
 

 

 
1. Introduction 
 

Structural Health Monitoring (SHM) using non-
destructive, low-cost and reliable techniques has been one 
of the trending research areas because of the development 
in sensors and materials. Developing and implementing a 
functional and robust damage detection strategy has become 
a pivotal aim for researchers in the last decades. Techniques 
should be able to match a certain set of characteristics in 
order to be welcomed and applied widely, such as being fast 
in detection, non-destructive, global and automatic (Ciang, 
Lee, & Bang, 2008). Furthermore, they should be reliable 
and low-cost under service condition to be economically 
convenient, as SHM is intended to minimize time and cost 
of maintenance. Preventing unnecessary, expansive and in 
some cases even dangerous inspections while avoiding 
breakdowns or stops is the main goal of researchers in this 
field. Thus, another requirement is the ability to perform 
continuous monitoring of current situation, with constant 
sampling and updates.  

In the last years, several authors explored a kaleidoscope 
of techniques to find the most suited ones. However, most 
of them are characterised by both pros and cons. Acoustic 
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emission events detection methods (AE monitoring) proved 
to be very powerful for damage detection, but not as good 
for damage assessment (Ciang et al., 2008). Thermal 
imaging is a fast method, but also limited to near-to-surface 
defects and expensive, if, as in most cases, passive approach 
thermography is not possible and an external stimulus 
source is needed. Other methods such as ultrasonic 
investigations, X-radioscopy, Eddy currents or similar, are 
limited by being point-by-point techniques, useful only for 
local inspection.  

Modal-based approaches have been the earliest to 
emerge and even now they remain the most common and 
used for damage detection (Boscato, Russo, Ceravolo, & 
Zanotti Fragonara, 2015; M. Civera, Surace, & Worden, 
2017; Farrar & Worden, 2007). Indeed, they satisfy most of 
the aforementioned demands: being modal parameters 
functions of physical properties, a simple and global 
comparison between the current dynamic response and the 
expected one for the pristine structure can be performed at 
any given moment. In doing so, any change can be linked to 
damaged conditions. Thus a robust and reliable analysis 
procedure can be achieved by using cheap, simple and 
common sensor systems. 

This paper is focused on bispectral analysis, that has 
already been applied successfully to different cases, like 
fixed offshore structures (A J Hillis & Courtney, 2011), 
concrete facilities (Xiang & Tso, 2002), cracks or similar 
(Chen, Hagiwara, Su, & Shi, 2002; Andrew J Hillis, Neild, 
Drinkwater, & Wilcox, 2006; Salawu, 1997). According to 
that, damage detection by using higher-order spectral 
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analysis (HOSA) can be definitively assumed as a reliable 
method and particularly suitable for the application, due to 
its insensitivity to white Gaussian noise (Akan & Ünsal 
Artan, 2003; Nikias & Mendel, 1993)   and its tested 
ability to carry information even across difficult external 
conditions.  (Roy, Kumar, & Bahl, 2002) 

In spite of this, damage detection itself is not enough for 
SHM. Once defects have been spotted, further analyses 
about damage localisation, quantification and classification 
are required as forward steps of damage assessment. This 
work is thus focused on damage localisation as a method to 
improve the rapidity and precision of maintenance 
intervention after fault has been disclosed. Modal 
information has already been used in literature for damage 
localisation, but only considering local changes in modal 
stiffness or in modal mass (J.-T. Kim & Stubbs, 2002). 
Thus, this proposed method can hardly be applied to 
realistic cases in which natural noise could affect the 
processed signals. 

In this paper, preliminary numerical validation on the 
capability of a new technique based on bispectrum to 
localise damage is presented. The simulations are based on 
a FE model of a 4-meters-long cantilever beam where a 
breathing crack has been placed in different positions. The 
technique has been validated using various white-noise 
excitations, supposed to be applied with a shaker close to 
the free extremity of the cantilever beam. The choice of a 
simple cantilever beam was done according to two main 
reasons. Firstly, this type of basic structure could be seen as 
a first generic concept of more complex structural systems, 
such as aircraft wings, wind turbine blades, etc. Secondly, 
FE models are always affected by imperfections and 
deviation from the real-world behaviour of modelled 
elements. These undesirable effects become more and more 
predominant and dangerous as the FE model becomes more 
complex. The cantilever beam is by default one of the safest 
choices when dealing with new approaches. Being the 
method validated on it, if the technique does not depend on 
a particular behaviour linked to its particular geometry there 
are no reasons to neglect a priori its extension to different, 
more complex structures.  

In this study, white Gaussian noise has been chosen 
since it should maximise the detection capabilities of the 
bispectrum. Some early results were also reported in 
(Marco Civera, Zanotti Fragonara, & Surace, 2016); even if 
several improvements and slight changes on the approach 
have been implemented since then – as feature selection, for 
example – the basic idea suffered no changes. These 
enhancements increased substantially the capacity and the 
reliability of this novel method, which was already very 
promising. 

Regarding the sort of damage investigated, “breathing” 
crack – also known as “opening” type of crack – can be 
seen as a functional representation of a broad range of 
damages due to fatigue. For this type of irregularities, the 
high sensitivity of vibration diagnostics, based on the use of 
non-linear effects, has already been proved in literature on 
beam-like structures (A. Bovsunovsky & Surace, 2015). 
Indeed, nonlinear distortions of vibrations recorded around 
super-harmonic and subharmonic resonances are seen as 

well-performing indicators of crack presence (Ruotolo, 
Surace, Crespo, & Storer, 1996) and have been applied 
extensively thenceforth (A. P. Bovsunovsky & Surace, 
2005)(Pugno, Surace, & Ruotolo, 2000)(A. P. Bovsunovsky, 
Surace, & Bovsunovsky, 2006).  

Several authors investigated the breathing crack 
problem resorting to different strategies in order to model 
the non-linear dynamics of the problem. For instance, some 
authors referred to plate/shell finite elements for studying 
the damaged cross-section (Chati, Rand, & Mukherjee, 
1997) or to beam elements enriched of bilinear springs 
(Sundermeyer & Weaver, 1995). Solid- and beam- based 
models differ in terms of the number of elements used; both 
have been applied successfully to analyse the structural and 
dynamic behaviour of beams (Chandrashekhara & Bangera, 
1993; Macneal & Harder, 1985; Michel, Hans, Guéguen, & 
Boutin, 2007). Solid models allow to focus on fissure real 
3-D geometry (Gerstle, Martha, & Ingraffea, 1987; Martha, 
Wawrzynek, & Ingraffea, 1993), while modelling 
discontinuities as bilinear springs connecting pristine parts 
of the beam is widespread in dynamic state-of-the-art 
research (Kisa & Gurel, 2006). These devices are capable of 
carrying axial, shearing and bending effects, suitable for 
representing beams as one-dimensional continuum 
(Chondros, Dimarogonas, & Yao, 1998). However, a 3-D 
solid model with contact elements was preferred by the 
authors, due to their capacity of suiting the true geometry of 
the model and their documented reliability (Belytschko, 
Liu, Moran, & Elkhodary, 2013).  

The dynamic response of the cantilever beam to the 
aforementioned Gaussian-distributed random noises has 
undergone the HOSA and the corresponding bispectra were 
thus computed. Then, by considering separately the various 
parts of these – real, imaginary, magnitude and phase, taken 
individually or paired, as will be explained deeper further 
on –  a classification system based on neural network has 
been trained to localise the damage. 

The paper is organized as follows: in Section 2 the 
theoretical background of Higher-Order Spectral Analysis is 
briefly discussed; in Section 3 the Finite Element model and 
the non-linear analyses carried out are described; in Section 
4 obtained bispectra are shown and examined; in Section 5 
the optimisation methodology for the neural network 
(NN)’s architecture and parameters is presented; in Section 
6 the performance of the NN, with respect to the several 
option investigated, is reported and discussed, according to 
the various components of the bispectral data; in Section 7 
the performance of the NN for some new cracks, located in 
positions not corresponding to any of the previous ones 
used for training, is also tested; finally in Section 8 the 
identified results of damage localisation will be interpreted 
and conclusions about them will be exposed. 

 
 

2. Bispectral Analysis 
 
The Bispectrum represents the two-dimensional Fourier 

transform of the second-order correlation function 
C(τ1, τ2) = E[x(t)x(t + τ1)x(t + τ2)], where E denotes the 
expectation operator. In turn, this correlation function is 
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defined in terms of a third-order product moment. This 
leads the bispectrum itself to be a cubic (third-order) 
spectral density. Its most intuitive representation is in the 
frequency-domain, and is represented by equation (1):  

 

( )
( ) ( ) ( )
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1 *lim 1 2 1 2

B f f

E X f X f X f f
T T

=

+
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(1) 

 
where B represents the bispectrum evaluated at the two 

frequencies 𝑓𝑓1 and 𝑓𝑓2, X(f) is the Fourier transform of a 
generic process x(t) and the symbol * (asterisk) denotes 
complex conjugation. Thus, it can be seen as the product of 
these three spectral components. The bispectrum most 
notable ability is to provide information about the skewness 
(or asymmetry) of a given process, whereas power spectra 
(that is, second-order cumulants) are “phase-blind” and can 
only describe linear mechanisms. The bispectrum was 
firstly introduced for signal processing in the field of wave-
wave interaction, by (Y. C. Kim & Powers, 1978).  

Ideally, the bispectrum returns non-zero values when 
phase coherence –  due to any sort of nonlinear or 
parametric interaction – exists in a continuous spectrum 
(Greb & Rusbridge, 2000). In fact, the purpose of its very 
first use was to discriminate between nonlinear interactions 
and spontaneously excited independent modes by 
estimating the degree of phase coherence between them. To 
cite Kim & Powers’ own example, given three waves 
defined by their frequencies (ω1, ω2, ω3) and wavenumbers 

(k1, k2, k3), the resonance conditions are (a) ω1 + ω2 = ω3 

and (b) k1 + k2 = k3. If ω3 happens to be a normal mode of 
the system, the selections rules (a) and (b) become no 
longer sufficient to implicate that the presence of a wave 
with this frequency is the results of some nonlinearities, as 
it can be simply excited on its own for reasons not linked to 
ω1 and ω2. However, phase coherence (also known as phase 
consistency) comes in useful in these circumstances, as if 
ω3 would be independent from the other two frequencies, it 
should be characterised by a statistically independent 
random phase. Because of that, statistical averaging through 
expected value operator E[∙] will return a zero value. If not 
– i.e., if a phase coherence does exist as ϕ1 + ϕ2 = ϕ3) –  
the so-defined Bispectrum will have a non-null value. In 
that latter case, the option of a spontaneously excited 
independent mode can be reasonably rejected.  

Moreover, bispectra do not only carry information about 
deviation from Gaussian normal distribution, but can also 
be used to properly get insight about the nonlinear 
mechanisms that govern the analysed system and to esteem 
the phase of its recorded response signal. A detailed 
explication of these two aspects can be found in the work of 
(Niakis & Raghuveer, 1987). Thus, use of bispectral 
analysis can lead to Nonlinear System Identification 
(NLSI), which still remains one of the most challenging 

issues for the current state of research in the field of 
structural mechanics. 

For what concerns damage detection, the principle is 
that a crack behaves nonlinearly under an applied driving 
force; in fact, it is well known that the opening and closing 
of the crack under forced vibration results in generation of 
super-harmonics. For damage detection alone, bicoherence 
should be preferred over bispectrum, as it is a more 
synthetic index of non-linearity, being it a normalised 
version of the latter, though some authors refer to the 
bispectrum even for damage detection (Andrew J Hillis et 
al., 2006). A deeper explanation of bicoherence and of its 
role in damage detection can be found in the work of Collis 
et al (Collis, White, & Hammond, 1998). 

In this work, the damage localisation properties of the 
bispectrum are to be investigated. For damage localisation 
the bicoherence is considered to be unsuitable, because a 
scalar value alone results to be insufficient information to 
work with properly. Indeed, in order to locate the crack 
position correctly, phase coupling and relative levels of the 
different super-harmonics are expected to play different 
roles when cracks are moving closer or farther from the 
investigated position.  

Another great advantage of using bispectral analysis is 
its insensitivity to uncorrelated random noise. That is 
simply explained by the fact that all Gaussian distribution 
will have zero asymmetry and so null bispectrum. Being 
natural noise one of the most common threats to accuracy 
and reliability in simpler analysis, this aspect is extremely 
positive for any practical application. A more detailed 
dissertation about the theory behind higher-order spectral 
analysis can be found, for example, in the works of (Collis 
et al., 1998) and (Fackrell, 1995). 

It should be remarked that, apart from what theory says, 
since bispectra are estimated with a finite number of data, 
Gaussian noise is not null and it may affect somehow the 
analysis performance. However, it is generally possible to 
assume its effects to be tolerable. Particularly, three 
artificially-generated signal-to-noise ratios (SNRs) have 
been used here (100, 50 and 20), in order to simulate real-
life circumstances. 

 
3. Non-Linear Finite Element Models 
 

3.1 Reference FE models 
 

A 4-meters-long cantilever beam with a single through 
crack, as shown in Figure 1, has been modelled in ANSYS 
Mechanical APDL®. The cross-section is defined as a 0.2 x 
0.2 m square, while material properties are enlisted  



 
Marco Civera, Luca Zanotti Fragonara and Cecilia Surace 

hereinafter (material is assumed to be isotropic). 
 

• E = 30 GPa Young’s Modulus  

• ν = 0.18 Poisson’s Ratio 

• ρ = 2300 kg/m3 material density 
 
The coordinate reference system is centred at the 

geometric barycentre of the restrained extremity and has the 
z-axis coincident with beam main direction, while the x- 
and y-axes are parallel to the cross-section sides. 

The cantilever beam has been modelled using 
SOLID185 elements (8-noded prismatic solids). Each node 
has 3 degrees of freedom (DoFs), this meaning that it can 
translate along x-, y- and z-axes (displacements ux, uy and 
uz respectively). The 𝐵𝐵� -bar method (also known as 
selective reduced integration method) was selected, 
meaning that volumetric strain at Gauss integration points 
have been replaced with the average volumetric strain of the 
elements, to avoid locking problems. Even if this approach 
lacks the capacity to handle with shear locking in bending-
dominated problems, in this case the cross-section of the 
model is absolutely not thin enough to justify a more 
complex option. 

Different types of contacts have been investigated in 
order to find the best candidate for the transient non-linear 
dynamic simulations required. A surface-to-surface contact 
element was finally chosen, using the TARGET170 and 
CONTA174 ANSYS elements (3-dimensional, 8-noded 
surface-to-surface contact element) to model the breathing 
crack mechanism (see Figure 2). The default options of 
ANSYS were left untouched for the contact behaviour: 
isotropic Coulomb friction, augmented Lagrangian contact 
algorithm, contact detection point at Gauss nodes and 
bonded behaviour. The two surfaces representing the crack 

were set as in contact in the initial state of the system. 

Geometrically, the crack was modelled as passing 
through the whole thickness of the element along x-axis 
(Figure 2). In this study, the crack thickness was not 
relevant, since, as aforementioned, the initial condition of 
the dynamic analysis is to set the two surfaces representing 
the crack in full contact. This assumption as already been 
proved to be trustable in literature (Surace, Ruotolo, & 
Storer, 2011). The crack surface spanned over half of the 
total cross-section area.  

 

 
Figure 1. Breathing crack mechanism (crack open 

during modal analysis).  
Displacement over-magnified for clarity’s sake. 

 
The crack location has been parameterised so to vary 

into nine different positions, all equally distant from each 
other, defined in steps of 40 centimetres along z-axis. 
Obtained results are listed on the following Table 1. Please 

 

 
Fig. 1. Cantilever beam geometry (section 0.2 by 0.2 m, length 4 m) and the two measurements position. The extension 
of the cracks was assumed to be half the width of the beam. The nine crack locations are all spaced by 40 cm from each 

other and from the fixed and free ends. 
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note that the natural frequencies values are coupled 
according to the symmetry of the structural element when 
the behaviour is linear. Analytical results (as shown for 
comparison) are calculated according to the solution for a 
simple cantilever beam: 

 

( )2
4n n

EIL
mL

ω χ=  (2) 

where  𝜒𝜒𝑛𝑛𝐿𝐿  is a constant ratio and can be found 
consulting tables of hyperbolic and trigonometric functions 
(the first four are: 1.875, 4.694, 7.855, 10.996), E is the 
Young’s Modulus, I is the moment of inertia, 𝑚𝑚�  is the 
mass for linear unit along z-axis (referring to Figure 1) and 
𝐿𝐿 is the total length of the beam. For what concerns the n-th 
axial and the first torsional mode, they can be computed 
with the following equations: 
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where the torsional frequency has been computed in the 
assumption of a linear mode shape with the Rayleigh 
method. Inside the equation, 𝐺𝐺 is the Shear Modulus, 𝐼𝐼𝑡𝑡 
the torsional stiffness (computed as 𝐼𝐼𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑏𝑏3, where 𝛽𝛽 =
1
7.1

), 𝐽𝐽𝑝𝑝 the moment of polar inertia and ρ is the density. 
ANSYS solves the eigenvalue problem for the damaged 
structure assuming the crack is always opened.  
 
Table 1 Modal Analysis results on pristine (undamaged) 
cantilever beam. All bending modes occur at the same 
frequency along both directions (x and y axes). 

 Classification Analytical  
 [Hz] 

ANSYS 
[Hz] 

1 1st bending 7.31 7.06 

2 2nd bending 45.83 43.83 

3 3rd bending 124.25 121.07 

4 1st torsional  132.09 146.94 

5 1st axial 225.84 225.87 

6 4th bending 251.52 232.77 

 
3.2 Non-linear time history analyses with Gaussian white 
noise as excitation source. 

In order to produce a dataset to train the neural network, 
a series of full-transient, non-linear, time-history analyses 
have been run on the cracked model in ANSYS. The 
sampling time has been defined according to the Nyquist 

criterion for the 1st natural frequency. Since the quality of 
the results will strongly depend on the super-harmonics 
contained in the response, frequency up to the third 
harmonic for the first mode are to be measured. This 
introduces some limits on the sampling time according to 
(Bathe, 2005), which has to be set to a value corresponding 
to 1/20 Tu, where Tu = 2π/ωu (and ωu is the highest 
frequency in the input load). Thus, in order to properly 
investigate frequencies and harmonics up to 50 Hz the 
sampling time was set to 0.001 s (equivalent to a sampling 
frequency 𝑓𝑓𝑠𝑠 = 1000 Hz). 

The several driving forces F(t) were applied along the y-
axis at a height z = 3.87 m, which means assuming a shaker 
applied at 13 cm from the free end on the central node of 
the cross-section. The direction of the input was chosen 
parallel to the crack propagation to have a predominant 
mode I type of crack opening and a prevalent bending 
behaviour exciting the breathing mechanism. The dynamic 
response was computed at 13 cm from the free end (CH1, 
top node in Figure 1), coincident to the hypothetic shaker 
location. Another channel, located at 25 cm from the fixed 
end (CH2, bottom node in Figure 1), was also used; 
however, being this latter one farther from the driving force 
and closer to the restrained extremity, its output was 
considerably lower, as expected. Since neural networks 
trained on data recorder at CH2 provided only 
unsatisfactory results, they have been discarded and not 
reported here. It is also important to state the beneficial 
consequences that this implies. Since bispectrum is 
estimated only at one channel – being it CH1, CH2 or any 
other location – that means that damage localisation can be 
performed with just one sensor, rather than an array of 
them, as it is common for other SHM techniques. 

A Rayleigh damped model was assumed. The Rayleigh 
damping coefficients were computed using the first two 
bending frequencies (7.06 Hz and 43.83 Hz) with the well-
known Rayleigh relationship, assuming both modes have a 
viscous damping coefficient of the 5% : 

 

1 2

1 2

1 2

2 3.82

2 0.000313

ωωα ζ
ω ω

β ζ
ω ω

 = = +

 = =
 +

 (5) 

 
To improve the efficacy of the bispectral-based damage 

localisation technique through neural networks, a set of 
input data to feed the network had to be created. Thus, a set 
of forty different driving forces randomly generated with 
MatLab was applied to the same node of the SOLID185 
model (the previously defined shaker location). These 40 
inputs will be referred from here onward as to WN1, WN2, 
etc. up to WN40. All of these have a duration of 100 
seconds and a useful sampling frequency of 100 Hz and a 
variance of the amplitude of ±5 kN. This was intended to 
excite all the natural frequencies in the range of interest at 
once, rather than focusing on only one of the computed 
flexural frequencies. The FE model parameters are set equal 
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as in the previous section. All these forces generated 40 
recorded time-histories at CH1 and as many at CH2. 

 
4. Bispectral features 

 
The bispectra have been computed using the HOSA 

toolbox for MatLab (Rao & Gabr, 1984)(Niakis & 
Raghuveer, 1987), between the two variable of integrations 
𝑓𝑓1  and 𝑓𝑓2 . Once these higher-order spectra have been 
plotted on the 𝑓𝑓1 - 𝑓𝑓2 plane, it becomes easy to exploit 
phase information (Figure 3). 

The peaks indicate the quadratic phase coupling (QPC), 
defined as the pairing of frequency components within a 
signal, i.e. the coupling at sum and differences of the two 
frequencies 𝑓𝑓1  and 𝑓𝑓2 . They result from the interaction 
with some non-symmetric, non-linear mechanisms inside 
the measured system. So, the amplitude of plotted peaks 
gives a measure of the level of coupling and then of the 
amount of non-linearity. Whilst other form of spectra (i.e. 
power spectrum or autocorrelation function) are “phase 
blind”, higher order spectra make possible detecting and 
quantifying this nonlinearity in signals (Kicinski & 
Szczepanski, 2004). In signal processing it is possible to 
find QPC quite often, where two harmonic signals are 
processed by a nonlinear system. Let us consider a signal 
x(t):  

 

( ) ( ) ( )1 1 1 2 2 2cos cosx t A t A tω φ ω φ+= + +  (6) 

 
which is given as input to a simple quadratic nonlinear 

system: 

 

( ) ( )2y t a x t= ⋅  (7) 
 

 
where a is a non-zero constant. The output y(t) of the 

system will be including the harmonic components: (2ω1, 
2ϕ1), (2ω2, 2ϕ2), (ω1 +ω2, ϕ1 +ϕ2) and (ω1 -ω2, ϕ1 -ϕ2). This 
phenomenon is the so-called quadratic phase coupling or 
phase coupling of the second order. In such a case a power 
spectrum would show the peaks on the same positions (of 

the frequencies) independently of the phases of the 
sinusoids, losing the phase information. This is not the case 
for higher order spectra. Generally speaking, if a signal is 
composed of three sinusoids, with frequencies and phases 
(ω1, ϕ1), (ω2, ϕ2) and (ω3, ϕ3) respectively, then it is possible 
to define the sinusoids 1 and 2 if and only if ω1+ ω2 = ω3 
and ϕ 1+ ϕ 2 = ϕ 3. In general, a harmonic signal can be 
composed of k complex sinusoids and defined as: 

 

( ) ( )( )
1

exp
k

i i i
i

x t A j tω φ
=

= +∑  (8) 

 
It is possible to determine how many possible different 

phase couple pairs can appear in such a signal. Let assume 
as s the number of sinusoids coupled to itself, and p as the 
total number of unordered pairs of sinusoids in the signal. 
Consequently, the total number of order pairs is 2p, whereas 
the number of different ordered pairs is 2p-s. It is possible 
to obtain the differently ordered QPC pairs as ω1,i + ω2,i = 
ω3,i and ϕ 1,i+ ϕ 2,i = ϕ 3,i where  1≤ i ≤2p-s. It is then 

 

 
Figure 3. Example of bispectrum obtained from FE numerical simulations.  

(crack modelled at z = 1.00 m from clamped end). 
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possible to write the third order cumulants of the signal x(t) 
according to Swami and Mendel (Swami & Mendel, 1988) 
as: 

( ) ( )( )3 1 2 1, 1 2, 2
1

, exp
q

x
i i i

i
c jτ τ α ω τ ω τ

=

= +∑  (9) 

 
Where q is the number of differently ordered coupled 

sinusoids present in x(t). It is worth noticing that in 
equation (9), only the phase-coupled sinusoids appear. This 
leads to the observation that the bispectrum function is a 
useful tool for the detection of QPC.  

The bispectrum function has been implemented in 
MatLab® environment by using the aforementioned HOSA 
toolbox. The toolbox adds several functions dedicated to the 
various aspects of Higher-Order Statistics, as polispectral 
estimation for both linear and nonlinear systems. In 
particular, bispectrum could be computed indirectly 
(function bispeci(∙)) or directly (function bispecd(∙)). The 
main difference is that direct estimation is based on the 
Fourier transforms of the observed data (inputs), while 
indirect approach relies on Fourier Transforms of the 
estimated autocorrelation sequence of the data. For this 
study, all the bispectra have been estimated by the direct 
method, also known as the Fast Fourier Transform (FFT)–
based technique. Even if the function bispecd(∙) was 
partially rewritten and modified to better fit this research’s 
purposes, computational details remain similar to the 
original toolbox. The computation of the bispectrum 
involves four main subsequent steps. Firstly, the given input 
– the time-series x(t) – is decomposed into several records 
xi(t), where i=1, …, K and K depends on the chosen overlap 
between subsequent windows and of the value of samples 
for each signal segment. Then, every one of these segments 
undergoes separately the Fourier transform to Xi(f). At this 
point, simple triple product is computed as 
Xi(f1)∙Xi(f2)∙Xi

*(f1 + f2). Finally, results are averaged across 
the set of records and smoothed on the frequency domain. 
In this study the bispectra have been computed using an 
overlap of 90%, resorting to Rao-Gabr bispectral window.  

Having defined the bispectrum itself, firstly a 
comparison was carried out, in order to spot at first glance 
the main differences that can occur when crack location is 
switched (Figure 4), in this case by considering the 
Absolute component of the complex data. The FFT length 
was set to 512, since the resolution proved to be good 
enough while bigger values would have generated too big, 
unmanageable dataset; in fact, once unrolled in a single-row 
vector, 512-by-512 bispectra have 262144 elements, and 
2048-by-2048 bispectra have 4194304 elements.  

The comparison between the pictures in Figure 4 
highlights the effects of different crack positions on the 
analysed signal. These differences are correlated to different 
displacements recorded at CH1 and ultimately to a variation 
of the fissure location.  

A second useful comparison has been done by 
comparing the bispectra computed from different driving 
forces for the same crack position (Figure 5). In the given 

example, the magnitude of the bispectrum is shown as a 
contour plot for some random input noise – WN2, 12, 24 
and 38 – when the damage is located at x=2.00 m 
(corresponding to position #5). Even if not identical, the 
obtained bispectral data show similar bifrequency features, 
which are characteristic of the specific position of the 
damage and thus rendering the bispectrum a suitable feature 
for damage classification.  

To further reduce the amount of data to be feed-
forwarded to the NN, it is worth to highlight that not the 
whole bispectrum contains unique information. In fact, 
third-order moments have six symmetry regions (as it may 
be clearly observed from Figure 6) and an hexagonal region 
of integration (Niakis & Raghuveer, 1987) . Moreover, due 
to the Nyquist criterion and on the presence of the third 
component X*(f1 + f2), only half of the domain of the 
transform is meaningful.  

It is possible to consider the graph as subdivided into its 
four quadrants, in which (departing from the upper right and 
moving clockwise) the variables of integration f1 and f2 
assume the following signs, respectively: (+, +), (+, -), (-, -) 
and (-, +). In order to interpret the bispectrum, one has to 
take into account that the FFTs are specular to the axis 
passing through zero. This means that X(f1) will be 
symmetric respect to the y-axis, while X(f2) respect to the x-
axis. This is important because the product of the two, then 
amplified by X*(f1 + f2), defines the bispectrum at any point. 
As can easily be noticed, the domain is defined by three 
axes of symmetry, which divide the transform in six zones. 
These lines f1 = 0, f2 = 0, and f1 + f2 =0, are also known as 
the principal submanifolds of the domain (Brillinger & 
Rosenblatt, 1967). It should also be remembered that this 
spectrum is obtained as the product of three distinct Fourier 
transforms (1). Of these, the third component X*(f1 + f2) is 
the one dealing with the non-linear phase coupling in the 
response. As can be seen, the damaged case is clearly 
distinct by a peak on the internal bisector of the first region 
of symmetry; more generally, this happens along all the 
bisector lines of each one of the six non-redundant zones. 
That means that the peak in region I has co-ordinates (fpeak, 
fpeak), where fpeak is not identical to the resonance frequency 
for the linear case but close to.  

One should not be misled by the super- and sub-
harmonics lookalike effects appearing on Figure 6. Indeed, 
these are not true signs of nonlinearity, but most probably 
due to the numerical computations performed by the 
software, as X*(f1 + f2), which should be null, is never truly 
zeroed by the code. These numerical imprecisions are 
visible there since the run data were noise-free, but they 
become negligible and no more noticeable when noise is 
added to the signal. 

In order to detect the location of damage, it was chosen 
to follow an approach similar to previous attempts in 
damage detection/classification (Xiang & Tso, 2002) using 
one-sixth of the bispectra domain as a feature (Figure 6.b). 
This should help the training of the NN reducing the 
dimension of the input to the minimum possible without 
any other pre-processing.  
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Furthermore, it was also noticed that the useful 

information is not equally distributed among the whole 
selected, triangular area. As can be easily noticed by 
looking at Figure 6.b, the helpful bispectral data are mostly 
clustered; even if blank zones in a contour plot are not 
necessarily an indicator of null or someway unneeded data, 
it was tested that running the NN training over a much-
restricted amount of inputs (corresponding to the pixels 
closer to the centre of the bispectra) both accelerated and 
ameliorated the training process. Hence, only 1256 of the 
8256 elements included in the vector of unrolled data has 
been used, as indicated in Figure 7. 

 
 
 

 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 4. Bispectra computed at CH1 switching crack location (Absolute component shown with contour plotted).  
(a) crack in position #2 (cantilever damaged at 0.8 meter from fixed clamped end) (b) crack position #5 (2.0 m) (c) crack 

position #7 (2.8 m) (d) crack position #9 (3.6 m). 
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(a) (b) 

  
(c) (d) 

Figure 2. Bispectra computed at CH1 using different driving force (absolute component shown). From top left: (a) WN #2, 
(b) WN #12, (c) WN #24 and (d) WN #38. For all cases, the damaged cross-section was set at x=2.00 (position #5). 

  
(a) (b) 

Figure 6. (a) symmetry regions of third-order moment with the useful domain highlighted 
 (b) triangular feature selected in region I (8256 elements inside) for training. 
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5. Neural Network architecture optimisation and 
training 
 

The NN has been trained until it proved itself able to 
identify the crack location between the nine possibilities 
defined (z = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2 and 3.6 m 
from the fixed end location and moving towards the free 
extremity). The overall plan of simulations was to compute 
the bispectra for 40 white Gaussian noise input with the 
crack located in one of these 9 different locations. In order 
to have a dataset large enough to train the NN, 5 samples 
for each case were generated by adding white Gaussian 
noise (SNR=100, 50 or 20) to the structural response at the 
free and the clamped end locations (in terms of 
displacements). This lead to the definition of 1800 bispectra 
from CH1– or five times forty driving forces, each one 
computed nine times by switching the crack position. 

Out of the 40 driving forces, 30 independent cases have 
been used for the training set, 5 for the validation set at 5 
for the test set.  The simulations were carried out on the 
High Performance Computing (HPC) systems Grid and 
Delta of Cranfield University, so to parallelise the 
computing procedures (two Linux clusters with 284 and 
1920 CPU cores, respectively). It is important to state that 
statistical validation is inherently a strong approach, much 
stricter than others such as cross-validation. Indeed, the 
proposed approach considered three perfectly distinct sets 
for training, validation and test. Differently from cross-
validation, where all observations are divided into several 
subsets that are, from time to time, used for training, 
validation and testing, here the observations used for 
validation have never been seen before by the Machine. 
That means that the driving forces used to validate results 
are completely new and different; this proof the ANN 
ability to recognise a known case (i.e. a crack in a given 
location) in a never-seen-before condition (i.e. a completely 
novel state of external excitation). 

The architecture of the NN has been optimised by 

varying the number of neurons on its hidden layer between 
10 and 50, in steps of two by two. A bias unity is added to 
the hidden layer. A final (output) layer was composed by 
the nine possible locations to be predicted (Figure 8).  

Regarding to the number of hidden layer implemented, 
the default option was to have one. In fact, according to the 
universal approximation theorem (Hornik, Stinchcombe, & 
White, 1989), an Artificial NN with a single hidden layer 
with a finite number of neurons can approximate continuous 
functions on compact subsets of ℝ𝑛𝑛. In other words, the 
simplest possible NN should be able to represent a great 
number of possibly useful functions; that is to say, there is 
no reason to suppose a more complex architecture – i.e., to 
resort to Deep Learning techniques – at the beginning, if no 
specific motivation arises. The same, further training were 
conducted on NNs with two hidden layers, by changing the 
number of nodes per hidden layer but maintaining the same 
amount identical for both layers – i.e., S1 = S2. However, 
since no promising improvements have been detected in 
doing so, while on the other hand the process became 
noticeably more time-consuming and computationally 
expensive, this option has been discarded and results related 
to it are not reported here. 

The decision to stop the investigation at 50 nodes per 
hidden layer is mainly due to preliminary studies performed 
on the NN architecture accordingly to the considered 
performance parameter, the aggregate Cross-Entropy (CE), 
which behaved better – i.e., decreased –  along this range.  

Notoriously, Cross-Entropy strongly penalise extremely 
inaccurate outputs, while is less harsh for tolerable 
mismatches; thus, it is considered to be a very good 
performance indicator for classifiers operating with discrete 
output, as the Mean Square Error is for regression with 
continuous output. 

The training was performed minimising the regularised 
cost function (10) where the indices represent respectively: 
m is the number of training examples, K is number of final 
output (9 zones of classification), N is the number of layers, 

  
(a) (b) 

Figure 7. Examples of elements inside the various vectors of unrolled bispectrum (triangular selection, region I; 
 bispectra considered: (a) five different driving forces applied with the same crack location (b) five different crack locations 

under the same driving force). Red dotted vertical line represents the lower bound of the selected pixels. 
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Si and So are the input and output number of neurons for 
each regularisation layer, and θs are actually the weights 
assigned to the feature (in this particular case, bispectral 
data) which is used in training; their optimisation is the aim 
of the ML algorithm, which is required to produce an 
ensemble of thetas that will make the hypothesis function fit 
the training set well.  
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Moreover, ( )i
ky  and ( )( )( )ln i

k
h xθ  are, respectively, 

the expected target value and the natural logarithm of the 
predicted output for the specific case i, k.  

The factor λ  is called performance ratio and causes 
the network to have smaller weights and biases, thus 
leading the NN response to be smoother and less likely to 
overfit. The residual error is defined in term of the 
aforementioned Cross-Entropy, and is the first term of the 
cost function, whilst the second part is referred to the 
regularisation terms. The core of this additional part is the 
matrix of all weights, capital Theta (Θ), defined separately 
for each layer according to the number of input nodes (from 
the previous n -1-th layer) and to the number of output 
destinations (in a similar fashion, considering the n + 1-th 
layer). 

As mentioned before, the idea is to train the NN using 
the feature extracted from the bispectra and then further 
selected (Figure 6.b, 7.a and 7.b), analysing six different 
bispectra components, since being the bispectrum a matrix 
of complex numbers, it is possible to analyse different 
component data for the bispectrum (modulus, phase, real 
part or imaginary component). Two further cases are trained 
combining real plus imaginary case and magnitude plus 
phase. Totally, 18 cases have been analysed, using three 
different levels of SNR in the bispectra (100, corresponding 
to low noise, 50, medium noise, 20, high noise). 

For each of these cases, several trainings using the data 
generated at the free end channel CH1 were carried out 
using the NN depicted in Figure 8. In fact, Eq. (10) was 
minimised assuming different values of the regularisation 
factor λ, thus allowing the maximisation of the predictive 
capabilities of the NN. The parameter λ was studied in a 
logarithmic-like fashion, considering the following 7 
values: .001, .0033, .01, .0333, .1, .3333 and .9. The value 
of this parameter cannot be known a priori and it is strongly 
influenced by the cost function and the NN architecture. 
Typically, low value of λ can lead to overfitting the penalty 
function, thus reducing the generalisation capability of the 
NN, whilst high value of λ may render the cost function 
insensitive to the optimisation procedure.  
 

The optimisation algorithm used for the minimisation of 
(10) is based on the gradient descent method and the 
Polack-Ribiere flavour of conjugate gradients to compute 
the search directions. Line search using quadratic and cubic 
polynomial approximations and the Wolfe-Powell stopping 
criteria is used together with the slope ratio method for 
guessing the initial step sizes. For the sake of this study, a 
maximum limit on the training epochs was set equal to 1000. 
Moreover, a truncation tolerance was set on the minimum 
gradient variation at 1e-10. For what concerns the 
convergence criterion, it was set equal to 0.  

 
6. Neural networks and feature performance 
 

The NNs trained using the feature module (absolute 
value – Abs(z)) of the bispectrum have performed better 
than most of the other components. Also the real part 
generally led to NNs performances slightly better than 
imaginary or phase (see Table 2). In particular, for SNR = 
100, magnitude-trained NNs clearly outperformed the other 
neural networks fed with any other feature extracted by the 
same bispectra. Thus, the absolute value seemed to be the 
most sensitive feature to changes in damage location. The 
combination of real and imaginary part, or of module and 
phase, led to performances of the NNs similar to the one 
using only the real part or the module – that is to say, with 
no noticeable gain. On the other hand, combining Abs and 
Angle features seemed to improve results, yet only for high 
level of noise (SNR = 20), whilst being eventually 
detrimental for less noise-affected signals. This seems to 
indicate that magnitude and phase are more robust, whilst 

 

Figure 8. Simplified architecture of the 10 neurons-per-hidden-layer Neural Network. The input layer is of 1256 neurons in 4 
cases (Re, Imm, Abs and Angle) and of 2512 neurons in 2 cases (Re-Imm, Abs-Angle). Hidden layer size has been varied ranging 

from 10 to 50 nodes (in steps of 2) to find the optimal configuration. 
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the module is much more affected and proves to be the most 
apt feature to classify the position of the damage overall.  

Table 2 shows the average performance in term of CE 
for different noise levels. It is possible to see that the overall 
CE minimum roughly doubles from SNR=100 to SNR=50 
(green-highlighted boxes).  
 
Table 2 Results summary with respect to different cases and 
features. 

 
Finally, the confusion matrices for the best NN trained 

are depicted in Figure 9. As it is possible to see, the 
accuracy on the test-set is 71% circa, while all-around 
accuracy on the three sets (Training, Validation and Test) is 
80%. It is worth to remember that the validation and the test 
set were chosen amongst white Gaussian noise different 
from the ones used in the training set, therefore are data 
completely new for the trained NN. The best performance 
was achieved with a 26 neurons NN with a regularisation 
factor of 0.9000. 

 

 

Bispectra Component 

Aggregate Cross-Entropy Residual on Test Set 

SNR 20 SNR 50 SNR 100 

min max μ min max μ min max μ 

Real Part (Re) 0.0285 0.3135 0.2233 0.0287 0.2880 0.2164 0.0241 1.20e+06 9.64e +03 

Imaginary Part (Im) 0.0291 0.3003 0.2210 0.0285 0.3061 0.2188 0.0247 4.78e+06 3.25e +04 

Magnitude (Abs) 0.0285 0.2602 0.2033 0.0183 0.2433 0.1333 0.0107 6.37e+06 5.41e +04 

Phase (Angle) 0.0324 0.4294 0.2831 0.0333 0.4627 0.2927 0.0298 0.42e+06 0.27e +03 

Real and Imaginary 0.0275 0.3051 0.2228 0.0276 0.2907 0.2174 0.0250 2.29e+09 1.57e +07 

Magnitude and Phase 0.0269 0.2888 0.2133 0.0217 0.2502 0.0276 0.0235 3.92e+07 4.83e +05 

 

Most Sensitive Feature 

 

Optimal NN Architecture  

Hidden 
Layer 
Size 

Regularisation 
Factor λ 

Hidden 
Layer 
Size 

Regularisation 
Factor λ 

Hidden 
Layer 
Size 

Regularisation Factor λ 

SNR = 50 and 100: 
Magnitude (Abs); 

SNR = 20: Magnitude 
and Phase 

22 0.9000 26 0.9000 26 0.9000 

 



 
A novel approach to damage localisation based on bispectral analysis and neural network 

 
 
7. Test on cracks located into intermediate positions 
 

Since the ANN has been trained for classification 
between a finite number of possible locations (the nine 
positions described before), the possibility of cracks located 
in intermediate positions has been investigated, in order to 
test the Machine ability to manage cases close to but not 
exactly located into their possible outputs.    

Only the best-trained NNs (for SNR = 100 and SNR = 
50) has been tested so. By using the same FE model of a 
beam, a set of six intermediate cracks has been realised, 
located at 0.3, 0.9, 1.9, 2.9, 3.5 and 3.7 meters from the 
fixed end. The set was so composed in order to be 
representative of the three main regions of the beam – fixed 
end, free end, and mid-length. Indeed, the first two cases 

represent the immediate surroundings of crack location #1 
(z = 0.4 m) and #2 (z = 0.8 m). Third and four cases, 
similarly, are close to the crack location #5 (z = 2.0 m) and 
#7 (z = 2.8 m) respectively. Finally, the latter two 
configurations encircle crack location #9 (z = 3.6); crack 
location #8 (z = 3.2 m) neighbours these two from one side, 
while the beam free end bounds them from the other.  

Ten different driving forces were newly generated for 
the task, similarly to the previous ones used for training and 
validation; they were named, accordingly, WN41 to WN50, 
and applied separately to each new crack investigated. 
Thus, sixty new bispectra were computed. 

Since the 26-neurons-per-hidden-layer NN (for signal-
to-noise ratio equal to 100) performed remarkably well for 
locations closest to the fixed edge, it was expected to see a 
major accuracy for the first elements of this set; this 
prevision has been proved right by the results of the NN. 

  

  
Figure 9. Confusion matrix for the best NN trained (SNR = 100): using Abs component, 26 Neurons and λ=0.9000 
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Effectively, the NN seems to suffer to recognise distinct 
mid-length cracks (Figure 10); however, locations closest to 
the actual intermediate cracks remain in all cases the most 
recurring outputs, hence the most statistically probable; 
even when not correct, predictions are always not far from 
the expected results. For instance, it is shown in Figure 10.a 
how, out of 10 inputs related to crack at z = 1.9 m, seven 
where correctly located at crack location #5 (2.0 m), one at 
#4 (1.6 m, second closest target) and two at #6 (2.4 m, third 
closest). Similar conclusions can be drawn by the results 
related to the remaining intermediate cracks. Largest error 
occurred for the crack pair z = 3.5 and 3.7, which were 
spotted correctly 13 times out of 20, with a minimal error 5 
times, but went evidently wrong twice. Results from SNR = 
50 (Figure 10.b) suffered noticeably from the higher noise 
level, but the same behaviour can be noticed – erroneous 
locations tend to be not far from closest, expected outputs.  

These validating results can be seen as a further proof 
that cracks in different positions generate variations in the 
bispectra of the recorder displacements and that this 
features can be used for localisation through Machine 
Learning, with an output-only approach. 

 
8. Conclusions 
 

The main objective of this work is a feasibility study on 
using bispectrum as a mean of damage localisation, 
knowing that the bispectrum and bicoherence has been 
already proved as good damage indicators. At this aim, 
several NN architectures and configurations were trained 

and validated, feeding them with data achieved by running 
various simulations on FE models excited by randomly 
generated driving forces. 

In conclusion, the main results of the present paper can 
be summarised as follows: 

• Bispectrum proved to be a suitable technique for 
damage localisation, since by varying the crack 
position, and using state-of-the-art techniques for 
multi-classification problems, it was possible to 
extract features from the bispectra able to detect 
these changes (i.e. within the 10% of the length of 
the beam); 

• Out of all the investigated combinations – 
component of the complex numbers and settings of 
the NNs – resulted quite clearly that: (1) the module 
is the most sensitive features for damage localisation 
(2) the combination of the real part and of the 
module with their complex counterparts, imaginary 
part and the phase, did not lead to significant 
improvements in the NN performance, even if it can 
turns out to be more robust for higher noise levels. 

(3) it was already known from previous studies that 
considering the whole bispectrum is redundant and 
not efficient. Indeed, here an accuracy on the test-set 
of approximately 71% has been reached with just 
1256 carefully chosen elements (out of the 262144 
included into the 512-by-512 dataset matrices). 

• The best performing NN was composed of one 
hidden layer of 26 neurons and reached a promising 

  
(a) (b) 
Figure 10. (a) Confusion matrix, SNR = 100; (b) Confusion matrix, SNR = 50;  

selected feature: absolute values of bispectral data (for both cases).  
Closest targets: crack location #1 for z = 0.3 m; #2 for z = 0.9 m;  

#5 for z = 1.9 m; #7 for z = 2.9 m; and #9 for both z = 3.5 m and z = 3.7 m. 
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overall accuracy around 80 % with a training set of 
1500 cases. 

There are future perspectives that are worth to be 
investigated in order to improve the reliability of the 
method. In fact, now that a link between the bispectrum 
properties and the damage localisation has been established, 
a more in-depth study about the intrinsic properties of the 
non-linear response can lead to a more focused feature 
extraction that may help in the damage localisation 
problem. Currently, the sensitivity of the technique to 
damage severity is also being investigated in an ongoing 
research; furthermore, future studies may involve different 
excitation sources, to study the beam dynamic close to 
resonance and possibly expand the results with an 
experimental specimen.  

If successful, the proposed method will have undoubted 
practical advantages, such as the need or only one sensor, 
an output-only data-based approach, an adaptability to 
different shapes and sizes of various structures (if properly 
trained on them), and more.  
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Figure Caption List  
 

Figure 1. Cantilever beam geometry (section 0.2 by 0.2 m, 
length 4 m) and the two measurements position. The extension of 
the cracks was assumed to be half the width of the beam. The nine 
crack locations are all spaced by 40 cm from each other and from 
the fixed and free ends. 

Figure 2. Breathing crack mechanism (crack open during 
modal analysis). Displacement over-magnified for clarity’s sake. 

Figure 3. Example of bispectrum obtained from FE numerical 
simulations (crack modelled at z = 1.00 m from clamped end). 

Figure 4. Bispectra computed at CH1 switching crack location 
(Absolute component shown with contour plotted). (a) crack in 
position #2 (cantilever damaged at 0.8 meter from fixed clamped 
end). (b) crack position #5 (2.0 m) (c) crack position #7 (2.8 m) (d) 
crack position #9 (3.6 m). 

Figure 5. Bispectra computed at CH1 using different driving 
force (absolute component shown). From top left: (a) WN #2, (b) 
WN #12, (c) WN #24 and (d) WN #38. For all cases, the damaged 
cross-section was set at x=2.00 (position #5). 

Figure 6. (a) symmetry regions of third-order moment with the 
useful domain highlighted (b) triangular feature selected in region 
I (8256 elements inside) for training. 

Figure 7. Examples of elements inside the various vectors of 
unrolled bispectrum (triangular selection, region I; bispectra 
considered: (a) five different driving forces applied with the same 
crack location (b) five different crack locations under the same 
driving force). 

Figure 8. Simplified architecture of the 10 neurons-per-hidden-
layer Neural Network. The input layer is of 1256 neurons in 4 
cases (Re, Imm, Abs and Angle) and of 2512 neurons in 2 cases 
(Re-Imm, Abs-Angle). Hidden layer size has been varied ranging 
from 10 to 50 nodes (in steps of 2) to find the optimal 
configuration. 

Figure 9. Confusion matrix for the best NN trained (SNR = 
100): using Abs component, 26 Neurons and λ=0.9000 

Figure 10. (a) Confusion matrix, SNR = 100; (b) Confusion 
matrix, SNR = 50; selected feature: absolute values of bispectral 
data (for both cases). Closest targets: crack location #1 for z = 0.3 
m; #2 for z = 0.9 m; #5 for z = 1.9 m; #7 for z = 2.9 m; and #9 for 
both z = 3.5 m and z = 3.7 m. 

 
Table Caption List  
 

Table 1. Modal Analysis results on pristine (undamaged) 
cantilever beam. All bending modes occur at the same frequency 
along both directions (x and y axes) 

Table 2. Results summary with respect to different cases and 
features. 
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