
Global motion based video super-resolution reconstruction
using discrete wavelet transform

Wasnaa Witwit1 & Yifan Zhao2 & Karl Jenkins3 &

Sri Addepalli2

Received: 4 July 2017 /Revised: 19 March 2018 /Accepted: 26 March 2018 /
Published online: 11 April 2018
# The Author(s) 2018

Abstract Different from the existing super-resolution (SR) reconstruction approaches work-
ing under either the frequency-domain or the spatial- domain, this paper proposes an improved
video SR approach based on both frequency and spatial-domains to improve the spatial
resolution and recover the noiseless high-frequency components of the observed noisy
low-resolution video sequences with global motion. An iterative planar motion estimation
algorithm followed by a structure-adaptive normalised convolution reconstruction method are
applied to produce the estimated low-frequency sub-band. The discrete wavelet transform
process is employed to decompose the input low-resolution reference frame into four
sub-bands, and then the new edge-directed interpolation method is used to interpolate each
of the high-frequency sub-bands. The novelty of this algorithm is the introduction and
integration of a nonlinear soft thresholding process to filter the estimated high-frequency
sub-bands in order to better preserve the edges and remove potential noise. Another novelty
of this algorithm is to provide flexibility with various motion levels, noise levels, wavelet
functions, and the number of used low-resolution frames. The performance of the proposed
method has been tested on three well-known videos. Both visual and quantitative results
demonstrate the high performance and improved flexibility of the proposed technique over the
conventional interpolation and the state-of-the-art video SR techniques in the wavelet- domain.
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1 Introduction

High resolution (HR) images and videos are highly desirable, and strongly in demand for most
electronic imaging applications not only for providing better visualisation but also for
extracting additional information. However, HR images are not always available since the
setup of high-resolution imaging can be expensive especially with the inherent physical
limitations of the sensors, the optics manufacturing technology, the data storage and the
sensor’s communication bandwidth. Therefore, it is essential to find an effective way in image
processing to increase the resolution level at a low-cost, without replacing the existing imaging
system. To address this challenge, the concept of super-resolution (SR) has now been sought
after. This technique aims to produce a single HR image, or HR video, from a set of different
successive low-resolution (LR) images captured from the same scene in order to overcome the
limitations and/or possibly ill-posed conditions of the imaging system [53]. Due to its wide
applications, SR has been an active area of research over the last two decades for a variety of
applications, such as satellite imaging [10, 21], medical imaging [19, 46], forensic imaging
[29, 47] and video surveillance systems [20, 67].

Most SR methods consist of two main parts: I: image registration and II: image reconstruction.
Image registration aims to estimate the motion between the LR images, while image reconstruction
aims at combining the registered images to reconstruct the HR image. In image registration, the
motion between the reference image and its neighbouring LR images is required to be estimated
accurately to reconstruct the super-resolved image [45, 57]. When the camera is moving and the
scene is stationary, global motion occurs. On the contrary, when the camera is fixed and the scene is
moving, non-global (local) motion occurs. This paper primarily focuses on the first scenario.

1.1 Image registration

Image registration methods can be operated either in the spatial-domain or the
frequency-domain. Frequency-domain methods are usually limited to global motion models,
whereas spatial-domain methods usually allow more general motion models. In the
frequency-domain, Vandewalle et al. [57] presented an image registration algorithm to accu-
rately register a series of aliased images based on their low-frequencies, thereby aliasing its
free-part. They used a planar motion model to estimate the shift and rotation between the
images, particularly for the scenario when a set of images are captured in a short period of time
with a small camera motion. Vandewalle’s method performs better than the other
frequency-domain registration methods, such as Marcel et al. [39] and Luchese and Cortelazzo
[36]. The advantage of Vandewalle’s method is that it is based on discarding the high-frequency
components, where aliasing may have occurred, in order to be more robust. In the spatial
domain, Keren et al. [30] developed an iterative planar motion estimation algorithm that uses
different, down-sampled versions of the images to estimate the shift and rotation parameters
based on the Taylor series expansions. The goal of this pyramidal scheme is to increase the
accuracy for estimating large motion parameters. Keren’s method and Vandewalle’s method,
have been well accepted to tackle global motions [57]. However, the existing sub-pixel
registration methods become inaccurate when the motion is non-global. There are several
recent approaches dealing with the general motion estimation in video SR. For example, Liu
and Sun [35] used optical flow techniques to register multiple images with sub-pixel accuracy
whereas Liao et al. [34] used an ensemble of optical flow models to reconstruct the original HR
frames with rich high-frequency details.
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1.2 Image reconstruction in spatial and frequency domain

Image reconstruction methods can also be classified into frequency domain-based and spatial
domain-based approaches. The first frequency-domain-based SR approach was proposed by
Tsai and Huang [55], which formulates the system equations that relate the HR image to the
observed LR images by estimating the relative shifts between a sequence of down-sampled,
aliased and noise-free LR images. This method was extended by Kim et al. [31] by proposing a
weighted least squares solution based on the assumption that the blur and the noise character-
istics are the same for all LR images. A major advantage of the frequency-domain-based SR
methods is that they are usually theoretically simple and computationally inexpensive. However,
these methods are insufficient to handle the real-world applications, as they are limited to only
global translational motion and linear space-invariant blur during image acquisition process.

For the spatial-domain-based SR approaches, Non-uniform interpolation method [40, 56] is
one of the most intuitive approaches with relatively low computational complexity. However,
degradation models are applicable only if all LR images have the same blur and noise
characteristics. Iterative back-projection (IBP) method [22, 43] can accommodate both global
translational and rotational motions. However, the solution might not be unique due to the
ill-posed nature of the SR problem and the selection of some parameters is usually difficult.
Projection onto convex sets (POCS) method [17, 42] benefits from the utilisation of the
efficient observation model and a proper priori information. The disadvantages, on the other
hand, are the lack of a unique solution, a slow convergence rate and an expensive computa-
tional cost. Regularised-based SR methods include Maximum likelihood (ML) method [54]
and Maximum a posteriori (MAP) method [48, 49]. The ML method only considers the
relationship among the observed LR images and the original HR image without priori
information while the MAP method considers both. An extension of this approach, called
Hybrid ML/MAP-POCS method [16], were proposed to guarantee the single optimal solution.
The spatial-domain-based SR methods can tackle the real-world applications better because
they can accommodate both global and non-global motion models, linear space-variant blur
and the noise during image acquisition process.

1.3 Wavelet-based image reconstruction

In addition to the frequency and spatial-based domains efforts have been made using the
wavelet-domain. The wavelet-domain-based SR reconstruction approach is able to exploit
both the spatial and frequency-domains, and integrate properties of both to reconstruct a HR
image from observed LR images. The wavelet transform (WT) is an effective tool that divides
an image into low and high-frequency sub-bands, each of which is examined independently
with a resolution matched to its scale [9]. The mechanism behind the strategy of WT is that the
features of the image at different scales can be separated, analysed and manipulated. Global
features can be examined at coarse scales, while local features can be analysed at fine scales
[40]. The attractive properties of WT, such as locality, multi-resolution, and compression make
it effective for analysing real-world signals [7]. Discrete wavelet transform (DWT) is one of
the recent wavelet transforms: it being employed as a powerful tool for many image and video
processing applications to isolate and preserve the high-frequency components of the image.
DWT decomposes the given image into one low-frequency sub-band and three high-frequency
sub-bands using the property of dilations and translations by a single wavelet function called
mother wavelet [18].
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One of the challenges in SR is to preserve or recover the true edges of objects meanwhile
compressing noise, which is usually difficult to be achieved simultaneously using
frequency-based methods due to similar response of edges and noise in frequency band. WT
offers an alternative solution to analyse true edges and noise separately. Manipulating wavelet
coefficients in sub-bands containing high-pass frequency spatial information is the essential
target of wavelet-based methods to solve the SR reconstruction problem. A common assump-
tion of WT-based methods is that the LR image is the low-pass filtered sub-band produced by
WT of the HR image [52]. The existing literature on WT-based methods is in both the single
frame case and multi-frame (video) case. For the multi-frame case, Izadpanahi et al. [25]
presented a SR technique using DWT and bicubic interpolation. They applied an illumination
enhancement method based on singular value decomposition before the registration process of
the LR frames to reduce the illumination inconsistencies between the frames. Anbarjafari et al.
[3] proposed a SR technique for the LR video sequences using DWT and stationary wavelet
transform (SWT). However, these available methods have limited performance for variety of
noise levels, motion levels, wavelet functions, and the number of used frames.

1.4 Other types of SR approaches

Recently, learning-based SR methods have emerged to further boost the efficiency of SR.
These methods consist of two main parts: learning and recovering. In the learning part, a
dictionary which contains a large number of LR and HR patch pairs is constructed. In the
recovering part, the LR frame is divided into overlapped patches, and each patch searches its
more similar LR patch from the dictionary. The HR frame is obtained by incorporating the
corresponding HR patch to the LR frame. Takeda et al. [51] introduced a method based on the
extension of steering kernel regression framework to 3-D signals for performing video
de-noising, spatiotemporal upscaling and SR, without the need for explicit sub-pixel accuracy
motion estimation. To generate better results, multi-dimensional kernel regression was applied.
Yang et al. [65] proposed a sparse-coding method where LR and HR patch pairs in the
dictionary share the same sparse representation. The sparse representation of a LR patch can
be incorporated to the HR dictionary to obtain HR patch. Li et al. [33] introduced an adaptive
subpixel-guided auto-regressive (AR) model in which key-frames are up-sampled by a sparse
regression while non-key-frames are super-resolved by simultaneously exploiting the spatio-
temporal correlations. Deep learning-based SR approaches and deep learning networks SR
approaches [6, 8, 13, 14, 27, 28, 37, 38, 50, 59, 61–64] have been developed in recent years to
improve SR results, and to better model complex image contents and details. For example,
Dong et al. [14] proposed a SR convolution neural network (SRCNN) method to perform a
sparse reconstruction. Jiang et al. [28] addressed the problem of learning the mapping
functions (i.e. projection matrices) by introducing the non-local self-similarity and local
geometry priors of the training data for fast SR. However, this type of methods is usually
computationally costly and requires a large amount of training data.

1.5 Focus of this study

This paper proposes a robust video super-resolution approach, based on a combination of
the so-called discrete wavelet transform-new edge-directed interpolation and a
soft-thresholding for increasing the spatial resolution and recovering the noiseless
high-frequency details of the observed noisy LR video frames with global motion, which
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integrates merits from the methods of image registration and reconstruction in both
frequency-domain and spatial-domain. The application of the proposed SR technique is
particularly useful when the camera is moving and the observed scene is stationary. One of
the motivations of this technique is to provide flexibility for a variety of motion levels,
noise levels, wavelet functions, and sufficient number of used LR frames since the existing
wavelet-based SR methods have limited performance capabilities for these various factors
and this potential has not yet been fully explored. The performance of this approach is
tested on three well-known videos. The robustness of the proposed algorithm is then
evaluated through an empirical test with various motion levels, noise levels, wavelet
functions, and the number of used frames. Most of the existing wavelet-based SR methods
have limited discussion on the above-mentioned factors.

2 Methods

2.1 Observation model

The observation model describes the relationship between the original referenced HR image
and the observed LR images. The image acquisition process in the spatial domain involves
warping, blurring, down-sampling, and noising to produce the LR images from the HR image,
as shown in Fig. 1. The blurring step generates blurred images from the warped HR image
based on the point spread function introduced by the camera. The down-sampling step
produces down-sampled (aliased) LR images from the warped and blurred HR image, and
the noise step represents the additive noise applied to each observed LR image. Let us assume

that the HR image can be represented in the vector form as x ¼ x1; x2;…; xL1N1�L2N2½ �T , where
L1N1 × L2N2 is the size of the HR image. Assume that L1 and L2 represent the down-sampling
factors in the horizontal and vertical directions, respectively, and each LR image has the size of

N1 ×N2. Let the LR image be denoted in the vector form by yk ¼ yk1; yk2;…; ykðN1�N2Þ

h iT
, k

= 1, 2, …, p, where p is the number of LR images. If each LR image is corrupted by additive
Gaussian noise, the observation model can be represented as

yk ¼ DBkMkxþ nk ð1Þ
where Mk is the warp matrix of size L1N1L2N2 × L1N1L2N2, Bk is the camera blur matrix
also with the same size, D is the down-sampling matrix of size N1N2 × L1N1L2N2, and nk
represents the N1N2 × 1 noise vector. It is assumed that all LR images have the same blur
and so the matrix Bk can be substituted by B. These operations can be incorporated into
one matrix [41, 67] and can be expressed as

yk ¼ DBMkxþ nk ¼ Hkxþ nk ð2Þ

Fig. 1 The observation model
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2.2 Proposed video super resolution technique

Recovering the missing high-frequency details of the given LR frames is the fundamental
target of the video SR methods. The first step is sub-pixel image registration that aims to
estimate the motion parameters between the reference frame and each of the neighbouring LR
frames. When the camera is moving and the scene is stationary, global motion occurs including
translation and rotation. In this work, Keren’s method [30] is selected for global motion
estimation which is one of the most accurate methods for sub-pixel image registration in the
spatial-domain.

For image reconstruction, conventional interpolation methods (e.g., nearest neighbour,
bilinear and bicubic) address the problem of reconstructing a HR image from the available
LR image. However, these methods generally yield images with blurred edges and undesir-
able artefacts because they do not use any information pertinent to the edges in the original
image. Therefore, the wavelet-based method is applied to preserve the high-frequency details
(i.e. edges) and consequently construct the HR image from the given LR image. In the
proposed technique, the discrete wavelet transform (DWT) is employed to isolate and
preserve the high-frequency components of the image, and then the interpolation is applied
to the high-frequency sub-bands. This is because the interpolation of isolated high-frequency
components in the high-frequency sub-bands will preserve more edges of the image than
using a direct interpolation. A number of DWT-based interpolation methods [2, 11, 12] have
been developed to preserve the high-frequency components in the interpolated sub-bands.
Nevertheless, the blurring effect from the employed interpolation method causes the potential
loss of edges in these sub-bands. For example, the bicubic interpolation method produces
blurring around the edges, even though the method is well accepted for resolution enhance-
ment. Dual-tree complex wavelet transform (DT-CWT)-based interpolation methods [23, 26]
are also being applied to address this problem by utilising an alternative interpolation
method. Jagadeesh and Pragatheeswaran [26] used edge-directed interpolation EDI [1] as
an alternative interpolation method to high-frequency sub-bands produced by DT-CWT.
Later, this method was extended by Izadpanahi and Demirel [23] for video SR. Recently,
the same authors applied new-edge directional interpolation NEDI [32] method to better
preserve the edges of the interpolated high-frequency sub-bands generated by DT-CWT for
local motion-based video SR [24]. However, none of these existing wavelet-based methods
have tackled the problem of noisy high-frequency details corrupted by the limitations of
imaging systems. For the current work, a combination of DWT, NEDI and an adaptive
threshold is proposed not only for preserving the high-frequency details, but also for
recovering the noiseless high-frequency information. One-level DWT process decomposes
the input LR reference frame into four frequency sub-bands (LL, LH, HL and HH) in the
frequency-domain. The high-frequency sub-bands (LH, HL and HH) are interpolated using
the NEDI method with the scale factor, α. The block diagram of the proposed video SR
technique is illustrated by Fig. 2, which shows the combination of the so-called DWT-NEDI
and an adaptive threshold with registration and reconstruction methods, in order to produce
the estimated high and low-frequency sub-bands, respectively, for the inverse DWT. Gener-
ally, real video sequences are most commonly corrupted by noise such as additive Gaussian
noise. Therefore, to better preserve the edges and remove potential noise in the estimated
high-frequency sub-bands, a thresholding procedure that uses an adaptive threshold is applied
to process the produced wavelet coefficients. Many types of thresholding functions have
been introduced for the modification of estimated wavelet coefficients, such as Hard, Soft,
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Semisoft and Garrote [5]. This paper employs a soft-thresholding technique proposed by
Donoho [15] and extended by Zhang [66]. A universal threshold τ for the considered
sub-band can be calculated by

τ ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log Nð Þ=N

p
ð3Þ

where σ is the standard deviation of the sub-band, and N is the total number of pixels. The
nonlinear soft-thresholding function is defined as

X out i; jð Þ ¼
X in i; jð Þ−τ X in i; jð Þ > τ
0 X in i; jð Þj j≤τ
X in i; jð Þ þ τ X in i; jð Þ < −τ

8<
: ð4Þ

Fig. 2 Block diagram of the proposed video SR technique
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Equation (3) is chosen in the proposed method considering the prospect of automation in
the proposed method and successful application of this equation in similar studies [66].

The rationale to include this thresholding process is that the energy of a signal is often
concentrated on a few coefficients while the energy of noise is spread among all coefficients in
the wavelet domain. Therefore, the nonlinear soft-thresholding tends to maintain few larger
coefficients representing the signal and reduces noise coefficients to zero in the wavelet domain.
The universal threshold is intuitively expected to uniformly remove the noise since the Gaussian
noise still has the same variance over different scales in the transform domain [66]. On the other
hand, in the spatial-domain, when the LR frames are precisely registered by Keren’s method, the
registered frames can be combined to reconstruct the missing high-frequency information and
produce the low-frequency sub-band. In this work, structure- adaptive normalised convolution
(SANC) reconstruction method [44] is applied, with half of the scale factor α/2. This algorithm is
used for fusion of irregularly sampled LR frames to recover the high-frequency details and generate
the estimated LL sub-band, as the LL sub-band produced by the DWT does not contain any
high-frequency information. Finally, inverse DWT (IDWT) process is applied to achieve a
super-resolved frame by combining the estimated LL sub-band and processed high-frequency
sub-bands.

The combination of DWT with NEDI aims to recover the edge details of directional
high-frequency sub-bands and decrease the undesirable inter-directional interference in the SR
process. This merit cannot be achieved using only the NEDI method, as indicated in the results
section. The application of this soft-thresholding function is based on the hypothesis that the large
coefficients in the high-frequency sub-bands reflect the true edges of objects, while the small
coefficients reflect the noise, which is demonstrated by Fig. 3. Figure 3a shows the reconstruction
image of high-frequency sub-bands only using IDWT without thresholding. Both true edges and
noise can be clearly observed. Figure 3b shows the reconstruction image of high-frequency
sub-bands only where the small coefficients are removed. It can be observed that the noise is
significantly reduced, particularly in the background, while most of the true edges of the human
body are preserved. The reconstruction image of high-frequency sub-bands can be acquired only
where the large coefficients are removed and is as illustrated in Fig. 3c, which is dominated by noise
and very few true edge information can be observed. To demonstrate the importance of this process,
a region of the produced HR image using the proposed method without the soft-thresholding is
shown in Fig. 3d, where the noise can be clearly observed.

The proposed technique can be summarised by the following steps:

1. Consider four consecutive frames from the LR video;
2. Estimate the motion parameters between the reference frame and each of the other LR

frames using global motion estimation algorithm proposed by Keren;
3. Apply one-level DWT to decompose the input LR reference frame into four frequency

sub-bands;
4. Apply the NEDI method to the LH, HL and HH high-frequency sub-bands with the scale

factor of α;
5. Calculate the threshold τ for each high-frequency sub-band;
6. Apply the nonlinear soft-thresholding process for each high-frequency sub-band to create

the estimated L̂H, ĤL and ĤH;
7. In the spatial-domain, employ SANC with half the scale factor α/2 to create the estimated

L̂L;
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8. Apply IDWT using L̂L ^;LH;ĤL;ĤH
� �

to produce the output super-resolved frame.

3 Results

The proposed super-resolution technique was tested on three well-known video sequences,
namely, "Mother & daughter", BAkiyo^, and BForeman^. The files were downloaded from a
public database Xiph.org. The proposed algorithm and other methods for comparison were
implemented using Matlab 2015. The original high-resolution test videos were resized to 512
× 512 pixels which are considered as the ground truth to evaluate the performance of the
proposed approach. The frame rate of the test videos is 30 frames per second and each of the
video sequences have 100 frames. Based on the observation model, the input LR video frames
with the size of 128 × 128 pixels were created as follows. Each original HR video frame is (1)
blurred by a low-pass filter, (2) down-sampled in both the vertical and the horizontal directions
by a scale factor of 1/4, and (3) added by a white Gaussian noise with a certain value of signal-
to-noise ratio (SNR).

Fig. 3 An example to help justify the use of thresholding process. a the reconstruction image of high-frequency
sub-bands only without thresholding; b the reconstruction image of high-frequency sub-bands only where the
small coefficients are removed; c the reconstruction image of high-frequency sub-bands only where the large
coefficients are removed; d the produced HR image without thresholding
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3.1 Visual and quantitative performance evaluation

This example aims to evaluate the overall performance of the proposed technique with a typical
selection of parameters against other methods. Four shifted and rotated LR frames for each
original HR frame were generated and down-sampled, and Gaussian noise was then added with
a SNR value of 30 dB. The motion vectors were randomly produced with a standard deviation
(STD) of 2 for shift and 1 for rotation. The wavelet function was chosen as db.9/7.

Figure 4 shows the super-resolved frames using the proposed method and other methods,
selected arbitrarily from the video sequences Akiyo, Mother & daughter, and Foreman,
respectively. It has been observed that the proposed technique produces the best visual quality
in terms of preserving the edges, and removing the noise and aliasing artefacts in comparison
to the other considered methods. The proposed technique preserves more information of the
edges of the original HR video frame without smearing. For example, the edges of face in
Akiyo produced by the proposed method are much cleaner in comparison with the images
produced using other methods. Similar visual results have been observed for other edges in
Akiyo and for other tested videos. Additionally, the noise and aliasing artefacts have been
removed by the proposed method in comparison with the other methods. For example, the
aliasing artefacts in Mother shoulders and hands have been removed substantially by the
proposed technique as well as the Gaussian noise on the face of Foreman, while these noise
and artefacts are clearly presented in the images produced by the other methods. From the
motion estimation point of view, the aliasing high-frequency components due to
down-sampling process appear to have different motions than the low-frequency components,
and cause incorrect motion estimation [35]. Moreover, a larger noise level generates errors in
motion estimation.

Fig. 4 Results of produced HR images using different SR methods for a randomly selected frame of Akiyo,
Mother & daughter, and Foreman video sequence respectively. Column 1: input LR frame, Column 2: Bicubic,
Column 3: Vandwalle-SANC, Column 4: Keren-SANC, and Column 5: the proposed technique
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To further investigate the improvement of the proposed method, Fig. 5 shows the local
PSNR maps for different scenarios of the example Akiyo. The local PSNR map was calculated
by a 5 × 5 pixels window. Figure 5a shows the PSNR distribution between the raw HR image
and the interpolated HR image produced by nearest neighbour method, which indicates the
location of noise introduced by the degrading process. Regions of the human body have more
noise (blue regions) introduced by the degrading process, while background regions have less
(yellow regions). The blue regions tend to be areas with fine features (like boundary of the
human body), while the yellow regions tend to have more coarse structures. Similar represen-
tation using the proposed method is shown in Fig. 5b, inspection of which proves that both
background and fine features have been better recovered. To break down the contribution of
each component, Figure 5c and d show the PSNR gain of the proposed method over NEDI and
Keren-SANC, respectively. It has been observed that fine features are significantly improved
in comparison to NEDI due to the consideration of adjacent frames, while the improvement of
coarse structures is relatively small. Coarse structures have been significantly improved in
comparison to Keren-SANC while the improvement of fine features is relatively small. All
these observations clearly demonstrate that the proposed method improves the quality of both
background and true edges, but other methods can only have one merit.

For quantitative evaluation of the experimental results, the nearest neighbour and bicubic
interpolation methods, state-of-the-art resolution enhancement methods including NEDI [32],
DASR [2], DWT-SWT [11], DWT-Dif [12], and state-of-the-art SR methods Keren-SANC
and Vandewalle-SANC have been implemented to compare the performance of the proposed
technique. The difference between the super-resolved images from different techniques can be
small and sometimes it is difficult to be inspected visually. In this paper, as one of the most

Fig. 5 An example to show the improvement distribution of the proposed technique. a The distribution of PSNR
between the HR image using the nearest interpolation and the raw image; b the distribution of PSNR between the
super-resolved image using the proposed method and the raw image; c the PSNR gain between the proposed
method and NEDI; (d) the PSNR gain between the proposed method and Keren-SANC
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commonly used object ive fidel i ty cr i teria to evaluate image quali ty, the
peak-signal-to-noise-ratio (PSNR) between the super-resolved image and the original HR
image is used. It can be calculated by

PSNR ¼ 10log10
L2

MSE

� �
ð5Þ

where L is the maximum fluctuation in the image. If the image is represented by 8-bit
grayscale, the value of L will be 255. MSE represents the mean-square-error between the

super- resolved image X̂ i; jð Þ and the original HR image X(i, j). It can be calculated by

MSE ¼ 1

W � H
∑W

i¼1∑
H
j¼1 X̂̂ i; jð Þ−X i; jð Þ� �2 ð6Þ

To complement the quantitative analysis, the structural similarity (SSIM) [58] image quality
measure has also been applied. The SSIM index evaluates the visual effect of three character-
istics of an image, namely, luminance, contrast and structure. It is based on the computation of
these three components and is an inner product of them. It is defined by

SSIM ¼ 2μX̂̂μX þ C1

� �
2σX̂̂σX þ C2

� �
μ2
X̂̂
þ μ2

X þ C1

	 

σ2
X̂̂
þ σ2

X þ C2

	 
 ð7Þ

where μX̂ ;μX are the local means for the images X̂ ;X , σX̂ ,σX are corresponding standard
deviations, and C1, C2 are two constants to avoid the instability.

Table 1 shows the comparison of the averaged PSNR and SSIM results of 100 frames from
the proposed method and other considered methods on the test videos. It is clearly shown that
the proposed method achieves the highest average PSNR and SSIM values (31.48 dB,
30.57 dB and 23.88 dB for PSNR respectively; 0.90,0.91 and 0.84 for SSIM) for three tested
videos. Achievement of this improved performance is due to the fact that the DWT-based SR
reconstruction approach is more effective to recover the high-frequency details of the given LR
frames, where the true edges are preserved and noise is removed benefiting from the nonlinear
soft thresholding technique. Additionally, the combination of DWT and NEDI enables the

Table 1 The averaged PSNR and SSIM values of 100 frames produced from different methods for three tested
videos

SR methods Mother& Daughter Akiyo Foreman

PSNR SSIM PSNR SSIM PSNR SSIM

Nearest 24.80 0.69 24.54 0.75 20.89 0.61
Bicubic 25.92 0.77 25.77 0.82 22.02 0.72
NEDI [32] 24.88 0.75 24.89 0.81 21.19 0.71
DASR [2] 23.76 0.62 23.83 0.69 20.16 0.55
DWT-Dif [12] 22.57 0.55 22.58 0.62 18.97 0.47
DWT-SWT [11] 23.10 0.57 23.09 0.65 19.83 0.50
Vandewalle-SANC 22.05 0.75 25.18 0.81 19.96 0.72
Keren- SANC 27.14 0.82 27.51 0.84 20.41 0.70
Proposed method 31.48 0.90 30.57 0.91 23.88 0.84
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recovering of the edge details of directional high-frequency sub-bands and reduces the
annoying inter-directional interference in the SR process. For the videos Mother & daughter
and Akiyo, the proposed technique based on global motion of the entire frame is suitable for
these videos and produces better PSNR results than the interpolation and classic SR methods
(16% and 11% increment over Keren-SANC respectively). For the video Foreman, although
PSNR result achieved by the proposed method is higher than the other considered methods
(17% increment over KEREN-SANC), the performance gain can be further increased by
utilising local motion which divides each frame into multiple blocks and processes each block
individually. Similar observation can be concluded based on SSIM values.

3.2 Performance for variety of noise levels

To demonstrate the robustness of the proposed method against noise benefiting from the
adaptive thresholding process, four shifted and rotated LR frames for each original HR frame
were generated and down-sampled, and the motion vectors were randomly produced with a
standard deviation of 2 for shift and 1 for rotation. The wavelet function was chosen as db.9/7.
The noise level was increased from 50 dB to 20 dB with the step of 5 dB. The first 10 frames
from Akiyo video were tested by the proposed method and other different methods, and the
results were averaged.

Table 2 shows the comparison of averaged PSNR results between different methods. The
last column shows the PSNR increment over Keren-SANC in percentage by the proposed
technique. It can be clearly seen that the proposed method consistently has the best perfor-
mance for every noise level. Furthermore, the performance is even better for images corrupted
by high noise level (15%, 21%, 18% increment for 30 dB, 25 dB and 20 dB respectively) than
those with low noise level (10%, 8%, 5%, 3% increment for 50 dB, 45 dB, 40 dB and 35 dB
respectively).

3.3 Performance for variety of wavelet functions

The above results from the proposed technique have been produced by the most widely used
wavelet function db.9/7 in image SR applications. This section discusses the prospect of the
proposed approach using other wavelet functions. Previously, our research showed that the
selection of wavelet function can affect the performance of SR techniques [60]. In this
experiment, the same parameters were chosen except that the noise level was fixed as
30 dB, and the wavelet function was set as a variable entity. Table 3 shows the averaged

Table 2 The averaged PSNR results of 10 frames from Akiyo test video for each noise level, range from 20 dB
to 50 dB with 5 dB step

SNR Nearest Bicubic Keren-SANC Proposed method Increment

50 dB 25.20 26.50 28.18 31.13 10.47%
45 dB 23.86 24.85 28.46 30.82 8.29%
40 dB 24.98 26.29 30.05 31.64 5.29%
35 dB 24.18 25.20 30.49 31.30 2.65%
30 dB 23.84 24.86 26.50 30.37 14.60%
25 dB 23.69 24.85 24.80 30.08 21.29%
20 dB 23.42 24.93 24.31 28.63 17.78%
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PSNR and SSIM results of the first 10 frames for the Akiyo video sequence produced
by the proposed method using nine wavelet functions, which include db1, db2,
sym16, sym20, ciof1, ciof2, bior4.4 (db.9/7), bior5.5, and bior6.8. The results show
that the proposed technique can perform well under other wavelet functions apart
from db.9/7, even better than db.9/7. Not that bior4.4 is equal to db.9/7 [4]. In terms
of both PSNR and SSIM values, the wavelet function with top 5 performances are
sym20, sym16, bior6.8, bior4.4 and coif1 respectively, although the difference be-
tween them is not significant.

3.4 Performance for variety of motion levels

This section is dedicated to discussing the effectiveness of motion level (shift and rotation) on
the performance of the proposed algorithm. In this experiment, the shift on both horizontal and
vertical directions and rotation angle were randomly selected with the standard variation STD
changing from 1 to 4 during generating the input LR frames from a HR frame. Four shifted and
rotated LR frames for each original HR frame were generated and down-sampled. The wavelet
function was chosen as db.9/7, and the noise level was fixed as 30 dB.

The averaged PSNR and SSIM results of the first 10 frames form Akiyo video produced by
the proposed technique with different motion levels are shown in Table 4. It can be observed
that the proposed method produces the higher PSNR and SSIM values when the motion level
is relatively small. This is because of the fact that the estimation of a small motion is usually
more accurate and leads to better reconstruction. When the motion level is large, the values of
PSNR and SSIM drop as expected. This is because a large motion is more difficult to be
measured accurately and errors in motion estimation prevents reconstructing the original HR

Table 3 The averaged PSNR and
SSIM values of 10 frames produced
by the proposed technique for dif-
ferent wavelet functions

Wavelet functions PSNR SSIM

Db1 28.18 0.88
Db2 29.95 0.90
Sym16 30.83 0.92
Sym20 30.89 0.92
Coif1 30.39 0.91
Coif2 26.78 0.85
Bior4.4 30.72 0.92
Bior5.5 30.20 0.90
Bior6.8 30.81 0.92

Table 4 The averaged PSNR and SSIM values of 10 frames produced by the proposed technique with different
motion levels

STD of Shift STD of Rotation

1 2 4

PSNR SSIM PSNR SSIM PSNR SSIM

1 30.74 0.92 29.44 0.90 28.09 0.87
2 29.16 0.90 29.00 0.89 27.97 0.88
4 27.35 0.86 27.13 0.86 26.90 0.85
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frames correctly. From the considered smallest to largest motions, 12% and 7% decrease of
PSNR and SSIM values respectively has been observed.

3.5 Performance for variety of number frames

This section aims to evaluate the effectiveness of the number of used frames on the performance. In
all previous experiments, it was assumed that the shift and rotation parameters are randomly
produced. But in real applications, the camera usually moves towards one direction which means
the shifts change monotonously. The shifts include two motion vectors, horizontal shift Δx and
vertical shiftΔy. To simplify the process, in this experiment, the rotation anglewas randomly selected
with the standard deviation of 1, and only shifts are changed. The shifts were produced based on

Δx ið Þ ¼ Δy ið Þ ¼ i
N

ð8Þ

where i(i= 1, 2,…,N) denotes the time index of LR frames andN denotes the total number of used
frames. All other parameters are same as the previous experiment.

Table 5 shows the averaged PSNR and SSIM results of the first 10 frames for the Akiyo
video sequence produced by the proposed technique using the number frames of 4, 8, 16 and
32 respectively. It has been observed that, as expected, higher PSNR and SSIM values were
achieved with more number of sampled frames. However, the increment is only about 1%
when the number changes from 4 to 32. This observation is because the used motion model is
simple, and there is very limited extra contribution from 32 frames in comparison to 4 frames.
A higher percentage of improvement could be achieved when the motion is more complicated
or the motion is corrupted by more noise.

4 Conclusions

A robust video super-resolution reconstruction approach based on combining discrete wavelet
transform, new edge-directed interpolation and the nonlinear soft-thresholding has been
proposed in this paper for noisy LR video sequences with global motion to recover the
noiseless high-frequency details and increase the spatial resolution, which integrates properties
from methods of image registration and reconstruction. Firstly, an iterative planar motion
estimation algorithm by Keren is used to estimate the motion parameters between a reference
frame and its neighbouring LR frames in the spatial domain. The registered frames are
combined by the SANC reconstruction method to output the estimated low-frequency
sub-band. Secondly, the DWT is employed to decompose each input LR reference frame into
four frequency sub-bands in the frequency-domain. The NEDI is employed to process each of

Table 5 The averaged PSNR and
SSIM values of 10 frames produced
by the proposed technique by sam-
pling different number of frames

Number of
sampled frames

PSNR SSIM

4 29.81 0.91
8 30.06 0.92
16 29.98 0.92
32 30.07 0.92
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three high-frequency sub-bands, which are then filtered using the adaptive thresholding process
to preserve the true edges and reduce the noise in the estimated high-frequency sub-bands.
Finally, by combining the estimated low-frequency sub-band and three high-frequency
sub-bands, a super-resolved frame is recovered through the invert-DWT process.

Subjective results show that this approach can better preserve the edges and remove
potential noise in the estimated high-frequency sub-bands since a direct interpolation will blur
the areas around edges. Three well-known videos (totally 100 frames for each) have been
tested, and the quantitative results show that the superior performance of the proposed method.
The proposed method tops the averaged PSNR and SSIM values (31.48 dB, 30.57 dB and
23.88 dB for PSNR respectively; 0.90,0.91 and 0.84 for SSIM) for three videos respectively,
and the averaged increment over KEREN-SANC is 16%, 11%, and 17% respectively. The
performance against noise has also been analysed. Analysis based on the contribution of each
component clearly demonstrates that the proposed method improves the quality of both
background and true edges, but other methods usually can only have one merit.

One of the motivations of this paper is to address the limited performance capabilities of
most of the existing wavelet-based SR methods for a variety of motion levels, noise levels,
wavelet functions and adequate number of used frames, do empirical tests and analyse how
these factors can affect the performance of the proposed method. The conclusions are:

& The proposed technique has produced 10%, 8%, 5% and 3% averaged increment of PSNR for
an image corrupted by low level noise with the SNR value of 50 dB, 45 dB, 40 dB and 35 dB
respectively. It has produced 15%, 21% and 18% averaged increment of PSNR for the image
corrupted by high level noise with the SNR value of 30 dB, 25 dB and 20 dB respectively.

& The proposed technique can perform well using other wavelet functions apart from db.9/7,
even better than db.9/7, although the difference between them is not significant.

& The performance of the proposed method is affected by the level of motion. Based on the
considered smallest to largest motions, 12% and 7% decrease of PSNR and SSIM values
respectively has been observed.

& If the motion is simple, the number of sampled frames has limited improvement on the
performance due to the limited extra information. If the motion is complex and corrupted
by high level of noise, significant improvement is expected using more frames.

A limitation of this method is that it can only be applied to video sequences with global
motion. However, it can be extended to local motion by dividing the video frame into multiple
blocks and then applying this method to each block.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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