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Abstract

Background: The relative importance of stochasticity versus determinism in soil bacterial communities is unclear, as
are the possible influences that alter the balance between these. Here, we investigated the influence of spatial scale
on the relative role of stochasticity and determinism in agricultural monocultures consisting only of wheat, thereby
minimizing the influence of differences in plant species cover and in cultivation/disturbance regime, extending across a
wide range of soils and climates of the North China Plain (NCP). We sampled 243 sites across 1092 km and sequenced
the 16S rRNA bacterial gene using MiSeq. We hypothesized that determinism would play a relatively stronger role at
the broadest scales, due to the strong influence of climate and soil differences in selecting many distinct OTUs of
bacteria adapted to the different environments. In order to test the more general applicability of the hypothesis,
we also compared with a natural ecosystem on the Tibetan Plateau.

Results: Our results revealed that the relative importance of stochasticity vs. determinism did vary with spatial
scale, in the direction predicted. On the North China Plain, stochasticity played a dominant role from 150 to
900 km (separation between pairs of sites) and determinism dominated at more than 900 km (broad scale). On
the Tibetan Plateau, determinism played a dominant role from 130 to 1200 km and stochasticity dominated at
less than 130 km. Among the identifiable deterministic factors, soil pH showed the strongest influence on soil
bacterial community structure and diversity across the North China Plain. Together, 23.9% of variation in soil
microbial community composition could be explained, with environmental factors accounting for 19.7% and
spatial parameters 4.1%.

Conclusions: Our findings revealed that (1) stochastic processes are relatively more important on the North China
Plain, while deterministic processes are more important on the Tibetan Plateau; (2) soil pH was the major factor in
shaping soil bacterial community structure of the North China Plain; and (3) most variation in soil microbial community
composition could not be explained with existing environmental and spatial factors. Further studies are needed to
dissect the influence of stochastic factors (e.g., mutations or extinctions) on soil microbial community distribution,
which might make it easier to predictably manipulate the microbial community to produce better yield and soil
sustainability outcomes.
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Background
Soil microbial diversity patterns have been well docu-
mented in a wide variety of habitats [1–3]. From an initial
focus on the description of patterns, attention is now turn-
ing towards the underlying processes influencing the
structure of microbial communities [4, 5]. Cropland soils
represent a relatively neglected area in terms of both pat-
terns and processes in microbial community ecology. Des-
pite the importance of cropland soils for global food
supply, there has been relatively little attention paid in un-
derstanding what processes influence the structure of mi-
crobial distribution patterns [6–8]. Understanding the
structuring of soil communities could have practical impli-
cations for crop productivity and food production [9–11].
In attempting to understand the factors giving struc-

ture to natural and agricultural soil microbial communi-
ties, studies have emphasized two fundamental types of
process: (1) Deterministic processes, whereby species of
bacteria occur wherever there is a unique potential niche
in which they can survive in the face of competition
[12]. In its “extreme” form, each species is predictably
present wherever a suitable niche exists. This has been
summarized as “everything is everywhere, but the envir-
onment selects” [13]. (2) Stochastic processes, whereby
many species exist in the same or strongly overlapping
niches, but do not eliminate one another due to their
competitive abilities being closely balanced (in accord-
ance with neutral theory [14]). In this situation, the rela-
tive abundance of species drifts with chance fluctuations
in populations. Stochastic processes also include the leg-
acy of past disturbance events causing more dramatic
nonselective crashes in populations, followed by the va-
garies of dispersal events leading to species arriving un-
predictably. In an extreme stochastic scenario, bacterial
species are often absent from places in which they could
potentially survive in abundance, and those species
present are only there following chance arrival and per-
sistence [15, 16].
There is little doubt that bacterial communities are in

reality the result of combinations of both stochastic and
deterministic processes, and only the relative importance
of each is in dispute [4, 5]. There are many features of
bacterial community composition and diversity that cer-
tainly involve determinism, because they are highly pre-
dictable in terms of environmental factors [17, 18].
Important deterministic factors, at least at the higher
taxonomic level, include soil pH [17–20], soil mois-
ture [21], availability of nutrients [22, 23], soil C:N
ratio [3, 24, 25] and soil temperature [26], and biotic
factors such as plant diversity and type [27–33].
Other studies have suggested a role for stochastic pro-
cesses in dispersal limitation, past environmental condi-
tions, mutations, and spatial distance, all of which can
have a strong influence on the distribution of microbial

communities [34–39]. In addition, some studies have in-
vestigated the driving process for microbial communities
at different spatial scales. For example, at the small scale
(centimeters to meters) [40, 41], spatial autocorrelation of
microbial community structure is observed, and Bru et al.
[42] found that this was also the case at the landscape
scale at a pair to pair distance > 700 km. Functional mi-
crobial communities in arctic soils are significantly influ-
enced by spatial factors at a large scale [43]. However, few
studies have compared the relative role of stochastic and
deterministic processes across different spatial scales.
In recent years, more powerful statistical techniques

have become available for discerning the relative import-
ance of deterministic and stochastic processes in bacter-
ial community structure. These include Mean Nearest
Taxon Distance (MNTD), Nearest Taxon Index (NTI),
Beta MNTD, Beta NTI [4], and zero-sum multinomial
(ZSM) [16]. Usually, phylogenetic turnover within com-
munities belonging to a single sample is quantified using
MNTD and NTI, and turnover in phylogenetic compos-
ition across temporal and spatial scales (phylogenetic β-
diversity) is quantified using βMNTD and βNTI [4]. For
example, these methods have been used to compare the
role of deterministic and stochastic processes in mediat-
ing microbial succession over 105 years of ecosystem
development [5], quantifying community assembly pro-
cesses in subsurface water and sediments [4, 44, 45], and
taxonomic and functional microbial community selec-
tion processes in rhizosphere soils [46]. However, most
studies conducted to date have focused on temporal
(time-related) changes and been conducted in natural
ecosystems. There has been relatively little study of the
role of determinism vs. stochasticity across varying
spatial scales and in agricultural systems. Understanding
the role of determinism may help to correlate yield with
microbial community composition. If certain microbial
communities have an important role in enhancing yields,
it may be possible to improve yields on a broad scale by
encouraging these specific communities. However, for
this to be effective, there must be a strong role for deter-
minism to replicate and produce such communities reli-
ably. In this study, we chose an agricultural system,
partly for the practical implications in understanding
community processes, but also as a relatively simplified
system which might offer broader clues to how micro-
bial communities work in general, including in natural
soil environments.
The North China Plain (NCP) was chosen as our study

area, which is the most important food-producing region
in Asia, accounting for over 50% of total cereal produc-
tion in China [47]. It is estimated that more than 15% of
total annual grain production and over 19% of total win-
ter wheat production in China are contributed by this
area [47–50]. Over the past century, wheat-maize double
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cropping rotation has been the dominant cropping sys-
tem, supported by irrigation, fertilizer use, and appropri-
ate crop varieties [23, 51, 52]. In the present work, using
the Illumina Miseq platform, we surveyed 243 wheat-
maize rotation soils across the NCP at a standardized
point in the cropping cycle. We hypothesized that deter-
minism would play a relatively stronger role at broader
scales, due to the strong influence of climate and soil
differences in selecting distinct OTUs of bacteria
adapted to different environments. In order to under-
stand the differences in the relative role of deterministic
and stochastic processes between arable soils and natural
ecosystems, Tibetan Plateau soils were chosen as a case
study for comparison.

Results
Soil bacterial community composition of the North China
Plain
Based on Illumina next-generation sequencing technolo-
gies, we obtained 15,184,073 quality sequences for 243
soils from wheat-maize cropping rotation systems across
the NCP and identified 75,179 operational taxonomic
units [97% similarity, mostly bacteria (~ 99.7%) and a
few archaea (~ 0.3%, most were Thaumarchaeota)]. At
the phyla/class level, Actinobacteria (~ 24%), Alphapro-
teobacteria (~ 12%), Acidobacteria (~ 14%), Gammapro-
teobacteria (~ 10%), Betaproteobacteria (~ 8%), and
Chloroflexi (~ 8%) were dominant, accounting for more
than 75% of total sequences (Additional file 1: Figure S1;
Additional file 2: Tables S1 and S2). In addition, Deltapro-
teobacteria, Gemmatimonadetes, Planctomycetes, Bacter-
oidetes, Nitrospirae, and Firmicutes were ubiquitous in the
investigated soils and present in high relative abundance
in some soils (Additional file 2: Table S1). Additionally, 34
rare phyla were identified (Additional file 2: Table S1).

Deterministic processes control local community
composition of the North China Plain
Across all sites, we found that values of standardized ef-
fect sizes of MNTD (NTI) calculated using the null
model were negative (Additional file 1: Figure S2, P <
0.05), suggesting bacterial communities within samples
were more influenced by niche processes than dispersal
limitation. In addition, based on the AIC values, the fit-
ness of ZSM, pre-emption, broken stick, log-normal,
and Zipf–Mandlebrot models were compared to in-
vestigate which processes were important in shaping
bacterial community structure. The results showed
that the Mandlebrot model best fitted the data for
NCP soils (Additional file 1: Figure S3), which is con-
sistent with the MNTD analysis and indicates that
the main driving process at the local scale was in ac-
cordance with the niche-based theory.

Deterministic and stochastic processes have different
roles in controlling community dynamics at different
spatial scales
In general, we found that the soil bacterial community
decreased in similarity with increasing spatial distance
and increasingly environmental dissimilarity (Additional
file 1: Figure S4). In order to establish which process
controls community dynamics at different spatial scales,
βNTI values were determined. The results showed that
the stochastic process was dominant at scales 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, and 13 (Table 1; Fig. 1; values > − 2
and < 2). Among these scales, 1, 2, 3, and 4 are at the
small spatial scale, while 5, 6, 7, 8, 9, 10, and 11 are at
the medium spatial scale. At the large spatial scale (>
800 km), all scales except scale 13 were dominated by
deterministic processes (values < − 2), which had a strong
impact on the phylogenetic turnover pattern across the
sites. After quantifying the relative contribution of deter-
ministic and stochastic process for each spatial scale (the
proportion ofβNTI values > − 2 and < 2 andβNTI values
< − 2 and > 2), we found that deterministic process pro-
vided over 50% contribution at scales 12, 14, 15, and 16,
while stochasticity provided over 50% contribution at the
small and median scales (Table 1).
We compared the relative role of deterministic and

stochastic processes between the North China Plain and
Tibetan Plateau at different spatial scales. On the Ti-
betan Plateau, stochastic processes were dominant at

Table 1 Variation in median βNTI values at different spatial
scales and the relative contribution (%) of deterministic and
stochastic process in each spatial scale of the North China Plain

Spatial
scale

Spatial distance
(km)

Median βNTI
values

Deterministic(%) Stochastic(%)

1 35.58 − 1.41 34.05 65.95

2 106.16 − 1.44 33.94 66.06

3 176.75 − 1.54 36.53 63.47

4 247.33 − 1.66 39.94 60.06

5 317.91 − 1.7 41.23 58.77

6 388.5 − 1.57 37.36 62.64

7 459.08 − 1.58 38.37 61.63

8 529.66 − 1.52 35.63 64.37

9 600.25 − 1.56 38.83 61.17

10 670.83 − 1.58 38.17 61.83

11 741.42 − 1.59 38.66 61.34

12 812 − 2.42 59.86 40.14

13 882.58 − 1.44 34.73 65.27

14 953.17 − 2.39 53.09 46.91

15 1023.8 − 2.83 74.69 25.31

16 1094.3 − 2.74 61.11 38.89

Spatial scale values in bold indicate that stochastic processes are dominant,
while normal font indicates that deterministic processes are dominant
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scales 1 and 2 (Additional file 1: Figure S5; Additional
file 2: Table S3; values > − 2 and < 2), while deterministic
processes were dominant at scales 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, and 14 (Additional file 1: Figure S5). Among
these scales, 1, 2, and 3 are at small scale, while 4, 5, 6,
7, 8, 9, and 10 are at medium spatial scale. Scales 11, 12,
13, 14, and 15 are at large spatial scale (> 800 km)
(Additional file 2: Table S3). This indicated that deter-
ministic process provided over 50% contribution at
medium and large scales on the Tibetan Plateau,
while in the North China Plateau, deterministic pro-
cesses were only dominant at large scales.

Deterministic factors in soil bacterial community
distribution of the North China Plain
In order to visualize the soil bacterial distribution pat-
tern, bacterial community composition in wheat soils
across the NCP was represented using non-metric multi-
dimensional scaling plots based on Bray–Curtis dissimi-
larity (Fig. 2). The ordination plot clearly indicates that
soil bacterial community composition across the NCP is
distributed according to the soil pH gradient. This inter-
pretation was confirmed by correlation analyses between
Bray–Curtis distances and soil pH using the Mantel test
(r = 0.8, p = 0.001, Additional file 2: Table S4), DistLM

Fig. 1 Scatter plot of βNTI values grouped by spatial scales of the North China Plain. Dash blue lines represent the median value of each scale

Fig. 2 Bacterial community compositional structure in the North China Plain (NCP) wheat soils, as indicated by non-metric multidimensional scaling
plots. Sites are color-coded according to the soil pH gradient
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(Additional file 2: Table S5) and Multivariate Regression
Trees (MRT; Additional file 1: Figure S6). In addition to
soil pH, other soil factors such as magnesium (Mg), cal-
cium (Ca), total phosphorus (TP), total potassium (TK),
manganese (Mn), arsenic (As), potassium (K), cadmium
(Cd), zinc (Zn), available phosphorus (AP), and Ferrum
(Fe) also showed a significant relationship with the soil
bacterial community (Additional file 2: Table S4). Re-
gardless of Bray–Curtis dissimilarity, we found that
bacterial phylogenetic diversity (PD), OTUs, Chao1,
Shannon, and Simpson E indexes, which represent the
α-diversity, were significantly increased with increasing
soil pH and TP, with soil pH having the strongest influ-
ence on bacterial diversity (Fig. 3), followed by Mg, Ca,
TP, Cd, and EC (electrical conductivity). Other factors
such as organic carbon (OC), total nitrogen (TN), dis-
solved organic carbon (DOC), and Mn were negatively
correlated with bacterial diversity (Additional file 2:
Table S6). Together, these results strongly suggest that
soil pH is a key factor controlling soil bacterial commu-
nity structure and diversity across the NCP.
Interestingly, when we included the mean annual pre-

cipitation (MAP) and mean annual temperature (MAT)
from World Clim-Global Climate Data (www.worldcli-
m.org), and the Mantel test, both MAP (r = 0.54, p =
0.001) and MAT (r = 0.28, p = 0.001) showed a signifi-
cant relationship with the soil microbial community
composition (Additional file 2: Table S7).

Contribution of environmental and spatial parameters to
variation in soil microbial community of the North China
Plain
As shown in Fig. 4, 23.9% of variation in the unde-
trended soil microbial data (see “Method” in [53] and

the modified diagram illustrating the variance partition-
ing outputs of the PCNM analysis in Additional file 1:
Figure S9 in the supporting information of [43]) could
be explained by environmental factors, linear trend, and
spatial scale. Spatial scale plus linear trend contributed
4.1% of variation in soil microbial data, and

Fig. 3 Relationship between soil pH and bacterial phylogenetic diversity of the North China Plain

Fig. 4 The contribution of environmental and spatial parameters
calculated based on Variance Partitioning Analysis integrated with
PCNM spatial scales analysis (North China Plain). Variance partitioning
(percentage of total variance) of undetrended soil bacterial distributions
across the 27 NCP sites into a pure environmental component (upper
left-hand orange circle), a pure trend (latitude) scale (upper right-hand
blue circle), and a pure broad spatial scale derived from the PCNM
spatial components and their covariation (lower purple circle)
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environmental soil factors accounted for 19.7% (12.3%
was spatially structured). Also, 6.6% could be attributed
to the interaction between environmental variables and
spatial parameters (Fig. 4), demonstrating the strong in-
fluence of spatial scale and environmental variables.
However, a large proportion of the variation (76.1%)
across all bacterial data could not be explained by model
parameters or by interactions between them.

Discussion
Is determinism more important at larger scales? In our
study, we found that on more local scales, the soil mi-
crobial community of the North China Plain (starting at
around 35 km separation between samples) is more
strongly influenced by stochastic factors such as eco-
logical drift, mutation, and random births-deaths [4, 54,
55], compared with larger scales (up to 1094 km separ-
ation). By comparison in the natural ecosystem of the
Tibetan Plateau, stochastic process only dominated at
scales of less than 130 km (Additional file 1: Figure S5).
There is some variability in the results either side of the
borderline (βNTI -2) as scale increases, but upon com-
paring the results at different scales by regression, there
is an overall trend towards determinism at broader scales
(Fig. 1). There is, however, a clear jump in βNTI towards
values below − 2, at scales beyond about 800 km separ-
ation between data points (Fig. 1). These findings are con-
sistent with our prediction that deterministic influences
are more likely to dominate at a larger scale, since deter-
ministic structuring provided by strong environmental
gradients, which require distinct niches and adaptations
for survival, is more likely to be present. Among the most
clearly identifiable deterministic structuring factors was
soil pH (Fig. 2). Thus, the effect of spatial scale on the
relative importance of determinism and stochasticity was
broadly as predicted. If two places are so environmentally
distinct that few of their bacterial OTUs are interchange-
able, differences in their community composition are pre-
dictable and can be assigned to deterministic processes. It
is only at the local scale, where the environment is
homogenous enough that most OTUs can survive every-
where, that stochastic effects begin to dominate. These
findings are also consistent with other βNTI studies inves-
tigating the driving processes in aquatic habitats [45] or
seawater ecosystems [56].
In a succession study involving stable local scale con-

ditions, stochasticity appeared to dominate [5, 57]. Simi-
larly, in a PCNM study in a cool temperate forest
ecosystem by Bahram et al. [58], eukaryote community
variation was dominated by stochasticity at a local scale.
The forest site in this previous study was also a
homogenous environment in which stochasticity is likely
to dominate. Thus, it is not surprising to find stochasti-
city playing a relatively important role at the local scale,

especially in habitats that are fairly homogenous with
few environmental differences to drive deterministic
niche differentiation [59, 60]. Compared to the wide ex-
panse of flat land of the North China Plain, the Tibetan
Plateau had more varied terrain and habitats [21], which
would be expected to give greater heterogeneity in the
Tibetan Plateau soil. Thus, determinism began to dom-
inate at the somewhat smaller spatial distance of 207 km
on the Tibetan Plateau and continued to dominate up to
1200 km.
On broader scales, it appears that stochastic processes

have relatively less influence on microbial assemblages,
and determinism instead dominates [61]. At the local
scale across variable environments, Schmidt et al. [62]
reported that deterministic processes play a dominant
role in bacterial community assembly, with bacteria
exhibiting strong habitat associations. Our present study
further confirms that stochasticity tends to dominate at
a more local scale and becomes progressively more im-
portant at larger spatial scales. Even the smallest scale in
the present study is relatively broad compared with
many previous studies, and it would be interesting to ex-
pand the scale range to include samples separated by
centimeters or meters and ranging up to thousands of
kilometers.
What deterministic environmental factors produce the

observed patterns? Mantel test analysis revealed that the
major deterministic factors causing trends in soil bacterial
community composition are soil pH and to a slightly lesser
extent Mg, Ca, TP, TK, and climate factors (MAP-mean
annual precipitation, MAT-mean annual temperature;
Additional file 2: Tables S4 and S7). It is clear that various
trace elements could influence the microbial diversity and
community, such as the compound variable Cu/As/Ca
[63], mixtures of Cu2+, Zn2+, Fe2+ and I− [64], Fe [65] and
Ca [66]. Taking Mg and Ca for example, Sagova-
Mareckova et al. found that the abundance of soil Actino-
bacteria was positively correlated with these two factors
[67]. While some of these factors, especially pH, have a de-
tectable influence even at scales where βNTI suggests that
stochasticity dominates, their influence is stronger at larger
scales. Other studies have reported similar results [17,
18]. It is interesting that βNTI jumps at scales be-
yond about 800 km. As shown in the soil pH map of
the study region (Additional file 1: Figure S7A;
Additional file 2: Table S8), any linear distance of
800 km crosses between the large alkaline soil area of
the northern section of the NCP, and the acidic soil
area of the south (not obvious for MAP and MAT
maps; Additional file 1: Figure S7B and C). It appears
logical that there will be a dramatic increase in the
role of determinism when the sampling scale is suffi-
cient to include communities from both pH environ-
ments in the same calculation of βNTI.
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How much of the variation in soil microbial commu-
nity can be explained? In our study, 77.5% of variation
in the soil microbial community could not be explained
by soil variables (16.2%) and spatial parameters (6.3%),
consistent with a previous study in which only 27% of
the variation in a Burkholderia ambifaria bacterial com-
munity could be explained by environmental and spatial
factors through a patchy agricultural field [68]. Similarly,
in a forest soil, Zhou et al. [69] found that 20.7% of the
soil microbial community composition could be ex-
plained by environmental heterogeneity, 18.3% by geo-
graphic distance, and 5.8% by their interactions. In
Arctic soils, Shi et al. [43] found that only 12% of vari-
ation in functional community composition could be ex-
plained by spatial distance and only 3% by identified
environmental factors. The reasons for unexplained vari-
ation include phylotype immigration, mutations, and ex-
tinction rates, all classified as stochastic process [14, 70].
By contrast, based on niche theory, deterministic pro-
cesses are predominant even at larger scales, while
stochastic process (unmeasured variables) are also of pri-
mary importance and contribute to variation in soil
microbial communities [60]. This suggests that both
deterministic and stochastic factors affecting microor-
ganisms should be considered when regulating and man-
aging the soil microbial community to improve soil
fertility and production in cropland systems.

Conclusions
Our study revealed that the relative importance of sto-
chasticity and determinism in soil bacterial communities
varies according to spatial scale, with determinism play-
ing a greater role at broader scales in the arable land of
the North China Plain. Likewise, in natural ecosystems
of the Tibetan Plateau, stochastic processes typically
dominate on a small scale, while determinism plays a
greater role at medium and broader scales. These results
are as might be expected given the greater environmen-
tal heterogeneity that exists at broader scales, which af-
fords greater opportunities for niche differences to
support distinct communities. However, it is important
to confirm such predictions through testing and obser-
vation. We covered a broad range of spatial scales in a
relatively simple, standardized system, allowing trends to
emerge more clearly. It would be interesting to extend
such studies to a broader range of spatial scales, espe-
cially the very local scale (< 1 km) not studied in this
work, and also to natural and semi-natural systems.
Large-scale intensive cultivation with high chemical

input homogenizes soil structure and quality to a certain
extent, resulting in soil conditions that are similar at a
relatively small scale. This may explain why determinis-
tic processes dominated at a large scale. These anthropo-
genic practices ultimately reduce ecosystem services

such as pollination, resulting in a reduction in grain
yield. Our findings remind us to not only consider soil
microbial conditioning during agricultural soil manage-
ment, for example in the targeting of fertilizers, but also
to focus on scale effects and use different approaches at
different scales.

Methods
Sample collection
The NCP region in this study extends from 30° N to 40°
N, and 109° E to 122° E. This area is an important agri-
cultural area in China and has supported 40 years of
winter wheat and summer corn rotation [71]. The top-
ography of this area is flat, and the altitude of most parts
is below 50 m above sea level. The region has a warm
temperate monsoon climate, with an average annual
temperature of 8–15 °C, and the average annual precipi-
tation is 500–1000 mm. The soils from all the sampling
sites were classified as Ochric Aquic Cambosols (Chin-
ese soil taxonomy) in our study [48].
To survey the soil bacterial distribution of wheat fields

across the NCP, we collected 243 soil samples from 27
sites (Additional file 1: Figure S8) during the winter sea-
son (the 20th to the 30th of November 2014). At each
site, we sampled nine plots about 3.3 km apart within
100 km2 (Additional file 1: Figure S8) and collected 12
cores per plot at a depth of 0–15 cm, which were subse-
quently combined as single samples and stored in ice
boxes. Our locations covered 300,000 km2 (Additional
file 1: Figure S7; Additional file 2: Table S8) from main
yield wheat districts. All soil samples were delivered on
ice (4 °C) to the laboratory as soon as possible, where
they were sieved through a 2 mm mesh and divided into
two subsamples, with half stored at 4 °C for determin-
ation of physical and chemical properties, and the other
half stored at − 20 °C prior to DNA extraction.

Soil biogeochemical analysis
Soil pH was determined using a fresh soil to water ratio
of 1:5 using a pH monitor (Thermo 0rion-868, MA,
USA). Soil moisture was measured gravimetrically after
a 16-h desiccation at 105 °C. Soil samples for C and N
analyses were air dried (2 mm mesh), handpicked to re-
move plant litter and fine roots, and ground. Total soil
C and N content for each plot were determined by com-
bustion (2400 II CHNS/0 Elemental l Analyzer, Perkin-
Elmer, Boston, MA, USA). Dissolved organic carbon
(DOC) and dissolved total nitrogen (DTN) were ex-
tracted by adding 50 ml of 0.5 MK2SO4 to 10 g fresh
soil, shaking for 1 h, and vacuum filtering through a G4
glass fiber filter with a pore space of 1.2 μm (Fisher).
DOC and DTN were determined using a total organic
carbon-total nitrogen (TOC-TN) analyzer (Shimadzu,
Kyoto, Japan). Ammonium (NH4

+) and nitrate (NO3
−)
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concentrations in extracts were assessed colorimetrically
by automated segmented flow analysis (AAIII; Bran and
Luebbe, Germany) using the salicylate/dichloroisocyanu-
ric acid and cadmium column/sulfanilamide reduction
methods, respectively. Through HF and HClO4 diges-
tion, total potassium (TK) was determined by flame pho-
tometry (FP640, INASA, China), while total phosphorus
(TP) was determined using the molybdenum blue
method. Available potassium (AK) was determined in
1 M ammonium acetate extracts by flame photometry
(FP640, INASA, China). Soil available phosphorus (AP)
was extracted by 0.5 M NaHCO3 and determined using
the molybdenum blue method. Organic carbon was de-
termined according to potassium dichromate oxidation
titration. Soil electric conductivity was determined by a
conductivity monitor using a dry soil to water ratio of
1:5 (Thermo 0rion-868, MA, USA). Soil samples were
air dried and homogenized by grinding in an agate mor-
tar and then passed through a 0.149 mm sieve to analyze
the elements. These samples (~ 0.4–0.5 ± 0.0001 g) were
digested with nitric acid (HNO3), hydrofluoric acid (HF),
and perchloric acid (HClO4) (5 mL: 10 mL: 5 mL) on a
hot plate. Soil total Mg, Ca, K, and Fe were measured
with an ICP-AES Optima 8000 (Perkin-Elmer, Waltham,
MA, USA), while total Cd, chromium(Cr), Mn, cop-
per(Cu), Zn, plumbum (Pb), and As were measured with
an HPLC-ICP-MS (7700X, Agilent, USA). A certified soil
reference material (GBW07408, National Research Cen-
ter for Certified Reference Materaials, China) were used
to ensure that the accuracy of the analytical data and the
accuracy ranged from 93.9 to 107.4%. All soil variables
are described in Additional file 2: Table S9.

Molecular analyses
Total soil nucleic acids from each plot were extracted and
purified using a Power Soil DNA kit (MO BIO, Carlsbad,
CA, USA) followed by an Ultra Clean 15 DNA purifica-
tion kit (MO BIO, Carlsbad, CA, USA) and stored at −
40 °C. DNA concentration was quantified with a Nano
Drop ND-1000 spectrophotometer (Thermo Scientific,
USA), and DNA was diluted to approximately 25 ng/μl
with distilled water and stored at − 20 °C until use. V4
hyper-variable regions were amplified using a common
primer set (515F, 5′-GTGCCAGCMGCCGCGGTAA-3′;
806R, 5′-GGACTACHVGGGTWTCTAAT-3′) combined
with adapter sequences and barcode sequences (most bac-
teria and a few archaea) [72]. Each sample was amplified
in triplicate in a 50 μl reaction under the following condi-
tions: 30 cycles of denaturation at 94 °C for 30 s, annealing
at 55 °C for 30 s, and extension at 72 °C for 30 s, with a
final extension at 72 °C for 10 min. PCR products from
each sample were pooled and purified using a QIAquick
PCR purification kit (Qiagen) and quantified using a Nano-
Drop ND-1000 spectrophotometer (Thermo Scientific,

USA). PCR products were combined in equimolar ratios in
a single tube and run on two lanes of a 2 × 151 bp sequen-
cing run on an Illumina MiSeq [73].
Raw data were processed and analyzed as previously

described using the QIIME software package [68] and
following the workflow at http://nbviewer.ipython.org/
github/biocore/qiime/blob/1.9.1/examples/ipynb/illumina_
overview_tutorial.ipynb. Briefly, sequences were quality
filtered (max value of 0.5) and clustered into 97% similar
phylotypes after removing singleton sequences. The taxo-
nomic identity of each phylotype was identified using the
Ribosomal Database Project classifier [74] which was
trained on the Greengenes 13_8 16S rRNA database [75].
To rarify all data sets to the same level of sampling effort,
20,005 sequences were randomly selected.

Statistical analyses
The Faith index was calculated to represent phylogenetic
diversity (PD) [76]. OTU-level measurements were
assessed by the Shannon index [77]. Rarefied out collec-
tions were used to calculate richness (i.e., OTUs, the
number of phylotypes), and Chao1 [78] and Simpson
[79] indexes were also calculated. These indexes were
calculated based on OTU-table and used as α-diversity
in this study (Additional file 2: Table S10). Pearson cor-
relation between bacterial α-diversity indices and soil
characteristics were conducted using SPSS 20.0 for Win-
dows. Cluster analysis was performed using the Un-
weighted Pair Group Method with Arithmetic Mean
(UPGMA) clustering method based on Bray–Curtis dis-
similarity. Mantel tests were conducted between Bray–
Curtis distance and soil variables using the vegan pack-
age [80] in R [81]. Corresponding precipitation and
temperature data for the NCP area were acquired from
www.worldclim.org, based on 1970–2000 mean annual
temperature and precipitation. Corresponding mean an-
nual temperature (MAP) and mean annual precipitation
values for each site were extracted according to the sam-
pling coordinates. Mantel tests were conducted between
Bray–Curtis distance and climate factors using the vegan
package [80] in R [81]. The mvpart package in R and
Multivariate Regression Tree (MRT) plots were used to
identify key environmental variables influencing the
community. Non-metric multidimensional scaling ana-
lyses were performed using vegan of R 3.2.0 [81] based
on the Bray–Curtis index [82], and soil pH was fitted
using vegan in R. Distance decay curves were calculated
according to Nekola and White [83] using spatial
distance (calculated by geographical coordinates) and
microbial community similarity among samples. Envir-
onmental distance fitted to microbial community simi-
larity was calculated using soil variables based on the
Euclidean method [84].
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Process analysis
In order to evaluate the phylogenetic community com-
position within each sample, mean nearest taxon dis-
tance (MNTD) for each sample was calculated [4, 55].
To identify processes driving soil microbial community
composition within a sample, the ses.MNTD (standard-
ized effect size measure MNTD), which quantifies the
number of standard deviations of the observed MNTD
values, was used to test for niche or dispersal limitations
[85]. When ses.MNTD values are negative and quantiles
are low (P < 0.05), co-occurring species are more affected
by phylogenetic clustering than dispersal limitation. In
this study, the ses.MNTD is the Nearest Taxon Index
(NTI). By contrast, positive values and high quantiles
(P > 0.95) indicates that co-occurring species are more
affected by dispersal limitation than phylogenetic clustering
[85]. βMNTD and βNTI (standard deviations of βMNTD)
were calculated as previously described [4]. Briefly, if βNTI
values are βNTI > 2 or βNTI < − 2, deterministic processes
are important in shaping the community composition
across all sites, whereas if βNTI values are between − 2 and
2, stochastic processes will play an important role. All
MNTD analyses were conducted using Picante 1.2-0 [86]
in R (http://www.r-project.org). The standardized effect
size measure (ses.MNTD) quantifies the number of stand-
ard deviations of the observed MNTD from the mean of
the null distribution (999 randomizations).
In order to confirm whether the niche or neutral pro-

cesses determined the soil microbial structure within a
sample, the zero-sum multinomial (ZSM) method was
employed [16]. According to neutral theory, the rank
species abundance distribution is consistent with ZSM
[14]. Additionally, according to niche theory, pre-
emption, broken stick, log-normal, and Zipf–Mandlebrot
models [87–89] were selected to identify the rank spe-
cies abundance distributions and were calculated using
the “radfit” function in the vegan package in R [81, 90].
The ZSM model was conducted using TeTame [91]. All
models were compared based on the Akaike Information
Criterion (AIC), which measures the relative quality of a
statistical model. AIC values were calculated based on
the equation AIC = − 2 log-likelihood þ2 × npar, where
npar is the number of parameters in the fitted model
[92]. A lower AIC value indicates a better fit of the
model to the empirical data [93].
In order to investigate the relative role of deterministic

or stochastic processes at different spatial scales, the
Principal Coordinates of Neighbor Matrices (PCNM)
analytical approach was performed, which is able to
deconvolute total spatial variation into a discrete set of
explanatory spatial scales [94]. In addition, the PCNM
method was used to classify large, medium, and small
spatial scales [43] by first separating the whole sampling
site into different spatial scales, then pair to pair

comparison was used to form groups based on βNTI
values. Due to the distribution of βNTI values within
each scale were skewed, Kruskal–Wallis method was
chose to test the differences in βNTI median values
across the scales [4, 95]. The tested result showed that
βNTI median values were significantly different across the
spatial scales (chi-square = 427.1132, df = 15, p ≪ 0.0001,
wheat field; chi-square = 366.0829, df = 14, p ≪ 0.0001, Ti-
betan Plateau samples).The procedure for determining the
relative role of deterministic and stochastic process in
each spatial scale was presented by a conceptual diagram
(Additional file 1: Figure S9). We also compared the nat-
ural soils on the Tibetan Plateau (covered more than
1,000,000 km2 and all of the major climate zones and
grassland types) to the agricultural soils in North China
Plain. The Tibetan Plateau sites description and the high
throughput data analysis were well described by Jing et al.
[96]. Briefly, we sampled 180 soil samples (0–5 cm, 60
study sites, three plots, 40 m apart in each site) during
growing season of 2011. In each plot, 5–7 soil cores (5 cm
in diameter) were collected and mixed as one sample. For
the locations’ information, please see Additional file 2:
Table S11. The investigation of the relative role of deter-
ministic or stochastic processes at different spatial scales
for Tibetan Plateau soils followed the conceptual diagram
(Additional file 1: Figure S9).

Contribution analysis
In order to evaluate the effects of space and environ-
mental soil parameters on soil bacterial distribution,
variance partitioning analysis was conducted by combin-
ing the PCNM output with a modified variation parti-
tioning diagram, as described by Legendre et al. [97] and
Borcard et al. [36], using the “varpart” function in the
vegan package [90]. Each part of the variation partition-
ing diagram is described in Additional file 1: Figure S9
of a previous report [43]. All analyses were performed
using R version 3.0.1.

Additional files

Additional file 1: Figure S1. Relative abundance of dominant bacterial
phyla/classes and archaeal phyla across the soils (North China Plain). Soils
are grouped by sampling sites. Figure S2. Variation of the standardized
effect sizes of MNTD (ses.MNTD) of bacterial communities within each
site in the North China Plain soils. Figure S3. Boxplots of AIC values for six
rank abundance distribution models. AIC, Akaike Information Criterion; ZS,
zero-sum multinomial; Nu, Null model; Pr, Pre-emption; Lo, Log normal;
Zipf, Zi; Ma, Mandlebrot (North China Plain). Figure S4. Distance-decay
curves of similarity for bacterial communities. Environmental distance
(presented as a color gradient) were fitted to bacterial community similarity
(North China Plain). Figure S5. Scatter plot of βNTI values grouped by spatial
scales (Tibetan Plateau). Dash blue lines represent the median value of each
scale. Figure S6. Multivariate Regression Tree (MRT) analysis indicating soil
pH constraints on soil bacterial community (North China Plain). Figure S7.
Soil sampling locations based on soil pH (A), precipitation (B), and
temperature (C) maps. Maps including corresponding soil pH across
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the NCP were acquired from http://www.soil.csdb.cn/, and corresponding
annual mean precipitation and temperature data were acquired from
www.worldclim.org for years 1970 to 2000. Figure S8. Locations of sampling
map and quadrat sets of North China Plain. Figure S9. The conceptual
diagram for determining the relative role of deterministic and stochastic
process in each spatial scale. (DOC 6052 kb)

Additional file 2: Table S1. Relative average abundance of bacterial
phyla classified with RDPII taxonomy using the Greengenes database
(http://greengenes.lbl.gov/) across all soils. (North China Plain). Table S2.
Relative average abundance of dominant bacterial group classified with
RDPII taxonomy using the Greengenes database (http://greengenes.lbl.gov/)
across all soils (North China Plain). Table S3. Variation in median βNTI
values at different spatial scales and the relative contribution (%) of
deterministic and stochastic process in each spatial scale (Tibetan Plateau).
Table S4. Correlation between soil characteristics and bacterial community
structure determined by Mantel tests (P < 0.05, permutation = 999) (North
China Plain). Table S5. Variance of bacterial community explained by soil
characteristics (North China Plain). The percentage of explained variance of
each variable was calculated by DistLM forward3 (P < 0.05, permutation =
999). Significant values are in bold. For the abbreviations, please see Table
S4. Table S6. Pearson correlation between bacterial α-diversity indices and
soil characteristics with rarefaction of 20,005 sequences per sample (North
China Plain). Significant values are in bold. For the abbreviations, please see
Table S4. Table S7. Correlation between climate factors and bacterial
community structure determined by Mantel tests (P < 0.05, permutation = 999)
(North China Plain). Significant values are in bold. Table S8. Geographic
coordinates of sampling sites. Coordinates are shown using the WGS-84
coordinate system. Table S9. Soil physiochemical characteristics among all
sampling sites. Values in brackets denote standard deviation (North China
Plain). For the abbreviations, please see Table S4. Table S10. Alpha diversity
of all sampling sites with rarefaction of 20,005 sequences per sample (North
China Plain). Table S11. Location information of sampling sites in Tibetan
Plateau. In addition, the followed annotations and the abbreviations of
tables can be the footnotes of the tables. (ZIP 551 kb)
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