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The use of a sgimple composite element to describe the creep
properties of fibre reinforced composites
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SUMMARY
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The stress-strain relationchip for a composite material is dependent
on both the geometry and the stress-strain relationghips of the component
phases.

This note describes a technique by which the stress-strain relationship
can be calculated for any fibre reinforced composite where the matrix has
linear viscoelastic properties and the fibres are linearly elastic. The
digtribution of fibres within the composite is assumed to be macroscopically
homogeneous but the distribution of fibre orientation can take any configurations.
The problem is solved initially for the case where both phaces are linearly
elactic. A simple composite element from which a composite can be bullt up
is defined and the stress-strain relationship for this element is calculated

using variational methods By summing these elements assuming either
Unliorm stress or unlform strain throughout the composite, upper and lower
bounde to the stiffness matrix of the composite are obtained. Using the
covfeﬁnonde ce principle these bounds for the purely elastic case are trans-
ormed to give the bounds for the viscoelastic case.

The theoretical answers obtained using this method are compared with
thogse obtained using a more simple model for the mode of combination of the
two phases.
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Nomenclature
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Cijkl - elastic stifinesses }_ Tensor notation vhere
Sijkl - elastic compliances i,J,k,1 are integers taking
dij - stress }_ the values 1,2,3.
€, . - strain (tensor)
1J
Cq’1 - elastic stiffnesses }. Matrix notation
Sqr - elastic compliances where q,r are integers
% - stress }— taking the values 1,2,3,4,5,6.
€, - strain (engineering)
B - Young' & modulus
v - Poisson's ratio
G - shear nmodulus
X - bulk modulus
v - volume fraction
aij - direction cosine; 1,J take values 1,2,3.
ai, 51 - Fourier coefficients; i are integers.
£(8) - distribution of fibre orientation
t - time
i) - transformed variable
Si - magnitudes of discrete retardation spectra
71 - retardation times
c - stiffness matrix

8 - compliance matrix



i - fibrous phase
n - matrix phase
guperfixes

U - upper limit of compliance

L - lover limit of compliance

A tilde, ~, below a letter denotes a matrix
2 2

A circumflex, A, above a letter denotes a Laplace transform.



Introduction
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The stiffness of a composite material depends both on the geometry
of the structure of the material and on the stiffness of the component
vhases.  The composite materials under consideration here are fibre
reinforced linear viscoelastic materials and congsequently any analysis
of their stress-strain characteristics must take the geometry and
orientation of the fibrous phase into account as well as the time ~dependence
of the matrix.

3

Cox (1952) has analysed a mat of ideal fibres, assuming that these
ibres have no flexural stiffness and that in consequence they can only
ransmit loads in tension. He characterises the orientation of the
fibres in the mat by a distribution function. This representg the number

¥ fibres at a given angle to a specified direction in a unit width PET -
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pendicular to thelr axial direction. The assumptions made by Cox seem
valid in the context of a mat with no means of interconnection between the
fibres. Using this analysis Arridge (1963) has combined an ideal fibrous
mat with an elastic matrix by assuming that the strains in the two phases
are equal. These principles of Coxz and Arridge have been extended to allow
for the matrix material being linearily viscoelastic by Dootson (1968) who
has obtained Volterra integral equations relating the creep compliance of
a composite to the geometry and stiffness of the two phages. These
equations have been solved using several technigues (see Mikhlin {196L))
and the calculated compliances compared with the experimentally obtained
compliances of several glass fibre and polyester resin systems.

In a composite material it seems likely that, due to the connection
between the fibres, the fibres affect the stiffness of the whole other
than axially. Bishop (1966) has tried to allow for this by introducing
two hypothetical lateral fibres to act in conjunction with each fibre.
While this artifice can be used empirically to improve predictions of the
mechanical properties of the composite, it is not very satisfactory from a
theoretical point of view. '

In this note it is intended to use a more rigorous elastic analysis,
based on the variational principles used by Hashin and Rosen (1964), to
f red to characterise a gimple
istribution function in the
on for a fibre reinforced
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composite element. Surming these a
same vay as Cox has cdone, the elastic solut
composite can be obtained.

Using the correspondence principle proved by Biot (195k), associating
elastic and viscoelastic problems, this elastic solution can be used to yvield
the viscoelastic solution required. This technique is explained by Williams
(196k4) who suggests that the complicated transform inversion involved can be
bypassed by an approximation method such as the collocation method proposed
by Schapery (1962).

0



Moduli of a representative composite element
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In order to analyse the elastlc pehaviour of a composite material it
is necessary to assume a mode of combination of the component phases.
Arridge (1963) has assumed that a composite formed from a mat of
continuous Tibres embedded in a homogeneous igotropic matrix can be
adequately represented by considering the two phases %o undergo equal
strains and to have no interaction with each other. After Cox (1952)
he assumes that the fibres have no flexural stiffness and can consequently
only transmit loads in tension. It would be expected that the errors
incurred by these assumptions are small in calculations of the stiffness
of the composite parallel to the fibre axis, as nelther the interaction
between the phases nor the flexural stiffness of the fibres will have much
effect on this. Conversely, the shear stiffnese and the stiffness normael
to the Tibre axis, calculated for the composite, would be expected to
contaln large errors.

To eliminate these errors 1t is necesgary to congider both phases
to be isobtropic and homogeneous and to take the stress distribution in
the two phases into account. However, to calculate the stress distribution
for each configuration of fibres and applied stress field would be an extra-
ordinarily lengthy process. As an alternative we can congider a compogite
of this kind as being formed from a number of representative composite
elements. Fach of these is composed of many, infinitely long, parallel
fibres in a cylinder of the matrix material with its axis parallel to the
fibre axes. The fibres are assumed to be placed randomly in this element
and the element is assumed to be large enough to be macroscopically
homogeneous. Both phaseg are assumed to be isotropic and homogeneous.
This representation of a composite allowg for interaction between the
phages, and the fibres may ve taken to contribute to the stiffness of the
composite both in shear and in deformation normal to their axes in addition
to their contribution to the stiffness parallel to their axes. The elastic
constants of such an element may be calculated from the constants of the
individual phases and the elastic constants of any fibre reinforced composlite
mey be obtained by a suitable combination of these el ments.

Hashin and Rosen (1964) have derived expressions for the macroscoplc
elastic moduli of composite materials where the reinforcement takes the form
of parallel cylindrical fibres. They assume the composite material to be
macroscopically homogeneous and that it can therefore be split into repre-
centative subregions of the type already described here. Their analysis
takes the form of & variational method which calculates pounds for the moduli by

the use of the theorems of minimum potential and complementary energy. For
random fibre placement a geometric approximation is involved and thus the
resulting bounds are only approxinate.  They chow that in this case the

hounds are coincident.

Hashin and Rosen define the axis of their element as the l-axis with
the 2- and 3-axes mutually perpendicular in the transverse plane. The
firet modulus calculated is defined as the plane strain bulk modulus and is
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acaeciated with the volume change due to a plane strain system in the 2,3
plane. In terms of the elastic stiffnesses of the element this modulus
is (caostcos)/2 and so from Hashin and Rosen's analysis we obtain

1 A .
5(C2ztCa3) =K + , (1)
' X KﬁfGﬂ

f“Km

Similarly, considering the shear modulus associated with a pure shear
gtrain in the 2,3 plane we obtain

v

, 1 £
Cas = 5(022"023) = Gm + 1 Vm(Km'*'gG,“) (2)
GG 26 (K+G)
f m meom o

From the modulus associated with a pure shear strain in either the 1,2 or
4

1,3 planes we obtain
Gf(l+v¢) + G v

_ mm -
Coc = Gy v, + G (14v.)) ()

Tf we consider the element to be subjected to a longitudinal stress only,
then the longitudinal Young' s modulus can be calculated as well as the
cociated Poisson's ratio. These two give the relations
G G
< £ n )\
v v \3K +G. ~ 3K 4G
20,22 m T £f m
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respectively. From these five equations we can calculate the five elastic
constants, C11, Czz, Csss Ci2s Ca3, ceded to characterise thisg transversed]
isotropic element. These equations have been written in terms of G, K, E, V,
of which only two are regquired to Gescribe each isotropic phase, in order to
simplify the resulting expressions. As this element is transversely isotropic,
the stress-strain relationship can be written as



- - _ - -
01 ﬁ Ciz Ciz Ci2 | ‘ €1
Oz Ciz Coz  Cas €2
03 Ciz Caz Ca2 ’ €3
Oa) = (Ca2-Ca23)/2 I (6)
Os | Ces €5
Us | Css s
T 3 _ ]

in matrix notation. It should be noted that in equation (4) the last
term on the right hand side is small and can in general be ignored as,

for the range of values expected of the wvariables, it does not exceed

1% of the total. With thie term eliminated the 'law of mixtures' usually
quoted for the longitudinal Young' s modulus remains.

Extension to a complete composite
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The el astlc congtants of the representative composite element relate
the components of one cecond rank tensor (stress) to those of another
(strain). ker are therefore a fourth rarnk tensor and on transforming

rom one set of axes to another

¢ -
. s = &, .4, .2, __.a._ .0 /
15k im Jn ko 1lp mhop (7
as is described by Hearmon (1961 For a rotation through an angle 9
from the l-axis towards the 2-axis about the 3-~axis the direction cosines,
a are
137
iy =M, a832 =1, 83 = = I, 8z =1
(8)
ass = 1, 813 = agz = asy = 832 = 0
vhere m = coz® and n = sid. Consequently, if we rotate the composite

element described throug h an angle © about the 3-axis, then the gtiffness
matrix becomes

C(@)1: C(@)iz C(9)13 C(6)1s
C(0)1z C(O)az C(0)az c()2s
C@)1s C(8)as C(0)s3 C(8)=s
c(e) = C0)as C(O)us | (9)

C(0)ss C(6)ss
c(@)is C(6las C(O9)ss c(9)ss




where

C(6)1y = Cpam* + C1z 200°n% + Cop n* + Cgg Lm®n®
0(6)1n = Cpyu®n® + Cip(m®™n®) + Coom®n® - Cgg 4m®n®
C(6)15 = - Cyin’n + Cpo(m™n - mn3) + Cpomn® + Cgg.2(m”n - mn?)
0(6)az = Cpan® + Cio 2mn® + Copn® + Ces m®n®
G(6)ng = - Cyymn” + Cro(mn®—n®n) + Copm™n + Cos -2(mn’-m°n)
C(6)ge = Cyim®n® - Cin on2n? 4+ Cpom®n® + Ceg(mB=n®)?
C(0)y5 = Cyom® + Co3n® ' : (10)
¢(6)z3 = Cion® + Comn®
C(0)sg = = Cyomn + Cazmn
C(0)4s = (Con-Caz)n®/2 + Cegn®
C(6)ss = (Caz-C23)n®/2 + Ceen®
C(8) 45 = (CopCas)mn/2 - Cegin
C(®)s3 = C33
The stress-strain relationship for a representative composite element with

ite axis oriented at an angle & to the l-axis in the 1,2 plane is thus given
by

g= g0O)g (11)

Cox (1952) described the distribubion of orientation of the axial directions
of the fibres in a mat by a distribution function, £(8), which represents
the number of fibres at a given angle to a specified direction in a unit
width perpendicular to their axial direction. Using 7(6) to describe the
dietribution of the axial directions of representative composite elements an

agsuning that the strains throughout the composite are uniform gives the strese-

ctrain relationship for the composite as

N
g=] g6).c(e)® . g (12)

v

(e}

The =lternative assumption that +the stresses throughout the composite are
¢ relationship as

“i(e).£(6)8® . g | o : | (13)

M
I
e

Consequently we can write the stiffness matrix of the composite as either

&= [ge)ser (14)



or
s
(&)= [ i) .ze)e )
o)
depending on which assumption is made. These two assumptions should

give upper and lower bounds to the stiffness matrix of the composite.

The distribution function, £(68), is periodic with a period of ® and it
can congequently be written as a Fourier series

n£(0) = 1 + Qycos® + Qocoskd + ...
(16)
+ B1sin26 + Bosinl® + ...

Since equation (10), representing the rotation of the element through an
angle €, is concerned with powers of trigonometrical functions no higher
than the fourth, further terms do not effect the stiffness matrix of the
composite. By expanding the powers of cosf and sinf to give G(6) or

¢ (6) in miltiangular form and integrating we obtain the non-zero elements

~o

of C” as

cfl = {C11(6+lag4as) + C1p.2(2-00) + Con(6-l0ty40,) + Cgg.k(2.095)}/16
U

Ciz = (C1a(2-02) + C12.2(6+%5) + Caa(2-2s) ~ Ceg.k(2-0)}/16

C%% = (= C11(2B1#B2) + C12.9B5 + Coa(@B1-82) + Ceg.1B2)/16

Caz = (Cr1(6-lay@) + C12.2(205) + Can(G+iO4Qs) + Chg.h(2-025)} /16
C%% = (= C11(2B1-B2) = C12.285 + Coa(2B1482) - Cgg 4B2)/16

Cos = (Cr1(202) - C12.2(205) + Con(2-5) + Cog.b(24005)1/16

015 = (Cua(230y) + Can(201)) /b

C;é = {Cra(2=) + Cas(24y)} /b (17)
C;L = {C12.B1 + CoBil/b

C;L = ((Caz=Caz)(2#a;)/2 + Cgg(201)} /b

C;; = {(C22-Ca3) (201 )/2 + Cgg(2wy)} /b

Ci; = {(Cap~C23)B1/2 - Ces Bl /M
U
Cz3 = Czop

and, similarly, for the lower bound case



L
S11 = (S11(6+log0s) + 812.2(2-05) + San(6-l0 ) + See(2-02)} /16
L P
812 = {812(2-02) + 812.2(6402) + Sa2(205) - Sge(2-05)}/16
L ' .
S1g = {~ 811 2(2B1tB2) + S12.485 + Sap 2(B1-Ba) + Sgg B2}/16
I
Saz = {811(6-103425) + 810 2(2-05) + Spa(6+la,+ay) + Ses(205)} /16
L ~
Sif_:s = {"' Si1 2(5&]“52) - 810 )4182 + Son 2(281+52) - 856 252}/16
Sgs = (811 #(2-02) - 812 8(2-02) + Sop 4(2-05) + Sgg 4(245)} /16
Siz = {S12(2#1) + Saz(20y)}/k
Sz3 = {S12(201) + Sa3(2-01)}/k : (18)
L
S35 = {Slg Py + So3 253}/”#
L ‘
Saz = {2(820-823)(2401) + Sgg(2-01)} /b
L
Sis = {2(822-823)(2-01) + Sgg(240y )} /h
bﬁs = {2(822-823)B1 - SgaBil/L
S35 = Sz ‘
where
Sy1 = Con + Cosx ) S12 = 5 Cin
' Cll(CEE+C£33) - 201§ 2015 ~ Cll(c22+c23)
S C11Cop = C153
22 7 011(C25-C55) ~ 2015(C22-C23)’
Sas = glg - g110P3
2 C11(Ca3 = C2%) = 2C13(Coz ~ Caos)
_ L ala___a 2 4
356 - 066’ C‘(&ZB“OEE) = (022 - 023) (4.9)
5 C'L L -1 2 Y e 3 L 2 s 2 -
and §° repredents (C ) *. By inverting § , obtained in equation (18), we
thue obtain the lower bound for the stiffness matrix. We therefore know

£ A

both the upper and lower bounds of the stiffness matrix of the composite
material. The limits within which the behaviour of the composite must lie
are therefore given by the two equations

T
g =g | | (20)

~

and
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Due to the conditions of stress and strain to which Hashin and Rosen
assume their element to be subjected, these two bounds to the behaviour
of the composite only coincide for a uniaxially reinforced composite,

Laplace transformation eolutlon for the stress~strain relationship of a
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fibre reinforced linear viscoelastic composite

iot (195&) has proved for the general anisotropic case that any
viscoelastic problem can be associated with the corresponding problem
vhere all the components are elastie.

Williams (lOC+) in his review on the structural analysis of viscoelastic
materials, discusses this correspondence rule and the techniques usged in
ites application. The method depends on transforming the equilibrium,
compatibility, and boundary conditions with respect to time and thus
obtaining a set of associated equations in the transform plane in terms of
the transformed variable, p. Having solved these assoclated equations,
the Tinal step involves the inversion of the transformed solution back to
real time.

Before obtaining this solution it is neceseary to define the time-
dependent behaviour of the matrix material in general terms. Dootson (1968)
has discussed the general accuracy of two different methods of describing
the creep compliance of a viscoelastic material. The first of these 1is
of a gimple power law relationship with time of the type suggested by
Findley (1962)

e (¢) = (a+bt™) o (21)

This is often a good approximation but it is limited to a small range of
shapes of creep curve. A more complicated approximation is that obtained
by the use of a discrete spectrum for retardation times:

n
N '

em(t) ={so + L si(l.-e“t//i)} o (22)
i=1

This approximation is capable of fitting a large range of creep curves %o

a high degree of accuracy and as it is a more general method it will be used
here. In order to complete the description of the time-~dependence of the
isotropic matrix it is necessary to define the Poisson's ratio. Turner
(1966) has suggested that the assumption that the Bulk modulus of the material
remaine constant often provides an acceptable approximation to the Poiseson's
ratio, and this approximation will be used here.

Equation (20) describes the upper and lower bounds of the behaviour of
the elastic composite and so to obtain the solution for the vigcoelastic
composite we must replace all time~-dependent variables by their Carson
transforms. This gives the general relationship as



N>

p.8(p) = pL(p) « E(p) (23)

R e : 7
where @(p) ie known in terme of the transformed modulus Em(p), and the
transformed Poisson's rat;o,v (D), of the matrix material. These are
given by
4 | " ’ -
A, ( . 100
\ .
o E (p) =48 + s( }} (24)
i SRV AN
Al Co
and

[ N
U El.,z(pﬂf S (25)

If we wish to calculate the strain response to a given streses input we

must Tiret invert the matrix of the trans «formed etiffnesses and then take

the inverse transform of the resulting express ion. To invert the transform
exactly Pequires either the use of fransform tables or of a formal inversion

ueing
1 AN nt -
E‘,(t) = ond k? ,%(L)'e "dp (20)
noth of which are liable to be difficult in general.

Let us coneider how we may invert the traneform numerically for the

particular cage of the creep of the composite where the ghtress is applied
as 2 step input. For this cage equat on (25) can be written in the form
-1
sy _((fron)
p. €(p) = 2C(p)) 2 (27)
N

Tt has aiready been described how a series of exponentlal terms describes
the creep compliance of the matrix accura tely, and 1t seens reasonable to
aceume that the same form of uDTTO imation can be used to describe the creep
behaviour of 1 ue composite. Thus we assume thab
! 0
(¢) =g'(¢) . g (28)
where "
c & -£/7 .3
: Dt \  af ivb o
- ='<!S + ] a.,.(l'-e )! (2/)
aqr L0 Lo+ J
i=1 qr

deceribes the creep behaviour of the composite. Transforming © to the p



plane we obtain

p8p) =08 (0) - g (50)
vhexre
{Si le ‘ <‘+p7 =) } 1)
&

Using either the collocation method suggested by Schapery (1902\ or a
linear regression technique we can calculate the values of (S ) that
Y
S

give the best fit of .. to the elements of the inverted matrlx of transformed

gtiffnesses. Consequently we can substitute these values of S{ into equations

(28) and (29) te give us the creeep behaviour of the composite.

Comparison of the elemental method with the simplified fibre method

In order to ascertain the merits of the elemental method for describing
the time-dependence of fibre reinforced materials it is necessary to compare
the results obtained from it With those obtained by some other method. Here
the comparison will be made wit e simplified fibre method, originally
suggested by Cox (1952) and Arrldge (1963) for the elastic case and extended
to the time dependent case by Dootson (1968).

2o thﬁ* these methods can be compared it was necessary to write a
computer program capable of using the method described in this note. The
language in wh;ch the program was written is Algol and the program has been

developed and run on the Cranfiecld Computing Centre's ICT 1905 compuber.
The flow diagram of the program showing the order of the steps used in the
calcuiation of the bounds to the compliance is shown in Fig. 3.

The most direct comparison between the two methods can be obtained by
considering the angular variation of compliance for a unidirectionally
reinforced composite. As for this particular case there is both stress and
strain compatibility between the elements the upper and lower bounds to the
gsolution coincide. In Fig. 1 the angular variation of the compliance for an
igsophthalic polyester resin reinforced unidirectionally by 'w! glass having
a volume fraction of 0.24, is shown as predicted by the two methods.

Parallel to the direction of the fibres it can be seen that the two models
yield the same result, both for the initial compliance and the time-dependent
compliance which is represented here by the 1,000 min. curve. As the angle
between the line of action of the applied stress and the fibre axis increases,
the elemental model gives rise to a stiffer composite than does the simplified
fibre model. This is due to the simplified fibre model assuming that the
fibres only have stiffness along thelr axes while the elemeptal model assumes
thenm to be isotropic.

It is interesting to note that the compliance predicted by the simplified



fibre model exceeds that of the unreinforced resin at angles greater than
36° from the Tibre axis. This is due to the fact that the model
congiders the fibres to have no stiffness normal to their axes and
consequently to act as voids in this direction. The elemental model, as
it allows fibre contribution normal to the fibre axis, isstiffer than the
unreinforced resin.

Both models predict that the compliance is maximum at about 60° from
the Tibre axis. This is due to the stiffening effect of the Poisson's
ratio of the fibres normal to their axis. For the fibres to be able %o
gtiffen the composite in this way they must be capable of taking a com-
pressive load. It i1s likely that in practice the fibres may tend to
buckle under compressive loads even though they are embedded in a con-
straining medium and that this stiffening effect at 90° may be less
noticeable.

The second set of calculations that have been made using the elemental
model ig for the case of a random distribution of fibres in the plane of
the composite. This is to show the difference between the bounds predicted,
assuming either stress or strain compatibility, when the fibres are not all
prarallel. The upper and lower bounds predicted by the elemental method
for an isophthalic polyester resin reinforced with randomly orientated 'E’
glaseg fibres are shown in Fig. 2. TFor this particular case the bounds
differ by about 30% for low values of time and 50% for high values of time.
These bounds are compared with the simplified fibre prediction which is
equivalent to a lower bound of the compliance.

In conclusion to this comparison between the two methods it should be
noted that without any experimental results to compare these predictions with,
no absolute value can be placed on the merits of either method. The
elemental model used in this note seems the more realistic and the Laplace
transform method of solution is certainly superior to the Integral Equation
Technigques used previously. To improve the model suggested here it would
appear that it is necessary to decrease the distance apart of the bounds
for the non-parallel fibre case by improving the stress and strain
compatibility.
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Figure 3 Flow diagram of the computer program
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