibility of the correlated faults in advance and consequently introduction of proactive

measures to mitigate impact of those faults. Finally, in this paper, we provide illustrative examples of the proposed

analysis methods using real fault record data in order to show the validity of proposed methods.

The composition of this paper is as follows. In Section II, the data preprocessing and the notations are explained.

Section III provides the pattern analysis method. In Section IV, the correlation analysis method is described. In

Section V, illustrative examples of the proposed methods are provided. Finally, in Section VI, we conclude our study.
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Fig. 1 A sample of fault record dataset

II. Data Preparing and Notations

A. Data Preparing

The dataset to be analyzed contains history of faults of commercial aircraft fleet in the past several years. This study

uses only fault records for a specific period of interest. Fig. 1 shows a sample of dataset: each row represents a fault

record and each column an attribute of the data. These data attributes include when a fault occurred, the type of fault,

and aircraft tail number related to the fault.

Two types of data errors are observed in the raw dataset: missing values and incorrect values associated with the

time and date of the fault. It also contains a log record of checking part status that is not relevant to the goal of the data

analysis. From the raw dataset, it is evident that there exist other data attributes that can additionally provide time and

date information. Therefore, data errors related to time and date can be handled with the technique called imputation

using companion data. Also, analysis on the raw dataset revealed that text messages for unnecessary start with a specific

word. Thus, we use a string comparison technique to remove the unnecessary data.

The raw dataset has several hundreds of fault types. Since there are not enough records for some types of faults,

analyzing these types of faults may lead to incorrect information. Therefore, it would be necessary to sample fault types

that have a sufficient number of records to provide meaningful information. We first sort the number of records for each

fault type in descending order and then select NF fault types that capture p% of the number of records, i.e.

∑NF

i=1 αi∑NT

j=1 αj

> p (1)

where NT is the total number of fault types, αi is the number of records for the i-th fault type. In this study, we choose

the value of p as 0.9.
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B. Notations of Dataset

This section defines several notations of the dataset using set theory to illustrate the proposed method. First, let

us define the dataset D. Each row of D, called a record, is defined as d ∈ D, where D represents the data space. The

record d can be a column vector, and each item in this vector corresponds to each data attribute. The dataset can then be

expressed as

D = { d | d ∈ D} (2)

The size of D (i.e., |D|) is denoted by ND , which is the number of records. The notation of di is the i-th record in the

dataset. Similarly, a set of fault types F and a set of fleet aircraft A are defined as follows

F = { f | f ∈ F} (3)

A = { a| a ∈ A} (4)

The sizes of F and A are denoted as NF and NA, respectively. The parameters fi and aj represent the i-th fault type and

the j-th aircraft in the fleet.

Let g : D→ F be defined as a mapping function from a record d ∈ D to a fault type f ∈ F, i.e.:

g (d) = f (5)

This function indicates which fault type is involved in a given record. In the same way, let h : D→ A be defined as a

mapping function from a record d ∈ D to an aircraft a ∈ A, that is:

h (d) = a (6)

The role of this function is to indicate which aircraft is involved in a given record.

III. Pattern Analysis for Fault Record Data

A. The Concept of Pattern Analysis

The pattern considered in this study is the distribution of aircraft fault frequency across the aircraft fleet. The term

of aircraft fault frequency is defined as the ratio of the total number of fault records for an individual aircraft to that for

all aircraft. The pattern analysis is performed to identify the candidates of fault types that exhibit abnormal patterns
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among all fault types. The fundamental rationales behind the pattern analysis are given as

1) The fault frequency for a certain aircraft is proportional to the usage of that aircraft.

2) Although the quality of maintenance for the same fault type slightly varies depending on the aircraft in practice,

the probability of fault occurrence for the same fault type is similar across the aircraft fleet in the average sense

in normal circumstance.

3) Although the cycles of fault occurrence for each fault type are different, the distributions of fault frequency across

the aircraft fleet have similar pattern for all fault types in average sense as the fault records are accumulated over

a specific time period, under the premises of (1) and (2)

Note that these assumptions can be accepted as common sense. Based on these assumptions, therefore, if a specific

fault type f exhibits greater pattern difference, compared with other fault types, the type f could be considered as

abnormal. This result means that the specific fault type f is mainly caused in the specific aircraft, which is not simply

explained in common sense. It implies that there might be a systematic potential problem in the maintenance phase of

the aircraft associated with a specific fault type. Therefore, the proposed method provides an early warning for this

potential problem and the airline companies can use this information to improve the maintenance process.

B. Process and Technique of Pattern Analysis

1. Feature Generation

The pattern analysis uses the fault frequency as features. To this end, we first define a set of records for the i-th fault

type and the j-th aircraft, denoted by D j
i ⊂ D, as follows:

D j
i =

{
d | d ∈ D and g (d) = fi and h (d) = aj

} (7)

The size of D j
i is defined as N j

i . In a similar way, a set of records for the i-th fault type, denoted by Di ⊂ D, is defined

as follows:

Di = { d | d ∈ D and g (d) = fi} (8)

We then define the number of records in Di as Ni

Ni =

NA∑
j=1

N j
i (9)
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By definition, the total number of records ND should be

ND =

NF∑
i=1

Ni (10)

Then, we define the fault frequency of the j-th aircraft with respect to the i-th fault type as follows.

w
j
i =

N j
i

Ni

(11)

For each fault type and each aircraft, this feature can be obtained. Here, the feature w
j
i can be considered as the

probability that a record in the set Di belongs to the set D j as follows:

Pr
[
d ∈ D j

�� d ∈ Di

]
= w

j
i

(12)

The physical meaning of this feature is the probability that the i-th fault type occurs in the j-th aircraft. By definition,

this parameter should satisfy the following condition.

NA∑
j=1

w
j
i = 1 (13)

2. Pattern modeling

This section discusses pattern modeling using the probability mass function (PMF) and the features obtained. First,

suppose that the state space is discrete and the discrete states are the index of the aircraft in the fleet as follows:

x = [1, 2, . . . , j, . . . , NA] (14)

Next, we regard the obtained features as weights of discrete states. Then, the pattern of fault records across the aircraft

fleet can be modeled as PMF as shown in Fig. 2, which is assumed to be a discrete probability distribution of the form:

pi
(
x
)
=

NA∑
j=1

w
j
i δ

(
x − j

)
(15)

where δ (x) denotes the Dirac peak. Here, the pattern for the i-th fault type is given by Eq. (15). We obtain NF different

PMFs for each fault type.
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Fig. 2 The pattern modeling using probability mass function

3. Pattern Analysis

The pattern analysis is performed by comparing similarities of each PMF. In this study, the Bhattacharyya

distance [18] is used to measure the similarity of two PMFs. For given two PMFs pi
(
x
−

)
and pj

(
x
−

)
over the same

domain x, the Bhattacharyya distance is defined as follows:

DB

(
pi, pj

)
= − ln

[
BC

(
pi, pj

) ] (16)

where BC
(
pi, pj

)
represents the Bhattacharyya coefficient for two PMFs, which is defined as

BC
(
pi, pj

)
=

∑
x−∈X

√
pi

(
x
−

)
pj

(
x
−

)
(17)

where X is the discrete state space. The physical meaning of this coefficient is a measure of the amount of overlap

between two PMFs. If this coefficient is unity, then the Bhattacharyya distance is 0. On the other hand, when this

coefficient is 0, then the Bhattacharyya distance becomes infinity. From the definition, the Bhattacharyya coefficient can

be expressed by using the weights of discrete states of the proposed pattern model, i.e.

BC
(
pi, pj

)
=

NA∑
k=1

√
wk
i w

k
j

(18)

We then determine the distance δi, j between the pattern of the i-th fault type and the j-th fault type as follows

DB

(
pi, pj

)
= δi, j = − ln

[
NA∑
k=1

√
wk
i w

k
j

]
(19)

This distance is obtained for each fault type.
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Fig. 3 Illustration of the DBSCAN clustering process

Next, a clustering algorithm called the DBSCAN (density-based spatial clustering of applications with noise) [19] is

applied in order to identify fault types with significant deviations. The DBSCAN is a density-based clustering algorithm

that can simultaneously provide clustering of similar patterns and detection of abnormal patterns. Fig. 3 shows the

illustration of the DBSCAN clustering process. The design parameters are two: the minimum number of points Nmin

and the radius ε , which decide the density criteria. Then, clusters are identified by a selected density criteria. If at least

Nmin points are placed within ε radius of a circle, a cluster is formed as can be seen in Fig. 3. The cluster then grows by

adding adjacent points that meet the density criteria (see cluster 2 in Fig. 3). If there are no other points to be added,

then the cluster stops growing. A group of unclustered points are classified as outliers, which is considered as a point

that exhibits different pattern compared with other points.

Remark 1. The premises of this analysis can be generally acceptable for fault record data in aircraft as well as in

other systems. Thus, the proposed method can be applicable to any type of fault record data.

Remark 2. When new fault records are added over time, the absolute patterns for each fault type will change.

However, since the proposed method is based on measuring the relative difference of the patterns between each fault

type, the patterns that change with time do not affect the effectiveness of proposed method.

Remark 3. In the pattern modeling, the patterns obtained change according to the index of PMF. However,

Bhattacharyya coefficient which is used for the similarity measure for given two patterns is the same even though the

index is differently labeled. Accordingly, changing of index label does not affect the effectiveness of proposed method.

IV. Correlation Analysis of Fault Record Data

A. The Concept of Correlation Analysis

The fundamental rationale behind the correlation analysis is that if the occurrence of fault type fA accompanies to

the occurrence of the fault type fB at the same time or in the near future, there is a correlation in the two fault types. Note
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that such correlation information can be used for a high-level fault prognosis. If the fault type fA occurs, we can predict

whether or not the fault type fB is likely to occur at the same time or in the near future from the correlation information.

Based on this rationale, this paper analyzes the correlation of occurrences of individual fault types. Since the future

occurrence event time of fB with respect to the occurrence of fA is unknown, a process of matching different occurrence

event times of faults is additionally considered in this study compared to the conventional correlation analysis [21].

B. Process and Technique of Correlation Analysis

1. Feature Generation

The feature chosen is a binary vector y j
i
indicating occurrences of the fault as follows:

y j
i
=

[
y
(i, j)
1 , y

(i, j)
2 , . . . , y

(i, j)
k

, . . . , y
(i, j)
Nk

]
(20)

where i and j represent the i-th fault type and the j-th aircraft and each entry of this vector has a binary value, that is

y
(i, j)
k
∈ {0, 1}, according to the occurrences of faults. NK is the length of vector. For the j-th aircraft, NF binary vectors

for each fault type can be obtained.

2. Time Shifting of Binary Vector

For convenience, when analyzing correlation of fault type fB with respect to fault type fA, we define fA as the

reference fault type and fB as the dependent fault type. Hereafter, we define the notation ir as the index of the reference

fault type and the notation id as the index of the dependent fault type.

Since the difference of occurrence event times between fA and fB is unknown, a time shift is first applied to the

dependent vector. The window size for the time shift is chosen as W ≥ 0 to account for future occurrence of dependent

fault type. At the j-th aircraft, a time shifted vector with W , z jid , is obtained for each dependent vector.

z jid =
[
z(id, j)1 , z(id, j)2 , . . . , z(id, j)

k
, . . . , z(id, j)NK−W

]
, for id = 1, . . . , NF (21)

where

z(id, j)
k

= y
(id, j)
k+W

, for k = 1, . . . , NK −W (22)

Note that determining the window size is not straightforward because it is unknown at which time the dependent fault

type will occur. In this study, for given a reference fault type and a dependent fault type, the window size W is iteratively

determined, which will be discussed in the following section.

9



3. Correlation Analysis

Finally, the correlation analysis is performed to determine the Jaccard coefficient [20] between the reference vectors

(i.e. y j
ir
, for ir = 1, . . . , NF ) and the time shifted dependent vectors (i.e., z jid , for id = 1, . . . , NF ) with every W .

J j

id |ir
=

N ( id |ir , j)11

N ( id |ir , j)11 + N ( id |ir , j)01 + N ( id |ir , j)10

(23)

where N ( id |ir , j)11 , N ( id |ir , j)10 , and N ( id |ir , j)01 are defined as the number of pairs being represented by (1, 1), (1, 0), and (0, 1),

respectively. The Jaccard coefficient physically represents a measure of overlap between the two binary vectors. If the

two binary vectors are fully correlated, then J j

id |ir
= 1. If there is no correlation, then J j

id |ir
= 0. For given a reference

fault type and dependent fault type, the process described is repeatedly performed by incrementally changing W . Then,

the Jaccard coefficient of the maximum value is selected the correlation coefficient.

V. Illustrative Examples
This section provides illustrative examples of the proposed data analysis using the real fault record data for Airbus

A330 fleet. The fault data records from the past 2012 to 2015 are used for the analysis.

A. Example of Pattern Analysis

In the pattern analysis, the design parameters of DBSCAN are first set based on the sensitivity analysis in a similar

way to the one in [8]. Fig. 4 depicts the detection rate of outliers with respect to changes in the design parameters

of DBSCAN. In this figure, the x-axis represents neighborhood radius and the y-axis is the detection rate of outliers

(fault types having unusual patterns). The sensitivity analysis indicates that the detection rate of outliers identified is

insensitive to Nmin. On the other hand, the selection of ε significantly affects the detection rate of outliers. In the

analysis, we set Nmin = 5 and ε = 0.3 to find top 5% outliers based on the sensitivity analysis results shown in Fig. 4.

Then, we perform DBSCAN with those parameters to identify similar patterns and abnormal patterns, respectively.

In the proposed pattern modelling, the similarity between each PMF can be viewed through the weights of each PMF.

Then, the weights of each PMF should be presented in a single graph to compare each PMF graphically. However, since

it is difficult to visualize the weights of each PMF (which are given by high-dimensional vectors) using an ordinary

graph, a stacked bar graph is adopted in this study to visualize the weights of each PMF in a single graph. In this graph,

the x-axis represents the index of each fault type and the y-axis represents the cumulative sum of weights of each PMF.

Namely, the distribution of each PMF is represented by color composition in the stacked bar graph. PMFs with a similar

distribution have a similar color composition.

Clustered patterns for each fault type are illustrated using the stacked bar graph shown in Fig. 5. Through pattern

analysis, two clusters denoted by Cluster #1 and Cluster #2 are identified as shown in Fig. 5. These results imply that
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Fig. 4 Sensitivity analysis to radius and minimum points

those fault types have more similar characteristics compared to other fault types. Additionally, 8 outliers are identified

through this analysis as shown in Fig. 6. These are Fault Type #31, #42, #64, #35, #54, #36, #60, and #65, respectively.

From the results, we can readily observe that these fault types have frequently occurred at the specific aircraft mainly,

which is not common. Therefore, these results imply that there may be potential problems associated with these fault

types in relevant aircraft or there may be potential problems in the maintenance process associated with such fault types.

B. Example of Correlation Analysis

Now, let us examine correlations between each fault type using the time series of fault occurrence for the aircraft

fleet. Fig. 7 shows an example of the time series of fault occurrence for all fault types on the Aircraft #1. In this figure,

the x-axis represents the time unit and the y-axis represents the index of each fault type. A circle marker indicates that a

specific fault type occurred at a certain time. Through computing the Jaccard coefficient given in Eq. (23), we can

quantify correlations between each fault type. Here, by imposing a threshold on the Jaccard coefficient, correlated fault

types can be identified. In this study, when the time series of fault occurrence of two fault types has a similarity of 60%

or more, the two fault types are considered to be correlated with each other. As a result, a total of 9 pairs of correlated

fault types are identified. As a selective example, Fig. 8 provides the time series of correlated faults (Fault Type #56 and

#58, Fault Type #99 and #102, Fault Type #21 and #75, Fault Type #77 and #81). As shown in Fig. 8, accordingly, we

can readily observe that these occurrence patterns are very similar each other, which confirm the performance of the

proposed correlation analysis technique. Although we describe in this paper only the Aircraft #1 results, the correlation

analysis can be applied in the same way for other aircraft in the fleet. As a result of applying to all aircraft, fault types

with a total of 31 pairs of correlations are identified. As discussed, these results can be utilized for a high-level prognosis

of fault occurrence.
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VI. conclusions
In this paper, we proposed a new application of data analysis that detects potential problems in aircraft maintenance

operations or in aircraft itself using aircraft fault record data. To do this, we proposed pattern analysis and correlation

analysis as a data analysis technique for extracting important information contained in aircraft fault record data.

In the pattern analysis, abnormal patterns are identified by comparing the patterns of the fault frequency of aircraft

across the aircraft fleet for each fault type. At this time, the pattern of fault frequency of aircraft was modeled by

probability mass function, similarity between probability distribution was measured by the Bhattacharyya distance, and

abnormal pattern was finally identified by using clustering method. This information implies that there is a potential

problem in the aircraft maintenance operation and in the aircraft itself, and this information can be passed on to operators

and used to improve the aircraft maintenance process. In the correlation analysis, time series data of the occurrence

pattern was extracted for each fault type, and then this information was converted into a binary vector. The correlation

of the two fault types was analyzed by comparing the similarity of the binary vector. In that case, the Jaccard coefficient

was used as a method to measure the correlation between two fault types. Such correlation information of two fault types

can be used as a high-level fault prognosis that predicts the possibility of another fault occurrence when one fault occurs.

In this paper, we investigated the effectiveness of the proposed application and the proposed method using the real

fault record data. Through the proposed pattern analysis technique, it is confirmed that fault types with abnormal

patterns are well identified. In addition, we confirmed that the proposed correlation analysis technique effectively
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Fig. 6 Examples of outliers obtained from clustering analysis
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Fig. 7 Time series data of fault occurrence for all fault types on the Aircraft #1
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Fig. 8 Examples of occurrence patterns of correlated fault types on the Aircraft #1
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identifies similar fault types with time series data of occurrence patterns.
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