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Abstract

Modern radar and sonar systems rely on active sensing to accomplish a variety of tasks,
including detection and classification of targets, accurate localization and tracking, au-
tonomous navigation and collision avoidance. Bats have relied on active sensing for over
50 million years and their echolocation system provides remarkable perceptual and navi-
gational performance that are of envy to synthetic systems.

The aim of this study is to investigate the mechanisms bats use to process echo acous-
tic signals and investigate if there are lessons that can be learned and ultimately applied
to radar systems. The basic principles of the bat auditory system processing are studied
and applied to radio frequencies.

A baseband derivative of the Spectrogram Correlation and Transformation (SCAT)
model of the bat auditory system, called Baseband SCAT (BSCT), has been developed.
The BSCT receiver is designed for processing radio-frequency signals and to allow an
analytical treatment of the expected performance. Simulations and experiments have been
carried out to confirm that the outputs of interest of both models are “equivalent”.

The response of the BSCT to two closely spaced targets is studied and it is shown
that the problem of measuring the relative distance between two targets is converted to
a problem of measuring the range to a single target. Nearly double improvement in the
resolution between two close scatterers is achieved with respect to the matched filter.

The robustness of the algorithm has been demonstrated through laboratory measure-
ments using ultrasound and radio frequencies (RF). Pairs of spheres, flat plates and verti-
cal rods were used as targets to represent two main reflectors.

Keywords
SCAT; echolocation; spectrogram transformation; high resolution; target recognition;
radar; sonar; bat auditory system; eptesicus fuscus; matched filter, HRRP, close scatterers,
BSCT, spacing profile, range profile, frequency profile.

v



vi ABSTRACT



Table of Contents

Abstract v

Table of Contents vii

List of Figures xi

List of Tables xv

List of Abbreviations xvii

Acknowledgements xix

1 Introduction 1
1.1 Aim and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Novel aspects of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature review 9
2.1 Bat echolocation basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 FM bats echolocation performance and experiments . . . . . . . . . . . . . 13
2.3 Monaural bat auditory system models . . . . . . . . . . . . . . . . . . . . . 22
2.4 Bioinspired applications for radar and sonar . . . . . . . . . . . . . . . . . 29
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Background theory 33
3.1 Signal representation and characteristics . . . . . . . . . . . . . . . . . . . 33
3.2 Frequency downconversion and complex baseband . . . . . . . . . . . . . 41
3.3 Frequency modulated waveforms . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Pulse compression and matched filter . . . . . . . . . . . . . . . . . . . . . 47
3.5 Measuring range and resolving in range . . . . . . . . . . . . . . . . . . . . 53
3.6 Description of the SCAT Model . . . . . . . . . . . . . . . . . . . . . . . . 55
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



viii TABLE OF CONTENTS

4 Bioinspired resolution of closely spaced targets 65
4.1 The Baseband Spectrogram Transformation receiver . . . . . . . . . . . . 65
4.2 Response of the BSCT to two closely spaced targets . . . . . . . . . . . . . 70
4.3 Analysis of the Spectrogram Transformation . . . . . . . . . . . . . . . . . 75
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Validation of the BSCT model for ultrasound 83
5.1 Experimental set up and data collection . . . . . . . . . . . . . . . . . . . . 83
5.2 Equivalence between original and baseband SCAT . . . . . . . . . . . . . 87
5.3 Evaluation of BSCT resolution capabilities . . . . . . . . . . . . . . . . . . 92
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Application of the BSCT model at RF 101
6.1 Experimental set up and data collection . . . . . . . . . . . . . . . . . . . . 101
6.2 Algorithm for implementation of BSCT . . . . . . . . . . . . . . . . . . . . 106
6.3 Data preprocessing and exploration analysis . . . . . . . . . . . . . . . . . 113
6.4 Evaluation of model resolution capabilities . . . . . . . . . . . . . . . . . . 119
6.5 Evaluation of model performance in noise . . . . . . . . . . . . . . . . . . 133
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Supplementary estimates and challenges 139
7.1 Generalization for different scatterer magnitudes . . . . . . . . . . . . . . . 139
7.2 Representation of more than two scatterers . . . . . . . . . . . . . . . . . . 140
7.3 SNR after BSCT transformation . . . . . . . . . . . . . . . . . . . . . . . . 142
7.4 Open questions and future work . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8 Conclusions 147

A Exploratory analysis supplement 155
A.1 Physical target measurements with ultrasound . . . . . . . . . . . . . . . . 155
A.2 Turntable dimensions and backscattering . . . . . . . . . . . . . . . . . . . 160

B Selected algorithms 171
B.1 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Target peak localisation algorithm . . . . . . . . . . . . . . . . . . . . . . . 175
B.3 Estimation of the target frequency response . . . . . . . . . . . . . . . . . . 180
B.4 Discrete axes scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.5 Simulation of the SNR for BSCT . . . . . . . . . . . . . . . . . . . . . . . . 187
B.6 Simulation of RF measurements data . . . . . . . . . . . . . . . . . . . . . 188



TABLE OF CONTENTS ix

C Datasets and data structures 189
C.1 Ultrasound measurements dataset . . . . . . . . . . . . . . . . . . . . . . . 189
C.2 Radio-frequency measurements dataset . . . . . . . . . . . . . . . . . . . . 191



x TABLE OF CONTENTS



List of Figures

2.1 The big brown bat (Eptesicus fuscus) approach call, feeding buzz and
echolocation calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The big brown bat (Eptesicus fuscus) approach call, feeding buzz and
echolocation calls spectrograms . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Big brown bat’s (Eptesicus fuscus) multi-harmonic echolocation call . . . 15
2.4 Jittering target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Fourier transform of an impulse . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Relationship between Dirac delta and Kronecker delta . . . . . . . . . . . 35
3.3 RF mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 I/Q demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Linear and hyperbolic chirps . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 MF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 The SCAT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.8 Cochlear block of the SCAT receiver . . . . . . . . . . . . . . . . . . . . . 57
3.9 Cochlear block output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Temporal block of the SCAT receiver . . . . . . . . . . . . . . . . . . . . . 59
3.11 Temporal block output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.12 Spectral block of the SCAT receiver . . . . . . . . . . . . . . . . . . . . . . 61
3.13 Spectral output, linear distribution of the filter central frequencies . . . . . 62
3.14 Spectral output, hyperbolic distribution of the filter central frequencies . . 63
3.15 Fine delay profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 In-phase component of the baseband model input . . . . . . . . . . . . . . 66
4.2 BSCT spectral processing diagram . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Bandpass filter bank output, in-phase (real) component and envelope . . . 68
4.4 Example of de-chirped squared envelopes with the integration interval

marked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Model output, energy EE by filter i, for two overlapping chirps . . . . . . 74
4.6 Matched filter compared to BSCT . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 MF and BSCT profiles for two close targets at different delays . . . . . . . 78
4.8 Frequency profile and the zero locations clue . . . . . . . . . . . . . . . . . 79

xi



xii LIST OF FIGURES

5.1 Ultrasound experimental set up – two vertical rods on a turntable . . . . . 86
5.2 Ultrasound experimental set up diagram . . . . . . . . . . . . . . . . . . . . 86
5.3 RMS difference between BSCT and SCAT spectral output . . . . . . . . . 89
5.4 Spectral output of BSCT and SCAT . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Spectral output of BSCT model, simulated and measured targets . . . . . 90
5.6 Spectral output of BSCT model for two targets for delays 15 µs, 25 µs

and 50 µs. Simulated (thick lines) and measured (thin lines) input signals 91
5.7 BSCT frequency profiles for simulated data and real measurements . . . . 93
5.8 Fine delay profiles as a function of the delay between the scatterers, sim-

ulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.9 Estimated delay as a function of the delay between the scatterers. Ultra-

sound measurements. No equalization . . . . . . . . . . . . . . . . . . . . . 97
5.10 Estimated delay as a function of the delay between the scatterers. Ultra-

sound measurements. Equalized spectrum . . . . . . . . . . . . . . . . . . 98
5.11 Fine delay profiles as a function of the delay between the scatterers, real

target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 RF measurements diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Two flat plates as a target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Two flat plates as a target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 Two spheres on a turntable . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 BSCT outputs flow-chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.6 Background removal evaluation . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Target HRRPs as a function of turntable position . . . . . . . . . . . . . . . 116
6.8 Single target power spectral density . . . . . . . . . . . . . . . . . . . . . . 118
6.9 Power spectrum as measured for two flat plates . . . . . . . . . . . . . . . 121
6.10 Target BSCT spacing and MF range profiles . . . . . . . . . . . . . . . . . 122
6.11 Spacing profiles from simulated data . . . . . . . . . . . . . . . . . . . . . 123
6.12 Target range resolution profiles at RF, variable bandwidth . . . . . . . . . 124
6.13 BSCT and MF spacing estimates at RF, variable bandwidth . . . . . . . . 125
6.14 Power spectrum measured using VNA for two vertical rods . . . . . . . . 126
6.15 Target range resolution profiles at RF, 4 GHz BW, variable spacing . . . . 127
6.16 Target spacing estimates at RF, vertical rods experiment . . . . . . . . . . 128
6.17 Target spacing estimates at RF, simulated targets . . . . . . . . . . . . . . . 128
6.18 BSCT spacing estimates and the central frequency . . . . . . . . . . . . . 129
6.19 BSCT frequency profiles at RF . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.20 BSCT frequency profiles, RF vs Ultrasound . . . . . . . . . . . . . . . . . 132
6.21 Spacing and range profiles for two spheres at different SNR . . . . . . . . 134
6.22 Spacing and range profiles for simulated targets separated by 0.122 m.

The SNR is 17 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.23 Spacing and range profiles for flat plates, vertical rods and spheres . . . . 136



LIST OF FIGURES xiii

6.24 Target spacing estimates for simulated targets at variable spacing. The
SNR is 17 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1 BSCT of two impulses as compared with autocorrelation . . . . . . . . . . 142
7.2 BSCT of three impulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3 SNR after the BSCT transformation . . . . . . . . . . . . . . . . . . . . . . 144

A.1 Measured distance to the central rod for different perspectives (angles),
four different experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Distance to a vertical rods on a turntable, important parameters . . . . . . 157
A.3 Measured distances and fitted model, two rods, one in the centre and one

at 50 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.4 Measured distances and fitted model, two rods, rods close spacing region 159
A.5 Photo of the turntable and the support plate . . . . . . . . . . . . . . . . . . 161
A.6 Dimensions of the support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.7 Background and target HRRP . . . . . . . . . . . . . . . . . . . . . . . . . . 162
A.8 HRRPs, no background removal, vertical rods . . . . . . . . . . . . . . . . 163
A.9 HRRPs, no background removal, small spheres . . . . . . . . . . . . . . . 163
A.10 HRRP for rods after background removal . . . . . . . . . . . . . . . . . . . 164
A.11 HRRP for rods after background removal . . . . . . . . . . . . . . . . . . . 165
A.12 HRRP for small spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.13 Turntable arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
A.14 Target HRRPs as a function of turntable position . . . . . . . . . . . . . . . 168
A.15 Vertical rod target evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.1 Localisation of the three strongest peaks of a signal . . . . . . . . . . . . . 178
B.2 Peak locations with and without interpolation . . . . . . . . . . . . . . . . 179
B.3 Two target frequency response, algorithm comparison . . . . . . . . . . . . 182



xiv LIST OF FIGURES



List of Tables

2.1 Theoretically possible timing error . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 RMS difference between BSCT and SCAT spectral output . . . . . . . . . 88
5.2 RMS difference between simulations and experiments spectral output . . 88
5.3 Fine delay estimates on simulated targets . . . . . . . . . . . . . . . . . . . 95

6.1 Noise level, signal power, and SNR . . . . . . . . . . . . . . . . . . . . . . 114

C.1 Ultrasound experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . 190
C.2 RF experiments, variables in the setup.m file . . . . . . . . . . . . . . . . . 192
C.3 List of RF experiments with parameters . . . . . . . . . . . . . . . . . . . . 193
C.4 List of RF experiments with noise estimates . . . . . . . . . . . . . . . . . 194

xv



xvi LIST OF TABLES



List of Abbreviations

ACF Autocorrelation Function

ADC Analogue-to-Digital Converter

BSCT Baseband Spectrogram Correlation and Transformation

CDS Cranfield Defence and Security

FFT Fast Fourier Transform

FT Fourier Transform

HRRP High Resolution Range Profile

IF Intermediate Frequency

IFBW Measurement bandwidth

IFFT Inverse Fast Fourier Transform

IFT Inverse Fourier Transform

IIR Infinite Impulse Response

LO Local Oscillator

MF Matched Filter

NLS Nonlinear Least Square

RF Radio Frequency

rms Root-mean-square

SCAT Spectrogram Correlation And Transformation

SNR Signal-to-Noise-Ratio

xvii



xviii LIST OF ABBREVIATIONS

VNA Vector Network Analyzer



Acknowledgements

I would like to thank my academic supervisor Dr. Alessio Balleri for the continuous

support during my long journey. I would also like to thank Dr. Andy Stove and Dr. Marc

Holderied for the inspiring discussions and helpful edits of our research papers.

This work was funded by Cranfield Defence and Security under the CDS PhD bursary

scheme.

xix



xx ACKNOWLEDGEMENTS



Chapter 1

Introduction

Bats and other mammals use echolocation to sense the environment actively. Over a

period of 50 million years, they have evolved an echolocation system that allows them to

hunt insects, to forage for fruit or flowers in the presence of clutter, to manoeuvre in a

complex environment and to find their way in the open space.

A close analogy can be made with modern radars and sonars which rely on active

sensing to support a variety of tasks, including detection and classification of targets, ac-

curate localization and tracking, autonomous navigation and collision avoidance. Current

improvements in the radar technology bring not only design flexibility but also impose

increased expectations towards synthetic systems performance.

The basic principles of echolocation and those of radar and sonar are largely the same.

Bats emit an ultrasound chirp-like echolocation call (a pulse) and then listen. By analysing

the echo returns they decide if there is a target or only noise. The delay in the echo is

translated to distance, the strength of the echo indicates the size of the target. The change

in the sound frequency (the so called Doppler effect) measures the speed of the target.

More subtle changes of the “timbre” (i.e. the spectral content) of the sound can bring

information about the fine structure of the reflecting objects (e.g. shape and the texture).

1
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The similarities between natural and artificial active sensing systems can be expanded

further. As in the case of the pulse radar, during transmit bat ear sensitivity is significantly

reduced to prevent its damage. Both bats and radars/sonars deploy waveforms modulated

in frequency. Both have to deal with the limitation of signal acquisition rate and the real

time computations. The availability of energy resources can put additional constraints for

applications in small autonomous devices as surveillance drones.

All these similarities mean that a lot can be learned by studying bats echolocation.

However, there are various key differences to explore. Unlike radar which mostly use

linear chirp, echolocation calls of frequency modulating bats can be non-linear, e.g. hy-

perbolic. While conventional radar rely on a small set of predetermined waveforms, bats

vary multiple parameters as call duration, pulse repetition frequency, bandwidth and fre-

quency content on pulse to pulse basis. Behavioural experiments have demonstrated that

bats are able to resolve closely located scatterers. The fact that they are able to do this

successfully suggests that they have access to robust “superresolution” techniques.

There is biological evidence that indicates that the way bats process signals in the

receiving auditory system is not equivalent to the matched filter used in radar and sonar

systems. While the aim of existing bat auditory system models is to reproduce the acoustic

images as it is believed, from a variety of behavioural experiments, that bats perceive

them, there is no explanation on what exactly brings the performance improvement so it

could be exploited in a technological system. Therefore it will be useful to investigate

differences and similarities and study how these can be used to improve the performance

of synthetic sensors.

The aim of this study is to investigate the mechanisms bats use to process echo acous-

tic signals. The basic principles of the bat auditory system processing are extracted and

applied to radio frequencies. The reason why we looked at bats is because bat echoloca-

tion is much more sophisticated than echolocation is other animals. The waveform design
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is so much more complex and diverse and different from environment to environment and

for different type of foraging. This is not the case for dolphins for example that send

clicks.

1.1 Aim and objectives

The goal of the research is to study the bat type signal processing and investigate its

advantages and disadvantages for radar and sonar applications.

The broad goal was split into several more specific objectives:

• implement a prototype of the Spectrogram Correlation and Transformation (SCAT)

receiver (an auditory computational models of echo-locating bats);

• carry out experiment trials to assess the output of the SCAT with real measurements;

• develop a receiver based on the SCAT (BSCT) that can process baseband signals;

• model analytically the response of the BSCT for two scatterers;

• evaluate the expected resolution performance;

• implement a prototype of the BSCT that can process time signal;

• perform measurements at ultrasound with phantom echoes and real targets;

• experimentally confirm the model performance with ultrasound;

• implement a prototype of the BSCT that can process frequency response;

• perform measurements at RF of different real targets;

• experimentally confirm that the BSCT model generalizes for higher frequency sig-

nals;
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• experimentally confirm that the BSCT model is robust to real targets, noise and

surroundings;

1.2 Thesis layout

The thesis is organized as follows. An overview and scoping of the study is provided in

Chapter 1. A further review of bat echolocation related to perceptual capabilities and the

existing bat auditory system models is presented in Chapter 2.

Chapter 3 gives a brief introduction to the main concepts and models on which this

thesis is based. This includes the main forms currently used to represent deterministic and

stochastic signals including matched filter compression. The Spectrogram Correlation and

Transformation (SCAT) model of the bat auditory system is reviewed, implemented and

discussed in the context of other monaural models.

Chapter 4 introduces the developed baseband version of the SCAT (BSCT) together

with analytical treatment and discussion of the expected theoretical resolution. The per-

formance of the BSCT is investigated theoretically for the case of two closely located

targets. In Chapter 5 it is experimentally confirmed that the BSCT allows SCAT-like sig-

nal processing using ultrasound. The expected enhancement in resolution is also demon-

strated. The applicability of the BSCT model at radio frequencies (RF) is the subject of

Chapter 6.

A further discussion of additional research challenges relating to the developments

presented in this thesis is presented in Chapter 7. In particular, an approximation of the

signal-to-noise ratio, an interpretation of the model for multiple scatterers and connection

with the autocorrelation function are provided.



1.3. NOVEL ASPECTS OF THE WORK 5

1.3 Novel aspects of the work

The main original contributions from this thesis are:

• A baseband receiver was proposed that allows an analytical treatment of the output

of a SCAT-like processing and that can also be applied to RF signals (Chapter 4).

• The output of the BSCT was derived analytically for two closely spaced scatterers

and compared with that of a conventional matched filter (Chapter 4).

• Results have shown that a bat-inspired spectrogram transformation can provide

better range resolution performance than that of a matched filter output envelope

(Chapter 4). The problem of measuring the relative distance between two targets is

converted to a problem of measuring the range to a single target.

• In Chapter 5 the equivalence between the SCAT and BSCT was demonstrated ex-

perimentally. Results show that the technique used for smoothing the output of the

band-pass filters is not important for the frequency interference patterns and the

corresponding fine delay profiles.

• In Chapter 5 the enhanced resolution of two scatterers was demonstrated exper-

imentally by processing ultrasound measurements with BSCT receiver. The fre-

quency range and bandwidth were based on bat echolocation call.

• The feasibility of the BSCT receiver for radio frequency signals was demonstrated

in Chapter 6. The experimental work is an evidence that the bat-inspired approach

is robust to real targets. Pairs of flat plates, vertical rods and spheres were used to

represent targets with two main reflectors.

• In Chapter 6 the enhanced resolution of two scatterers was demonstrated experi-

mentally by processing radio frequency with the BSCT receiver.
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• A new interpretation of the bat-inspired model output was proposed. At local scale

the target is represented by the spacing between the scatterers and not by their

absolute arrangement (Chapter 7).

Additional support activities include:

• Implementation of the SCAT algorithm. It was further explored with simulated and

measured data.

• Preparation of a dataset of laboratory measurements with ultrasound of two close

targets at different separations. Ideal point targets were artificially created through

the speaker. Two vertical rods represented the real objects. The frequency range

and bandwidth were based on bat echolocation call.

• Preparation of a dataset of laboratory measurements at radio frequency of two close

targets at different separations. The RF measurements were collected in the fre-

quency domain using Vector Network Analyser. Vertical rods, flat plates and small

spheres were used as main scatterers.
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1.4 Publications

As a result of the work presented in this thesis the following publications have arisen:

Journal papers

• K. Georgiev, A. Balleri, A. Stove, and M. Holderied, “Bio-inspired Resolution of
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Conference papers

• K. Georgiev, A. Balleri, A. Stove, and M. Holderied, “Baseband version of the bat-
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Conference, Philadelphia, USA, May 2016.
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Chapter 2

Literature review

Modern radar and sonar rely on active sensing to accomplish a variety of tasks, includ-

ing detection and classification of targets, accurate localization and tracking, autonomous

navigation and collision avoidance. Research on these topics started with investigations

looking at resolving individual scatterers within a single target in complex clutter envi-

ronments and, in the course of the years, has advanced towards much more sophisticated

challenges that relate to modern cognitive sensing capabilities [1, 2, 3].

Bats use echolocation to discover, select and capture their food often in dense clutter,

to manoeuvre in complex environment and to find their way in the open space [4, 5, 6, 7].

Behavioral experiments have demonstrated they can deal successfully with many of the

challenges faced by synthetic sensors. They exploit waveform, spatial and temporal adap-

tations in the process of target detection, resolution and recognition. At the same time,

adaptive waveform diversity techniques [8], as well as cognitive guidance and control

[8, 7] and memory [9, 7], are all characteristics that are studied in the context of cognitive

synthetic sensing. Bats are biological realisation of the cognitive sensing concept.

In radar, multiple analogue and digital processing steps are performed before the

higher level tasks of target detection, resolution, classification, position and speed mea-

9
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surement and tracking. For example, the return signal is collected and shaped by an

antenna which acts as a spatial filter that passes energy coming from selected directions

only. Then in the receiver the signal is amplified and downconverted by analogue devices

to lower frequencies that can be digitised and processed by existing digital hardware. Next

in the signal processor the energy is compressed through matched filtering and Doppler

processing. This destroys undesired information and allows the desired signal to be sepa-

rated. The output of the processor is often referred to as image (especially in the 2-D case

of range–cross-range) or high range resolution profile (HRRP) in the 1-D case.

Matched filter is a linear filter designed to detect a particular waveform and provide

maximum attainable by linear filter signal to noise ratio in case of single perfect match

buried in additive white noise [10]. If the white noise is Gaussian the filter output is deter-

ministically connected to the likelihood to have the target at different locations [11, 12].

For single target matched filtering combined with peak extraction provide an ideal detec-

tion and measurement. The measurement accuracy is defined as the standard deviation of

the measurement. The theoretically-possible accuracy with which the time delay can be

measured is, according to Woodward [11, p. 105] and Rihaczek [1, Sec. 3.1.]

σT = 1

β
√

2E/N0
(2.1)

where β is the r.m.s. bandwidth, E is signal energy, N0 is the noise power spectrum,

and 2E/N0 is the signal-to-noise ratio. Matched filtering, ranging and accuracy are dis-

cussed in more detail in Chapter 3.

In the general case, there is a multiple-target environment and a particular return must

be detected in the sum of the system noise and interference from other targets [1]. If the

targets are not sufficiently separated to prevent overlap of their returns the applicability

of matched-filter concept discriminate the targets becomes questionable [1]. The concept



11

of resolution is introduced and explained further in Chapter 3. For waveform with flat

spectrum the time resolution δT is quantified as the reciprocal of the bandwidth.

The way bats process echoes from targets and the surrounding environment is con-

sidered different from that of modern radar and sonar systems. Different aspects of bat

echolocation are studied in the literature, including range accuracy, range resolution, di-

rectional accuracy, obstacle avoidance mechanisms, neural coding, clutter suppression,

etc. Bats have demonstrated performance that is hard to explain. This section is restricted

to models that use only range information, a single receiver, and do not account for direc-

tional sensitivity [13, 14, 15]. In these models frequency modulated signals (emitted call

and received echoes) are passed through a filter bank to generate auditory spectrograms

(a model for the auditory periphery) which is followed by temporal processing (a model

for delay tuned neurons in the brain) for ranging the targets and a spectral processing to

resolve close target interferences.

The focus of this research is to understand the features of the bat-echolocation inspired

processing that can differentiate it from the conventional signal compression in range. The

following literature review questions can support the research objectives. What are the

tasks that bats can perform using echolocation, what are their capabilities and limitations

(Sec. 2.2)? How bat physiology can support this performance when the neural coding

latency is of the order of milliseconds (Sec. 2.3)? What are the main applications in radar

and sonar of the bats echolocation research results (Sec. 2.4)?
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2.1 Bat echolocation basics

A good introduction to bats in general and echolocation is provided in [16]. The anatom-

ical and neurophysiological basis of the echolocation in bats are presented in [17]. Both

psychophysical experiments and the neurophysiology of bat echolocation are covered in

[18]. A review on bat auditory system physiology as compared to other mammals is

provided in [19, 20].

Bats emit echolocation sounds in pulses. These pulses could be constant frequency

(CF), frequency modulated (FM) or mixed (CF/FM) as some species hunt insects in open

air but others forage for fruit or flowers in the clutter of trees and vegetation. Echolocation

is used in different phases of bat hunting and for different tasks - searching to detect a

target, approach during which the target is identified and terminal chasing which requires

precise localization of the target. The call waveform parameters like duration, bandwidth

or even the harmonic structure are correspondingly changed [21]. The spectrogram of a

field record of the sound of the big brown bat Eptesicus fuscus is shown in Fig. 2.1. All

three stages are clearly separable.

This review will be limited to frequency modulating bats (FM bats) because they are

able to discriminate stationary targets in dense interfering clutter. Doppler information is

not available so the bat receiving chain will be specialized for range processing, the main

field of interest for this research.

Broadband FM pulses are typically 2–5 ms long, often more than 10 ms during search

and less than 0.2 mm in the terminal phase [16]. The waveform has fundamental fre-

quency sweeping from about 60 to 30 kHz and can have one or more harmonics (Fig. 2.1,

Fig. 2.2, Fig. 2.3). The pulse repetition frequency is about 10 Hz during search and more

than 200 Hz at the final buzz (Fig. 2.1). The ultrasound beam width is approx. ±30° at 80

kHz and ±70° at 25 kHz (as summarized in [22]).
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Figure 2.1: The big brown bat (Eptesicus fuscus). Approach call, feeding
buzz, pause, followed by two echolocation calls. Recorded in Rio Blanco
County, Colorado, August 2, 2013, Katy Warner, CWU, 2016-04-14, Image source:
https://www.nps.gov/subjects/bats/echolocation.htm, Last accessed: July 18, 2017

2.2 FM bats echolocation performance and experiments

This review section will discuss the basic discriminatory capabilities and limitations of

FM bats as observed in behavioural experiments. The big brown bat Eptesicus fuscus will

be the default subject if something else is not explicitly stated. Most of the experiments

reviewed use so called “phantom targets”. Phantom targets are produced by replacing

the returns from a real target with a synthesized one generated by a speaker. The sound

emitted by the bat is recorded, digitally processed to achieve appropriate delay and filter-

ing and played back to the bat. This way the target exists only in the acoustic world –

guaranteeing that the echolocation is the only sense used.

Assessment of bat’s performance in terms of range accuracy that bats can achieve is

not a trivial task. Behavioural experiments are discrimination experiments by their nature

and cannot give accurate numbers. It is not possible to perform a sequence of range

measurements and calculate the variance. The accuracy is derived by exploring the bat’s
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Figure 2.2: Approach call, feeding buzz and echolocation call spectrograms for the big
brown bat (Eptesicus fuscus). These spectrograms were produced using 199 points Han-
ning window and 512 points FFT for signals sampled at 440 kHz. Source: sound record by
Katy Warner, https://www.nps.gov/av/nri/avElement/nri-10xTEfeedingbuzzEPFU.mp3.
Last accessed: July 18, 2017.
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Figure 2.3: Big brown bat’s (Eptesicus fuscus) multi-harmonic echolocation call.
This spectrogram is produced using a sound record by Katy Warner available at
https://www.nps.gov/av/nri/avElement/nri-10xTEEPFU.mp3. Accessed: July 18, 2017

capability to select the closest of two targets at different angular positions. The minimal

difference in range at which the success rate is 75% is used as a measure of accuracy.

Simmons described experiments where four species of bats had to select the closer of

two targets [23]. Eptesicus fuscus correctly identified the closer one in at least 75 % of the

trials for range differences above 12–14 mm. This corresponds to echo arrival differences

as small as 60 µs. The measured bandwidth of the chirp was less than 30 kHz (from 25

kHz to 50 kHz). The same experiments were repeated with phantom targets in order to

remove potential cues for the bat as different echo intensity and spectral characteristics

for different distances. In that case the recorded bat call was delayed and played back

to the bat. The signal was high-passed at 25 kHz and low-passed at 75 kHz. Therefore

the matched filter resolution is about 40 µs (assuming bandwidth of 25 kHz) and strictly

above 20 µs (at the equipment limited bandwidth of 50 kHz). The accuracy based on

multiple psychophysical experiments is between 30 and 90 µs as summarized in [24].

Distance discrimination trials have shown “accuracy” compatible with the matched filter
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compressed waveform width.

The above experiments are not suitable for sub-millimetre accuracy testing as they

introduce additional error from movement of the bat. To overcome this limitation the

so called target jittering experiments were designed [25]. The task of the bat was to

discriminate in a sequence of echolocating calls between a phantom target with fixed

delay and a phantom target that changes its delay (range) at each call thus switching

between two possible values (Fig. 2.4). Multiple experiments were performed with jitter

reduced from 100 µs to 0.4 µs [25, 26, 27]. The minimal jitter detected with 75% success

rate was called acuity and also used as a measure of range accuracy. The threshold of jitter

discrimination reported was 0.5 µs or less, a value consistent between all the studies. The

false alarm rate was about 10 %.

Figure 2.4: Jittering target [26]

Moss and Schnitzler repeated the experiment with filtering the harmonics (cutoff at

55 kHz) and even the higher frequencies of the fundamental waveform (cutoff at 40 kHz)

[26]. Bat jitter discrimination was the same. In [28, 29], Simmons managed to go even

further, showing that the big brown bat (Eptesicus fuscus) can perceive the arrival-time of

virtual echoes with an acuity of 40 ns for signal-to-noise ratio of 36 dB and of 10–15 ns

in quiet ambient laboratory conditions (49 dB).
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The waveform emitted by the bats in the above experiments was a frequency mod-

ulated down chirp with fundamental frequency swapping from 55 kHz to 25 kHz [26],

(55–23) kHz [25] and (50–25) kHz [27]. The sound consisted of two or three harmon-

ics between 15–25 kHz and 100 kHz. The duration of the call was between 0.4 ms and

1.9 ms with mean values significantly different for different bats, between 0.91 ms and

1.54 ms [27]. Similar durations were reported by [25, 26]. Bats emitted about 20 calls

per decision [25, 27] (several pulse trains of 5 to 20 or more echolocation calls for more

complex cases [30]).

To evaluate the meaning of the experiment results, the theoretical possible accuracy

σt was calculated using (2.1). The rms bandwidth β can be calculated from the spectrum

of the signal (see Sec. 3.1.3) as the square root of the second moment of the PSD of the

signal about a suitably chosen point. For a flat spectrum with a width BC of 80 kHz the rms

bandwidth is β = 1.8BC = 145 kRad/s and the limiting accuracies for single measurement

are shown in Tab. 2.1. For non-flat spectrum β will be lower and the uncertainty σt

higher. For multiple measurements (i.e. multiple calls per decision), σt is reduced by the

square root of the number of observations, i.e. 3 times for 9 observations and 4 times

for 16 observations. Different bandwidths and measures for the theoretical limits were

discussed in [28]. The term “semicoherent” processing was used when the envelope of

the autocorrelation is used. This can create confusion as for radar signals processing a

signal translated to baseband is still considered coherent processing. It is also not clear

whether the rms bandwidth is properly calculated in terms of radian frequency. In any

case the reported acuity looks comparable to the accuracy provided by an ideal receiver

as bats make decision based on multiple calls.

Menne et. al. showed that bats are sensitive to phase jittering [27]. The group delay

was fixed. Through a sequence of experiments with different combinations of delay and

phase jitter it was also shown that bats perceive delay and phase jitter independently.



18 CHAPTER 2. LITERATURE REVIEW

SNR, dB Theoretical σt Reported acuity [28]
5 4 µs —

— — < 0.5 µs
36 110 ns 40 ns
49 24 ns 10 ns
55 12 ns —

Table 2.1: Theoretically possible timing error expressed as standard deviation σt for
80 kHz linear chirp compared to the reported acuity in target jitter experiments [28]

Models of populations of neurons can also provide a mechanism to achieve hyperacu-

ity in the temporal representation of the signal [31]. How a high constant sampling rate

can be replaced by high latency neural spikes on a continuous time axis will be excluded

from the scope of this study even though it can give important hints for the hardware

implementation of the bat inspired algorithms.

These experiments arguably demonstrate a bat’s ability to discriminate between ranges

that differ by much less than the wavelength of the signal. The bats are able to preserve

time accuracy by several orders of magnitudes better than the neural cell firing rates (mil-

lisecond time scale). While this could be an argument that bats are capable of exploiting

the phase of the ultrasound signal, it does not show an ability to resolve the ambiguity in

the absolute range estimation which arises if the phase of the carrier is used.

One of the very attractive features of bat echolocation is the ability of bats to resolve

very closely located scatterers and various experiments have been carried out to assess

and better understand this capability. In [28, 29], for example, Simmons showed that the

big brown bat (Eptesicus fuscus) could discriminate a single-point target from a two-point

target for spacings generating time delays above as little as 2 µs with chirp-like echolo-

cation calls of 2-3 ms duration and a bandwidth of 85 kHz. For this type of echolocation

call, the corresponding conventional (or nominal) range resolution of a radar or sonar sys-

tem, defined as the half power width of a point target response [32], would be about 12 µs

and hence six times worse than the resolution of the bat. Similarly, Schmidt showed that
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the greater false vampire bat (Megaderma lyra) could discriminate between two phantom

target echoes separated by a time-delay of about 1 µs with 0.5 ms long waveforms and a

bandwidth of up to 100 kHz [30]. The corresponding nominal resolution is 10 µs. Dis-

crimination performance in the presence of surface structures was demonstrated in [33]

where Glossophaga soricina were trained to distinguish a smooth surface from a coarse

structure with a depth bigger than 0.38 mm. The emitted signal in these experiments was a

frequency modulated down-chirp consisting of three harmonics spanning the bandwidths

between 95–55 kHz, 150–86 kHz and 190–140 kHz. The predicted range resolution is

1.26 mm. There might be little difference in the various reportings but overall the litera-

ture presents a consistent story of the bat resolution ability being better than expected.

Eptesicus fuscus were trained to discriminate between two-component (complex) and

one-component (simple) targets in [34]. The effect of the variation of the size of the

simple target and corresponding neural latencies were used to make conclusions about the

acoustic images in the bat’s brain. The spectral information used to represent close targets

is expressed in terms of absolute target range [34]. A good review of target resolution

behaviour experiments is provided in [35]. Through a set of new experiments it was

shown that big brown bats can separately perceive the delays of two-point biosonar echoes

arriving as close together as 2 µs. This two-point resolution is “roughly five times smaller

than the shortest periods in the bat’s sounds” [35]. With the frequency response of the

simulator loudspeakers ranging from 20 kHz to 85 kHz, the available spectral cues are

also extremely limited.

It is interesting to provide more details on the target resolution experiment setups. One

approach was to “probe” the internal time/range representation of the target perceived by

the bat (e.g. see [35]). This was possible due to the observed bat confusion if the glint

from a single scatterer overlapped with a glint from the two scatterer target representa-

tion. In phantom target experiment the task of the bat was to select the two-scatterers
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target instead of the one scatterer target. The one scatterer target location was varied and

the resulted error rate profile was used as an indication of the target range representa-

tion. Another more straightforward approach was to discriminate a two scatterer phantom

target with fixed spacing from other two scatterer phantom targets with variable spacing

[30].

The perception of the target scatterer is changed if another scatterer becomes closer

than 350 µs [36]. This value is provided as an estimate of the integration time of the bat’s

sonar receiver. Similar masking of a scatterer is described in [22] where the interference

between two distant scatterers and a single point clutter was investigated. It was observed

that a delay of less than 50 µs from the clutter to a scatterer of the target leads to an

increase in the discrimination error.

The sensitivity of bats to disruption of the echo spectrograms was examined by Bates

and Simmons [37]. By introducing different delays to the echo harmonics it was shown

that misalignments as small as 2.6 µs can degrade echo delay discrimination significantly.

This effect is described as “defocusing” of the bat’s delay image. It was presented as a

clutter suppression mechanism [38, 37, 22].

Other experiments involve stochastic targets. Natural objects like trees and bushes

have thousands of reflective surfaces so discrimination based on discrete number of scat-

terers does not make sense. It was demonstrated that the bat Phyllostomus discolor spon-

taneously evaluate and generalize the roughness of chaotic impulse responses [39]. The

surface roughness discrimination was quantified in [40, 41] (threshold 2.5 in units of base

10 logarithm of the stimulus fourth moment). Both psychophysical and neurophysiologi-

cal data were provided.

Phase sensitivity of the bat’s sonar was studied explicitly by manipulating only the

phase response of the phantom target and keeping the magnitude response unchanged

[42]. This procedure is equates to replacing the impulse representation of the scatterer
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with white noise of a specific duration. The 75 % discrimination threshold was at a white

noise duration of approx. (206–372) µs. This strongly argues that the target is repre-

sented through the magnitude response. The phase is accounted only indirectly through

a mechanism for delay encoding. An explanation of the controversial results compared

to the phase jittering experiments was proposed [42]. It pointed out that the phase differ-

ences could be converted into spectral cues due to the non-linearities introduced through

the auditory spectrogram.

The hypothesis that bats recognize places by remembering their echo signature rather

than their 3D layout is proposed and examined [43]. This suggests that accurate abso-

lute localization is not always critical and can be augmented by target shape or surface

characteristics.

Above observations are used to understand the acoustic images that bats perceive and

the key features of the way bats process signals. They answer the first literature review

question (p. 11): what are the tasks that bats can perform using echolocation, what are

their capabilities and limitations. To summarize, it seems like bats Eptesicus fuscus are

able to discriminate small shifts in the range of a single target close to the statistical

limit, to resolve two target spacing differences as small as 2 µs (less than one third of

the Rayleigh limit) and to discriminate stochastic targets based on their roughness. Their

signal processing chain most likely does not rely on phase information. The absolute

ranging is not so accurate – about 60 µs. The perception of the target also changes if

another target is closer than about 60 µs. The next section will review existing models

that try to describe how bat’s physiology can support above performance or are designed

to reproduce similar features.
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2.3 Monaural bat auditory system models

The above review shows that bats are able to achieve performance far better than would

be expected when standard radar and sonar signal processing (e.g. matched filtering) is

applied to bat-like waveform bandwidths. This motivates the study of the bat echolocation

calls, the bat receiving chain and the cognitive adaptation. The scope of this review will

be limited to the bat auditory system models needed for processing the range dimension

[13, 14, 15]. The other aspects of target localization, resolution and discrimination, as

well as the elevation and azimuth information treatment will not be discussed. The way

bats process echoes from targets and the surrounding environment is considered different

from that of modern radar and sonar systems.

The bat auditory system based models try to mimic or implement functionally the

physiology of the mammalian auditory system. The auditory system is divided into pe-

ripheral and central auditory system.

• The peripheral auditory system includes the outer, the middle and the inner ear of

the bat. It carries out the “analogue” part of the signal processing [44]. The spectral

content of the echo is first modified based on the elevation and the azimuth of the

target due to the pinnae (outer ear) shape. Then the wideband high frequency signal

is transformed into multiple channels of low frequency signals through the inner

ear or the cochlea. The process is modelled as a bank of filters that provide a time-

frequency representation of the input signal (the so called auditory spectrogram)

[13, 15, 45, 46]. The output signals are encoded as neural spikes appropriate for

further processing. These spikes are electrical discharges that can be represented as

discrete impulses with analogue delays and fixed “refactory period” (minimal delay

between consecutive spikes).

• The central auditory system provides monaural and binaural pathways for decoding
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and combining the information from the ears. It is modelled either functionally or

as a neural network accounting for the different levels of central nervous system

processing. It provides an estimate of the time delay between the call and the echo

and additional cues about the structure of each echo, fine delays, elevation and

azimuth.

An important model in this group is the Spectrogram Correlation And Transformation

(SCAT) receiver (Saillant et al. [13]). It is a model of the auditory system that accounts

for the underlying neural organisation in FM bats Eptesicus fuscus. It is divided into

three blocks called the cochlear block, the temporal (spectrogram correlation) block and

the spectral (spectrogram transformation) block. As mentioned above, in the cochlear

block time-frequency representation of the signal is generated. In the temporal block the

signal is compressed by introducing appropriate delays for different frequency channels

and summed over frequencies to get a general delay profile for the whole range of sight.

In the spectral block the signal is integrated over time around each target location to get

closely spaced scatterers interference patterns. It should be noted that while the signal

in the temporal block is encoded by neural spikes, the spectral block is purely functional

and uses continuous magnitudes. Finally cosine inverse transform is performed to get fine

resolution delay profile of the target. This process is interpreted as a voting mechanism.

SCAT receiver performance is further studied analytically in [47] and [48] where the

outputs of the bandpass filters were approximated with cosines shaped by Gaussian en-

velopes. Peremans and Hallam [47] show the limitations of the temporal block and that

the spectral block will generate spurious arrival times if more than two echoes are present.

Park and Allen [48] further explore the spectral output of the spectral block. They pro-

vide an interpretation of the inverse transform of the interference patterns into a fine delay

profile as a pattern-matching process. Spurious targets are attributed to the the fact that
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closely spaced targets are represented by the sum of the interference patterns of all possi-

ble pairs of overlapping echoes [48]. It is interesting to note that the idea that the target

is perceived as a set of pairs of echoes is supported by an unrelated experiment [22]. In

this experiment the bat should recognize a known target (two scatterers at a predefined

distance) in the presence of clutter expressed as a single scatterer with varied position.

The interference between the clutter and the target was studied. It was observed that a

delay of less than 50 µs from the clutter to a scatterer of the target leads to an increase in

the discrimination error. If the delay is higher the clutter does not mask the target even if

it is positioned between the target scatterers.

The Sanderson et al (2003) model [49] was proposed to study the range accuracy

achievable by bats for single target. This model corresponds to the temporal processing

part of SCAT, i.e. the cochlear block and the temporal block. The waveform used was

linear chirp with single harmonic between 90 kHz and 20 kHz. The filter bank contained

22 Chebyshev IIR filters with central frequencies linearly distributed but also adjusted

to integer multiples of the 0.5 µs sample period. Several delay estimation approaches

(including the one defined in SCAT) were applied and compared with the cross-correlation

output and the theoretical limit (2.1) at different SNR. Through simulations at different

SNR of the echo and different smoothing of the filter bank outputs it was shown that full

phase sensitivity can be preserved. Using a second-order smoothing filter with a cut-off

frequency of 8 kHz, the model achieved a delay acuity of 83 ns at an SNR of 36 dB and a

delay acuity of 17 ns at 50 dB. Even though some adjustments in the model are made, the

results can be considered as a demonstration of SCAT compliance with the range-jitter

experiments. This model is not studied for resolution of closely spaced targets as the echo

interference is not accounted for, i.e. there is no equivalent of the SCAT spectral block.

The Neretti et al (2003) model [50] was developed to examine the fine range resolu-

tion achieved by bats. It operates directly over the time-frequency output of the auditory
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periphery so it can be considered a modified version of the cochlear block of SCAT. The

spacing between the scatterers is evaluated using a template matching procedure. With

simulations it is demonstrated that two target resolution of 1.2 µs is achieved at SNR

above 35 dB and 10-25 µs for SNR below 30 dB. While the bat two point scatterers reso-

lution was confirmed, a drawback of such an approach is that the templates are prepared

for specific call waveform and just two targets. Changing for example the call duration

will require change of the templates. Even though theoretically achievable resolution was

shown, its robustness for physical targets and measurements was not evaluated.

An autocorrelation model of the bat sonar is proposed by Wiegrebe (2008) in [15].

This model provides and evaluates a time-frequency representation of the signal. The

output of the auditory periphery is compressed by channel-wise normalised autocorre-

lation. This step combines in a way several steps of the SCAT model – the dechirping

from the temporal block, the fixed time integration in the spectral block and the power

equalization involved in the inverse transform. The output is preserved in time-frequency

format in a so called image buffer and is not converted into the time domain – another

difference from the SCAT model. Acoustic information across a sequence of echoloca-

tion calls could be integrated in the same image buffer. The whole image buffer was used

for solving different tasks. It was compared with templates in terms of the Euclidean dis-

tance and a threshold was used to make decision. Templates were prepared by averaging

20 presentations of the rewarded target response. Simulation results were compatible to

the behavioural experiments for the following tasks to: (1) discriminate the roughness of

complex virtual targets, (2) discriminate phase randomization of the echo, (3) discrim-

inate echo delay differences, (4) discriminate two target spacing differences, and to (5)

discriminate low passed from high passed signal (targets with a spectral pass-band around

41 kHz from such with a pass band around 82 kHz). This model was not able to reproduce

the sub-microsecond acuity of the range-jitter experiments.
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Recent works emphasize the “first-spike latency coding” and the “amplitude-latency

tradeoff” [51, 52, 53, 54]. More realistic models were proposed for both the peripheral and

the central auditory systems where the information in the auditory brainstem is coded as

neural spikes [51, 52]. The problem was how the magnitude of the signal is represented in

the neural system. It was studied based on neural measurements of Local Field Potentials

(LFPs) and single-unit responses from the Inferior Colliculus (IC) [53]. The spike rate

which is normally used is not enough due to the limited duration of the stimulus – only

one or at most a few spikes can be generated to represent the target in any one channel

as demonstrated by Sanderson and Simmons [53]. The first-spike latency was used as

an alternative to the number of spikes for encoding the amplitude [51, 54]. The neural

encoding of the time-frequency analogue output of the cochlea by population of auditory

neurons was studied in [54]. These works employ models that are closer to the physiology

of the mammalian auditory periphery than the SCAT. The Reijniers and Peremans model

[54] is a version of the Meddis model [46] with some parameters adapted for the bats.

Fontaine and Peremans rely on the Patterson [45], Fontaine et al (2011) on the Brian

simulator [55]. The peripheral model used in Loncich [52] is EarLab [56]. However

this increased complexity does not help in achieving deeper understanding of the basic

principles of the bat echolocation. Moreover Reijniers and Peremans paper has shown

that the cochleogram can be reconstructed from the neural code and that the resulting

spectral notch pattern is available to the bat [54].

Some of the recent research concentrates on reproducing in fine detail the process-

ing of the signal in the bat auditory system, starting from the outer ear of the auditory

periphery and proceeding to “coding a neural network that includes known auditory path-

ways and neuron types” [52]. Head-related transfer functions were investigated for both

monaural and binaural spectral features [57, 58]. In contrast, this research extracts the ba-

sic principles of bat auditory system processing that differentiates it from the conventional
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radar and sonar target signature representations. While the aim of the bat auditory system

models is to reproduce the acoustic images as it is believed, from a variety of behavioural

experiments, that the bats perceive them, there is no explanation on what exactly brings

the improvement in range resolution so it could be exploited in a technological system.

The amplitude-latency trade-off (amplitude induced latency shift) is measured exper-

imentally for the bat auditory system [34, 59]. Reduction in spectral frequency power is

converted in temporal misalignment in the auditory image. Behavioural experiments have

shown that bats are sensitive to delays de-synchronization between channels of the order

of a few microseconds [37, 22, 38, 60, 61]. So the neural spikes generated from stimuli

with different magnitudes could be separated and processed through different computa-

tional paths [62]. The temporal binding hypothesis and the harmonic structure of the

echoes [37, 38, 61] was used to explain the clutter “defocusing” capabilities of the bats.

Due to the lower width of the sonar beam at higher frequencies there is attenuation of the

higher frequencies for returns from objects not centred in the sonar beam. The idea to

exploit spike latencies as a mechanism to extract spectral cues for independent process-

ing was proposed in the context of both target shape perception and clutter rejection. It

was also used to update the original SCAT with a neural network implementation of the

spectral block [63].

The review of the target ranging algorithms inspired by bats echolocation cannot

be complete if some prominent but purely functional mathematical models with minor

physiological correlation algorithms are not mentioned. Matsuo research replaces the

conventional constant frequency filter bank with a bank of Gaussian chirplets [14, 64,

65, 66]. The carrier frequency is matched with bat emission sweep rates in order to

achieve higher time compression. Therefore a kind of channel-wise cross-correlation is

performed. Next an iterative procedure allows estimation of the location and reflectivity

of multiple closely-spaced scatterers.
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Another approach for resolving closely spaced targets from bat echolocation signals

was to apply the theory of sparse reconstruction [67]. The scatterers impulse response

deconvolution is expressed as a convex optimization problem and L1-minimization is

applied. Fontaine and Peremans have shown that this method performs comparably to

the coherent receiver, can handle white noise and complex targets with many closely

spaced reflectors with different reflection strengths [67]. Implementation of this approach

over the multi-channel output of the cochlear block is demonstrated in Hague et al [68].

However, it was also noted that the lack of sparsity of the reconstructed target image

would introduce multiple impulses [67]. In real measurements it is not likely that the

return from a single scatterer will be an exact replica of the transmitted waveform. The

robustness of the method to real targets has not been demonstrated experimentally.

This section discussed the second literature review question (p. 11): how bat physiol-

ogy can support observed performance. Above models of the bat auditory system differ

in the level of details and biological plausibility. Different waveforms (bandwidth and

shape), different models of the peripheral system (number of filters in the filter bank, fil-

ter type and bandwidth, non-linear magnitude compression) and different models of the

central auditory system (functional or neural, local integration or correlation) are used. A

common theme is that first both the emitted call and the received echo are passed through

an auditory periphery to produce a time-frequency representation of the echo. Than all

frequency channels are aligned to achieve the first level of signal compression. Finally the

range and frequency information are processed separately or together to provide the final

target representation or decision for a specific problem. The exact mechanism for neural

implementation of the signal processing will not be subject of this study even though it can

bring valuable insight for low energy, highly parallel computations architecture. As the

main goal is to investigate the differences and similarities between the way bats and the

radar cross-correlation receiver process echolocation signal, the original SCAT receiver
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[13] will be studied. It is relatively simple yet biologically plausible, can be considered

a functional model but provides a neural implementation at all stages. The temporal and

spectral processing can be modelled separately, which is also an advantage when analyti-

cal models have to be done. More details about SCAT are provided in Chapter 3.

2.4 Bioinspired applications for radar and sonar

The most general bioinspired models apply standard signal processing and classification

algorithms over signals simulating bat waveforms and echoes. For example, a fully con-

nected neural network is trained to discriminate cube from tetrahedron in [69]. The target

was ensonified with ultrasonic pulses synthesized to mimic the call of the bat Eptesicus

fuscus during the approach phase (bandwidth 75 kHz, duration 1-3 ms, two harmonics).

The classification performance was evaluated for different echo representations used as

input to the network - the raw time domain digitized record of the echo, the compressed

time domain echo after matched filtering (cross-correlation with the emitted call), the

frequency domain representation (the power spectrum) and the time-frequency represen-

tation (the spectrogram). It was found that the best performance is achieved by using the

spectrogram representation of the echo (above 90 % accuracy). Both time domain rep-

resentations failed to train the network. The frequency domain representation provided

successful classification of 70 % of the echoes. The performance is also evaluated just

by using the lower or the upper harmonic after low or high-pass filtering of the echo.

The performance didn’t degrade in the case of time-frequency representation. For the

frequency representation case using only the first harmonic provided the same 70 % ac-

curacy, but when only the second harmonic was available the accuracy dropped to 55 %.

Another example of successful target discrimination from bat-like echolocation signals is

provided in [70] for plants. A machine learning algorithm based on Primary Component
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Analysis (PCA) and Support Vector Machines (SVM) was applied over the spectrogram

of the echo.

While such models provide general proof that bat echolocation waveform can be used

for target recognition, they do not bring insight of the unique features of the bat audi-

tory system. In addition the results in the above studies were neither related to the bat

performance for similar tasks nor explored the limitations in target discrimination. Re-

cent developments in machine learning and deep neural networks can be applied directly

for such kind of analysis (e.g. WaveNet provides a deep neural network architecture for

processing raw time-domain audio data [71]).

The bio-inspired sensing research was concentrated mostly on the signal design used

by bats. How bats are exploiting waveform diversity and how this can be exploited in

future radar and sonar systems for autonomous navigation was reviewed in [72].

Other research tried to extract the specific features of the targets that are important

for their discrimination through echolocation by bats [5]. Echo acoustic signatures of bat

pollinated flowers were studied in [73, 5]. Data was collected using a linear frequency-

modulated downchirp spanning the frequencies between 50 and 250 kHz. The main fea-

tures were extracted by applying PCA over either the matched filtered time domain or the

frequency domain signal. Classification was performed using either k-NN classifier or a

Naıve Bayes classifier. It was shown that the contribution of the scattering from the flower

petals is a key feature to determine if the flower is suitable for pollination. The difference

in the backscattered power is also a feature. The k-NN performance was sensitive to the

appropriate choise of the neighbours to match the cross-correlation properties between

different angular perspectives [5].

Work by radar and sonar engineers on target classification inspired by what is known

about how bats perform this task has generally assumed that the receiver includes a

matched filter, e.g. see [5, 8]. An exception is the research by Burton and Lai [74] on
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underwater target classification based on SCAT filter. It compared the classification per-

formance of specified neural networks using features generated by matched filter and by

a SCAT filter and showed that in some cases SCAT had better performance. An exist-

ing dataset provided by NSWC Costal Systems Station, Dahlgren Division was used with

added simulated reverberation noise. Emitted waveform was linear chirp with bandwidth

of 40 kHz and different starting frequencies (5, 20, 40, ..., 120) kHz. It is worth to note

that the filter bank (central frequencies distribution) was not adjusted for the waveform

and frequencies used and yet it provided compatible performance to the matched filter.

A Bio-Inspired Range Finding algorithm (BIRA) was proposed and evaluated for

range resolution for simulated ultrasound system [75]. It combined some features of

[47, 14] but didn’t prove to be robust to noise, multiple targets or the low pass filter effect

of the air. This is not a surprising result as the limited integration time of the spectral

block was not modelled.

The final literature review question (p. 11) was “What are the main applications in

radar and sonar of the bats echolocation research results”. Most applications of bat-

inspired signal processing can be found in the literature for robotics for detection and

localization using ultrasound (e.g. [76, 77]). These are binaural methods for 3-D space

localization that build on the idea of studying the spectral interferences. To the best of

author’s knowledge, the bat auditory system based signal processing has not been applied

at radar (microwave) frequencies.

2.5 Summary

Behavioural experiments performed by biologists show that the echolocating signal as

perceived by the bats can differ significantly from the output of the radar receiver for

comparable waveforms. Low resolution range information is combined with local high
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resolution capabilities. A variety of models of the bat auditory system exist in the litera-

ture that differ in level of details and biological plausibility. Such models have not been

applied at radar frequencies. The SCAT receiver was selected as a representative model

for the bat auditory system signal processing. In the next Chapter it will be described

in more details together with the related principles of conventional signal processing for

radar.



Chapter 3

Background theory

In this chapter the basic principles needed for understanding radar signal processing were

presented. Considering the interdisciplinary nature of the work making it accessible to a

wider audience is an important but challenging part of the research communication. The

SCAT model of bat auditory system was discussed in detail with special emphasis on the

interpretation of the model’s functionality.

3.1 Signal representation and characteristics

3.1.1 The time and the frequency domain

The Fourier transform defines equivalent representation of a broad class of continuous

signals. Signals connected through Fourier transformation are called Fourier transform

pairs.

Y( f ) = ∫
∞

−∞
y(t)e− j2π f tdt 
 y(t) = ∫

∞

−∞
Y( f )e j2π f td f (3.1)

If the signal energy is concentrated in one domain it will be spread in the other domain.

If the signal is strictly limited in one domain it is infinite in extent in the other [78].

33
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The ultimately narrow signal is the impulse. Its Fourier transform pair is a complex

exponential with zero frequency, a signal with infinite duration and constant amplitude

(Fig. 3.1). Shifting the position of the impulse will change the frequency of the complex

exponential. Two time shifted impulses are transformed into a real cosine (Fig. 3.1).

The closer the impulses are in the time domain, the lower the frequency of the cosine.

It can be observed that the signal can be more readable in one of the domains. In the

example above, while on the time axis the signal is represented by only two points, on the

frequency axis there is an infinitely repeating sinusoidal pattern.

The impulses and the complex or real sinusoids are the building blocks of the signals.

The complex representation is preferred as it allows the symmetry of the transformation

to be preserved.

FT

FT

Figure 3.1: Fourier transform of single impulse and a pair of delayed impulses. The signal
can be represented as a sum of complex or real sinusoids

Band limited impulse An impulse in a continuous signal (Dirac delta, δ(t)) can be

sampled as a discrete time impulse sequence (Kronecker delta, δ [n]) under the following

conditions (Fig. 3.2):

1. first filter δ(t) with ideal low-pass filter with cut of frequency equal to half the
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sampling frequency Fs

δLP(t) = δ(t)∗ sinc(Fst)

2. sample exactly at times n/Fs

δ [n] = δLP(n/Fs)

FT

IFT

Figure 3.2: Relationship between Dirac delta and Kronecker delta

Time shifted impulse cannot generally be represented as a single discrete impulse.

Either the zero location or the sampling frequency need to be adjusted. If there is a group

of two time shifted impulses no shifting of the whole group can make them discrete. This

can be achieved only if they are separated by a whole number of sampling intervals.

Discrete time sequence Band limited signals can be sampled without loss of informa-

tion (sampling theorem). This allows the signal to be represented as a sequence of num-

bers. Let y(n) denote a discrete time data sequence obtained by sampling a continuous-

time signal. The frequency domain representation of a discrete signal is obtained through

the Discrete Time Fourier Transform (DTFT). It is a continuous periodic function in

which the original spectrum is repeated with a period equal to the sampling frequency.

Y( f ) =
∞

∑
n=−∞

y(n)e− j2π f n 
 y(n) = ∫
0.5

−0.5
Y( f )e j2π f nd f (3.2)
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where the frequency f is in cycles per sampling interval, i.e. the analogue frequency in

Hz fHz is normalised by the sampling frequency Fs, f = fHz/Fs.

The equations (3.2) can be expressed as a function of the time and frequency:

Y( fHz) =
∞

∑
n=−∞

y(n)e− j2π fHzt 
 y(t) = 1
Fs
∫

Fs/2

−Fs/2
Y( fHz)e j2π fHztd fHz (3.3)

Discrete Fourier Transform (DFT) DFT is used for transforming either discrete signal

of finite length or periodic discrete signals.

Y(k) =
N−1
∑
n=0

y(n)e− j2πkn/N 
 y(n) = 1
N

N−1
∑
k=0

Y(k)e j2πkn/N (3.4)

Switching from indexes n and k to physical units t and f is trivial:

t = n∆T = n
1
Fs

fHz =
k

N∆T
= k∆F

(3.5)

DFT is usually implemented as a Fast Fourier Transform (FFT). In this study the terms

DFT and FFT will be used interchangeably.

The conventional scaling of the time/range axis is either in physical units (seconds

or metres) or in units of sampling intervals, ∆T or ∆R. The conventional indexing of the

frequency axis is expressed in units of sampling intervals ∆F , cycles per sampling interval,

radians per sampling interval (natural frequency in radians), cycles per second (analogue

frequency in Hz) or radians per second. To remove the confusion related to proper axis

scaling, a simple algorithm is provided in App. B.4 to generate the required axis based

on the number of points in the sequence and the required scaling parameters. Due to the

inherent periodicity of the transformation, either positive indices n = 0 ∶ N −1 or circular

indexing n = [0 ∶N/2,−N/2 ∶ −1] can be used.
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Autocorrelation and autocovariance The autocorrelation r(k) of a deterministic dis-

crete signal y(n) is defined as

r(k) =
∞

∑
n=−∞

y(n)y∗(n−k) (3.6)

If the mean of the signal is first removed then (3.6) provides the autocovariance of

the signal. For random signals of infinite duration and energy the autocovariance is the

expected value of the product y(t)y∗(t −k) of any two values at lag k:

r(k) = E {y(n)y∗(n−k)} (3.7)

r̂(k) = 1
N

N
∑

n=k+1
y(n)y∗(n−k), 0 ≤ k ≤N −1 (3.8)

where r̂(k) is an estimate of the covariance r(k).

Power spectral density The energy spectral density of a deterministic energy signal is

calculated directly from its Fourier transformation by squaring.

EY (k) = ∣Y(k)∣2 (3.9)

An analogue procedure can be applied to a section of a power signal of length N:

PY (k) = 1
N

∣Y(k)∣2 (3.10)

The power spectral density (PSD) is defined more rigorously for random signals where
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it represents the distribution of the average signal power over frequencies [79]:

PY ( f ) =
∞

∑
n=−∞

r(k)e− j2π f k

PY ( f ) = lim
N→∞

E
⎧⎪⎪⎨⎪⎪⎩

1
N

∣
N
∑
n=1

y(n)e− j2π f n∣
2⎫⎪⎪⎬⎪⎪⎭

(3.11)

A variety of spectral estimation methods have been developed which transform a finite

sequence on N samples of a stationary random process into a discrete or continuous func-

tion of frequency. Equation (3.10) provides an estimate of the PSD called a periodogram.

It has a reasonable bias which goes to zero as the number of samples N go to infinity

but the variance is poor and does not decrease when N →∞. The standard deviation is

equal to the corresponding true PSD value [79]. Modified periodograms are introduced

to reduce the variance at the expense of a small increase in the bias. The periodogram is

smoothed by locally weighting and averaging. Some techniques apply windowing in the

time domain with averaging the subsample periodograms (Bartlett 1948, Welch 1967),

others apply windowing over the autocorrelation function (Blackman-Tukey 1959) and

others directly average the power spectrum over small intervals B (Daniell 1946), e.g.

P̂D( f ) = 1
B ∫

f+B/2

f−B/2
P̂Y (g)dg (3.12)

There are also “parametric” methods that can provide an ability to resolve spectral

lines in frequency by less than 1/N cycles.

3.1.2 Signal and noise power metrics

The energy E of the signal is the area under the signal squared curve. It can be calculated

in either the time s(t) or the frequency domain S( f ), assuming that the integral converge

(e.g. when the signal has a finite duration).
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E = ∫
∞

−∞
∣s(t)∣2 dt = ∫

∞

−∞
∣S( f )∣2 d f (3.13)

Signals with infinite spread in time (periodic deterministic or stationary random) are

characterised by the signal power PS, which is the energy per unit of time.

PS = lim
T→∞

1
2T ∫

T

−T
∣s(t)∣2 dt (3.14)

A white noise is a random signal with constant power spectral density N0/2. In prac-

tice the noise is band-limited and therefore has finite average power N =WN0, where 2W

is the bandwidth of the noise. Equation (3.14) shows that N is also the variance of the

noise waveform.

Signal-to-noise ratio (SNR) is the ratio of the instantaneous signal power P(t) = ∣s(t)∣2

at its maximum and the average noise power N (mean squared noise). An alternative

definition is common for radar as the signal is compressed in the receiver. The SNR is the

signal energy E over the two sided power spectral density of the noise N0/2.

η = P
N

(3.15)

ρ = E
N0/2

(3.16)

3.1.3 Bandwidth

The bandwidth of a signal provides a measure of “the extent of significant spectral content

of the signal” [78, pp. 29–31]. For real signals it is measured for the positive frequen-

cies. Different definitions of the bandwidth are available based on how the “significant”

frequencies are determined. If the signal is strictly band limited than the bandwidth is just

the difference between the highest and the lowest frequencies. Otherwise, the definition
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of bandwidth accounts for the distribution of the spectral energy. Of practical importance

for radar are the 3-dB bandwidth B3dB and the root mean square (rms) bandwidth β (also

called effective bandwidth).

The rms bandwidth is defined as the square root of the second moment of the PSD of

the signal about a suitably chosen point and expressed in radians per unit time

β
2 = (2π)2 ⋅ ∫

∞

−∞ f 2 ∣S( f )∣2 d f

∫
∞

−∞ ∣S( f )∣2 d f
(3.17)

Special attention should be paid not only to the definition but also to the dimension

of the bandwidth. As with any frequency it can be expressed in Hz, rad/s, cycles per

sampling interval, or radians per sampling interval. In addition, neither B3dB nor β are

appropriate for sampling rates as there is a significant spectral energy beyond them.

For rectangular shapes the rms value is 1/(2
√

3). Therefore for a spectrum with a

width B Hz,

β = 2πB

2
√

3
= 1.8B (3.18)

3.1.4 Pulse duration

The duration of a rectangular pulse in the time domain is trivial to define. After the

ideal pulse convolves with the environment and is further filtered by the receiver its shape

smears and metrics similar to the ones used for bandwidth measurement are more appro-

priate. A 3 dB pulse duration and a the root mean square width Trms can be used.

T 2
rms =

∫
∞

−∞ t2 ∣s(t)∣2 dt

∫
∞

−∞ ∣s(t)∣2 dt
(3.19)
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3.2 Downconversion to intermediate frequency and com-

plex baseband representation

Both radar and bats need to encode the received signals at a much lower rate then the

Nyquist sampling rate. Radar systems operate in the microwave band and use carrier

frequencies of the order of a few GHz and typical bandwidths of a few MHz. Analogue

to Digital converters (ADC) historically have been limited to much lower rates. And even

modern ADCs are limited to the S-band sampling [80]. Bats echo-locate using ultrasound

frequencies from tens to more than a hundred kHz, but neurons can produce spikes at

intervals from a few hundreds of microseconds to several milliseconds (0.5–4 kHz).

The solution is found in the frequency domain representation of the signals. Radars

rely on the so called downconversion to shift the signal to a lower carrier frequency known

as intermediate frequency (IF) without changing the modulation bandwidth [3]. Bats use

filter banks to sample the signal directly in the frequency domain at a relatively slow time

rate. The bats approach will be summarized in Sec. 3.6.

Downconversion to IF is performed in an analogue device called a mixer (Fig. 3.3).

The RF signal is multiplied with a reference signal cos(2π fLOt) called a local oscillator

(LO). Multiplication in the time domain corresponds to convolution in the frequency do-

main. This way the signal spectra is translated to the line spectra of the LO. The unwanted

frequencies are removed through analogue bandpass filtering. The resultant IF signal is

real valued with carrier frequency fIF = fRF− fLO.

The IF signal is further converted to baseband. The positive band of the spectrum is

centred at zero frequency. In order to prevent aliasing the negative part of the spectrum

is discarded. The signal become complex and represents the so called complex envelope.

The ”quadrature“ downconversion to I and Q components is performed in an analogue
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RF IF

MixerRF Filter
Sideband 

Filter

LO

Figure 3.3: RF mixer

Q

cos(2πf0n)

I

sin(2πf0n)

ADC
x[n]x(t)

Figure 3.4: I/Q demodulation

device or entirely digitally. The device is called an I/Q demodulator, quadrature detector,

synchronous detector, or coherent detector. An example of a digital downconversion ar-

chitecture is shown in Fig. 3.4. The output signal is u[n] = I[n]+ jQ[n]. It can be further

downsampled. An alternative implementation is with a Hilbert transformation followed

by frequency shifting.
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3.3 Frequency modulated waveforms

A broad class of band-pass signals can be written as

x(t) = a(t)cos[2π f0t +ϕ(t)]

=R{a(t)exp[ j(2π f0t +ϕ(t))]}

=R{a(t)exp[ jϕ(t)]exp[ j2π f0t]}

=R{u(t)exp[ j2π f0t]}

(3.20)

where a(t) is the natural envelope function, ϕ(t) is the instantaneous phase and u(t) is

the complex envelope [12, 10]. If a(t) is constant the signal is frequency-only modulated.

If the phase ϕ(t) is constant the signal is amplitude-only modulated.

3.3.1 Linear chirp

A linear chirp x(t) is a signal with linearly changing instantaneous frequency finst(t):

finst = γt, γ = finst(t2)− finst(t1)
t2− t1

(3.21)

where γ is the frequency sweep rate. A complex chirp unrestricted in time will be:

u(t) = exp jϕ(t)

= exp( j∫
t

0
2π finstdt)

= exp( jπγt2)

(3.22)

In practice the chirp has to be limited in time duration T and in frequency bandwidth

BC. The chirp rate is γ = ±B
T . If the chirp is defined in the time domain then its magnitude

is constant over an interval (−T /2,T /2] and zero outside the interval. Additional delay



44 CHAPTER 3. BACKGROUND THEORY

T /2 is needed to make the signal physically possible.

u(t) = rect(t −T /2
T

)exp( jπγt2) (3.23)

The corresponding real chirp is

x(t) =R{u(t)exp( j2π f0t)}

=R{rect(t −T /2
T

)exp( jπγt2)exp( j2π f0t)}

= rect(t −T /2
T

)cos(2π f0t +πγt2)

(3.24)

If the chirp is defined in the frequency domain then its frequency magnitude is constant

over an interval (−B/2,B/2]+ f0 and zero outside. The phase is manipulated to become

a non-linear function of the frequency. In the time domain this results in a chirp-like

waveform of limited duration:

V( f ) = rect( f − f0

BC
)exp[− jθ( f − f0)]

= rect( f − f0

BC
)exp(− jπ

1
γ
( f − f0)2)

v(t) =F -1(V( f ))

(3.25)

3.3.2 Hyperbolic chirp

The hyperbolic chirp is characterized by linear instantaneous period change. It can be

shown that the corresponding instantaneous frequency finst(t) is:

finst =
ak

kt −1
(3.26)
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where k = f2− f1
f2T , a = − f1

k , and f1 = finst(0) and f2 = finst(T) are the initial and the final

instantaneous frequencies of the chirp and T is the time duration. The bandwidth is B =

f1− f2.

The final equation for hyperbolic frequency modulated signal is

x(t) =R{rect(t −T /2
T

)exp( j2πa ln(1−kt))}

= rect(t −T /2
T

)cos(2πa ln(1−kt))
(3.27)

The time waveform, the frequency spectral power and the time-frequency spectrogram

are shown in Fig. 3.5 for linear and hyperbolic chirps spanning form 30 kHz to 5 kHz for

4 ms. It is interesting to note that the spectrum of the hyperbolic chirp is not flat.

3.3.3 Step frequency

A stepped frequency train of unmodulated pulses is a sequence of narrow bandwidth

pulses at different carrier frequencies [10, 81]. If the number of pulses is N and the

frequency step is ∆F , a very short pulse with bandwidth B =N∆F can be synthesized. If all

pulses have the same amplitude the synthesized waveform approximates a band-limited

impulse [10, Sec. 9.9.2]. If the amplitudes are appropriately weighted the approximation

is of a rectangular pulse [82, pp. 113-123].

The return of each pulse is characterised by its magnitude and phase. The returns of all

pulses provides a sequence of frequency domain samples. The time domain data is syn-

thesized by inverse Fourier transform of the frequency domain data. As the measurements

are discrete, a range ambiguities are introduced with period c
2∆F

.
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Figure 3.5: Linear and hyperbolic chirp representations. Waveform, spectrogram and
spectrum. The instantaneous frequency is overlaid on the spectrogram
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3.4 Pulse compression and matched filter

The objective of the pulse compression is to reduce the width of the receiver output pulse

and ideally provide the impulse response of the targets. Any nonlinear phase function

ϕ(t) “must always” increase the rms bandwidth β [1, pp. 51–56]. The same applies

for the rms duration Trms: having a nonlinear phase θ( f ) in the frequency domain will

increase the signal duration.

β
2 = ∫

∞

−∞
∣u(t)∣′2 dt +∫

∞

−∞
[ϕ ′(t)]2 ∣u(t)∣2 dt (3.28)

(2πTrms)2 = ∫
∞

−∞
∣V( f )∣′2 d f +∫

∞

−∞
[θ ′( f )]2 ∣V( f )∣2 d f (3.29)

The receiver needs to perform a reverse operation, i.e. to demodulate the phase. The

time-bandwidth (T B) product has a lower limit [1, 83]. It depends on the definitions for

signal duration and bandwidth but is of the order of one. An optimal waveform will have

big T B. An optimal receiver will output a signal with the minimal T B of about one thus

providing a compression ratio of about the time-bandwidth product.

The complex envelope modulation can also be considered. Appropriately weighting

the frequency spectrum will reduce the effective duration by changing the distribution of

the energy around the mainlobe. Unfortunately it will also reduce the effective bandwidth

and the compression ratio as a whole if the frequency band is limited. The optimal wave-

form will depend on the definition of pulse duration. For example using the rms spread

of the signal will account for the sidelobes and using the half-power width will consider

only the main lobe width.
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3.4.1 Matched filter

Arguably the most popular algorithm for signal compression is the matched filter, also

called the correlation processor. It was developed as a linear solution for the problem

of detecting a known signal in white Gaussian noise. The optimisation criterion was

maximization of the SNR at the receiver output [84, 85].

The matched filter impulse response h(t) and the corresponding frequency response

H( f ) are determined by the signal s(t) or S( f ) to which the filter is matched [10].

h(t) =Ks∗(t0− t)

H( f ) =KS∗( f )exp(− j2π f t0)
(3.30)

The impulse response is a time-reverse of the signal conjugate. It can be scaled by

an arbitrary constant K. A delay t0 is introduced to make the filter causal (h(t) = 0 for

t < 0 or t0 ≥ T ). The frequency response is the complex conjugate of the spectra of the

transmitted signal. Therefore the phase of the received waveform is compensated based

on the transmitted signal phase. This is consistent with the interpretation of the signal

compression as a phase demodulation technique. The spectral magnitude is weighted by

the transmitted waveform magnitude and in this way emphasizes the expected frequencies

and suppresses the other, as can be expected from a filter optimised for SNR.

The output of the matched filter so(t) is shaped as the autocorrelation function of the

signal (Fig. 3.6), e.g. for K = 1 and t0 = 0

so(t) = s(t)∗h(t) = ∫
∞

−∞
s(τ)s∗(τ − t)dτ (3.31)

It has a peak proportional to the energy E of the signal
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Figure 3.6: The autocorrelation output for the linear and hyperbolic chirp described in
Fig. 3.5. Wideband signal, 30 kHz to 5 kHz

so(t0) =KE (3.32)

The SNR at the peak in the case of white noise is

SNRMF =
E

N0/2
(3.33)

where N0/2 is the two sided power spectral density.

Woodward gave probabilistic and “informational” derivation of the correlation re-

ceiver [86, 11] as a “sufficient receiver”. A sufficient receiver was defined to have an

output equivalent to the probability distribution py(x), which contains all available infor-

mation about the target parameter x that can be extracted from the radar return y. All

extraneous information is destroyed. The shape of the sufficient receiver output and the

probability py(x) are not necessarily the same as far as they are related deterministically.

Matched filter output is used to support likelihood based statistical decisions [12]. A
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detection threshold and probability of detection are calculated assuming white Gaussian

noise and preselected constant false alarm rate. Different noise distribution can be used

but the results are not necessarily of practical significance.

Matched filter output q(t) is used for measurement of target delay (parameter estima-

tion tasks) from the received waveform y(t). In the case of single point target xT (t) =

δ(t − t1) and white Gaussian noise, the MF peak position gives the “best” target delay t1

and is equivalent to the maximum likelihood estimate [86, 12] for large SNR.

y(t) = s(t)∗xT (t)+w(t)

= s(t)∗δ(t − t1)+w(t)

= s(t − t1)+w(t)

q(t) = y(t)∗h(t)

t1 = argmax
t

q(t)

(3.34)

For the problem of single target delay estimation, the relationship between ideal and

sufficient receiver is given in [86, pp. 81–85]

py(τ) = kp(τ)pτ(y) = kp(τ)exp(− E
N0

)exp(− 2
N0

q(τ)) (3.35)

The prior knowledge is given by the prior probability p(τ). The value of τ where the

likelihood function pτ(y) has a maximum is the maximum likelihood estimate for τ .

Matched filter can be applied in more complex scenarios:

• when the noise is white but not Gaussian, MF still maximise the SNR and the peak

gives “best” parameter in least-squares sense;

• when the noise is white Gaussian, MF gives the best SNR among all nonlinear
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filters that are time invariant [1, p. 30];

• when the noise is Gaussian but not white, a whitening filter can be applied and then

a modified matched filter.

• in a multiple-target environment, if the scatterers are randomly located, independent

and so dense that they are unresolvable – the problem becomes signal detection in

coloured, Gaussian noise [1];

• in a multiple-target environment, when the targets are sufficiently separated to pre-

vent overlap;

The applicability of matched-filter concept becomes questionable when

• the targets are not sufficiently separated to prevent overlap of their returns;

• when there are large nearby targets that can mask the small targets with their side-

lobes.

3.4.2 Other filters

Inverse filter Inverse filter is a filter that shapes a finite sequence into a unit pulse. It is

used to remove undesired components in a time series [87, pp. 75-77].

H(z) = 1
G(z)

(3.36)

Equation (3.36) shows that the same frequency demodulation as in MF is performed.

The magnitude is also demodulated by setting the filter magnitude response as the recip-

rocal of the signal magnitude response. Therefore the frequencies with low magnitudes

will be boosted. Unfortunately the noise components are also boosted and such filters are

appropriate for signals with very high SNR. Even though trivial, it is worth pointing out
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that frequencies not present in the transmitted waveform should not be processed as only

noise and no useful information can be expected. An approach that combines linearly

matched filter and inverse filter is proposed in [88, 89] and can be useful for compressing

waveforms with non-flat frequency response like the hyperbolic chirp.

Least squares processing The problem with the practical implementation of the in-

verse filter is that its non-recursive form is of infinite length. Just trimming the theoretical

sequence to a finite number of taps is not necessarily the best approach. A better approx-

imation is to minimise the error energy between the output of the filter and the ideal unit

impulse (for a given length of the filter). This leads to the least squares methods.

Adaptive pulse compression Pulse compression that adapts to the received signal is

proposed by Blunt in [90]. It was designed to handle the case of multiple targets with

significant differences in size.

Minimum phase filter The minimum phase filter has the minimum group delay for

all causal and stable filters that have the same magnitude response. The energy spread

beyond the start is minimal. Such filtering can provide advantages when having minimal

group delay is more critical than the compression ratio.

A system is minimum phase if the system and its inverse are causal and stable. This

means for a discrete time system that all zeroes and poles are inside the unit circle. For

such a system the phase and the logarithm of the magnitude response are connected

through Hilbert transform.

φ(ω) = −H{ln(∣H(ω)∣)}
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3.5 Measuring range and resolving in range

3.5.1 Range accuracy

Range measurements of a single target are characterised by their accuracy. Range accu-

racy is defined as the standard deviation σr or the variance σ2
r of the range measurements.

It is determined by the statistics used to calculate the range from the return signal.

Matched filter pre-processing is used for range estimation of single target following

(3.34). The accuracy with which the range can be determined is measured by the width

of the peak in Py(τ) (3.35) as shown in Woodward [11, p. 105]. The accuracy in delay

estimation is [11, p. 105], [1, Sec. 3.1.]

σt =
1

β
√

ρ
(3.37)

where β is the rms bandwidth (3.17) and ρ is the signal-to-noise ratio (3.16). This

is the theoretical limit given by the Cramer-Rao bound (CRLB) for range estimation in

white Gaussian noise [91, pp. 53–56]. As noted by Woodward [11, p. 105], equation

(3.37) only applies for relatively large signal-to-noise ratios.

3.5.2 The concept of resolution

Range measurements of multiple targets require first the individual targets to be discrim-

inated or “resolved”. Resolving the target can involve different tasks ([1, 90]) – distin-

guishing two similar scatterers that are located at short distance (range “superresolution”),

distinguishing scatterers that differ significantly in strength (sidelobe supression), and dis-

crimination of the target in various forms of clutter. Under the term “resolution” I will

discuss only the ability to discriminate two close scatterers.

The standard definition of resolution is based on the autocorrelation function and is
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given by the half-power width of the point target matched filter response of the waveform

[32][11]. It is the minimum separation of two equally strong scatterers that produces on

average two response peaks. Following the approach in [1, pp 92], the term nominal

resolution δT (or δR when transformed into distance) is defined as the reciprocal of the

signal bandwidth:

δT = 1
BC

δR =
c
2

δT (3.38)

A different definition of resolution is provided by the Rayleigh criterion, according

to which adjacent lines or rings of equal intensity in a diffraction pattern are regarded as

resolved when the central maximum of one coincides with the first minimum of the next

[92, 93]. For a sinc function shaped response this corresponds to a resolution limit of

1.43δR.

The above definitions of resolution do not take account of whether the peaks represent

the scatterer positions accurately. Rihaczek redefines the notion of resolution in a way to

permit an accurate measurement, e.g. of the range [32]. This corresponds to the minimum

spacing of 2δR when only the intensity output of the receiver is used. This spacing was

called functional resolution [32]. The functional resolution can be improved to δR if the

phase output of the receiver is also used and there are only two close scatterers.

The actual ability to resolve two targets can be quantified in different ways. An exam-

ple metric is the probability of resolution. Two criteria for resolution are summarized in

[94] – two targets are resolved if the two peaks can be discriminated even by the presence

of an inflection point or if the measurement error of each is less than half the separation

between them. The accuracy of the separation estimate can be considered also. In prac-

tice, it is often assumed that two echoes are distinguishable when their mainlobes at −3 dB

do not overlap [95, p. 56]. Therefore the resolution metric to be used in this thesis is the

closest separation of two similar scatterers that yield two distinguishable at −3 dB peaks.
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3.6 Description of the SCAT Model

The Spectrogram Correlation And Transformation (SCAT) receiver is a model of the au-

ditory system that was proposed by Saillant et al. in [13] for the bat Eptesicus fuscus.

The SCAT model uses only range information, a single receiver, and does not account for

directional sensitivity [13, 14, 15]. In the SCAT, the emitted call and received echoes are

frequency modulated signals which are passed through a filter bank which is a model for

the bat cochlea. This is followed by a temporal processing block, which is a model for

the delay tuned neurons in the brain responsible for target ranging, and by a spectral pro-

cessing block whose function is to resolve close targets by exploiting echo interferences

[13, 15].

A short summary of the SCAT model building blocks (Fig. 3.7) based on [13] follows.

Different aspects of the way bats process echoes from stationary targets and the surround-

ing environment have been studied in the literature and variations of the SCAT have been

presented [47], [48], [14]. These will be also discussed where appropriate.

FM call
and echo

Cochlear
block

Temporal
block

Spectral
block

Figure 3.7: The SCAT model main building blocks

3.6.1 Cochlear block

The cochlear block is modelled with a bank of 81 Butterworth band-pass filters of order

10 and bandwidth B = 4 kHz. Each filter is followed by a signal rectifier and a 3 kHz

bandwidth low-pass filter (Fig. 3.8) in order to extract the envelope of the signal.

The central frequencies fi of the band-pass filters span the bandwidth between 20 kHz

and 100 kHz and are arranged in a hyperbolic scale as fi = 1/pi, where the central period
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pi changes linearly from 10 µs to 50 µs with increments δp of 0.5 µs. With a 4 kHz

bandwidth at the lower-frequency end of the spectrum the filters overlap (channel spac-

ing about 2.5 kHz) but at the upper end the spectrum is slightly undersampled (channel

spacing about 5 kHz).

Two levels of smoothing of the envelope have been proposed with the SCAT, namely

a high smoothing and a low smoothing. The high smoothing consisting of a full wave

rectifier followed by a second order Butterworth low-pass filter, whilst the low smoothing

consists of a half wave rectifier followed by a first order low-pass filter. In both cases the

low-pass filter has a bandwidth of 3 kHz. The output of the cochlea is called the audi-

tory spectrogram or cochleogram (Fig. 3.9). Signal rectification and low-pass filtering

provide an envelope detector which is an analogue technique for narrow-band signal de-

modulation. A variety of additional digital envelope detection methods are summarized

in [96].

In the literature, some modified versions of the original SCAT have been proposed,

which differ in how the initial splitting of the signal into frequency channels is carried

out. For example, the bank of constant bandwidth Butterworth filters may be replaced by

gammatone filters [15] with frequency dependent bandwidths after [44, 45] or Gaussian

chirplets with carrier frequencies compatible with the emission sweep rate [14]. More

thorough review of the history and the future of the auditory system models is done in

[97].

Additional non-linear transformations are proposed to account for the non-linear in-

teractions within the organ of corti [15]. The amplitude of the detected signal is raised to

a power of 0.4.

Once the high frequency, wide bandwidth signal has been converted to multiple paral-

lel low frequency signals, further processing by the neural system is possible. The output

of the cochlear block is converted into neural spikes. In the original SCAT receiver the
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Figure 3.8: Cochlear block of the SCAT receiver. The filter bank consists of M = 81
bandpass filters hi with central frequencies from 20 kHz to 100 kHz. A rectifier and a
Butterworth low-pass filter follow after each bandpass filter
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Figure 3.9: Cochlear block output. Two groups of close scatterers at [4798, 4798+18] µs
and [5493,5493+35] µs
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spike generation algorithm can be implemented in two different ways. One is based on

a threshold crossing criteria and the other is based on peak detection. The spike decay

period is about 2–4 µs [13, 47]. A spike rise results in an increase of the threshold and in-

hibits the same neuron in producing another spike. The spike activation threshold decays

to its initial value over a period of 1 ms. More recent studies argue that only one to three

spikes can be generated per channel [53, 51]. The response latency of the neuron encodes

the intensity of the signal (first spike latency coding). The neural coding mechanisms will

not be further elaborates as conventional fixed rate sampling will be used.

3.6.2 Temporal block

The purpose of the temporal block is to estimate the time delay between the call and

the echo based on the output of the cochlear block. It consists of a set of tapped delay

lines that implement a cross-correlation function between the call and the echo. These are

triggered by the call signal.

The temporal block carries out a “dechirping” of the signal by adding appropriate

delays to each frequency channel (Fig. 3.10). Figure 3.11 shows an example of the

output from the temporal block when two groups of scatterers are present. Delays are

calculated using the emitted signal shape and rate [13, 24] or each channel is triggered

by the emitted signal to make the receiver self-calibrating [47]. A different approach is

proposed in [15]. It “dechirps” the signal without explicitly calculating delays by channel-

wise autocorrelation.

Simultaneous activity in multiple channels is detected by a set of coincidence detec-

tion neurons and is a sign of the target presence. Target detection is implemented by

summing the output over all channels and the target is declared with a peak-detection (or

threshold crossing) algorithm.
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Figure 3.10: Temporal block of the SCAT receiver. Dechirp delays are introduced by
triggering/opening each channel by the a transmission call

The mechanism described does not require coherence between the transmitted and re-

ceived waveform and does not manipulate the phase information. It provides compression

of the input chirp from several milliseconds (0.5-15 ms) to several hundreds microseconds

(200-300 µs) as the impulse response of the 4 kHz filters is relatively wide (Fig. 3.11).

Therefore it can give the location of the targets with relatively low resolution, compared

to the matched filter nominal resolution of 15 µs for 65 kHz bandwidth.

3.6.3 Spectral block

The spectral block is responsible for extracting the fine structure of the target. It is used

to detect and measure the delay between highly overlapping echoes, which cannot be re-

solved by the temporal block. It is important because it provides the fine range resolution

needed to resolve targets [13].
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Figure 3.11: Temporal block output

The spectral block exploits the interference pattern between overlapping echoes, which

results in the suppression or amplification of the power of the output of some of the fil-

ters of the cochlear block. It integrates the output signal of each frequency channel for a

specific time interval (about 350 µs [13]) (Fig. 3.12). Each target detected by the tem-

poral block is processed by the spectral block separately. For example, the two peaks in

Fig. 3.11 produce two interference patterns as shown in Fig. 3.13.

The output of the integration represents the frequency spectrum of the return signal

from the target. It is next normalised by the interference pattern of the emitted call to

get a target signature in the frequency domain. This is needed to compensate for the

hyperbolic distribution of the energy when hyperbolic FM waveform is used. An example
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Figure 3.12: Spectral block of the SCAT receiver. Target signature could be presented in
the frequency or in the time domain

with hyperbolic waveform and hyperbolic filter distribution is provided in Fig. 3.14.

Some studies emphasize the spectral based perception of the target [15, 33, 30] but others

argue that time domain reconstruction of the target image is also needed [13, 14, 47].

Original SCAT propose the so called “voting mechanism” to transform the echo spec-

trum back onto the time axis. It is a modified inverse cosine transform suitable for the

hyperbolic waveform and hyperbolic frequency sampling. A “pattern-matching” interpre-

tation of the transformation of spectral interference patterns into fine delays is proposed

in [48]. More recent developments of SCAT propose a mechanism to extract the spectral

zeroes locations and then feed them to a neural network to reconstruct the target shape on

the range axis [63].

The inverse cosine transformation of the frequency spectrum E( f ) is defined by

x(τ) = ∫ E( f )cos(2π f τ)d f , (3.39)
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Figure 3.13: Spectral output, linear distribution of the filter central frequencies

where x(τ) is the fine delay profile and τ is the fine delay axis. For discrete frequencies

the integral is replaced by summation. For hyperbolic sampling rate on the frequency axis

the step in frequency d f is replaced by step in period δp
p2−(δp/2)2 [13, 48]

x(τ) =
M
∑
i=1

E[ fi] ⋅
δp

p2
i −(δp/2)2

⋅cos(2π fiτ), (3.40)

The above equation always produces a strong peak at zero location [13]. Modification

of the basis functions δp
p2

i −(δp/2)2
⋅cos(2π fiτ) by subtracting its mean value over frequency

was proposed in [13]. This approach was further explained in [48] where an equivalent

but simpler implementation was given. The energies E[ fi] in (3.40) are replaced by

Ê[ fi] = E[ fi]−
1
M

M
∑
i=1

E[ fi] (3.41)
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Figure 3.14: Spectral output, hyperbolic distribution of the filter central frequencies. The
echo response has to be divided by the call response in order to compensate for the hy-
perbolic distribution of the energy

The frequency profiles shown in Fig. 3.13 are shown as fine delay profiles in Fig.

3.15. Only the intensity of the receiver (in dB) is presented in the time domain. The phase

information is ignored.

3.6.4 Model output

The outputs of temporal and spectral blocks could be considered separately. For a group of

closely positioned targets the former gives information about location on the time (range)

axis for the group as a whole, and the latter describes the intra-group behaviour either as
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Figure 3.15: Fine delay profiles

spectrum reflecting the interferences or as fine delays (relative distances).

3.7 Summary

The main principles and building blocks of a radar receiver and the bat auditory sys-

tem processing (SCAT receiver in particular) were discussed. Downconversion to com-

plex baseband, representation and parameters of a modulated signal, filter banks, spectral

power and matched filtering are concepts that will be used in the next chapter to study the

SCAT from a radar applications perspective.



Chapter 4

Bioinspired resolution of closely spaced

targets

In this chapter, a baseband receiver equivalent to the SCAT is developed that allows an

analytical treatment of the bat-like processing output and that can be applied to RF signals

with carrier frequencies and bandwidths much larger than those of sonar. The output of

the Baseband SCAT (BSCT) is compared analytically with the output of the conventional

matched filter for two closely spaced scatterers. It is shown that the BSCT can provide

improved range resolution performance with respect to the matched filter.

4.1 The Baseband Spectrogram Transformation receiver

In this section, a baseband equivalent of the spectrogram transformation receiver is devel-

oped that can treat analytical input signals at baseband (Fig. 4.1). It is also applicable to

RF signals at very high frequencies (bandpass signals) which are treated as low frequency

complex signals (baseband signals). Down-conversion to baseband is essential to digitise

bandpass signals meeting the Nyquist criterion and, it also provides analytical advantages

65
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as signals can be represented in a much simpler complex form. For implementational

simplicity, the baseband SCAT (BSCT) is based on filters with a linear distribution in

frequency. Whilst this is probably a slightly worse approximation than the hyperbolic

distribution discussed in Chapter 3, Sec. 3.6, this difference in approach is not significant

since both distributions are only approximations and, if it is robust, the behaviour of the

model will not be very sensitive to such details.
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Figure 4.1: In-phase component of the baseband model input. The signal frequency is
shifted to baseband. The emitted call has duration of 2 ms and spans linearly the frequen-
cies from -32.5 kHz to +32.5 kHz. The received echo comes from two scatterers with a
relative delay of 20 µs and equal amplitude.

Let us consider a filter bank of M filters with central frequencies fi, i = 0 . . .M−1 and

bandwidth B (Fig. 4.2). If the filters have all the same design, the Fourier transform Hi( f )

of the impulse response hi(t) for the i-th filter can be obtained by shifting in frequency a

baseband (low-pass) filter response h(t) as

hi(t) = h(t)e j2π fit (4.1)

Hi( f ) =H( f − fi) (4.2)

where H( f ) is the Fourier transform of h(t). The output of the i-th filter is the convo-
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lution between the filter impulse response and the input signal x(t)

yi(t) = x(t)∗hi(t) (4.3)

The rectifiers and the low-pass filters that follow each bandpass filter of the original

cochlear block (Fig. 3.8) are replaced with an ideal amplitude extractor, so that the en-

velope of the bandpass filtered signal can be modelled with the amplitude of the signal

yi(t) (Fig. 4.3). This alternative to the rectifier and low-pass filter discards completely

the phase information of the signal yi(t). Then the envelopes are converted to an auditory

spectrogram by squaring the amplitude of yi(t) (Fig. 4.4).

Figure 4.2: BSCT spectral processing diagram. The model input x(t) is an analytical
signal. It is passed through a filter bank of M complex bandpass filters hi. The absolute
value of each filter output yi is squared and integrated over time to get the energy E[i] at
the corresponding frequency.

In the spectral block, the total energy of the output of each filter is computed by

integration (Fig. 4.2). In order to separate the spectral signature of multiple groups of

scatterers, the integration is limited to an interval around the location of the group of

echoes under consideration (Fig. 4.4) so that each group can be analysed separately. The

group locations for each frequency are extracted by the temporal block.

When only a single group of scatterers is present, the temporal block can be ignored
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Figure 4.3: Bandpass filter bank output, in-phase (real) component and envelope

Time, ms

0 1 2 3 4 5 6

F
il

te
r 

n
u

m
b

e
r

0

20

40

60

80

Figure 4.4: Example of de-chirped squared envelopes for seven filters and integration
interval (red dashed lines) over which the total energy for each filter is calculated

and the output of the spectral block can be obtained by integrating the whole filter output

following equation (4.4), below:

E[i] = ∫
∞

−∞
∣yi(t)∣2 dt = ∫

∞

−∞
∣Yi( f )∣2 d f (4.4)

E[i] = ∫
∞

−∞
∣X( f )∣2 ∣H( f − fi)∣2 d f (4.5)
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When all narrow-band filters in the filter bank have a perfectly flat frequency response

over a bandwidth B,

Hi( f ) = rect( f − fi

B
) (4.6)

where fi is the center frequency of the i’th filter and

rect( f
B
) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, ∣ f ∣ ≤ B
2

0, otherwise

The filter bank spectral output is

E[i] = ∫
∞

−∞
∣X( f )∣2 ∣H( f − fi)∣2 d f

= ∫
fi+B/2

fi−B/2
∣X( f )∣2 d f

= ∫
fi+B/2

fi−B/2
P( f )d f (4.7)

P( f ) is the spectral energy density of x(t). Equation (4.7) shows the spectrogram

transformation provides the signal spectral energy of the input signal integrated over a

bandwidth B around the central frequencies fi. In other words, it is equivalent to digitising

the energy spectral density by averaging across the filter bandwidth.

Finally, the sequence E[i] is transformed into the time domain to obtain the output

signal of the spectral block. Assuming the central frequencies fi are linearly spaced this

transformation can be obtained with an Inverse Fast Fourier Transform (IFFT).
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4.2 Response of the BSCT to two closely spaced ideal re-

flectors

The response of the BSCT to the echo from two closely spaced ideal point reflectors is

studied in order to investigate the range resolution properties of the model and to allow a

comparison with the matched-filter. An ideal point reflector (target, scatterer) is defined

as an object that reflects the signal without changing its magnitude and phase for all

frequencies. When two ideal targets are present, the complex envelope of the input signal

x(t) is the sum of two delayed replicas of the complex envelope of the transmitted signal

xC(t)

x(t) = xC(t − t1)e− j2π f0t1 +xC(t − t2)e− j2π f0t2 (4.8)

where t1 and t2 are the time-delays of the echo from the first and second target, respec-

tively and f0 is the carrier frequency. For simplicity of notation, the difference between

the two delays will be denoted as τ = t2− t1.

The Fourier transform of x(t) can be written as a function of the Fourier transform

XC( f ) of the signal xC(t) as

X( f ) = XC( f )e− j2π( f+ f0)t1 +XC( f )e− j2π( f+ f0)t2

= XC( f )e− j2π f It1 (1+e− j2π f I
(t2−t1))

= XC( f )e− j2π f It1e− jπ f I
τ (e jπ f I

τ +e− jπ f I
τ)

= XC( f )e− j2π f It1e− jπ f I
τ2cos(π f I

τ)

= XC( f )e− j2π f It1e− jπ f I
τ2cos(π f τ + ψτ

2
) (4.9)

and its energy spectral density P( f ) = ∣X( f )∣2 is
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P( f ) = ∣XC( f )∣2 4cos2(π f τ + ψτ

2
)

= 2PC( f )[cos(2π f τ +ψτ)+1] (4.10)

where PC( f ) is the energy spectrum of the transmitted call, f I = f + f0 is the frequency

before down-conversion and ψτ = 2πτ f0 is the phase due to frequency down-conversion.

Let us assume that the transmitted signal xC(t) is a Linearly Frequency Modulated

chirp (LFM) s(t) with a bandwidth BC and duration T of the form

s(t) = e jπγt2
rect( t

T
) (4.11)

where γ = BC/T is the chirp rate. The Fourier transform of the linear chirp S( f ) is

given by

S( f ) = ∫
∞

−∞
s(t)e− j2π f tdt

= ∫
∞

−∞
rect( t

T
)e

− j2π( f t− γt2

2 )dt

= ∫
T/2

−T/2
e
− j2π( f t− γt2

2 )dt (4.12)

The analytical equations derived from (4.12) are available [98, 12] and these account

for the magnitude of the ripples and for the phase of the spectrum that consists of a square

law term and a residual term. However, as the above equations are not in a closed form,

a simplified representation can be derived by using the stationary phase approximation of

oscillatory integrals [12, 99] for high time-bandwidth products BCT :
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∫
∞

−∞
f (t)e jkµ(t)dt ≈ e jkµ(t∗) f (t∗)

√
2π

k ∣µ ′′(t∗)∣
⋅exp[ µ ′′(t∗)

∣µ ′′(t∗)∣
jπ
4

] (4.13)

where t∗ is the time at which the phase stationarity is obtained, i.e. µ ′(t∗) = 0 and

k ≫ 1. The result of the approximation is a simple expression for the chirp spectrum

S( f ) = rect( f
BC

)
√

1
γ
⋅e− jπ 1

γ
f 2

e j π

4 (4.14)

that consists of a constant magnitude, a square law phase modulation and a constant

phase residual of π/4.

When the input signal is a single chirp, the output of the spectrogram transformation

block (4.7) becomes

ES[i] = ∫
fi+B

2

fi−B
2

∣S( f )∣2 d f = ∫
fi+B

2

fi−B
2

1
γ

d f = B
γ
= B

BC
T (4.15)

for −BC/2 < fi < BC/2 and zero otherwise.

The energy spectral density P( f ) of the return x(t) from two scatterers can be written

as

P( f ) = 2
1
γ
⋅ [cos(2π f τ +ψτ)+1] ⋅ rect( f

BC
) (4.16)

and the output of each filter
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EE[i] =
2
γ
∫

fi+B/2

fi−B/2
[cos(2π f τ +ψτ)+1]d f

= 2B
γ

[ 1
πτB

sin(πτB)cos(2πτ fi+ψτ)+1]

= 2ES [sinc(τB)cos(2πτ fi+ψτ)+1] (4.17)

for −BC/2 ≤ fi ≤ BC/2 and EE[i] = 0 otherwise, where sinc(x) = sin(πx)/(πx) and

ES = B/γ = ES[i].

Equation (4.17) shows that the spectral output of the SCAT is the sum of a weighted

sinusoid and a constant multiplied by a rectangular window. The frequency of the sinusoid

is actually the time spacing of the targets τ . The lowest energy outputs, min(EE[i]) are

determined by both B and τ .

Figure 4.5 shows an example of the energy output for a filter bank of 65 filters with

central frequencies distributed linearly between -32 kHz and 32 kHz and with 4 kHz

bandwidth. The results are for an input signal consisting of the sum of two LFM chirps

with a bandwidth of 65 kHz, center frequency of 67.5 kHz, a duration of 2 ms and a

relative time delay of 36 µs. Setting τ = 36 µs, B = 4 kHz and ψτ = 2πτ f0 in (4.17)

gives the theoretical curve. Applying the FFT on a simulated chirp sequence with the

above parameters and integrating as in (4.7) gives the simulated discrete points on the

graph. The simulated curve is a good approximation of the theoretical output of the

BSCT. The deviations near the boundaries appear because of those filters at the two ends

of the spectrum that cover frequencies with no signal and because the chirp magnitude is

not a perfect rectangular function in the frequency domain.

Considering the discrete output of the filter bank in (4.17), an inverse Fourier Series

will produce a periodic continuous signal in the time domain. The EE(i) can be viewed as



74 CHAPTER 4. BIOINSPIRED RESOLUTION OF CLOSELY SPACED TARGETS

Frequency, kHz

-30 -20 -10 0 10 20 30

E
n

e
rg

y

0

0.5

1

1.5

2

2.5

A - simulated

B - derived

Figure 4.5: Model output, energy EE by filter i, i = 1 . . .65, B = 4 kHz, for two overlapping
chirps with duration 2 ms, f1 = 35 kHz, fn = 100 kHz and a relative delay τ = 36 µm.
Based on (A), simulated input and (B), the derived theoretical solution in (4.17).

the Discrete Fourier Transform of a sequence with a limited bandwidth, BC, and digitized

with a sampling rate fs > 2BC. The resulting sequence in the time domain is

F−1
f [EE[i]](t) =

= 2
B
γ
F−1

f [sinc(Bτ)cos(2π fiτ +ψτ)+1](t)∗MDBC,M(t)

= 2
BM
γ

[b ⋅e jψτ

2
DBC,M(t −τ)+ b ⋅e− jψτ

2
DBC,M(t +τ)+DBC,M(t)] (4.18)

where b = sinc(Bτ) and

DBC,M(t) = 1
M
F−1

f [rect( fi

BC
)](t)

= 1
M

sinπBCt

sinπ
BC
M t

= sincBCt

sinc BC
M t

The inverse Fourier transform of (4.17) is the sum of three sinc functions one of which

does not depend on the relative delay between the two targets. The two sinc functions

centred at ±τ , instead, allow an estimation of the delay between the two echoes. It is
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important to highlight that the two peaks centred at ±τ are scaled by constant b= sinc(Bτ),

which depends on the filter bandwidth B and the delay τ between the scatterers, and this

indicates that distant scatterers are attenuated (or ’low-pass filtered’).

In the theoretical developments above it was assumed that the targets are ideal reflec-

tors and the potential phase shifts from the reflectors were not taken into account. Such

shift will introduce an unknown or random element in the phase ψτ e.g. in (4.10), (4.16),

(4.17) and (4.18).

4.3 Analysis of the Spectrogram Transformation

4.3.1 Central lobe suppression

Without further processing the time resolution of two closely located scatterers of the bio-

inspired spectrogram transformation is the same as the resolution achieved by the matched

filter. The distance between the sinc functions is τ as for the matched filter and the width

of the lobes in the time domain at −3 dB is the reciprocal of the bandwidth of the signal

(or that of the filter bank if it is less):

∆τ = 1
BC

However, the central lobe does not depend on the position of the targets and can be

suppressed to double the distance between the two lobes at ±τ . If the suppression of

the central lobe is achieved then the distance between the two sinc functions is increased

from τ to 2τ and the functional range resolution is improved so that two targets at half

the range separation can be resolved (Fig. 4.6). Furthermore, because of the resulting

representation is symmetrical, it can be folded back on itself so there is then essentially

only a single peak. This means that measuring the relative distance between two targets



76 CHAPTER 4. BIOINSPIRED RESOLUTION OF CLOSELY SPACED TARGETS

has been made as simple as measuring the range to a single target, which can reliably be

done to very high accuracy given an adequate signal to noise ratio [1, Sec. 3.1]. There

are a few approaches that can be considered to remove the central lobe. One is to use

the knowledge of the transmitted signal energy and take a suitably scaled difference and

another is to remove the average value of the spectral energy over the bandwidth before

taking the inverse Fourier transform [48].

Removing the mean of (4.17) leads to

EE′( f ) = EE( f )− 1
BC
∫

BC
2

−
BC
2

EE( f )d f ⋅ rect( f
BC

)

= 2
1
γ
⋅[sinc(τB)cos(2π f τ +ψτ)−

−sinc(τB)sinc(τBC)cosψτ] (4.19)

Results show that, with this method, the inverse Fourier transform of (4.19) will

still have a residual zero lobe component but it will be reduced from one to less than

sinc(τB)sinc(τBC). The zero lobe suppression mechanism can be interpreted in the time

domain also. Simulations show that subtracting the normalized time domain represen-

tation of the BSCT for a single scatterer from the corresponding representation for two

scatterers have the same effect.

The resolution of two closely located targets is illustrated in Fig. 4.7 where the lobe

interference is presented for different spacings between the targets and different types of

processing. It shows the output of the matched filter, the inverse of the spectrogram trans-

formation (4.17) and the effect of the zero lobe removal correspondingly. The magnitudes

for both spectrogram related approaches are normalized by the magnitude of the central

lobe before the suppression.
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Figure 4.6: Matched filter compared to BSCT and the effect of the zero lobe suppression ,
BC = 65 kHz, t1 = 2 ms, τ = 1.6 1

BC
= 25µs. While the lobe width is the same the functional

resolution is improved by doubling the spacing between the lobes.
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Figure 4.7: Fine delay profiles for different delays between two close targets near the
resolution limit 1/BC. Two sinc interference typical for matched filtering [32] is presented
in the top row. The simple inverse transform of the spectrogram transformation is denoted
as “AC” as a form of autocorrelation. The bottom row shows the zero lobe removal effect.
The true locations are indicated by the vertical bars.

4.3.2 Phase shift or zero location hints

Even though the analysis are in baseband the initial frequency range of the signal is still

preserved in the equations in the phase of the sinusoid. To exploit this information the

frequencies fz where the energy is minimal (the zeroes of the spectrum) are calculated as

fz = { fi ∣ min
fi

EE[i]} = argmin
fi

[cos(2πτ fi+ψτ)]

fz =
0.5+n

τ
− f0, n = 0, 1, . . . (4.20)

The locations of the peaks and notches are discussed in [13, 47, 53] as possible mech-

anism for relative delay estimation. Single and dual frequency tuned neurons are mapped

in the auditory cortex by measuring the electrical activity recorded from microelectrodes

in response to pure tone and paired frequency modulated signals [13, 53, 100, 101].

If f0 =BC, which corresponds to bat sonar, then a single zero located in the bandwidth

−BC/2 < fz < +BC/2 corresponds to only two possible delays τ
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if n = 0 then τ = 0.5
fz+ f0

,
1
3

1
BC

< τ < 1
BC

if n = 1 then τ = 1.5
fz+ f0

,
1

BC
< τ < 5

3
1

BC
(4.21)

Therefore resolution down to one third of the nominal resolution can be expected. The

ambiguity can be resolved based on the different value of the energy in the zeroes (lower

delays correspond to minimal energy closer to the zero) (Fig. 4.8).

For f0 much higher than BC the effect of the zero shift for measurements from different

locations still can be exploited by considering the derivative of (4.20)

d fz

dτ
= − fz+ f0

τ
≈ − f0

τ
(4.22)

From the equation above, it follows that for closer targets minor changes in the spacing

will result in faster zero shifting. This method of using the carrier phase to measure
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relative range does not suffer from ambiguities to the same extent as is usually the case in

radar because the relative bandwidths of the signals is so much higher in this case.

It is worth remembering again at this point that although the mathematical opera-

tions described above might seem somewhat intricate, the data rates at the filter outputs

are modest and a bat could be plausibly expected to be able perform quite sophisticated

pattern recognition, on the basis of the widespread appreciation that animal brains are

actually very good at such techniques.

4.3.3 Relationship between the BSCT receiver and the matched filter

Matched filtering of x(t) with xC(t) will have an output xM(t) as follows:

xM(t) = x(t)⋆xC(t)

XM( f ) = X( f )X∗
C( f )

= XC( f )e− j2π f It1e− jπ f I
τ2cos(π f I

τ)X∗
C( f )

= 2 ∣XC( f )∣2 cos(π f I
τ) ⋅e− j2π f It1e− jπ f I

τ

(4.23)

Above equation can be compared with (4.9) to show that the only difference is that the

waveform XC( f ) is replaced by its magnitude squared ∣XC( f )∣2 – the phase stretching of

the signal in time is removed and the energy is increased. Assuming flat signal spectrum

(4.14) means that ∣XM( f )∣2 is just a scaled version of ∣X( f )∣2. Matched filter compressed

signal can be processed through (4.7) to receive the same BSCT spectral output pattern:

EM[i] = ∫
fi+B/2

fi−B/2
∣XM( f )∣2 d f

= 2B
γ2 ⋅ [sinc(Bτ)cos(2π fiτ +ψτ)+1]

(4.24)
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This is scaled by constant version of (4.17). Therefore the temporal processing (de-

chirping) in SCAT can be replaced by conventional matched filtering. The time compres-

sion is important in real environment to split the range into cells, which can be processed

independently.

Using the same simplifications about the signal (4.14) it can be written for the output

of the matched filter in the time domain, starting from (4.23)

F−1
f [XM( f )] = = [e j ψτ

2 δ(t − t1)+e− j ψτ

2 δ(t − t1−τ)]∗F−1
f [∣XC( f )∣2]

= ∣BC∣
γ

[e j ψτ

2 sincBC(t − t1−τ)+e− j ψτ

2 sincBC(t − t1)]
(4.25)

Two sinc functions delayed with t1 and t2 = t1 + τ can be noticed. In contrast BSCT

gives two sinc functions delayed with −τ and +τ (assuming ideal removal of the the

central lobe in (4.18)).

Unlike the matched filter response, the output of the BSCT encodes directly the spac-

ing between the scatterers and not the absolute range of the targets. The problem of mea-

suring the relative distance is converted to a problem of measuring the range to a single

target. As the representation is symmetrical, there is a second peak at negative delays but

the peaks interfere less than the peaks produced by a matched filter because the separation

is double. Therefore, nearly double improvement in the resolution should be expected.

The fine delay profile will be further referred to as the spacing profile to emphasise

the nature of the information conveyed, i.e. not the absolute location of the scatterers but

the spacing between them.
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4.4 Summary

An approach for analytical treatment of the SCAT model was proposed. A sequence of

simplifications were applied in order to explain the output of the model. The spectral

output of the resulting BSCT receiver for two targets is a sinusoid whose frequency and

phase are related to the spacing between the targets. The BSCT is complimentary to the

MF and provides improved range resolution for two close targets. The theoretical results

will be validated experimentally in the following chapters.



Chapter 5

Validation of the BSCT model for

ultrasound

In this chapter the equivalence of BSCT to the SCAT is demonstrated by comparing the

spectral output of the original and baseband model using both simulated signals and lab-

oratory measurements. The scope of the investigation was limited to the spectral part of

the model because that is the component of the SCAT that can potentially provide the fine

range resolution needed for target detection and discrimination.

With another set of laboratory experiments at ultrasound, using phantom echoes and

real targets, the expected improvement in range resolution relative to the conventional

matched filter is confirmed.

5.1 Experimental set up and data collection

This section describes experiments employing real and phantom targets at ultrasound.

Simulated data that mirror the experiments is generated to allow a comparison between

experiments and simulations. Phantom target experiments are useful to test the robustness

83
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of the algorithm with respect to the hardware imperfections, such as non-linearities and a

non-flat frequency response, and propagation effects. Real target experiments, in addition,

test the robustness of the algorithm for non-ideal reflectors.

5.1.1 General settings and equipment

For both the simulations and the experiments, 10 ms long recordings were sampled at

a rate of 10 MHz to collect 100 000 samples per realisation. The signal was decimated

by 10 before further processing. Echoes were recorded with an ultrasound microphone

(type CM16, Avisoft Bioacoustics, Berlin, Germany) and waveforms were transmitted

with an ultrasound loudspeaker (type S55/6, Ultra Sound Advice, London, UK). Digital

to analogue and analogue to digital conversions were achieved with a TiePie Handyscope

dual channel oscilloscope carrying an arbitrary signal generator (type HS5-540, TiePie

Engineering, Sneek, the Netherlands). The transmitted signal was a linear down-chirp

spanning the frequencies between 100 kHz to 35 kHz with a duration of 2 ms. The target

under test consisted of two discrete point scatterers delayed of τ = 2d/c, with d being the

spacing between the two scatterers and c the speed of propagation.

Equipment control and data processing were performed in Matlab (release 2015a,

MathWorks, Natick Mass., USA).

5.1.2 Simulations

The received signal (or “echo”), xE(t) was generated by summing two time delayed ver-

sions of the call waveform xC(t):

xE(t) = xC(t − t1)+xC(t − t1−τ) (5.1)
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5.1.3 Phantom targets

Echoes of phantom targets were generated with the loudspeaker located at 1.886 m from

the microphone. Two scatterers were reproduced by emitting the call and a replica of the

call delayed of τ:

xPhantom(t) = xC(t)+xC(t −τ) (5.2)

The relative position of the reflecting points was varied by using different values for

the delay τ = [0,2,4, ...,50] µs, corresponding to a separation d = [0,0.34,0.68, ...,8.5] mm.

Another set of measurements was done with the speaker located at 1.272 m from the mi-

crophone and with delays τ = [5,10,15,20,25,50,100] µs, corresponding to separations

of [0.85, 1.7, 2.55, 3.4, 4.25, 8.5, 17] mm.

Phantom targets were used to study ideal point targets in a real environment, account-

ing for the effect of air attenuation, noise and transmitter/receiver imperfections.

5.1.4 Physical targets

The target representing two closely spaced reflectors was physically realized using two

vertical rods fixed on a turntable (LT360EX, LinearX Systems, Battle Ground, WA, USA,

Fig. 5.1, 5.2). Each rod had diameter 6 mm and length 0.75 m. The relative position of

reflecting surfaces was varied by changing the turntable angle with a predefined step of

0.5 degrees. One of the rods was fixed in the center of the turntable. The other was at

r = 0.025 m from the center.

The speaker and the microphone were arranged vertically at a height of approximately

0.3 m above the level of the turntable surface. The precise distance between the targets and

the sensors was estimated by curve fitting over multiple measurements at each turntable
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Figure 5.1: Ultrasound experimental set up – two vertical rods on a turntable: 1 – central
rod; 2 – peripheral rod; 3 – ultrasound speaker; 4 – ultrasound microphne; 5 – turntable
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̀

Figure 5.2: Ultrasound experimental set up diagram

position (see Appendix A where the accuracy of the ground truth is also assessed). For

the central rod it was R = 0.943 m.
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5.2 Equivalence demonstration between SCAT and its base-

band version

Computer simulations and phantom target measurements have both been performed using

a set of targets with the same parameters. All experimental measurements were prepro-

cessed by removing the mean value. The inputs to BSCT were first convolved with a

Hilbert filter to create complex values from the real data values and then converted to

baseband by multiplying with the carrier. Figure 4.1 shows the real component of the

resulting baseband signal.

Both SCAT and BSCT were implemented in Matlab (release 2015a, MathWorks, Nat-

ick Mass., USA) as banks of filters. A linear frequency spacing of the filters in the band-

pass filter bank was used to allow processing of a linear chirp. The filter bank contained

65 bandpass filters with linear frequency spacing from -32 to 32 kHz for BSCT and from

35.5 to 99.5 kHz for SCAT (1 kHz increments). All other parameters followed the ones

described in Sec. 3.6 after [13]. Two versions of the SCAT differing in the level of

smoothing were considered labelled SCAT-L for low smoothing and SCAT-H for high

smoothing (Sec. 3.6). The smoothing in the BSCT is inherent as the magnitude of the

complex envelope of the signal was used (Sec. 4.1). Finally the output of the spectral

block for each model was calculated by passing the call and echo signals through the

model and normalising by dividing by the maximum value of each output.

The spectral output of the proposed BSCT is compared with the output of both ver-

sions of the original SCAT (with low and high smoothing) for different delays between

the scatterers. The difference is measured by using the root mean square (RMS) error:

error =

¿
ÁÁÀ 1

M

M
∑
i=1

(ESCAT [ fi]−EBSCT [ fi])2 (5.3)
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where ESCAT and EBSCT are the normalised outputs of the models compared and M =

65 is the number of filters.

The results of the comparison expressed as RMS error in % of maximal value are

presented in Table 5.1 for all datasets. Results show the error is less than 1% for delays

below 50 µs and less than 5% up to 100 µs. There is no trend in the error with the delay

for small fine delays (Fig. 5.3). Fig. 5.4 displays the full outputs of BSCT and SCAT

expressed as a function of the frequency for the case of two simulated targets delayed by

20 µs. It can be seen that the level of smoothing in the original SCAT does not influence

the spectral output. The same is valid for the baseband model which gives practically the

same results.

In the real measurements, the influence of the air and non-perfect microphone and

speaker characteristics modify the target response. The outputs of BSCT for simulated

Table 5.1: Difference between proposed BSCT and original SCAT with high (SCAT-H)
and low (SCAT-L) smoothing, expessed as RMS, %

Delay Simulations, % Experiments, %

µs SCAT-H SCAT-L SCAT-H SCAT-L

5 0.20 0.19 0.78 0.81

10 0.54 0.68 0.39 0.42

15 0.34 0.34 0.38 0.39

20 0.67 0.52 0.60 0.59

25 0.41 0.39 0.57 0.55

50 0.94 0.98 0.85 0.90

100 4.4 4.6 2.1 2.1

Table 5.2: Root mean squared difference between simulations and experiments processed
with BSCT

Delay µs 5 10 15 20 25 50 100

Error % 12.3 13.9 16.4 15.1 15.0 20.8 17.4
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Figure 5.3: RMS difference between BSCT and SCAT spectral output

and phantom targets are compared in Table 5.2 and shown in Fig. 5.5. The real experi-

ments introduce significant deformation of the target spectrum relative to the simulations

– difference above 10%. This shows that although the real data behaves in a way which is

not identical to the simulated data – as would be expected, the two algorithms are stable

to the imperfections in the data and both still behave in a similar manner.

Looking more closely to the interference patterns for different relative positions be-

tween the scatterers (Fig. 5.6) it can be seen that the general shape and, in particular,

the locations of the zeroes, are preserved between the experiments and the simulations.

These features are likely to be significant for any scheme for resolving the close-spaced

targets and this result indicates that the new algorithm, like the SCAT algorithm, retains

the information which will later be needed to resolve the targets.
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Figure 5.4: Spectral output of BSCT (baseband) and SCAT (high and low smoothing),
simulated two targets with separation 3.4 mm (delay 20 µs)
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Figure 5.5: Spectral output of BSCT model, simulated vs measured two targets separated
by 3.4 mm (delay 20 µs)
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Figure 5.6: Spectral output of BSCT model for two targets for delays 15 µs, 25 µs and
50 µs. Simulated (thick lines) and measured (thin lines) input signals

Results show that proposed baseband spectrogram transformation model gives an out-

put comparable with the output of the original spectrogram correlation and transformation

receiver. This implies that

• processing of target echoes with a receiver based on the bat auditory system can be

applied to signals that are centred on very high carrier frequencies, such as radar

signals.

• the output of the spectral block does not depend on the phase information of the

carrier signal and is a form of non-coherent signal processing; the spectral block

will be more robust to loss of signal coherence than the matched filter.

• advanced signal analysis techniques based on complex signal representation could

be used for further understanding of the model.
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5.3 Evaluation of BSCT resolution capabilities

In this section, the outputs of the BSCT and of the matched filter are compared in order to

assess their relative range resolution performance. All experimental measurements were

preprocessed by removing the mean value and converted to baseband

The BSCT frequency profile, describing the energy of the output of each filter of the

BSCT, was calculated as follows:

1. matched filter the echo xE(t) with the emitted signal xC(t) to obtain the matched

filter output profile xM(t) (4.23);

2. calculate the energy spectrum by fast Fourier transform (FFT) of xM(t) and multi-

plying by its complex conjugate

3. average the spectrum over a bandwidth B = 4 kHz for K = 65 central frequencies

linearly spaced between −32 and 32 kHz (step of 1 kHz) – obtain the result for

EM[i] numerically (4.24)

4. equalize the spectrum based on the spectrum of the emitted chirp or other predefined

spectrum Ere f , e.g. the spectrum of a return from single scatterer

EM[i] = EM[i]
Ere f [i]

(5.4)

An example of the BSCT frequency profiles as a function of the time delay τ is shown

in Fig. 5.7 for simulated and real targets.

The output of the BSCT representing the delay profile was calculated as follows:

1. remove the average of the spectrum – implement (4.19)

EM′[i] = EM[i]− 1
K

K
∑
i=1

EM[i] (5.5)
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Figure 5.7: BSCT frequency profiles for simulated data (top) and real measurements
(bottom) equalized by the emitted call frequency profile. The colour encodes the energy
in dB

2. inverse transform EM′[i] using inverse FFT to get the fine delay profile – imple-

ment (4.18) numerically; zero-padding can be applied before the IFFT by adding a

sequence of N zeros to achieve a suitable sampling rate:

fs =
NBC

K
(5.6)

The output was finally normalised by the total energy of the signal and displayed in a

dB scale.

Figure 5.8a displays the fine delay profiles generated by the model for different spac-

ings between the simulated scatterers. Unlike the matched filter output, these profiles

encode directly the spacing between the scatterers and not the absolute range of the tar-

get. As the representation is symmetrical, there is a second peak at negative delays but this
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peak interferes less than the second peak produced by the matched filter because the sep-

aration is double. Because the bandwidth of the chirp was 65 kHz the nominal resolution

was 15 µs. It can be seen that the second scatterer can be resolved at delays below 10 µs.

The delay profiles based on the matched filter output are shown in Fig. 5.8b. The lobes of

the scatterers merge for spacings below 20 µs demonstrating that, for ideal reflectors and

an ideal environment, the range resolution is improved by a factor of two.

The BSCT point estimate of the relative time spacing was calculated from the BSCT

delay profile as the position of the maximal profile peak (denoted further as BST). The

MF estimate was the distance between the two highest peaks in the matched filter output.

In addition, a sinusoidal curve was fitted to the BSCT frequency profile using a Non-linear

Least Square method (NLS) with the “Thrust-Region” algorithm and optimized starting

point [102, pp.4-46–4-56].

The results are summarized in Table 5.3 and Fig. 5.9a where the estimates of the

delay between the scatterers based on the BSCT peaks (BST), matched filter (MF) and

non-linear curve fitting (NLS) approaches are presented together with the true delays. The

resolution capability of the matched filter for the bandwidth available is 20 µs as already

observed. The spectrogram transformation delay profile based approach gives a range

resolution down to 10 µs and can indicate the presence of the second scatterer down to 4

µs delay separation. The NLS results are comparable to those of the BSCT.

If the frequency response of a single scatterer is known (e.g can be measured or calcu-

lated from the transmitter and receiver frequency responses and the air attenuation at the

frequencies and the range of interest) then the spectrum can be equalized. This compensa-

tion of the expected chirp spectrum improves the resolution accuracy. The improvements

is significant for the NLS estimation down to 2 µs, e.g. from Table 5.3 it can be read that

for true delay 4 µs the estimate without equalization is 8.8 µs (column NLS) and with

equalization is 4.4 µs (column NLSb). The changes in the BST performance are minor
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Table 5.3: Fine delay estimates on simulated targets
Delay Delay estimation approach

µs MF BST NLS BSTb NLSb

0.0 0.0 — 93.7 — 7.8

2.0 0.0 — 0.0 10.3 3.0

4.0 0.0 10.6 8.8 10.3 4.4

6.0 0.0 11.2 10.1 10.9 6.3

8.0 20.0 16.0 13.3 15.2 8.6

10.0 0.0 11.2 11.5 11.0 9.9

12.0 0.0 11.7 12.4 11.4 11.8

14.0 0.0 16.5 13.7 16.6 14.0

16.0 0.0 16.7 15.6 16.8 15.9

18.0 0.0 15.7 17.4 16.5 17.8

20.0 22.0 20.3 20.3 19.7 19.8

22.0 22.0 21.0 22.7 19.8 21.6

26.0 26.0 26.9 27.1 26.2 25.9

30.0 34.0 32.5 31.3 31.2 29.9

b – denotes equalized spectrum

— the algorithm failed to work

(compare columns BST and BSTb from Table 5.3 or Fig. 5.9a and Fig. 5.10a). The

results relative to the phantom echoes in Fig. 5.9b and Fig. 5.10b show that the range

resolution are compatible with the simulations.

The results relative to the experiments with the two vertical rods on the turntable are

shown in Fig. 5.11. These confirm that the BSCT provides reliable range resolution

down to 10 µs, that is two times better than the matched filter resolution of 20 µs (Fig.

5.9c and Fig. 5.10c). For the real data, the NLS approach does not perform much better

and although it improves with equalization, the improvements are minor. The BSCT is

capable of handling two non-perfect point scatterers as well as the more computationally

expensive non-linear least-square parameter estimation approach.
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(a) Baseband spectrogram transformation output, dB
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Figure 5.8: Fine delay profiles as a function of the delay between the scatterers, simulated
data. Signal bandwidth is 65 kHz. In the spectrogram transformation based approach the
profile encodes the spacing between the scatterers. The matched filter gives the absolute
position of the scatteres.
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Figure 5.9: Estimated delay as a function of the delay between the scatterers. The signal is
linear chirp with bandwidth 65 kHz and duration 2 ms. The delay between the scatterers
is estimated using matched filter (MF), baseband spectrogram transformation (BST) or
non-linear least square fitting (NLS). The phantom target is created by a speaker emitting
two delayed chirps towards a microphone located at 1.886 m. The physical target consists
of two vertical rods on a turntable
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Figure 5.10: The same as Fig. 5.9 but the signal spectrum is equalized by the single
scatterer spectrum
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(a) baseband spectrogram transformation output
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(b) baseband spectrogram transformation equal-
ized output
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(c) Matched filter output

Figure 5.11: Fine delay profiles as a function of the delay between the scatterers. Data for
real target. Signal bandwidth is 65 kHz
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5.4 Summary

Ultrasound echoes from two close targets were collected artificially through simulations

and experimentally using phantom end real target measurements. The spectral outputs of

the SCAT and the BSCT receivers were examined qualitatively and compared quantita-

tively to show their equivalence. Simulated and experimental results were also compared

to show that the zero locations in the spectral interference patterns are robust to real mea-

surements and are likely to provide features important for resolving close spaced targets.

The delay profiles and delay estimates based on BSCT and MF were calculated, visu-

alised and compared. It was confirmed that BSCT provides 1.5–2 times better resolution

than MF.



Chapter 6

Application of the BSCT model at radio

frequencies

The goal of this chapter is to demonstrate how biologically inspired signal processing can

be applied to radar frequency signals and to validate the expected performance with dif-

ferent experiment arrangements, physical targets and noise. Real target measurements are

processed and analysed in order to better understand the BSCT model output at RF. The

main goal of the experiment set-up was to get a realistic picture and better interpretation

of model capabilities for practical applications.

6.1 Experimental set up and data collection

Measurements were performed at radio frequency from 13 GHz to 17 GHz using a Vector

Network Analyzer (VNA) (MS46322A, Anritsu) and two 5x4 cm horn antennas (12.6-

18.0 GHz). The VNA provides a measurement of the frequency response of a target

sampled at constant frequency intervals ∆F by implementing a stepped frequency wave-

form. High Range Resolution Profiles (HRRPs) were obtained by taking an Inverse Fast

101
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Figure 6.1: RF measurements diagram

Fourier Transform (IFFT) of the output data. The use of the VNA allowed us to vary

the range resolution of the data, as desired, by processing different sub-bands within the

available 4 GHz bandwidth.

Two point scatterer targets were physically realised using pairs of flat plates, verti-

cal rods and spheres. A simplified diagram for the experiment arrangement is shown in

Fig. 6.1. The radial distance d between the flat plates was kept constant. The rods and the

spheres were placed on a turntable which allowed the spacing between the scatterers to be

varied between 0 and 0.150 m. The distance between the antennas and the targets L1 was

about 3 m. The measurement noise was manipulated through the Intermediate Frequency

Band-Width (IFBW) parameter of the VNA.

Photos of the plates arrangement are shown in Fig. 6.2. The front plate was 0.12×

0.12×0.0015 m and the rear plate was 0.22×0.22×0.0008 m. The plates were facing

the transmitting and receiving antennas with an aspect angle that provided approximately

equal Radar Cross Sections (RCS). Both the targets and the antennas were placed 1.1 m

above the floor level (hR = hT +h/2 = 1.1). Two different support structures were tried,

separate detached RF transparent columns (Fig. 6.2a) and a shared table (Fig. 6.2b).

Most of the experiments were performed with a separations between the plates d = 0.12 m

and a few with d = 0.29 m. Very good signal to noise and signal to clutter was expected

considering the big radar cross section (RCS) of a plate with dimensions w = h = 0.12 m,

σ = 4πw2h2/λ 2 ≈ +8 dBm2.
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(a) (b)

Figure 6.2: Two flat plates as a target: front plate – 1; rear plate – 2; radar antennas – 3

The two vertical rods used in the experiments were with a diameter of 0.006 m and

length h of 0.75 m. These were placed on the two sides of a turntable (LT360EX, LinearX

Systems, Battle Ground, WA, USA) at a distance of 0.075 m from the centre of rotation

(Fig. 6.3). Therefore the relative distance between the rods with respect to the antennas

was d = 2 ⋅0.075 ⋅ cosα , where α is the angular position. It was changed by rotating the

turntable with a step of 1 degree. Three different positions of the antennas relative to

the rod height were tried in order to achieve simple scattering behaviour (one scatterer

per rod). Initially the transmitting and receiving antennas were positioned at a level just

below and just above the tip of the rod (Fig. 6.3a and Fig. A.13a) and at a distance of 2 m

and 3 m respectively. Then they were moved to a level approximately 0.04 m above the

turntable surface (Fig. 6.3b and Fig. A.13b) at 3 m. A close photos of the rods is shown

in Fig.6.3c. An estimate of the RCS for cylinder is given by σ = πdh2/λ = −3 dBm2 for

aspect angle 90○ but assuming minor deviation from this elevation angle gives a more

realistic −15 dBm2 at 90.1 deg aspect angle [103, Sec. 14.4].

The spheres diameters were 0.018 m and 0.020 m. The experiment arrangements

were analogue to the rods experiment with antennas at 0.04 m above the turntable support
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(a) Initial arrangement, Ex. 0 and 6

(b) Final arrangement, Ex. 8 (c) Close view

Figure 6.3: Two rods on a turntable: 1 – vertical rod; 2 – support plate; 3 – turntable; 4 –
radar antennas
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(a) (b)

Figure 6.4: Two spheres on a turntable

level (Fig. 6.4). Four sets of measurements were performed at different noise level. It

was varied by setting the IFBW parameter of the VNA to 2, 10, 100 and 300 kHz. This

corresponds to change of the noise floor with −17, −10, 0 and 4.8 dB respectively. The

spheres were the targets with the smallest radar cross section, σ ≈πr2 =−36 dBm2. As the

clutter suppression processing was not changed, the smallest signal to clutter ratio could

be expected. It should be noted also that no attempt was made to separate the spheres from

the support surface – they were just fixed into a grooves directly on the support plate.

Each experiment involved multiple measurements of the background, a single object

and two objects. Single reflector measurements were used to evaluate the frequency re-

sponse of the “point” scatterer realised with the corresponding object. The background

measurements were used to enable background (clutter) removal and to evaluate the loca-

tion of the strongest background scatterers. Multiple measurements with the same setup

allowed accurate noise level calculation and noise reduction through averaging. Deter-

mining the true range to each target was not always trivial as the phase centre of a real
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object and the antennas phase centres are not known exactly. For the two targets on a

turntable cases the position of the centre of the turntable was measured using single target

and RF target detection and ranging and then the true target positions for each angle was

calculated. For the flat plates RF target detection and ranging was used for each plate

separately. This way the interference between the targets does not affect the measurement

of the ground true.

During the mounting/dismounting of the vertical rods a disturbance of the whole

turntable was introduced leading to limitations of the background removal. Some of the

measurements were discarded, e.g. the background removal for a single vertical rod was

not possible.

The complete dataset organisation and file formats are documented in Appendix C.2.

All parameters of the instruments and the targets for each experiment were saved together

with the measurement results. They are summarized in Table C.3. Such dataset can be

used for independent verification of our algorithm performance, for studying the perfor-

mance of different algorithms or as a starting point for more extensive data collection.

Simulated data that mirror the experiments were also generated. The response of

the target was generated directly in the frequency domain by calculating the theoretical

response of two time-delayed impulses in the band of interest and adding white Gaussian

noise. The simulation algorithm is provided in App. B, Listing B.10.

6.2 Algorithm for implementation of BSCT

The basic workflow to apply BSCT to RF measurements is summarized in Fig. 6.5. It is

build over the conventional MF processing represented as a first block. Then the target

response is separated and the BSCT transformation is applied. The specific calculations

are described in more details in the following paragraphs. How more advanced algorithms
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Figure 6.5: BSCT flow-chart

can be integrated is noted where applicable.

A. Data preprocessing and evaluation The application of BSCT is preceded by sev-

eral steps necessary for noise evaluation, clutter removal, signal compression and target

selection. These replace the temporal block of the SCAT.

1. Noise level calculation and noise reduction

All measurements contain noise. To calculate the noise power PN , a pure noise

signal W( f ) was produced by subtracting two measurements of the same scene.

The power of W( f ) is 3 dB higher than the power of the noise in the raw measure-

ment. Therefore the noise per unit bandwidth is PN0 = 0.5var(W), assuming zero
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mean. The corresponding noise power in the time domain is PN = 0.5var(w(t)) =

0.5B2
C var(F -1(W)), where w(t) is the IFFT of W( f ), normalised appropriately so

the Parseval theorem holds.

The noise level can be reduced by averaging a number K independent measurements

of the same scene, PN0← PN0/K. The measurement noise is also determined by the

Intermediate Frequency Band-Width (IFBW) parameter of the VNA. The reduction

of the noise power is proportional to the reduction of IFBW, e.g. two times decrease

of IFBW leads to 3 dB decrease of PN .

2. Background characterisation and clutter reduction

The raw measurement preprocessing involves background removal in order to elim-

inate the clutter. The background is measured separately. The background signal

also contains noise which can be reduced by averaging multiple independent back-

ground measurements.

The background is removed by subtracting the background signal from the target

measurements. This operation introduces additional noise in the waveform as the

noise powers from the measurement and the background are added together. It

also assumes that the background is fixed and can be measured separately from the

target.

3. High range resolution profile calculation

The phase modulation of the transmitted spectrum is removed in a correlation pro-

cessor [104, pp. 92–93]. This is done automatically by the VNA instrument. The

range profile is generated simply by inverse Fourier transform of the VNA acquired

frequency domain data after zero padding. In order to reduce the interference be-

tween the various scatterers responses Rihaczek recommends the spectrum to be
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weighted [105]. Sidelobe suppression can be achieved with other techniques, e.g.

see Blunt [90]. This has not been used in this work.

4. Target detection and measurement

For single target the peak power PS = s(t1)2 of the range profile represents the energy

of the signal. The peak position t1 is the maximum likelihood estimate of the target

delay. Therefore the signal-to-noise-ratio ρ can be calculated as

ρdB = 10log10(
PS

PN
) = 20log10[s(t1)]−10log10[var(w)] (6.1)

Our peak detection algorithm used a threshold equal to the mean signal power plus two

standard deviations in order to reduce the false alarm rate due to noise (see the implemen-

tation in App. B.2, Listing B.3). Another threshold at −10 dB from the peak value was

used to suppress the sidelobes. The location of each peak was calculated either directly

from the index of the sample having higher value than its neighbours or by interpolation

over three samples (Listing B.4).

For two or more close targets the range profile reflects also the interference of the

signals. It can be constructive or destructive so the peaks no longer represent the RCS of

the separate scatterers. The accuracy of the peak determined target position is no longer

a function of the effective bandwidth and SNR only. Still, the objects of interest are

identified in the time domain from the range profile by peak detection through threshold

crossing. The minimal peak prominence to consider it as a separate peak was 3 dB. This

is the criteria for target resolution that was selected for this work.

B. Estimation of target frequency response The spectrum of a single group of close

scatterers need to be extracted from the cumulative spectrum of all reflections, e.g. an-
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tenna crosstalk, reflections from walls and support structures, other residuals of the back-

ground.

1. Application of transform window

The reflection from the target is insulated by zeroing the range profile outside an

interval [x1,x2]. Setting the boundaries of the transform window can be subject on

careful evaluation on its own ([104, Sec. 9.1.3], [105, App. B]). It is critical if there

are adjacent scatter responses that need to be excluded from the transformation.

The process of selecting or deleting certain objects to study is also called gating in

Anritsu publications [106]

2. Forward transform to get the frequency-domain of the target.

The frequency response of the target is calculated by applying a FFT. If the HRRP

profile has been calculated with weighting than the spectrum should be de-weighted

at this step to recover the original amplitude patterns.

These steps can be performed directly in the frequency domain by filtering the mea-

sured frequency response XM( f ) through band-pass filter with cut-off frequencies fc =

[x1,x2] ⋅∆F . They can benefit from a superresolution technique as the iterative Papoulis-

Gerchberg algorithm for spectrum extrapolation [107, 108]. An implementation and com-

parison of the frequency magnitudes calculated using different approaches are provided

in App. B.3.

The window length corresponds to the limited “integration time” of the SCAT filters,

which is fixed. In this work all values outside x1 = 2 m and x2 = 4 m window were trun-

cated. Thus the ratio on the window around the target (x2−x1) and the nominal resolution

δR was compatible to the integration time over the nominal resolution for the SCAT.
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C. The BSCT frequency profile The BSCT frequency profile (4.7) approximates the

energy of the output of each filter of the SCAT receiver. It was studied in its analogue form

in Sec. 4.2. In order to allow processing of experimental data, BSCT was implemented

numerically as follows:

1. calculate the spectral energy by taking the magnitude squared of the target fre-

quency response E( fi) = XM( fi)X∗
M( fi)

2. average the spectrum over small intervals centred on the frequencies of interest.

An averaging over M = 100 samples for K = 160 frequencies linearly spaced in

the measurement band (from 13 GHz to 17 GHz) was done. This corresponds

to bandpass filter bandwidth B = M ×∆F = 25 MHz (in the equivalent filter bank).

This step was implemented as a moving average over the spectral energy sequence

followed by downsampling.

E[k] = 1
M

kM+M/2

∑
i=kM−M/2

E( fi+M/2), k = 0, . . . ,K−1 (6.2)

The number of central frequencies K was selected to be of the same order of magni-

tude as the number of filters in the SCAT. The averaging window (M or B) was selected

in a way that the whole available frequency information is used without overlaps.

D. The BSCT spacing profile This part of the algorithm presents the main “discov-

ery” of “radar” significance to have emerged from the work looking at bat’s signal pro-

cessing from a radar point of view. It was shown that by removing the signal power which

is present in all the frequency bins, the variations can then give us the target separation.
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1. modify the frequency profile E[k] by subtracting its average Eavg

E[k] = E[k]−Eavg Eavg =
1
K

K−1
∑
i=0

E[i] (6.3)

2. zero-pad to achieve an appropriate time (range) sampling intervals ∆T (∆R = c∆T /2).

NFFT =
K

BC∆T
(6.4)

3. apply IFFT;

The average of the spectrum Eavg is an estimate of the energy of the signal. It can

be replaced by an average from multiple measurements at slightly different target separa-

tions. Other standard time domain procedures as windowing or filtering can be applied on

the frequency profile before the inverse transform. Windowing of the frequency domain

sequence can help to reduce the interference between the target peaks. The price is wider

and lower lobes as useful information about the spectrum is discarded. Algorithms for es-

timation of the frequency of the sinusoid in the frequency domain can be applied instead

of the IFFT, e.g. MUSIC, NLS.

Target resolution and measurement The spacing between the targets was determined

as the location of the highest peak in the BSCT spacing profile. The same peak extraction

algorithm as for single target detection and ranging was used (see the implementation in

App. B.3).

The peak detection algorithm was applied directly over the compressed signal for

comparison. The scatterers were considered resolved if two separate peaks were detected

with minimal peak prominence of 3 dB. The spacing was calculated as the distance be-

tween the two highest peaks.



6.3. DATA PREPROCESSING AND EXPLORATION ANALYSIS 113

6.3 Data preprocessing and exploration analysis

The purpose of the initial data exploration was to check the characteristics of the mea-

surements and select the ones suitable for our study of two close scattering points. All

datasets were kept though as they can be useful for more broad studies.

6.3.1 Noise level evaluation

The return signal from the target is calculated by subtracting the background measurement

from the target measurement. Therefore the noise power (PN0 and PN in frequency and

in time domain correspondingly) is the sum of the noise power from the background

measurements and the noise power from the target measurements. The values shown in

Tab. 6.1 are calculated without averaging multiple measurements of the background or

the target. If multiple measurement averaging is used the noise level PN from Tab. 6.1

shall be updated to

PN,avg =
PN

2
( 1

KM
+ 1

KB
) (6.5)

where KM is the number of averaged measurements of the target and KB is the number

of averaged measurements of the background. For example, if KM = 1 and KB = 10, the

noise power has to be reduced by 2.6 dB. If KM =KB = 10, the noise power is 10 dB lower.

The number of available measurements for each experiment in the dataset is provided in

Tab. C.3. All powers provided by the VNA are not absolute but relative to the transmitted

signal.

6.3.2 Background, signal and residual clutter

The range resolution profiles were produced for all sets of measurements. Representative

HRRPs for the background measurements, the raw target measurements and the targets
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Table 6.1: Noise level, signal power, and SNR
Experiment IF BW P∗N0 P∗,†N P†

B P†
S SNR* Note

Hz dB dB dB dB dB
Plates, Ex4 100k -59.3 90.7 102.6 141.2 50.5 Fig. 6.2a
Plates, Ex11 2k -76.1 73.9 123.8 143.9 70.0 Fig. 6.2b
Rods, Ex8 100k -59.3 90.7 140.7 121.7 31.1 Fig. 6.3b
Spheres, Ex9D 2k -76.1 73.9 141.2 110.7 36.8 Fig. 6.4
Spheres, Ex9C 10k -69.2 80.8 141.2 110.7 29.9 –
Spheres, Ex9 100k -59.6 90.4 141.2 110.0 19.5 –
Spheres, Ex9B 300k -55.1 94.9 141.2 110.7 15.8 –
* Based on single background and target measurement
† Signal is scaled by the bandwidth

after background removal are shown in Fig. 6.6. The power levels and the SNR are sum-

marized in Tab. 6.1 (or App. C, Tab. C.4 for all datasets). The power of the background

PB relative to the power of the target measurement gives indication of the importance of

the background removal operation. If the background level is 20 dB lower then it can be

ignored [109, p. 8]. This was the case with the flat plate measurements (see Fig. 6.6a and

6.6b). Otherwise the background need to be removed and the signal evaluated for residual

clutter. This was the case with all turntable related measurements.

The scattering power of the turntable was 20 dB above the power of the rods and 30 dB

above the spheres (when positioned 0.04 m below the antennas centreline). Therefore the

clutter suppression for the turntable measurements has to be examined. The range profile

of the background was compared to the range profile of the target. The HRRP of the rods

shown in Fig. 6.6c is clean from background related peaks. In contrast, the HRRP of

the rods shown in Fig. 6.6d has a clear peak corresponding to a peak in the background.

The clutter in the small sphere measurements is about 15 dB below the target peak. More

details about the turntable geometry and its scattering characteristics in the context of the

targets used are presented in App. A.2

An example of the HRRPs for two rods on a turntable is shown on Fig. 6.7 as the an-
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(b) Two flat plates on a support table
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(c) Two vertical rods on a turntable at 36 deg
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(d) Two vertical rods on a turntable at −36 deg
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(e) Two small spheres on a turntable at 36 deg
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(f) Two small spheres on a turntable at −36 deg

Figure 6.6: Background removal evaluation. HRRP of representative measurements of
two targets separated by 0.12 m. The background is shown as separate lines. Target
HRRP is mixed with residual clutter in cases (d), (e) and (f)
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gular position is increased with step 1 deg (experiment Ex8, vertical rods, support surface

at the level of the antennas). The true positions of the rods are also shown, calculated for

turntable centre at 3.063 m. A zero angular position shift of 0.5○ was accounted for when

the range and the spacing relative to the radar was calculated.

Figure 6.7: Target HRRPs as a function of turntable position for two vertical rods. A fitted
curve for the true scatterer ranges is also shown

6.3.3 Backscattering characteristics of the “point targets”

Before trying to resolve two targets, the return of a wideband RF wave from the simple

real targets that will be further used was considered. The frequency response of a single

flat plate at slightly different positions is presented on Fig. 6.8a. It is not constant and

has increasing energy with the frequency as the beam become narrower. The dashed line

shows the response of the bigger plate where the concentration of the energy at higher fre-

quencies is even higher. In contrast, reflecting the signal not directly towards the antenna

leads to reduction of the return signal power and to attenuation of the higher frequencies.
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More than 15 dB reduction of the average power and additional 10 dB reduction for the

higher frequencies can be seen on Fig. 6.8b. The spectral energy distribution for a sphere

placed on a flat surface is shown on Fig. 6.8c. It is also not flat with about 6 dB variation

in power. Presence of residual clutter contamination is to be expected as the turntable

scatterers are in the processing window for the target frequency response.

These observations are consistent with the discussion in the literature that real target

returns are far from representing ideal point scatterers. The backscattering characteristics

of various target features are discussed in [104, Chapter 2] and [110]. The main message

is that producing a model of real target return intensities and phases is “at best extremely

difficult” [104, pp. 28].

6.3.4 Discussion

Above observations should emphasise the importance of demonstrating model perfor-

mance with real measurements as opposed to simulations with ideal point scatterers.

Model validation can not be considered complete without such evaluation. This will be

the subject of the next sections of this thesis.

In addition, a datasets with real measurements of relatively simple targets with known

parameters should be of value on its own. It will allow benchmarking of different algo-

rithm, either existing or in development. Detailed specification of our experiments at RF

is provided as Appendix.

Comparing BSCT with different enhanced resolution algorithms will be considered a

separate task out of the scope of the current research.



118 CHAPTER 6. APPLICATION OF THE BSCT MODEL AT RF

Frequency, GHz

13 13.5 14 14.5 15 15.5 16 16.5 17

S
p

e
c
tr

a
l 
p

o
w

e
r 

d
e

n
s
it
y
, 

d
B

/H
z

-56

-54

-52

-50

-48

-46

-44

-42

Ex2

Ex3

Ex4

Ex5

Ex5 Big

(a) Directed flat plate

Frequency, GHz

13 13.5 14 14.5 15 15.5 16 16.5 17

S
p

e
c
tr

a
l 
p

o
w

e
r 

d
e

n
s
it
y
, 

d
B

/H
z

-80

-78

-76

-74

-72

-70

-68

-66

Ex1

(b) Non-directed flat plate

Frequency, GHz

13 13.5 14 14.5 15 15.5 16 16.5 17

S
p

e
c
tr

a
l 
p

o
w

e
r 

d
e

n
s
it
y
, 

d
B

/H
z

-90

-88

-86

-84

-82

-80

-78

-76

Ex9D

(c) Small sphere

Figure 6.8: Single target power spectral density
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6.4 Evaluation of model resolution capabilities

6.4.1 Expressing the range axis in units of resolution gates

Following the approach in [1, pp 92], the term nominal resolution, δT was defined as the

reciprocal of the signal bandwidth (or δR when transformed into distance):

δT = 1
BC

δR =
c
2

δT (6.6)

The separation between the targets (either in range d or in time τ) can be expressed

relative to the nominal resolution, thus measured in resolution gates, and denoted as nor-

malised spacing dg:

dg =
d
δR

= τ

δT
= 2

c
⋅BC ⋅d (6.7)

The normalised spacing is a scaled product of the spacing and the bandwidth. There-

fore it is a parameter that embeds information about the bandwidth of the transmitted

signal and hence allows to encode the resolution performance with a single parameter. It

is convenient to express either the bandwidth or the spacing, e.g. when the other parameter

is fixed.

The range or delay axes can also be expressed in resolution gates. This allows unified

indexing of time delay, time separation, range and range separation axes in units of res-

olution gates. For critical sampling (at the Nyquist sampling rate) it is equivalent to the

conventional sample index.

rg =
r

δR
= t

δT
= 2

c
⋅BC ⋅ r (6.8)

The nominal resolution does not guarantee that the matched filter intensity output

will have two distinguishable peaks. This is achieved only on average as the minimum

separation depends on the phase between the scatterers [105, p. 5].
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In the following sections, the BSCT model capability to resolve closely spaced targets

was evaluated experimentally by finding the smallest spacing for which the targets were

discriminated. This spacing was expressed in nominal resolution gates for easy com-

parison of different experimental settings. The target range profiles were studied using

both the MF and the BSCT for measurements of flat plates, spheres and rods at variable

bandwidth or spacing.

6.4.2 Fixed spacing, variable bandwidth experiments

In the two fixed flat plates experiments (e.g. Ex11), the physical separation between the

scatterers was fixed to 0.122 m and the bandwidth was gradually reduced. This corre-

sponds to an increase of the size of the resolution gate (6.6) and decrease of the nor-

malised spacing (6.7). The SNR was high (> 60 dB). The bandwidth of the transmitted

signal BC was varied at the processing stage by discarding data and thus reducing the

available 4 GHz bandwidth. The spectral magnitudes were scaled appropriately to pre-

serve the power of the signal. A diagram of the power spectrum of the measurement is

shown on Fig. 6.9 for all available frequency samples in the (13–17) GHz range. On the

same plot two sections of 1 GHz bandwidth each are also marked to show how bandwidth

was reduced.

The shape of the BSCT spacing profiles is analysed in more details for three repre-

sentative cases based on the ratio between the separation and the nominal resolution. The

corresponding range profiles are considered also. Scatterers spacing well above the nom-

inal resolution (6.6), e.g. dg ≥ 2, for good signal to noise ratio (SNR) leads to range and

spacing profiles with strong peaks at the true target positions – see Fig. 6.10a and Fig.

6.10b. The MF range profiles encode the absolute range of the targets and the BSCT spac-

ing profiles encode the spacing between the scatterers. The continuous vertical line marks
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the true scatterer spacing/range and the dashed line is at the nominal resolution limit. The

red circle marks the estimate of the spacing based on the peak location. Another peak

close to the resolution limit can be observed. It is not reproduced by simulations with

ideal point scatterers at the same SNR (Fig. 6.11a). It reflects the real target and envi-

ronment properties, i.e. the fine structure inherent in each single target and possibly the

residual background clutter. A similar peak is reproduced by simulating targets spaced

by 1 cm (Fig. 6.11b). This way fine structure with spacing much less than the nominal

resolution is revealed. A similar effect can be observed if the noise level is increased

significantly, e.g. Fig 6.11c shows the case when the SNR is reduced from 68 dB to 25

dB.

The interference pattern for scatterer spacing close to the nominal resolution (6.6),

e.g. 0.8 < dg < 1.4, is shown on Figs. 6.10e, 6.10d. While the peak of the BSCT profile

correctly represents the target spacing, the MF range profile have a single peak containing

both targets merged together. When dg < 0.7 the spacing profile also fails to give accurate

measurement of the spacing (Fig. 6.10f).

To explore the range profiles representing the targets for the whole range of relative
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Figure 6.9: Power spectrum as measured for two flat plates separated by 12.2 cm. Lower
resolution is achieved by discarding part of the data, e.g. to get 1 GHz bandwidth only
the left or only the central part of the signal is used
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Figure 6.10: Target BSCT spacing and MF range profiles for two flat plates separated by
12.2 mm at different signal bandwidths
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Figure 6.11: Spacing profiles from simulated data

spacings, the profile magnitudes were colour coded and the profiles calculated at different

bandwidths were presented on the same plot (Fig. 6.12). The x-axis was scaled as nor-

malised spacing instead of bandwidth so that the resolution performance can be observed

directly from the graph. The peak locations of the BSCT spacing profiles were marked

with circles and provide an estimate of the true separation between the scatterers. The

peak locations of the MF range profiles were marked with crosses and provide an esti-

mate of the true range to each scatterer. The minimal bandwidth and the corresponding

normalised spacing in resolution gates above which the estimates were representative of

the true values is marked with dashed line.

The MF range estimates were further converted to spacing estimates. Both target

spacing estimates based on the BSCT and the conventional MF are presented as a function

of the normalised spacing dg in Fig. 6.13. The BSCT target estimates are presented as

circles. The MF based estimates if available are marked as crosses. The dotted line is
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Figure 6.12: Target range resolution profiles as a function of the normalised spacing be-
tween the scatterers (spacing divided by the nominal resolution). Two flat plates separated
by 12.2 cm experiment. The normalised spacing is varied by changing the bandwidth from
0.2 to 4 GHz. The corresponding nominal resolution also changes. In the spectrogram
transformation based approach the profile encodes the spacing between the scatterers.
From the matched filter the absolute position of the scatteres is extracted. Each profile
main peaks are marked and provide an estimate of the spacing for BSCT and the range
for MF. The normalised spacing above which the estimate looks unbiased is denoted by
vertical line. It presents an estimate of the functional resolution of the method. The true
target range/spacing is shown as continuous horizontal line. BSCT spacing profiles (top),
MF range profiles (bottom)
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Figure 6.13: BSCT and MF spacing estimates. True target separation is 12.2 mm (shown
as continuous horizontal line). The resolution limit is shown as dotted line. The dashed
lines are positioned at normalised spacings 0.8 and 1.5. This plot summarize the peak
location based estimates from Fig. 6.12

the nominal resolution δR (6.6). At low bandwidths the target interaction peak tends to

converge to the nominal resolution for BSCT. For the MF case both scatterer peaks merge.

It can be seen that targets can be resolved at less than 0.8δR for the spacing model (BSCT)

and at above 1.5δR for the range model (MF) (Figs. 6.12 and 6.13).
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6.4.3 Variable spacing, fixed bandwidth experiments

For two objects on a turntable experiments the bandwidth was fixed to 4 GHz and the

spacing d was varied from 0 to 0.15 m. This corresponds to variation of the normalised

spacing dg from 0 to 4 resolution gates (6.6). An example measurement of the frequency

response of two vertical rods separated by 0.12 m is shown in Fig. 6.14 as a squared

magnitude response.

The range and spacing profiles were calculated for different angular positions of the

turntable. The results are presented in Fig. 6.15 where the angular position is converted to

spacing and normalised spacing. This way the representations for variable bandwidth and

for variable spacing can be compared (Fig. 6.12 and Fig. 6.15). The spacing estimates

based on both the BSCT and the MF are presented in Fig. 6.16, which is analogue to Fig.

6.13 previously discussed. It can be seen that the functional resolution of the BSCT is

approximately 0.8 times the nominal resolution. The corresponding value for the MF is

1.5. Simulated data for ideal targets and similar SNR confirm the observation (Fig. 6.17).

The range resolution is improved by nearly a factor of two. The results of the experiment

with fixed scatterers is confirmed.
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Figure 6.14: Power spectrum measured using VNA for two vertical rods on a turntable.
Angular position: 36 deg, radius: 0.075 m, calculated spacing: 0.121 m
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(a) BSCT spacing profiles

(b) MF range profiles

Figure 6.15: Target range resolution profiles as a function of the normalised spacing be-
tween the scatterers (spacing divided by the nominal resolution). Two vertical rods on a
turntable experiment. Signal bandwidth is 4 GHz for all measurements. This corresponds
to nominal resolution of 0.0375 m. In the spectrogram transformation based approach the
profile encodes the spacing between the scatterers. From the matched filter the absolute
positions of the scatteres are extracted. Each profile main peaks are marked and provide
an estimate of the spacing for BSCT and the range for MF. The relative spacing above
which the estimate looks unbiased is denoted by vertical line. It presents an estimate
of the functional resolution of the method. The true target range/spacings are shown as
continuous lines
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Figure 6.16: Target spacing estimates for the target profiles in Fig. 6.15. The resolution
limit is shown as dotted line. The dashed lines are positioned at normalised spacings 0.8
and 1.43
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Figure 6.17: Target spacing estimates for simulated data. Two targets, SNR = 34 dB
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6.4.4 Resolution, phase and signal central frequency

The resolution capabilities are influenced by the central frequency of the signal. The

best resolution of 0.7 dR is achieved when the mean value of the BSCT frequency profile

is equal to the constant component of the theoretical curve (4.17) and the zero lobe is

removed correctly in (4.19). The worse case is when the frequency profile covers a section

close to the sinusoid extreme values and the spectrum is practically flat. In this case the

resolution is equal to the nominal resolution. This effect is shown on Fig. 6.18 where the

left plot is produced for fc = 15 GHz and the right is for fc = 15.3 GHz (in the context of

the spectrum presented in Fig. 6.9). It should be emphasized that the central frequency has

effect on the range profiles created using matched filter also. The functional resolution

of BSCT even in the worse case is still better than MF resolution. Confirming these

relationships and finding a better way to remove the zero lobe could be an area for future

research.
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tion 12.2 mm) data. The best and and worst cases depending on the central frequency are
shown. The vertical lines are at relative spacing 0.7 and 1.5
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6.4.5 The BSCT frequency profiles at RF

The BSCT frequency profiles are shown on Fig. 6.19 for simulated and real targets.

The SNR was similar, about 34 dB. The scatterers of the turntable distort to some extent

the ideal frequency interference pattern expected from to objects. The distortion in the

spheres experiment (Ex9) is stronger than the one with the rods (Ex8) as the RCS of

the spheres is 10 dB lower and the turntable scatterers are the same. The transformation

window can be reduced in an attempt to handle the clutter.

It worth noting the difference between the frequency profiles for RF and ultrasound

bands. Both were simulated with high SNR. The profiles are shown in Fig. 6.20. Also,

a third plot is provided where the bat waveform is simply scaled to RF. Even though the

the normalised spacing in resolution gates is the same, the value of the phase information

(or the zero location) is lower as the ambiguity in the lower RF bandwidth (relative to

the central frequency) is much higher. Preliminary tests with NLS approach for fitting

a sinusoid to the frequency profile were not successful as compared to the case with the

ultrasound bandwidth measurements. The zero locations can’t be used also due to the

inherent ambiguity. Methods for direct estimation of the spacing from the frequency

profile will not be studied further. An approach exploiting both magnitude and phase

information after [104] can be considered.
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Figure 6.19: BSCT frequency profiles at RF for simulated data, vertical rods and small
spheres measurements (from top to bottom). SNR is about 34 dB. The colour encodes the
energy in dB
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Figure 6.20: BSCT frequency profiles for simulated data, SNR = 68 dB. Top plot at RF,
central frequency 15 GHz, middle plot at ultrasound, central frequency 67.5 kHz, bottom
plot at RF, central frequency 4 GHz
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6.5 Evaluation of model performance in noise

The range and spacing profiles were analysed for returns from the same target but at

different noise level using the small spheres experiments. The noise level was increased

in steps by (7+10+4) dB. The outputs of BSCT and MF can be compared visually in

Fig. 6.21. The true spacing is identified for SNR values 36, 30 and 20 dB. At SNR = 16

dB the spacing profile looks random. It should be emphasized that the BSCT performs

worse than the MF for lower SNR. The fall-off in performance at reduced SNR is steeper

with this detection scheme than with a matched filter since the noisy signal is effectively

being correlated with a copy of itself rather than with a ‘clean’ reference. A key paper

on the subject of noisy references is [111] where the advantages for detection in passive

MIMO radar networks are developed.

The effect of pure Gaussian noise is shown using simulated data. The SNR was 17 dB.

An example range and spacing profiles are shown in Fig. 6.22 for target spacing 0.122 m.

The second target is much easier to be identified in the BSCT spacing profile in the sim-

ulation than in the small spheres experiment. It is likely that an interference from the

environment makes the difference. The MF range profiles are not so sensitive to week

interfering scatterers as the two target peaks are clearly distinguishable both in Fig. 6.21

and in Fig. 6.22.

The spheres experiment demonstrates the effect of the clutter. Multiple non-target

related peaks are observed in the BSCT output for the spheres (Fig. 6.21). These become

even more obvious if the spacing profiles for the plates, the rods and the spheres are

compared. The range and spacing profiles for different targets are shown in Fig. 6.23.

Both the rods and spheres experiments have similar SNR but the residual background is

stronger for the spheres. The background scatterers act as additional targets and change

the problem to multiple (more than two) close scatterers resolution.



134 CHAPTER 6. APPLICATION OF THE BSCT MODEL AT RF

Spacing, m

0 0.2 0.4 0.6 0.8 1

S
p
a
c
in

g
 p

ro
fi
le

, 
d
B

-235

-230

-225

-220

-215

-210

-205

-200 36 dB

30 dB

20 dB

16 dB

Range, m

2.8 3 3.2 3.4 3.6

R
a

n
g

e
 p

ro
fi
le

, 
d

B

-155

-150

-145

-140

-135

-130

-125

-120

Figure 6.21: Spacing and range profiles for weak targets: two spheres. SNR is progres-
sively reduced



6.5. EVALUATION OF MODEL PERFORMANCE IN NOISE 135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Spacing, m

-195

-190

-185

-180

-175

-170

-165

-160

P
ow

er
, d

B

0 5 10 15 20 25
Resolution gates

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
Range, m

-120

-115

-110

-105

-100

-95

-90

-85

P
ow

er
, d

B

70 75 80 85 90
Resolution gates

Figure 6.22: Spacing and range profiles for simulated targets separated by 0.122 m. The
SNR is 17 dB



136 CHAPTER 6. APPLICATION OF THE BSCT MODEL AT RF

0 0.2 0.4 0.6 0.8 1

Spacing, m

-40

-30

-20

-10

0

S
p
a
c
in

g
 p

ro
fi
le

, 
d
B

Spheres Rods Plates

2.8 3 3.2 3.4 3.6

Range, m

-40

-30

-20

-10

0

R
a

n
g

e
 p

ro
fi
le

, 
d

B

Figure 6.23: Spacing and range profiles for flat plates, vertical rods and spheres. The SNR
is 70, 32 and 36 dB respectively. The target strength and noise level also differ between
the targets



6.6. SUMMARY 137

0 0.5 1 1.5 2 2.5 3 3.5
Spacing to resolution ratio

0

0.02

0.04

0.06

0.08

0.1

0.12
S

pa
ci

ng
 e

st
im

at
e,

 m

BSCT spacing
MF spacing
True spacing
Nominal resolut.
MF resolution
BSCT resolution

0 0.02 0.04 0.06 0.08 0.1 0.12
Spacing, m

Figure 6.24: Target spacing estimates for simulated targets at variable spacing. The SNR
is 17 dB

The spacing estimates using the BSCT and the MF profiles for simulated targets and

white Gaussian noise are shown in Fig. 6.24. The improvement in the resolution is still

observed.

6.6 Summary

The frequency response of two close targets was measured with a VNA in the range 13–

17 GHz. The BSCT algorithm was described with special attention on the preprocessing

steps necessary for real world measurements and the optional integration with other pop-

ular “superresloution” techniques.

The BSCT capability to process radar measurements was confirmed. The range res-

olution was expressed relative to the nominal resolution. The spacing in resolution gates

was varied in two ways – either by changing the bandwidth of the waveform or by chang-
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ing the physical spacing between the targets. The BSCT spacing profiles demonstrated

1.5–2 times better resolution potential than the MF range profiles. It was also shown that

exploiting the phase information for further improvement of the resolution will be harder

compared to the ultrasound measurements case.

As expected, the MF performed better than the BSCT at low SNR. In addition the

BSCT response interpretation can be complicated by the presence of interfering scatterers.

The loss of SNR and the response in case of different scatterer magnitudes and more then

two scatterers will be considered in the next chapter. Other areas of future research will

be also discussed.



Chapter 7

Supplementary estimates and

challenges

A further discussion of additional research challenges relating to the developments in this

thesis follow. In particular, an approximation of the signal-to-noise ratio; extension for the

case of different size targets; connection of the BSCT with the autocorrelation function

are provided.

Acoustic signal processing in bats can be related to a wide variety of additional topics

that are subject to active research. Extensive development or even a literature review on

all of them could not be covered in a single work. In this last chapter only the main ideas

will be discussed and why the author consider them connected to his work as areas for

future research.

7.1 Generalization for different scatterer magnitudes

In Chapter 4 only the case where the two targets are the same size has been investigated.

It is easy to show that the model is valid for targets of different size. Equation (4.9) is

139
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modified by assuming different amplitudes A1 and A2 of the scatterers.

x(t) = A1xC(t − t1)e− j2π f0t1 +A2xC(t − t2)e− j2π f0t2

X( f ) = A1XC( f )e− j2π( f+ f0)t1 +A2XC( f )e− j2π( f+ f0)t2

= A1XC( f )e− j2π f It1 (1+ηe− j2π f I
(t2−t1))

= A1XC( f )e− j2π f It1 (1+ηe− j2π f I
τ)

(7.1)

where η = A2/A1 and f I = f + f0.

The energy spectral density becomes

P( f ) = X( f )X( f )∗

= 2A1A2PC( f )[cos(2π f τ +ψτ)+
η2+1

2η
]

(7.2)

If both signals are the same size the envelope goes through zero and the variation in

power is 4A2 peak to peak. If they are different sizes then the power varies from (A1−A2)2

to (A1+A2)2, a range of 4A1A2.

Above equation is similar to (4.10). A notable difference is that the cosine is summed

with a constant that is bigger than one so the “zeroes” of the spectrum will not be so

“deep”. When the mean value of the spectrum is removed as in Sec. 4.3.1 this difference

will disappear.

7.2 Representation of more than two scatterers

The spectrum of three overlapping echoes was analysed in [47, 48]. The conclusion was

that the spectral block generates spurious delay estimates or “ghost peaks” when more

than two echoes are present. Of course this is part of the spacing profile concept. A peak
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is generated for each possible spacing between the scatterers. Lets consider the most

simple case of more than two scatterers, i.e. lets x(t) is a return from a target consisting

of three scatterers

x(t) = xC(t − t1)e− j2π f0t1 +xC(t − t2)e− j2π f0t2 +xC(t − t3)e− j2π f0t3

X( f ) = XC( f )e− j2π( f+ f0)t1 +XC( f )e− j2π( f+ f0)t2 +XC( f )e− j2π( f+ f0)t3

= XC( f )e− j2π f It1 (1+e− j2π f I
(t2−t1)+e− j2π f I

(t3−t1))

(7.3)

The energy spectral density E( f ) is

E( f ) = X( f )X( f )∗

= EC( f )(1+e− j2π f I
τ21 +e− j2π f I

τ31)(1+e− j2π f I
τ21 +e− j2π f I

τ31)
∗

= 2EC( f )(cos(2π f I
τ21)+cos(2π f I

τ31)+cos(2π f I
τ32)+3/2)

(7.4)

where τi j is the delay between the scatterer i and scatter j. This can be compared to the

corresponding equation for two scatterers (4.10). Each pair of scatterers is represented by

a cosine. All derivations from Chapter 4 can be repeated here. Inverse FT will convert

each cosine to a positive and a negative peak at ±τi j on the time axes.

Lets discuss the most general case of multiple targets. The frequency profile of BSCT

(6.2) can be compared to the Daniel spectral estimation method (3.12). Therefore it can

be assumed that the BSCT frequency profile represents the spectral energy of the target

return. The IFFT of the spectral energy is the autocorrelation function (ACF) of the signal.

Thus the spacing output can be considered a modified autocorrelation where the zero lobe

is removed.

The relationship between the BSCT and the ACF is shown for two scatters target in

Fig. 7.1. The loss of absolute scatterer position is shown in Fig. 7.2 for the case of three

scatterers.
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xcorr

BSCT

Figure 7.1: BSCT of two impulses as compared with autocorrelation

BSCT

Figure 7.2: BSCT of three impulses. Location information is lost

7.3 SNR after BSCT transformation

A fall-off in BSCT performance at reduced SNR was already observed in Sec. 6.5. This

was expected as the noisy signal is correlated with a copy of itself rather than with a

“clean” reference. How big is the loss of SNR relative to the MF is of major concern for

any practical application of the algorithm. The BSCT SNR is evaluated by simulation of

a simple scenario – a band limited impulse waveform xC = Aδ(t) and two point scatterer

target xT = δ(t −τ)+δ(t +τ).

The following steps were implemented and run in MATLAB (Listing B.9).

1. generate noise waveform sequence w[n] with variance σ2

2. generate signal s[n] containing two impulses with amplitude A at n = ±p
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3. SNR = A2/σ2

4. sum the noise and signal, x[n] =w[n]+ s[n]

5. apply BSCT transformation, y[n] =ApplyBSCT(x[n])

6. get BSCT signal impulse magnitude at index 2p, i.e. ABSCT = y[2p]

7. calculate BSCT noise power σ2
BSCT as the variance of the signal with discarded

values at index ±2p

8. the SNR for BSCT is SNRBSCT = A2
BSCT/σ2

BSCT

The relationship between the SNR for BSCT and MF is shown in Fig. 7.3 for different

signal lengths M. It can be seen that the BSCT SNR is reduced relative to the MF SNR

by 6 dB for high SNRs. The ratio of the signal energy and the noise power is reduced 4

times. For low SNR the change in dB for BSCT is two times the change in dB of the SNR.

The critical SNR below which the performance is sharply degraded depends on the signal

length or the time-bandwidth product. For the bat-like waveform it is approx. 15 dB.

Analytical treatment of the SNR could be subject of future work. It can be further

extended to account for targets of different size.

7.4 Open questions and future work

Explaining bat echolocation is not a simple task. While the core features of the existing

models were extracted in the previous chapters, they haven’t been studied in the context of

alternative high resolution and deconvolution techniques. I addition, bat auditory system

neural processing can be correlated with the state of the art research in signal processing

and machine learning and thus inspire further studies.



144 CHAPTER 7. SUPPLEMENTARY ESTIMATES AND CHALLENGES

10 20 30 40 50

SNR MF, dB

-20

-10

0

10

20

30

40

50

S
N

R
 B

S
C

T
, d

B

64
1024
16384
MF

Figure 7.3: BSCT SNR as a function of signal SNR and the time bandwidth M

Bioinspired waveforms and sparse sensing The specific waveforms that bats use and

the hyperbolic frequency sampling in the receiver are another area of potential research.

These can be associated with the recent research in the field of compressed sensing and

sparse signal reconstruction [112, 113].

Neural coding The representation of the signals in the brain is different. There is no

regular sampling at constant rate. Neurons exchange information through neural spikes

which provide a kind of binary coding on a continuous time axis. The physiological

limitation of the firing rate in the context of the echolocation means single or at most a few

spikes per frequency channel per echo. A massively parallel processing is the expected

solution. Considering the cost of the neural activity, ideas for optimal computational

architectures can be foreseen.
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Non-linear signal processing and neural networks In bat auditory system there is

non-linear transformation of the magnitude of the signal, which in this work was assumed

to be squaring. But it could be also just the magnitude or some power different from 2.

The deep learning techniques can provide much more flexible framework for handling

multi-layer non-linearities. It would be interesting if the processing described in this

research is implemented as neural network. This will allow smooth transition from target

resolution to target recognition. A recent developments in the field of deep learning is

the introduction of the batched normalization technique [114]. It can be connected to the

mechanism for zero lobe suppression that was show to be important for resolving close

targets. The added flexibility of different low and high pass filter implementation can

allow tuning the model to specific targets and clutter environment.

Different domain applications The proposed technique can be studied in the context

of the Doppler frequency and direction of arrival domains. Research in these domains can

bring into consideration many established methods for comparison, interpretation and

improvement. For example, two recently introduced methods for direction-of-arrival es-

timation are compared in [94], sparse signal covariance and sparse Bayesian frameworks.

Use of the phase information The “phase” information of the frequency domain repre-

sentation in SCAT/BSCT also contain information about the spacing of the targets. This

is not currently exploited in BSCT. At RF bands it is not so valuable as in the case of

ultrasound, which is obvious from Fig. 6.20. Still future research can try to improve the

algorithm by preserving the phase. Such approach for studying the complex output of the

MF processor was shown to be successful by Rihaczek [104, 105].
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Use of superresolution methods Superresolution techniques are methods for param-

eter estimation that provide resolution in range, frequency or direction of less than one

resolution gate. They differ in the assumed signal model and noise characteristics. The

BSCT algorithm allows some of the steps to be implemented using such superresolution

and sidelobe supression techniques (Sec. 6.2). This means that the “prior art” in superres-

olution can be applied directly without having to carry out extensive development of the

algorithms. Further research can explore the benefits of such approach. Direct compari-

son can be done also although the output of the BSCT is different, e.g. a spacing profile

instead of a range profile.

Cognitive sensing The ultimate goal of a cognitive sensing system involves integration

of the data collection and processing with the higher level tasks as target detection and

classification, accurate localization and tracking, autonomous navigation and collision

avoidance.

7.5 Summary

The BSCT receiver properties were studied for more complex scenarios. It was shown

analytically that the model application is not restricted to targets of the same size. For

more than two scatterers the spacing profile concept should be interpreted properly as it

provides pictures that are different from the range profiles. The SNR after BSCT trans-

formation is reduced by approximately 6 dB for high SNR and even more for low SNR.

Analytical treatment of the BSCT SNR could be subject of future research. Other areas

of future research were highlighted, e.g. exploitation of the BSCT phase for improved

estimates and application of the model at different domains.
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Conclusions

The aim of this study was to investigate the mechanisms bats use to process echo acoustic

signals and investigate if there are lessons that can be learned and ultimately applied to

radar systems. The basic principles of the bat auditory system processing were studied

and applied to radio frequencies.

After a review of the existing literature on bat echolocation capabilities and bat au-

ditory system research, the main features of bat processing were derived. The FM bats

are able to discriminate small shifts in the range of a single target close to the statistical

limit, to resolve two target spacing differences as small as 2 µs (less than one third of the

Rayleigh limit) and to discriminate stochastic targets based on their roughness. Their sig-

nal processing chain most likely does not rely on phase information. The absolute ranging

is not so accurate – about 60 µs. The perception of the target also changes if another tar-

get is closer than about 60 µs. These are the features that have to be provided by the

monaural auditory system models and that should be compatible with the bats amazing

performance on a variety of tasks.

Existing models differ in the level of details and biological plausibility as shown in

Chapter 2. The Spectrogram Correlation And Transformation (SCAT) receiver is a model
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of the auditory system that was proposed by Saillant et al. for the bat Eptesicus fuscus.

It was selected for further analysis not only because it is one of the most frequently ref-

erenced studies. It is relatively simple yet biologically plausible, can be considered a

functional model but provides a neural implementation at all stages. The temporal and

spectral processing can be modelled separately, which is also an advantage when ana-

lytical models have to be done. The main insights from the analysis of SCAT can be

summarized as:

• The cochlear block splits the signal into multiple narrowband channels

• All channels go through non-linear transformation and smoothing

• The temporal block performs signal compression and low resolution target ranging

• The spectral block performs fine range resolution in the frequency domain

It was recapped that when the signal in the time domain is concentrated in a very

short interval it will be wider in the frequency domain. Therefore switching the domain

can bring advantages when the sampling rate is limited. An impulse can not be sampled

in time domain using finite sampling rate. This problem does not exist in the frequency

domain. The same is valid for two impulses. In the frequency domain they are represented

by a cosine which spans from minus infinity to plus infinity. In real measurements the

magnitude and phase information can be collected only for a limited range of frequencies

– a bandpass filtered version of the target response. This again will limit our capabilities

to restore the original impulses.

In this thesis I have presented a baseband receiver that allows an analytical treatment

of the output of a SCAT-like processing and that can also be applied to RF signals. Simu-

lation and experimental results show that proposed baseband spectrogram transformation
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model gives a spectral output comparable with the output of the original spectrogram

correlation and transformation receiver. This implies that

• processing of target echoes with a receiver based on the bat auditory system can be

applied to signals that are centred on very high carrier frequencies, such as radar

signals.

• the output of the spectral block does not depend on the phase information of the

carrier signal and is a form of non-coherent signal processing; the spectral block

will be more robust to loss of signal coherence than the matched filter.

The output of the Baseband SCAT (BSCT) has been compared analytically with that

of the conventional matched filter for two closely spaced scatterers. It was shown that by

removing the signal power which is present in all the frequency bins, the variations can

then give the target separation. This is a biologically/neurologically plausible idea and

changes the two-target problem to the much simpler one of estimating a single parameter

(the modulation rate in the frequency domain). Results have shown that a bat-inspired

spectrogram transformation can provide better range resolution performance than that of

a conventional matched filter.

The model have been verified first with a set of laboratory experiments at ultrasound,

using phantom echoes and real targets. The frequency range and bandwidth were based on

bat echolocation call. In Chapter 5 the enhanced resolution of two scatterers was demon-

strated experimentally by processing ultrasound measurements with BSCT receiver.

The feasibility of the BSCT receiver for radio frequency signals was demonstrated in

Chapter 6. The experimental work is an evidence that the bat-inspired approach is robust

to real targets. Pairs of flat plates, vertical rods and spheres were used to represent targets

with two main reflectors. The enhanced resolution of two scatterers was demonstrated by

processing radio frequency measurements with the BSCT receiver.
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Looking more closely to the interference patterns for different relative positions be-

tween the scatterers it can be seen that the general shape and, in particular, the locations

of the zeroes, are preserved between the experiments and the simulations. These features

are likely to be significant for any scheme for resolving the close-spaced targets and this

result indicates that the new algorithm, like the SCAT algorithm, retains the information

which will later be needed to resolve the targets. Utilising the phase information in the

BSCT spacing profiles can be subject of future research.

A note on the significance of the results

It can be argued whether improvement relative to the Rayleigh limit is an impressive

performance in the context of the state of the art algorithms for superresolution that in-

volve covariance matrices inversions or complex optimization and parameter search pro-

cedures. But this is the place to cite Rihaczek, 1996, "We have spent the past twenty years

analysing real data from a variety of man-made targets ... we are led to the conclusion that

the entire class of approaches based on mathematical target models is totally impractical

and will not provide the required radar performance" and "the backscattering behaviour

of general man-made targets is extremely complicated ... This is the reason for the failure

in practice of maximum likelihood processing, maximum entropy processing, and other

superresolution methods"[104, pp. 7].

The importance of the two point resolution problem was justified by Rihaczek [104,

105]. Rihaczek points out that resolving two scatterers is the only problem for which

a moderate superresolution can be achieved if the complex response is utilized (i.e. the

phase information from the receiver output is not discarded). In the typical high-resolution

radar the majority of the range cells will contain composite responses [104, p. 450]. Three

types of responses can be defined: (1) ones generated by single scatterer, (2) responses
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generated by two scatterers, and (3) responses generated by more than two scatterers. The

general recommendation for the third case is to be approximated with two main scatterers

if possible. [105, Sec. 1.3]. If this is not possible than the resolution of the radar is not

adequate to its application.

Finally, we do not claim that BSCT gives better results than the conventional super-

resolution techniques. A rigorous comparison to these techniques can be subject of future

research. We haven’t looked at its stability either, but as it may well be what bats have

been doing for 50M years, and worked in our experiments, it is probably quite stable

and certainly worth looking at further [115]. Although we must admit that it is just a

hypothesis that bats use something like this, it is clear that it works.



152 CHAPTER 8. CONCLUSIONS



Appendixes

Technical details that are important for the practical realisation of the models are provided

as appendixes. This includes datasets, data structures, algorithms, exploratory data anal-

ysis, and data acquisition routines. Even though they do not add scientific value to the

thesis they will make possible independent verification and validation of the results.
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Appendix A

Exploratory analysis supplement

A.1 Physical target measurements with ultrasound

Important part of the ultrasound experiment was getting the ground truth (the real distance

to the rods) with good accuracy, e.g. at least 0.5 mm, which corresponds to 3 µs time

delay. Such accuracy is hard to achieve with mechanical ruler as the shape of the rods is

not perfect and the exact phase centre as a function of the turntable position is unknown.

Exploration of the effect of the non-stationary environment and target deviations

from perfect shape

The measurements of the central rod are shown for experiments (experiments 6-9 from

Appendix C) with the same position of the turntable (Fig. A.1). Rod position is estimated

using match filter. Wider scattering arownd specific angular positions (800 and 2700) is

due to the interference with the second rod and should be ignored.

The above chart shows that there is variation in estimated distance to the fixed central

rod from experiment to experiment of about 1.5 mm. Additional variation of about 1.5 mm

is observed at each single experiment due to imperfect target shape. This means that target
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Figure A.1: Measured distance to the central rod for different perspectives (angles), four
different experiments

distance calculated based on echo time delay can vary over 3 mm from measurement to

measurement.

These measurements confirm the previous observation that the air is not a stationary

environment and coherent signal processing is limited. Therefore in order to be able to

do precise evaluation of measurement accuracy an estimate of the target position (ground

truth) is needed at each angle and for each experiment accounting for both the environ-

ment at that particular moment and the target shape at that particular view angle.
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Figure A.2: Distance to a vertical rods on a turntable, important parameters

Estimation of the true rod locations

The precise distance from the speaker to reflecting surfaces and back to the microphone

was estimated by curve fitting over multiple measurements at different turntable positions.

It was based on the fact that the peak of the matched filtered signal provides unbiased

estimate of the target location for a single target. This is good approximation of reality

also for more targets when they are sufficiently separated. Therefore in order to estimate

the true distance to and between the rods all measurements were used excluding the one

in which the targets are closely spaced and match filter estimates are unreliable.

The relationship for the distance L between a point outside a circle and a point on the

periphery of the circle is expressed based on the circle radius r, circle point angle α and

the distance between the outside point and circle centre R (Fig. A.2 ):

L2 = r2+R2−2rRsin(α −α0) (A.1)

The precise distance from the speaker to reflecting surfaces and back to the micro-

phone was estimated by curve fitting over multiple measurements at different turntable

positions. The method used was "Nonlinear Least Squares" with "Trust-Region" algo-
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rithm. The distance to the table R, the radial position of the rod r and the initial angle shift

α0 were considered unknown model parameters. The independent variable was the angle

α that set the turntable position. The dependant variable was the distance to the target L.

It was measured by taking the peak location of the match filtered echo.

The procedure to get the ground truth:

- if there are more than one target, separate them for independent curve fitting

- fit the curve defined by (A.1) for the unknown model parameters R, r and α0 based

on measured distance L and corresponding angle α

- identify and remove outliers (these are the measurements when the rods are very

close)

- fit the curve ignoring the outliers

- check model fit performance visually and based on selected statistics

- calculate estimates of the distance L based on the fitted model and save as true delay

for each measurement;

The procedure for data fitting was applied for all experiments (see Appendix C). Curve

fitting routines were verified by visual inspection of the measured distances and the fitted

curves (Fig. A.3, experiment #9)

The importance of actual position estimation becomes obvious if the regions where

the spacing between the targets is small are zoomed (Fig. A.4).

Evaluation of the accuracy of the range ground true

The accuracy of the estimate can be quantified by the root mean squared error (standard

error) as 0.2643. Based on 1.96 standard errors it was concluded that the error of the

estimate is less than 0.52 mm in 95% of all measurements.



A.1. PHYSICAL TARGET MEASUREMENTS WITH ULTRASOUND 159

Angle, degrees

50 100 150 200 250 300 350

D
is

ta
n

c
e

, 
m

m

800

850

900

950

1000

Figure A.3: Measured distances and fitted model, two rods, one in the centre and one at
50 mm

Angle, degrees

60 70 80 90 100

D
is

ta
n

c
e

, 
m

m

920

925

930

935

940

945

950

Figure A.4: Measured distances and fitted model, two rods, rods close spacing region



160 APPENDIX A. EXPLORATORY ANALYSIS SUPPLEMENT

A.2 Turntable dimensions and backscattering

A turntable LT360EX, LinearX Systems, Battle Ground,WA, USA was used with addi-

tional support plate to fix the targets and provide variable spacing relative to the remote

sensor (radar or ultrasound) (Fig. A.5) [116]. This target support structure is potential

source of clutter interference. It can have significant effect on the return especially for

weak targets. Therefore it is important to know the geometry of the support in details.

The overall dimensions of the turntable are 457x457x104 mm. The height of the

chassis is 84 mm. The diameter of the platter is 406 mm and the height is 19 mm. On the

top of the turntable platter a target support disk is mounted with a diameter of 240 mm

and height 40 mm (Fig. A.6). Reflections from the front edge of the turntable chassis

(x1), the turntable platter (x2) and the support disk (x3) can be expected. The case when

the antenna centreline is approximately at the level of turntable and the targets mounting

points is explored further. Assuming a distance to the turntable centre x0 = 3.063 m the

above locations are x1 = x0−0.457/2 = 2.835 m, x2 = [2.860,2.867] m and x3 = 2.943 m.

A High Range Resolution Profiles of the turntable and support plate (further referred

to as background) is shown on Fig. A.7a for 4 GHz signal. When the target rods are

added the range profile changes but the front rod is hard to discriminate (Fig. A.7b). The

range resolution profiles for a variety of different spacings of the rods can be observed on

Fig. A.8 for two rod target and on Fig. A.9 for two small spheres. The range profiles are

dominated by the reflection from the turntable platter.

The unwanted scatterers were removed by subtracting the background. The back-

ground removal is not perfect due to disturbances in the system, e.g. during mount-

ing/dismounting the targets or due to vibrations from turntable operation. On Fig. A.10

a sequence of two rods HRRPs are presented at different positions of the turntable. As

the experiment progress the background removal becomes less effective and the scatter-
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Figure A.5: Turntable and support plate. Two small spheres are fixed into a grooves
directly on the support plate
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(b) Turntable plus two rods HRRP. The dashed vertical lines mark the rod locations

Figure A.7: HRRP for the background (top) and for the target plus background (bottom).
The dashed vertical lines mark the positions of the main turntable scatterers at the top
figure and the rod locations at the bottom figure. Signal bandwidth is 4 GHz
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Figure A.8: HRRPs, no background removal, vertical rods

Figure A.9: HRRPs, no background removal, small spheres
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Figure A.10: HRRP for vertical rods. Background removal effectiveness degrade with the
accumulation of turntable rotation steps

ers from the turntable and the target support plate start to be clearly distinguishable. For

clarity the range profiles collected at 20 and 339 degrees are shown on Fig. A.11. Both

measurements are performed with rod spacing of a 0.14 m. While on the first plot the

background is successfully reduced below the noise level, in the second plot the turntable

scatterers are comparable with the rod scatterers. For these 4 GHz bandwidth measure-

ments the lobes representing the targets are clearly separable in both cases. Next the

range profiles are shown for two small spheres (Fig. A.12). In this case there is no ad-

verse tendency with time but the targets are 10 dB weaker and the impact of the residual

background should be stronger.

The initial experiments with rods (Ex0 and Ex6) were performed with the antenna

centreline at the level of rod tips or approximately 0.7 m above the rods mounting points.

The distance to the turntable centre was 2 m and 3 m respectively (Fig. A.13a). With these

arrangements each rod produced two distinguishable reflections separated by about 10 cm
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Figure A.11: HRRP for rods after background removal. The top plot is at 20 deg, the
bottom at -20 deg. After a 320 steps the background removal is not perfect and the return
from the turntable platter is visible. The dashed vertical lines mark the true positions of
the rods
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Figure A.12: HRRP for small spheres, 10 dB less power than the rods in Fig. A.10

– one from the tip and one from the support attachment point (Fig. A.14, Ex6). These

pairs of scatterers have fixed spacing between them that is not related to the turntable

angular position. Another complication was the clutter range distribution. Even though

the power of the background was reduced (see Tab. C.4), the main clutter scatterer was

overlapping with the front rod tip scatterer for Ex6 (Fig. A.15a) and with the rear rod for

Ex0 (Fig. A.15b).

These settings can be used to explore the interference between two targets each con-

sisting of two scatterers at fixed spacing. They have not been explored further as these

present more complicated scenario than the one studied of just two close scatterers. The

background scatterers were mixed with the target and each rod produced two scattering

centres. In order to suppress the reflection from the tips of the rods the whole turntable

was lifted up relative to the antenna beam (Fig. 6.3b, Fig. A.13b).
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Figure A.14: Target HRRPs as a function of turntable position for two vertical rods. Two
scatterers per rod are observed separated by 0.1 m. The actual scatterers positions are
shown with continuous curves.
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Figure A.15: Target as a point scatterer evaluation. HRRP of representative measurements
of two targets separated by 0.12 m. The background is shown as separate lines. Each rod
is represented by two scatterers. The second scatterer of the front rod overlaps with the
second rod so three peaks in total are observed. The main background scatterer is very
close to one of the targets.
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Appendix B

Selected algorithms and standard signal

processing practices applied

Different good practices for signal processing can be applied to improve the performance

of BSCT

B.1 Utilities

Listing B.1: Load RF data from a folder
1 function [ x, seqNo ] = GetFreqResponses( keyword, mode, folder )
2 %GETFREQRESPONSES Get complex frequency response and file index (e.g. angle)
3 % keyword: the name in the filename without the extension
4 % mode: 'single' for specific measurement
5 % 'average' for the mean of multiple measurements
6 % 'all' for array of measurements
7 % 'advanced' for better file filtering, output as 'all'
8 % seqNo: sequence number of the experiment or number of averaged
9 % measurements

10
11 if nargin < 3
12 folder = '.';
13 end
14 if nargin<2
15 filename = [keyword, '.txt'];
16 seqNo = GetIndex(filename);
17 if ~isnan(seqNo)
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18 mode = 'single';
19 else
20 mode = 'all';
21 end
22 end
23
24 curdir = cd(folder);
25
26 switch mode
27 case 'single'
28 fnames = GetFilenames(keyword);
29 filename = fnames{1};
30 x = getFreqResponse(filename);
31 seqNo = GetIndex(filename);
32 case 'average'
33 fnames = GetFilenames( keyword );
34 nFiles = length(fnames);
35 x = getFreqResponse(fnames{1});
36 for i = 2: nFiles
37 x = x + getFreqResponse(fnames{i});
38 end
39 x = x/nFiles;
40 seqNo = nFiles; % the number of averaged measurements
41 case 'all'
42 filenames_wildcard = [keyword, '*.txt'];
43 files = dir(filenames_wildcard);
44 nFiles = length(files);
45 x1 = getFreqResponse(files(1).name);
46 nSamples = length(x1);
47 x = zeros(nSamples, nFiles);
48 seqNo = zeros(1, nFiles);
49 x(:,1) = x1;
50 seqNo(1) = GetIndex(files(1).name);
51 for i = 2: nFiles
52 x(:,i) = getFreqResponse(files(i).name);
53 seqNo(i) = GetIndex(files(i).name);
54 end
55 case 'advanced'
56 fnames = GetFilenames( keyword );
57 nFiles = length(fnames);
58 x1 = getFreqResponse(fnames{1});
59 seqNo = zeros(1, nFiles);
60 nSamples = length(x1);
61 x = zeros(nSamples, nFiles);
62 x(:,1) = x1;
63 seqNo(1) = GetIndex(fnames{1});
64 for i = 2: nFiles
65 x(:,i) = getFreqResponse(fnames{i});
66 seqNo(i) = GetIndex(fnames{i});
67 end
68 otherwise
69 error('mode should be single, average or all')
70 end
71
72 [seqNo, I] = sort(seqNo);
73 x = x(:,I);
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74
75 cd(curdir)
76 end
77
78 function fnames = GetFilenames( keyword )
79 files = dir([keyword, '*.txt']);
80 regex_filter = [keyword, '\d*.txt'];
81 fnames = {files.name}.';
82 FIND = @(str) cellfun(@(c) ~isempty(c), regexp(fnames, str, 'once'));
83 fnames = fnames(FIND(regex_filter));
84 end
85
86 function angle_deg = GetIndex(filename)
87 angle_string = regexp(filename, '(\d+).txt$', 'tokens');
88 angle_deg = str2double([angle_string{:}]);
89 end

Listing B.2: Get ultrasound measurements
1 %% Set experiment
2 pause(30);
3 numSeparatedMeasurements = 5;
4 pause_duration = 1;
5
6 set_scp.fs = 10e6;
7 set_scp.N = 100e3;
8 set_scp.ch_range = [2, 0.8];
9

10 set_gen.fs = set_scp.fs;
11 set_gen.gen_amplitude = 0.1;
12 set_gen.burst_count = 1;
13
14 set_signal.f1 = 100e3;
15 set_signal.f2 = 35e3;
16 set_signal.T = 0.002;
17
18 set_target.type = 'rods_double'; % phantom
19 set_target.param = struct();
20 set_target.param.centre = false;
21 set_target.param.loc = 0.025;
22
23 set_turntable.on = true;
24 set_turntable.step = 2;
25 set_turntable.velocity = set_turntable.step/5;
26 set_turntable.acceleration = 2;
27
28
29 trigerer = 2; % 0:gen, 1:ch1, 2:ch2
30 note = 'max dist';
31
32 s = genWaveform(set_gen.fs, set_signal.f1, set_signal.f2,...
33 set_signal.T, @chirp, set_gen.fs*set_signal.T*2, 0 );
34 set_gen.waveform = s;
35
36 plot(s)
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37
38 delays_low = (0:5:50)*1e−6;
39 delays_medium = (60:20:200)*1e−6;
40 delays_large = (250:50:600)*1e−6;
41 delays = [delays_low, delays_medium, delays_large];
42 angles = 0:set_turntable.step:360;
43
44 %% Set TiePie
45
46 LibTiePieNeeded
47 [scp, gen] = InitializeTiePie(LibTiePie);
48 gen = SetGen(gen, set_gen);
49 scp = SetSCP(scp, set_scp);
50 scp = SetTriger(scp, trigerer);
51
52 %% Set Turntable
53
54 h = SetTurntable(set_turntable);
55
56 %% Fire!
57 gen.OutputOn = true;
58 gen.setData(s)
59
60 if strcmpi(set_target.type,'phantom')
61 params = delays;
62 else
63 params = angles;
64 end
65
66 for param = params
67 % prepare waveform
68 if strcmpi(set_target.type,'phantom')
69 set_target.param.tau = param;
70 delay_samples = round(param*set_gen.fs);
71 sDelayed = delay_seq( s, delay_samples );
72 sInterf = s + sDelayed;
73 gen.setData(sInterf)
74 else
75 set_target.param.angle = param;
76 command_to_send = sprintf('goto ccw %s', num2str(param));
77 fprintf(h, command_to_send);
78 pause(5)
79 end
80
81 % collect data
82 for i = 1:numSeparatedMeasurements
83 pause( pause_duration*rand )
84 fprintf('at %.1f deg\n', param)
85 data = single_measurement( scp, gen );
86 tpd = struct( 'data', data, 'set_target', set_target,...
87 'set_signal', set_signal, 'set_scp', set_scp, 'set_gen', set_gen, ...
88 'trigerer', trigerer, 'seq', i, 'set_turntable', set_turntable, 'note',

note);
89 save_data(tpd )
90 end
91 end
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92
93 %% Everything off
94
95 gen.OutputOn = false;
96 clear scp
97 clear gen
98 fclose(h);
99 delete(h)

100 clear h

B.2 Target peak localisation algorithm

Target location has to be determined from the output of the receiver. In the context of

this work the spacing between the targets was estimated as the location of highest peak in

the BSCT spacing profile. The corresponding spacing based on the MF range profile was

calculated as the distance between the two highest peaks.

The peak detection algorithms use a set of rules to isolate the most significant peaks

from the random fluctuations (Listing B.3). Different settings for selecting up to three

targets are shown on Fig. B.1.

• A threshold equal to the mean signal power plus two standard deviations was used

in order to suppress the noise (Fig. B.1a).

• The minimal peak prominence to consider it as a separate peak was set to 3 dB

(Fig. B.1b, Fig. B.1e).

• A second threshold at -10 dB from the maximal value was introduced to suppress

the sidelobes (Fig. B.1b)

The localisation in its simplest form is just scaling the index of the sample having

higher value than its neighbours. The index based target range estimate can be improved

by fitting different curves to the samples. Such algorithms are discussed in [117, Sec.
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Listing B.3: Peak detection algorithm
1 function [plocs, pmags] = get_peaks( s, npks, sortStr, th_dB )
2 %GET_PEAKS Find the index and the magnitude of the peaks
3 % above a noise and sidelobes defined thresholds
4 % s − input signal vector, NOT in dB
5 % npks − max number of peaks to return
6 % sortStr − boolean
7 % th_dB − distance between the threshold and the max value, in dB
8
9 s_db = db(s);

10 thresh1 = db(2*std((s))+mean((s)));
11 thresh2 = max(s_db) − th_dB;
12 thresh = max(thresh1, thresh2);
13
14 [~, plocs] = findpeaks(s_db, ...
15 'MinPeakProminence', 3,...
16 'MinPeakHeight', thresh,...
17 'NPeaks', npks,...
18 'SortStr', sortStr);
19
20 pmags = s(plocs);
21 end

13.15]. The one used in the thesis was parabolic interpolation of the absolute values of

the signal

mk =mk+0.5
∣s(mk+1)∣− ∣s(mk−1)∣

2 ∣s(mk)∣− ∣s(mk+1)∣− ∣s(mk−1)∣
(B.1)

The implementation of (B.1) is given in Listing B.4.

Interpolation provides a simple way to surpass the limitation of the accuracy imposed

by the sampling interval, i.e. when the true location is located somewhere between the

samples (Fig. B.1c). Similar effect can be achieve by reducing the sampling interval to

the desired accuracy but creating range profiles with more points is more computationally

expensive. The effect of interpolation is obvious on Fig. B.2 - the step transition of the

estimates around the true values (Fig. B.2a) is smoothed (Fig. B.2b).
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Listing B.4: Interpolate peak values using parabolic interpolation
1 function [iploc, ipmag] = peak_interp(s, plocs)
2 %PEAK_INTERP Interpolate peak values using parabolic interpolation
3 % Based on SMS Tools by Xavier Serra
4 % https://github.com/MTG/sms−tools/blob/master/software/models/

utilFunctions.py
5 % More advanced algorithms in Lyon, Sec. 13.15 Spectral peak location
6 % algorithms
7 %
8 % s: processor output vector,
9 % ploc: locations of peaks vector

10 %
11 % iploc, ipmag: interpolated peak locations and magnitudes
12
13 val = abs(s(plocs)); % magnitude of peak bin
14 lval = abs(s(plocs−1)); % magnitude of bin at left
15 rval = abs(s(plocs+1)); % magnitude of bin at right
16 iploc = plocs + 0.5*(lval−rval)./(lval−2*val+rval); % center of parabola
17 ipmag = val − 0.25*(lval−rval).*(iploc−plocs); % magnitude of peaks
18 end
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Figure B.1: Localisation of the three strongest peaks of a signal
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(a) no interpolation

(b) interpolated peak locations

Figure B.2: Peak locations fitted over simulated spacing profiles with and without inter-
polation. The true location of the target is denoted by the diagonal line
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B.3 Estimation of the target frequency response

The spectrum of the target has to be insulated from the spectrum of the environment. This

operation involve restricting the return signal to a short range around the target (Sec. 6.2).

Even though trivial, this operation degrades the available bandwidth to some extent as the

lowest and highest frequencies are skewed. The output of different approaches are shown

on Fig. B.3. Simple discarding of all data outside the range interval in time domain in this

example leads to increase of the power of lower frequencies and decrease for the higher

frequencies – the amplitudes are shifting towards a common value as sampling leads to

a periodic signal. Zero padding skews the spectrum in the other direction. In total about

100 MHz of the total 4 GHz are affected.

Improvement in the frequency response estimation can be achieved using the Papoulis-

Gerchberg spectrum extrapolation technique [107, 108]. Our implementation is provided

in the Listing B.5. The resulting curve follows the expected sinusoidal pattern with less

distortions (Fig. B.3). The spectral analysis of the target is out of the scope of this

research. Interesting questions as which algorithm best estimates the zeroes locations,

which are more robust to strong scatterers outside the window, etc. will not be investi-

gated. Only the simplest range restriction algorithm will be used, i.e. zeroing all samples

outside preselected range around the target scatterers.
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Listing B.5: Target range gating
1 function S_gated = RestrictRange(S, range_window, DeltaF, mode)
2 %RESTRICTRANGE Isolate the frequency response of the targets
3 % S_gated in selected range window
4 % RestrictRange( S, range_window, DeltaF, mode )
5 % S − full response, frequency domain
6 % range_window: range boundaries in meters, e.g. [1, 5]
7 % DeltaF: sampling step in frequency
8 % mode: 'none' − do nothing
9 % 'crop' − window in time domain

10 % 'trim' − zero pad in freq. and window in time domain
11 % 'filter' − filter the frequency response
12 % 'papoulis' − extrapolate response, 100 iterations
13
14 c = 3e8; % speed of light, m/s
15 range_window_sec = 2*range_window/c;
16 N = length(S);
17
18 switch mode
19 case 'none'
20 S_gated = S;
21 case 'filter'
22 fc = range_window_sec*DeltaF*2;
23 [b,a]=butter(2,fc, 'bandpass');
24 S_gated = filtfilt(b, a, S);
25 case 'crop'
26 s = ifft(S);
27 deltaT = 1/(N*DeltaF);
28 index1 = floor(range_window_sec(1)/deltaT);
29 index2 = ceil(range_window_sec(2)/deltaT);
30 s(1:index1,:) = 0;
31 s(index2:N,:) = 0;
32 S_gated = fft(s);
33 case 'trim'
34 NN = 2*N;
35 s = ifft(S, NN);
36 deltaT = 1/(NN*DeltaF);
37 index1 = floor(range_window_sec(1)/deltaT);
38 index2 = ceil(range_window_sec(2)/deltaT);
39 s(1:index1,:) = 0;
40 s(index2:NN,:) = 0;
41 S_gated = fft(s, NN);
42 S_gated = S_gated(1:N);
43 case 'papoulis'
44 NN = 2*N;
45 s = ifft(S, NN);
46 deltaT = 1/(NN*DeltaF);
47 index1 = floor(range_window_sec(1)/deltaT);
48 index2 = ceil(range_window_sec(2)/deltaT);
49 S_gated = fft(s, NN);
50 for i = 1:100
51 S_gated(1:N,:) = S;
52 s = ifft(S_gated);
53 s(1:index1,:) = 0;
54 s(index2:NN,:) = 0;
55 S_gated = fft(s, NN);
56 end
57 S_gated = S_gated(1:N,:);
58 end
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Figure B.3: Target interference pattern and increased frequency response error close to
the band limits. Different algorithms for truncating the signal in range provide different
skewing.
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B.4 Discrete axes scale

Discrete axis scaling to frequency, time or range Digital signal processing transform

sequences of numbers. Real signals are continuous functions of time, range, frequency

or angle. While the sampling theory is well developed and mature subject it still worth

paying special attention to the implementation details.

The relationship for switching from a measurement sample index to frequency or

time/range scale is simple:

x = ∆x ⋅n+x1 (B.2)

where ∆x is the discrete step in physical units and n is the index sequence starting

from zero and having N values. The starting point on the x-axis x1 can be anywhere but

normally it is either zero or it centres the signal around the zero. Example implementation

is provided in Listing B.6, where the input parameters are the step ∆x and the shift x1.

Listing B.6: Scale frequency axis from sample index to Hz/s/m

1 function x = ScaleX( N, deltaX, x1 )
2 %SCALEX Generate a scale for the abscissa
3 % N: number of points of the signal
4 % deltaX: the step between the points, Hz, s, m, rad,
5 % x1: the x value of the first point
6
7 if nargin < 3
8 x1 = −floor(N/2)*deltaX;
9 end

10
11 if nargin < 2
12 deltaX = 1; % just a sample index
13 end
14
15 n = 0:N−1;
16 x = n*deltaX + x1;
17
18 end
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Scaling the X axis of the FFT pair A function is provided for calculation of the x-axis

points in the pair domain directly from the number of points N and the sampling interval

∆ from the original domain. If the period of the transformed signal is T , the sequence is

normally presented in one of the following intervals:

• zero starting [0, T), e.g. the output of FFT of complex signal is from 0 to fs−∆F ;

• positive, half [0, T/2], e.g. the output of FFT of real signal is from 0 to fs/2;

• zero centred, [-T/2, T/2), e.g. the output of cross correlation or for ‘fftshift’-ed FFT.

Listing B.7: Scaling the X-axis of the FFT pair
1 function [xT, deltaT] = ScalePairX( N, DeltaX, mode, dim )
2 %SCALEX Generate a scale for the FFT pair abscissa
3 % N: the total number of points, including any zero padding
4 % DeltaX: the step between the points
5 % mode:
6 % 'none', zero start, [0, T) or (0:N−1)*deltaT
7 % 'half', half of the points, [0, T/2], (0:N/2)*deltaT
8 % 'full', zero centred, [−T/2, T/2)
9 % dim: the scale used, from {'Hz', 'm', 's', 'index', 'cycle'}

10 %
11 % deltaT: the step in the pair domain
12 %
13 % example: ScalePairX(4, 1, 'full') −−> [−0.50, −0.25, 0, 0.25]
14 % example: ScalePairX(4, 1/4, 'full') −−> [−2, −1, 0, 1]
15 % example: ScalePairX(8, 1/4, 'half') −−> [0, 0.5, 1, 1.5, 2]
16
17 switch dim
18 case 's', 'Hz';
19 C = 1;
20 case 'm'
21 C = 3e8/2;
22 end
23
24 deltaT = C*1/(N*DeltaX);
25 N_halved = floor(N/2);
26
27 if strcmpi(mode, 'none')
28 xT = (0:N−1)*deltaT;
29 elseif strcmpi(mode, 'half')
30 xT = (0:N_halved)*deltaT;
31 elseif strcmpi(mode, 'full')
32 xT = (−N_halved:N_halved−1)*deltaT;
33 end
34 end
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The sampling interval ∆T in the pair domain is calculated as

∆T =
K

N ⋅F
= 1

N ⋅∆F
(B.3)

where K is the number of samples in the original signal (e.g. points in the frequency

profile), N is the zero padded signal length, F is the duration of the original signal in the

corresponding physical dimension (e.g. signal bandwidth in Hz) and ∆F is the sampling

interval for the original signal.

Listing B.8: Auxiliary relationships for switching the domain
1 function deltaX = DeltaX( K, spanF, N )
2 %DELTAX Sampling interval of the Fourier−transform pair
3 % K: number of samples
4 % N: number of points after zero padding
5 % spanF: signal duration/bandwidth
6
7 deltaX = (K / N) * (1 / spanF);
8
9 end

10
11 function spanX = SpanX( N, deltaX )
12 %SPANX Calculate signal duration/bandwidth
13
14 spanX = N*deltaX;
15
16 end

Y axis scaling

Switching from sinusoidal amplitudes to spectral density The spectral density

describe how much signal amplitude is present per unit of bandwidth [118]. Therefore

each sinusoidal amplitude should be divided by the bandwidth it represents. For constant

sampling rate of one and complex representation this bandwidth is 1
K , where K is again

the number of available data points. The spectral density becomes K times the amplitude

of the sinusoid.



186 APPENDIX B. SELECTED ALGORITHMS

Scaling after IFFT The spectral density magnitude in the frequency domain has

dimension expressed per unit bandwidth. To preserve the Parseval’s theorem, the output

of the IFFT need to be scaled appropriately.

∆T

M
∑
i=1

∣si∣2 = ∆F

M
∑
k=1

∣Sk∣2 (B.4)

therefore,

var(s) = ∆F

∆T
var(S) = ∆FBC var(S) (B.5)

var(s) = ∆FBCM var(F -1(S))

= B2
C var(F -1(S))

= var(BCF -1(S))

(B.6)

The scaling constant for the signal after IFFT operation is the sampling frequency BC:

s = BCF -1(S) (B.7)
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B.5 Simulation of the SNR for BSCT

Listing B.9: BSCT SNR simulation
1 M = 160;
2 m = 0:M−1;
3
4 %% Noise
5 N0 = 10; % Noise power
6 nt = randn(1,M)*sqrt(N0); % Noise waveform
7
8 %% Signal
9 A = 50; % Signal amplitude

10 nPk = 20; % Impulse location
11 st = zeros(1, M);
12 st([p+1, M−p+1]) = A; % Signal waveform
13
14 %% Signal plus noise
15 snt = st + nt;
16
17 %% BSCT transformation
18 snf = fft(snt); % Frequency domain representation of the waveform
19 snf_power = snf.*conj(snf); % Power spectral density
20 snf_power_avg = mean(snf_power); % Mean spectral power
21
22 snf_bsct = snf_power − snf_power_avg; % BSCT frequency profile
23 snt_bsct = ifft(snf_bsct); % BSCT time profile
24
25 %% The BSCT noise component
26 bsct_noise = snt_bsct;
27 bsct_noise([2*p+1, M−2*p+1]) = nan; % discard signal peaks
28 bsct_noise_var = var(bsct_noise,'omitnan'); % BSCT noise power
29
30 %% The BSCT signal component
31 bsct_peak = snt_bsct(2*p+1);
32
33 %% SNR
34 snr = A^2/N0; % SNR of the waveform
35 bsct_snr = bsct_peak^2/bsct_noise_var % SNR of BSCT
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B.6 Simulation of RF measurements data

To run the simulation the power of the signal need to be known.

Listing B.10: Simulate the frequency response of two scatterers in white Gaussian noise
1 function [s, A] = simulateSpectrum(f, d, L, rms_ampl, SNRdb)
2 % SIMULATESPECTRUM return frequency response of two impulses plus noise (WGN

)
3 %
4 % d − distance between the impulses, m
5 % f − frequencies axis, cloumn vector
6 % L − distance to the first impulse, m
7 % rms_ampl − signal rms amplitude
8 % SNRdb − noise power in dB
9

10 c = 3e8;
11 tau = 2*d/c;
12 t1 = 2*L/c;
13 N = length(f);
14 rng('shuffle') % shuffle the random numbers!!!
15
16 SNR = 10^(SNRdb/10);
17 cosine_rms = rms_ampl*sqrt(SNR/(SNR+1));
18 A = sqrt(2)*(cosine_rms);
19
20 phase_shift = 0;
21 s = A*cos(pi*f*tau−phase_shift);
22 s = exp(−1j*pi*f*tau).*exp(−1j*2*pi*f*t1).*s;
23
24 sigma = rms_ampl./sqrt(SNR+1);
25 mu = 0;
26
27 noise_amp = normrnd(mu, sigma, N, length(d))*sqrt(N/2);
28 noise_phase = (2*rand(N,length(d)) − 1) * pi;
29 noise = noise_amp.*exp(−1j*noise_phase);
30 s = s + noise;
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Datasets and data structures

C.1 Ultrasound measurements dataset

An experiment was set to measure the distance between two closely spaced objects with

ultrasound.

In order to be able to explore the characteristics of both the target and the environment,

multiple experiments were performed (Table C.1). Measurements were performed at three

different positions of the turntable, designated based on the distance to the emitter/receiver

as L (low, experiment #5), M (medium, experiments #1 to #4)) and H (high, experiments

#6 to #13). In part of the experiments one of the rods was positioned in the centre so it

should not be influenced by the angular position of the turntable (#1 to #9). The non-

centred rod was positioned at 25, 50, 75 mm of the centre. This way the distance between

the rods was varied from 25 mm to 150 mm.

Each rod arrangement was observed from multiple perspectives at constant step (0.5,

1, 2 or 5 degrees) covering the whole 3600 diapason. Each individual measurement was

repeated five times.
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Table C.1: Ultrasound experiment settings
Id # N targets Distance Radius Central rod Step Note

mm deg

1 2 M 75 Y 0.5 1

2 2 M 50 Y 0.5 1

3 2 M 50 Y 0.5 1

4 2 M 50 Y 0.5 2

5 2 L 50 Y 0.5

6 2 H 75 Y 0.5

7 1 H 0 Y 1

8 2 H 25 Y 0.5

9 2 H 50 Y 1

10 0 H – – –

11 1 H 75 N 1

12 2 H 75 N 5

13 2 H 25 N 2

Notes: 1 – high vibrations, 2 – turntable moved sideway
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C.2 Radio-frequency measurements dataset

The experiment data are organised into folders. Each experiment has its own folder with

all collected measurements. In addition to the measurement files the experiment folder

contains a file named ‘setup.m’ with all important parameters of the measurement – the

VNA settings, target parameters and file naming conventions. Short description of these

parameters is provided in Table C.2.

Each measurement file contains a list of numbers. The odd sequence numbers rep-

resent frequency magnitudes in dB. The even sequence numbers represent the phases in

degrees. The name of the file consists of a keyword, a number and an extension ‘.txt’. The

keyword is used to discriminate the measurements in the folder, e.g. background, single

plate, two plates. The number either encodes the position of the turntable or is a simple

sequence number for multiple measurements of fixed target. A script for loading the text

files produced by VNA and LabView into Matlab array of complex numbers is provided

in Listing B.1.

The main characteristics of the experiments are summarized in Table C.3. The last

three columns give the number of measurements of the background, of two targets at

fixed spacing and of single target respectively.
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Table C.2: RF experiments, variables in the setup.m file
Variable Dim Description Subject Application
id label Experiment ID Code Naming of output files
DeltaF Hz Frequency step, ∆F VNA Scale axis
f1 Hz Lower frequency, f1 VNA Scale axis
ifbw Hz Intermediate Frequency Bandwidth VNA Noise estimates
target label Two scatterers measurements Code Load measurements
targetC label Single scatterer measurements Code Load measurements
bckgr label Background measurements Code Load measurements
turntable_centre1 m Turntable range Target Ground true
fix_deg1 deg Zero angle correction Target Ground true
R1 m Target to turntable centre Target Ground true
locs_m2 m True ranges Target Ground true
d2 m True spacing Target Ground true
targetRange m Range to consider Code Processed window
c m/s Speed of light Constant

1 – applicable for targets on turntable
2 – applicable for fixed targets
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Table C.3: List of RF experiments with parameters
ID f1 Bc ∆F K IFBW L11 d2 Bgr Two One

GHz GHz kHz # Hz m m # # #
Plate, separate column supports

Ex1 13 2 250 8001 100k 3.075 0.289 10 10 10
Ex2 13 2 250 8001 100k 3.071 0.288 10 10 10
Ex3 13 4 250 16001 100k 3.068 0.285 10 10 10
Ex4 13 4 250 16001 100k 3.065 0.124 10 10 10
Ex5 13 4 250 16001 100k 3.035 - 5 0 5
Ex5K 13 4 250 16001 100k 3.030 - 5 0 5
Plates, shared table support

Ex10 13 4 250 16001 2k 3.100 0.111 4 10 0
Ex11 13 4 250 16001 2k 3.089 0.122 1 5 0
Ex12 13 4 1000 4001 0.5k 3.089 0.122 10 10 0
Rods

Ex0 10 2 500 4001 1k 2.074 var 2 1 1
Ex6 13 4 250 16001 100k 3.14 var 10 1 10
Ex8 13 4 250 16001 100k 3.063 var 10 1 0
Spheres

Ex9D 13 4 250 16001 2k 3.055 var 10 1 10
Ex9C 13 4 250 16001 10k 3.055 var 10 1 5
Ex9 13 4 250 16001 100k 3.055 var 5 1 0
Ex9B 13 4 250 16001 300k 3.055 var 10 1 10

1 – distance from the antenna to the closest plate or to the turntable centre
2 – applicable for two scatterers measurements
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Table C.4: List of RF experiments with noise estimates
ID N0 Noise Bckgr Signal SNR

dB/Hz dB dB dB dB
Plate, separate column supports

Ex1 -59.4 87.6 99.6 113.8 26.2
Ex2 -59.5 87.5 100.0 135.2 47.7
Ex3 -59.3 90.7 102.1 137.3 46.7
Ex4 -59.3 90.7 102.6 141.2 50.5
Ex5 -59.3 90.7 102.4 144.7 54.0
Ex5K -59.3 90.7 102.4 145.0 54.3
Plates, shared table support

Ex10 -76.0 74.0 123.8 144.5 70.4
Ex11 -76.1 73.9 123.8 143.9 70.0
Ex12 -82.1 73.9 124.1 143.9 70.0
Rods, two at angle 36

Ex0 -79.8 70.2 113.4 121.9 51.7
Ex6 -59.3 90.7 124.1 112.1 21.4
Ex8 -59.3 90.7 140.7 121.7 31.1
Sphere, single

Ex9D -76.1 73.9 141.2 110.7 36.8
Ex9C -69.2 80.8 141.2 110.7 29.9
Ex9 -59.6 90.4 141.2 110.0 19.5
Ex9B -55.1 94.9 141.2 110.7 15.8
Note: the signal in time domain is scaled
by its bandwidth
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