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SUMMARY
Observed deviations from the kinetic theory of rubberlike elasticity
have been reviewed, and particular attention focussed upon the Mooney parameter
Co.

Stress measurements have been made upon thin rubber sheets in a state of
pure homogeneous biaxial strain, and the stress relaxation behaviours of a
natural rubber and a butyl rubber are reported.

Analysis of the results allowed an examination of the stored energy
function W over a strain invariant range 3 < I; < 12 and 3 < I € 30. Finite
oW
values of ST vere found under conditions for which there was no observed
2
stress relaxation. This is at variance with the kinetic theory, for which

oW

is zero.
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List of symbols

P L L e

stored elastic energy per unit volume

elastic material paranecters

n

train invariants, defined by equations 2.2 and 2.3
principal extension ratios
extension ratios

a function of Ji, Jp and T

strain invariants, defined by equations 7.5
elastic strain, tensor for infinitesimal digplacements

nitesimal displacement vector

e

inf
strain tensor for a viscoelastic body

strain tensor defined by equation A.lk
coordinates of a particle at the current time ¢
coordinates of a particle in the undeformed material

coordinates of a particle at some past time tf

current time

uniaxial tensile force per unit unstrained crogs-gectional

isotropic pressures

unit matrix



Yj defined by equation 7.11

v AjAohs

v, volume fraction of rubber in the swollen sample

f;é mean square network chain length in the unstrained rubber
f;a mean square end to end length of an isolated single molecule
N number of molecular network chains per unit volume

k Boltzmanns constant

T abeolute temperature

J mechanical equivalent of heat

p density of rubber

c specific heat of rubber



1 Introduction

With the development and increased use of elastomeric materials,
with their ability to support reversible finite strains, considerable
effort has been made in recent years to evolve an adequate theory for
large elastic deformations of isotropic materials.

General relationships have been proposed between the state of strain
of a deformed elastic material and the applied stress system (Rivlin 1948,
19L9). However, to describe the stress-strain behaviour of a particular
material it is necessary to siubstitute into the generalized equations some
functions which represent the elastic properties of that material. This
Note is largely an examination of the form of such functions.

The elastic properties of a material are campletely determined if the
energy which is stored in an igothermal deformation can be expressed as a
function of the strain only. Two fundamentally different approaches
have been made to this problem.

Statistical mechanical studies of the thermal motion of the molecular
network of an idealized elastomer (the kinetic theory of rubberlike elasticity)
have led to a2 stored energy function which is expressed in terms of the
geometry of the deformation, and one material parameter. (reviews, Treloar
1958, Volkenstein 1963). A second approach considers only the continuous
macroscopic nature of the material and its observed behaviour and suggests
that the stored erergy can be described in terms of the geometry of deform-
ation, and any number of materiel parameters, (review, Rivlin 1956).

Experimental measurements of the stress-strain behaviour of elastomers
for various simple deformations have shown apparent inadequacies in the
form of the stored energy function suggested by the statistical theory.
It has been suggested that this form is therefore ouly a first approximation
of the more general function derived from the continuum approach. No function
has yet been suggested which will give stress~strain rel ationships for an
elagtomer fitting all the experimentally determined results. It should also
be possible to find the molecular mechanisms which are responsible for each
material parameter. Inggestions have been made and accepted only for the
one parameter which is cummon to both approaches.

The view has been expressed (Ciferriand Flory 1959) that the stored
energy function obtained from the kinetic theory is essentially correct,
and that it is the inadequacy and misinterpretation of experimental results
which has led to the position outlined above. Rubbers are not perfectly
elastic but are viscoelastic in nature. If measurements are made before
the materiale obtain their final equilibrium shape under the applied stress
systems then the results should not be treated in terms of an elastic theory.
According to Ciferri and Flory, obzerved deviations from the statistical theory
are time dependent in origin and go to zero at true equilibrium.

This Note describes the current position over the dichotomy presented



by the two different approaches to the derivation of a stored energy function.
The observed deviations from the kinetic theory are reviewed. A description
is then given of the measurements made upon the stress system needed to
maintain sheet rubber in a state of pure homogeneous strain. Non~equilibrium
effects are considered. If the theory developed from the statistical
approach i1s correct then it should be possible to describe the stress sgystem
in terms of one material parameter only.

2. The stored energy function

- -~ - o - = T L2 o W o s S

The kinetic theory of rubberlike elasticity leads to a description of
W, the stored elastic energy per unit volume, in terms of a single time
dependent material parameter C, and the geometry of deformation.

.e. W = C(I1-3) (2.1)

e

where I; is the first strain invariant and is related to the principal
extension ratios Ay, Ay, and As, of a pure homogeneous deformation by

I, =AF + A3 + A8 (2.2)

An alternative approach to rubber elasticity is to consider only the
contimmum properties and behaviour of the material. A major advance in
continuum mechanics is due to Rivliin (1948, 1949, 1956) who solved a number
of problems involving finite deformations of Isotropic materials using a
completely general form for the stored energy function. Rivliin argued
that wvhen a material, which is isotropic in its undeformed state, is in a
state of pure homogeneous strain defined by the principal extension ratios
Ay, Az, and A3, then the energy per unit undeformed volume stored elastically
in the material must be a function of Xy, hp, and As. Furthermore this
stored energy must be unaltered by rigid body rotation of the material, and
therefore the analytical description of the stored energy does not depend
upon the direction of the chosen reference system of cartesian coordinates,
and must be a function of the strain invariants I;, lp, and Is.

The second and third strain invariants, I, and Is, are given by

I, = A8A5 + A208 + AEAE (2.3)

Il

and Is = A9A2AE

Since W = W(I1,I5,I5) then it can be expressed without loss of gererality

ag a power series in I,, Ip, and Isx.

W= Z qur(Irs)1’”‘(12—5)‘1(13.«1)” - (2.4)



vhere A =0, and (I,~3), (I2-3), and (Is~1) are used in preference

to I, In, and Is so that W will be zero for zero deformation.  The
constants Apgr‘may be considered material parameters which describe

S

the elastic behaviour of the materilal. Particular formsg for the stored
energy function can obviously be generated by retaining only gpecific terms
in the series expansion of W. For example, Mooney (19k0, 1964) derived

a form for W based upon an observed linear relationship between stress amd
simple shear in unfilled rubber '

i.e. W= Cy(I1-3) + Cx(I2-3) (2.5)

his may be considered to be the first two termg of the series expansion
(2.4) with b =C1 and Ay o = Ca-

It may be noted that Iz = 1 for an incompressible material and then
W can be written W(Ii,Is). If corresponding values of W, I, and Ip are
plotted on an orthogonal three dimensional coordinates system with axes
W, I, and Ip, then the complete description of W involves the characterisation
of the surface W(Iy,Iz) over the complete range of values of I,, and Ip
normally encountered.

5. Deyiations from the kinctic theory

The stored energy functions derived from the contimmum and kinetic
theories are differentiated by the existence of material parameters other
than the first in (2.4) the series expanslion of W. Studies of various
cimple deformations (Rivlin and Saunders 1951) have suggested that for an
natural rubber gumstock

W o= Cp(I1=3) = ¢(I2-3) (3.1)

wnere ¢(12—5) is some decreasing function of (12—3) and hence represents
the deviation of the experimental results from the kinetic theory. Most
of the experimental studies of the form of ¢(Ig~3) have been limited to
simple elongations, when the hehaviour for moderate extenslons can be
characterized by the Mocney stored energy function. This suggests the

. s . . i R -
identification of 2C; with NkT ~=1}, where N i1g the number of molecular
]'»:%o
O
¢ Boltzmanns constant. The mean square end
5

chaine per unit volume and k
ngle chain at absolute temperature T, is

to end lengvh of an isolated £
2 ang T2 is the mean square network chain length in the une trained rubber.
o’ i

This definition has been examined extensively and reviéwed.by,ffor example,
Mullins and Thomas (1965), and will not be considered further.



The stored energy function for incompressible materials, W(I,,Io),
is represented graphically by a surface when W,I; and I, are chosen
as the three coordinate axes. The Mooney function then can be agssumed
to describe the surface contour line which follows the definition of
simple elongation that is Ay = X and A5 = A5 = A"2, It has been
suggested by Ciferri and Flory (1959) that Co is an artefact which has
arisen Irom misinterpretation of simple extension data. This is a
necessary but not a sufficient condition for the conclusion that the
Gaussian function W = C3(I;~3) is adequate to represent the mechanical
properties up to moderate extensions.

Q- ot D o o S T U - o o o R W

A molecular mechanism is not yet avalilable which explains completely
the observed behaviour corresponding to Cp, which will now be outlined.

According to the kinetic theory the stress-strain relationship for a
swollen incompressible rubber in simple extension is given by (James and
Guth, Flory end Rehner, 1943).

_ s 1
f = NkIv, /2 (oc - &—2—> (3.2)

where I is the tensile force per unit cross sectional area of the
swollen unstrained rubber, v, is the volume fraction of rubber in the
swollen sample, and the extension ratio @ refers to the unstrained swollen
state,
-1
. .. -t/ 1
Gee (1946) examined the function f v 3 gé . 5?2 for natural rubber
swollen in toluene and found it to decreage with increésing strain at
variance with (5.2). This deviation from the kinetic theory was much
reduced as the degree of swelling increased.

This work was extended by Gumbrell, Mulling and Rivlin (1953) %o a
number of rubber-liquid systems, and the results analysed in terms of the
Mooney parameters for the swollen rubber, ClS and CES’ defined such that

3 P
[0 AN
Ve a?

0 = T 7 1) = Cyg + Cgs/}\ (3°3)
02 wag determined from the gradient of the observed linecar relationship
be%weene and 1/l and found to be independent of the nature of the diluent,
but decreased progressively with decreasing v_. This decrease may be
associated with steric hindrances due to bulky side groups. A number of
sulphur accelerated synthetic and natural rubber vulecanisates were considered.
Cz was independent of the styrene content in butadiene - styrene copolymers,
and had the same value (about 1 kg.cm 2) for butadiene - acrylonitrile, and
natural rubber. It was therefore concluded that Co was not dependent upon



the presence of bulky side groups oOr polar groups. Smaller values (about
0.8 kg.cm 2) were found for peroxide cured natural ribber.

Gumbrell et. al. suggest that Cp is associated with the volume filling
properties of the chain. Then some dependance upon extension might be
expected but is not apparent in their results over the Strain invariant
range 3 < I; < 6, 3<Iz<5. However, a decrease in 5ﬂ- with increasing

2
I, is shown in the more general results of Rivlin and Saunders (1951) over
the range 3 < I3 <12, 3 < Iz < 30, and ie confirmed by the variation of

oW ow_
ST and ST. with I, and Ip shown in Figure 4. Swelling would naturally

reduce Tinite volume effects.

The dependence of Cp on v, was confirmed by Mullins (1959) who found
that simple extension data on swollen peroxide and sulphur cured natural
rubber could be described by

where C; and Cp are the Mooney paraneters for the dry rubber.

An experimental examination of the forces necessary to maintain a
rubber tube in a state of simultaneous extension, inflation, and torsion,
led Gent and Rivlin (1952) to ohserve that the amount of hyster gis in &
complete load-deformation cycle appeared to be agssociated with 5;_,

Therefore, the mechanism which accounts for hysteresis may give %?se to
feyms in W which are additional to the kinetlc theory. An important
contribution to hysteresis could be the failure to attain the equilibrium
stresc~strain state necessary for the thernodynamic anslysis of fthe kinetic
theory.

Prise (1957) considered a network of chains of random orientations.
Deformation of the bulk rubber was congidered to produce an ingtantaneous
affine dieplacerent of all chain segments followed by a co-operative
movement of the chain links over a long period of time. The end to end
distances of the chaine are assumed to be congtant during this movement.

The stored energy function derived by prise for this network involves
time dependent terms vhich are additive to the Gaussian temm and contain
incomplete elliptic integrale. Mo details of the derivation are given,
and no details are given %o substantiate the claim that this function

describes experimental data in simple extension coampression, biaxial
deformation and shear.

The first detailed investligations into the time dependence of Co were
nerformed by Ciferri and Flory (1959). A correlation between Cp and
hysteresis was obzerved from simple extension measgurements on a number OF
elastomers. Changes in the experimental conditions to aid the approach
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to equilibrium were found to decrease Cs. The effect of increasing
the time interval between the imposed elongation and the measured
Stress was examined. Cross linked poly methyl methacrylate, which
has a glass transition temperature ca.l10°C, exhibits considerable
stress relaxation at 145°C. At this temperaturc Co decreased from
2.4 Kg. cm ® to 1.8 cm Z as the time intervel increased from 3 minutes
to 30 minutes, but a smal, decrease only (C.80 kg.cm 2 to 0.76 kg.cm 2
was observed for sulphur accelerated natural rubber at 34°C over the
same period. Co was found to decrease with increasing temperature
(below degradation temperatures). TFor example, as the temperature

of P.M.M.A. increased from 145°C to 175°C, Cs decreased from 2.40 kg.cm =
to 1.30 kg.cm 2.  Cp was also found to decrease when increasing amounts
of diluent was absorbed by the polymer networks. The minimum observed
value of Cp was 0.04 Kg.ecm™2 Tor a silicone rubber crosslinked in a
highly swollen state but the minimum values for natural rubber were

an order of magnitude larger. Ciferri and Flory suggested that under
ideal equilibrium conditions Cp will be zero.

Mason (1959) used wave propagation techniques to superimpose

small dynamic strains upon strips of stretched natural rubber. Ir
the dynamic modulus is defined by

dg
E=2X3 (3.5)

where 0 1s the true stress given by ¢ = fA and T is given by

£ =22 ~ 1/2%) (Ccy + Co/N) (3.6)

then FiE = Gy + Fola (3.7)
vhere Fy = —rs 4 Fp = —t2 Mas sidered the in-phas
ere rfy = 2(25\'3:37 axu o = K(Zm aeon consgidere e 1n=piase

and out of phase components of the modulus and Mooney parameters, and found
that (3.7) was obeyed up to about 150% extension over the temperature

range - 20°C to 50°C, at a constant frequency. Both components of Cs
decreased with increasing temperature, presumably because of increasing
chain mobility and therefore a closer apprcach to equilibrim.

Halpin (1964, 1965) examined simple extension data obtained from
creep, stress relaxation, and stress-strain measurements at constant strain
rate. He factorised the appropriate modulus into a time dependent term,
and a term which is a function of the strain only, and may be considered
to represent the equilibrium behaviour. He concluded that for certain
highly crosslinked polymers the equilibrium behaviour was adequately
represented by the kinetic theory involving the inverse Langevin function.



However, he mentions unpubliched data obtalned on polymers of low
crosslink density which exhibit deviations from the kinetic theory.

Mullins (1958), in contradiction to Ciferri and Flory, found that
Co for natural rubber under near equilibrium conditions increased with
an increase in temperature.

Roe and Krigbaum cxamined Cp for a natural rubber (1962) and a
fluoroelastomer (1965) and allowed at least 24 hours to approach

equilibrium after successive elongations. No stress relaxation was
observed after a few hours but the values of Cp were still finlte.
For a natural ribber at 45°C, Cp = 0.438 kg.cm 2. he entropy

component only of the retractive force was used in the Mooney eguation
for simple extension, (3.3 with vy = 1), and the corresponding values
of the Mooney parameters were determined. Cp was reduced by about

50% for natural rubber, and became negligible for the fluoroeclastomer,
which suggests that considerable contributions are made by the internal
energy .

The conetant volume condition assumed by Mooney in hig derivation
of the stored energy function 2.5 has been disregarded by van der Hoff
(1965). He assumed that the Mooney stored energy function would describe
the clasgtic energy stored during swelling as well as in extending rubber,
and was able to derive (3.4), the empirical equation of Mullins. Doubt
is therefore cast upon the assumption of Ciferri and Flory (1959) that a
reduction in the observed value of Cs with swelling is a consequence of
reduced hysteresis.

There are a number of modifications to the energy and entropy of a
deformed Tubber network which were not considered during the derivation &f
(2.1), the kinetic theory form of the stored erergy function. The
mechanisms responsible for these changes may contribute to a Co term.

Very little is known, for exemple, upon the effect of intermolecular forces
upon the elasticity of rubber. Gee (1946) suggested that local ordering
within the network would affect the entropy. Volkengtein, Gotlib and
titeyn (1959) end Bartenev and Khazanovich (1960) considered the mutual
orientation of segments of neighbouring molecules. Dobson and Gordon (1964)
examined the contribution to the network entropy of shart chains of one or
two bonds which are capable of orientation but not extensio.., and Di Marzic
(w@)mmﬁw%t%z@mﬂminwﬁhﬂemﬁ%w%mmbmw%of

molecular packing. The possible magnitude of the contributions to Cp has
been discussed by the individual authors. It is of particular interest

to note that Gee (1966) concluded that Cp is not a consequence of the
excluded volume effect.

Tt has been suggested that a time dependent Cp term may arise because
of the presence in the network of slipping entanglements (Kraus and
Moczvgenba 1964) or unspecified labile crosslinks (Ciferri and Hermans 1964).
The Tormer authors found that for a polybutadiene rubber Cp increased &as
the number of entanglements and total crosslink density increased. Brisgtow
(1965) observed, for peroxide cured natural rubber and cis-l,4t - polyisoprene



that Cp varied with C, and went through a meximum at C; ca.2.0 kg.cm 2.

The dependence upon crosslink density is at variance with the results
of Gumbrell, Mullins and Rivlin (1953).

A large proportion of the free energy of deformation of rubber is
due to entropy changes, and therefore deformation is accompanied by a heat
build up. It is shown in Appendix 3 that an adiabatic deformation can
give rige to a type term. However the magnitude of this term is
considerably lesg than the values detemined from simple extension
measurements. Furthemmore this contribution will be time dependent
and decay to zero at a rate dependent upon the rate of heat exchange
between the sample and its surroundings.

-
i
C
g

2
S

In sunmary it may be said that no single mechanism has been accepted
as the source of Cs. It is therefore unlikely that a single congtant
material parameter is adequate to describe the effect upon the mechanical
properties of all the mechanisms described. A positive Cp will explain
the experimental curves in pure shear and simple elongation at moderate
straing which fall below the Gaussian curves before showing the expected
upbturn at high strains.

A number of empirical or semi-empirical stored erergy functions and
strecgestrain relationships have been proposed to fit the experimental
data obtained Tor various deformations.

3.2 Empirical stress-strain and stored energy functlons

The limitations of the kinetic theory and Mooney stored energy
functions in predicting the mechanical behaviour of rubber has been discussed
fully by Treloar (1958). A number of empirical or semi-empirical functions
have been proposed.

Martin, Roth and Stichler (1956) found that isochronous stress-strain
curves obtained from creep measurements in simple extension were represented
up o0 A = 2 by the empirical equation

f=E <%—~ %%\ exD A.(? - %%) (3.8)

where E is Youngs modulus at A = 1, and A is a constant. Wood (1958)
applied (3.8) to the data of Rivlin and Saunders (1951) and found a
reasonsble £it for 0.5 < A < 3. Fritz and Johnson (1963) applied (3.8)
to irradiated polyurethane elastomers and found A to be a slovly varying
function of dose while E varied exponentially.

Bartenev and Khazonovich (1960) considered the orientation of segments
of the molecules during deformation, and obtained a two parameter relationship
for the principal stresses tp and tz In a pure homgeneous deformation.
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ti = A(ki~x3)[1+le+23(xi+x3)(xl+x2+x+3-5)] (3.9)
(i=1,2)
where A and B are constants. This equation was found to fit the simple

extension, pure shear, and pure shear plus extension results of Rivlin
and Saunders. Bartenev and Vishnitskaya (1961) campared the simple
extension form of (3.9) with the three parameter equation of Zagorski
(1959), i.e.

A = A(A%-1) + B(A2-1) + C(d-1) (3.10)

where A, B and C are constants. They found that both equations described
their resulbs on natural and synthetic rubbers reasonably well up to
A = 3, but (3.9) gave a better fit for M > 3.

Another three parameter function has been geveloped (Carmichael and
Holdawavy 1961) to express the principal stresges in terms of the induced
3 P P ,
principal extension ratios

A
2

explB(,4-)] - 02 + 5z - 2) (3.11)

i i

o

i

nP:’.
(1 =1,2,3)

where A, B and C are interdependent material constants and p is an arbitary
hydrostatic pressure. Carmichael and Holdaway have shown that (5.11) fits
emxrﬂmMmlxemﬂtsoMmhwdbyTﬂﬂpm?GQMm)insﬂ@&eex%nﬁom
simple shear and equi-biaxial strain.

A number of stored energy functions have been proposed.  Thomas (1955)
modified the free energy of a single gaussian chain by an empirical additive
term A/re. ‘The network stored energy function for a general homogeneous
strain then involves an incomplete elliptic integral. Gent and Thomas
examined a substantially equivalent function (1958).

W= We(T1-3) + wéﬁn(%2) (3.12)

where W, and W» are constants. This function is in qualitative agreement
with the uniaxial stress-strain data, and the strain depencsnce of
oW )
ST determined by Rivlin and Saunders. However, the Thgmas function, at
~L W
variance with (3.12) also predicted a small decrease in.g;— with increasing
<1

strain.

Priss (1957) has ctated that

. 1.1 .1 \ ]
W= 0o (T2-3) + K(Go+ 3 v 3 - 2 (3.13)
where Cy; is the Mooney parameter, and k is a constant. This function
qualitatively reproduces & number of stress-strain relationships.



The complex three parameter gtored energy function of Carmichael
and Holdaway (1961) has been discussed by Klingbeil and Shield (1964).
They examined theoretically the inflatlon of a flat circular sheet and
found that with the inclusion of this three parameter function their
equations then described the experimental work of Treloar (19kke).

oW
Furthermore §- appeared to be independent of I, and §*~ decreased with
Is up to Io ca.l000.

Empirical formulae have recently been proposed (Hart-Smith 1966)
to fit all the data of Treloar (194ka) and Rivlinand Saunders.

<

oW [ oW k ]

ST = G exp.Lkl(Il-B)g}, STC = sz (3.14)

oW . s . A . .

ST then exhibits the upturn at high extensions that might be expected
1

because of the finite extensibility of the network chains.

I, Stress-strain relationships for the pure homogeneous deformation
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The theory outlined below is based on that of Rivlin (1948a, 1948b)
who derived relationships between the general pure homogeneous gtrain
imposed on compressible and incompressible elastic isotropic materials
and the applied stress system.

Congider a unit cube of elastic isotropic incompressible material,
with its edges parallel to the coordinate axes X, (where i ig equal to 1,2
or 3). Iet this cube be transformed into a rec%anoular parallelopiped
by extension ratios X along the directions . Tne direction x. are
the principal strain axeq which for this material are coincident with the
principal stress axes, and hence the applied stress system can be represented

by ti'
The virtual work done in producing a further incremental deformation
B\, 1is
i
5“,11 = tl?\._;z?x:gﬁ}\l -+ tg}\-l)\.:.)&}\.g + tB}\.l]\ESkE <l§..l)
and gince W, the elastically stored energy, is a function of Ay, Ap, and Az

3

oy oV oW
W = 5—;%16}\1 5}%&24—5{- s (4.2)

and for equilibrium under isothermal conditions

SW, - BW = O (4.3)

e B R A i S b e

S ———



et

and hence
(tars - ay Bhy + (t2Ads - ?f“ + (tzhids - §Xf95K3 (4.1)
=0

For an incompressible material, the volume V of the deformed element is
given by :

V=22 As =1 (k.5)

and any arbitrary function of the volume f(V) is equal to £(1).

Therefore
or(v or(v Af(v :
5?5‘)6 m,inlg +m5‘£_)bx3 =0 (1.6)

or

Hence by substituting (L4.5) into (4.7) the most general condition for
incompreseibility is

PIASA=DN, + MADPAs + AAPAs = 0 (4.8)
. : . 9z(v
where p is the arbitrary constant §z
Wow (4.4) is valid for values of BX, which satiefy (4.8). Comparing
coefficients OL Sk

, W .

LD = kﬂXX: (4.9)
vhere

oW oW 3 BY‘ 512 (l‘l. lO)

3. T 31, ox, TSI,
i i i

now, from (2.2) and (2.3),

% <.
I = l? and Ip = zi‘kga since
i=1 i=1l
Mhahs =1 (k.11)

and hence (4.9) becomes
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~
£ o= / 2 oW ~z OW
N =2 \)\i S—I-‘; - }\i gf_ ()-L.lg)

For a pure homogeneous strain in which forces are applied only to the faces
of the cube which are normal to the x; and Xp axes, tz = O.

Therefore

(“’15)

to =

Now consider the unit cube to be an element of a thin plane square

of side 1 and uniform thickness h. Let the major surfaces of this thin
square be normal to the xs axis, and its edges parallel to the x; and Xp

axes.

axes

and

If forces 1 and f» are applied to the faces normal to the xq and Xp
then the corresponding stresses t; and tp can be calculated from

1A T
tl = ";}EJ‘ 'bg = “}2%2 (}-(--l)-l-)
Equations (4.13) can be solved for il and oW and give
ATt A3to
W 2T A2 T A5 - AT
oI 22§ - 23)
(k.15)
by to
N | AT = MAAGE TAZ - ATAST
oIz 22z - M)

Ther
deformation characterised by X; and My allows the value of

oW

oIy

the
oW _
oIz

efore measurement of the forces fy and fp, for a pure homogeneous

S}
and o to be calculated.
315

The deformation can alternatively be characterised by the values of
strain invariants I, and Ip, and therefore the variation of 5%“ and
1

with I, and I, can be investigated.

e e R

o e



Furthermore, if A; = Ay = A then from (L.13)

\ /S .
> 1.\/ow 5 OW
= =t = AZ L= 2
fGlﬁtZMtf2< X g*fl'!'}\. 5*1-;/ (1!»16)
gince t3 = 0 ag before.
5. Experimental Apparatus and Procedure

T G T " T o o Yo . o > M T W S SR S S B B . o D o, Y O o ot

An attempt hags been made to examine the stored energy function
W(I;,I2) by an experiment in which there is no causal relationship between
I; and Io. The method used was to measure the force system needed %o

roduce a pure homogeneous deformation in two perpendicular directions in
the plane of a rectangular sheet of rubber.

The experimental arrangement is essentially that of Treloar (1948)
and Rivlin and Saunders (1951), but the method of applying and measuring
the force system has been modified to Tacilitate stress relaxation studies.

The complete test pilece was cut from a single moulded gheet of rubber

as shown in Figure 1, and the surface marked in ink with a % cm. square
grid of 1 cm. squares. The thick lags considersbly reduced sample failure
by tearing. Strings were attached to the lugs by clamps, and a pure

homogeneous biaxial deformation produced in the plane of the sample by
applying tensions to those strings.

Details of the sample preparation and the recipes of the rubbers are
given in Appendix 1.

Ideal conditions for stress relaxation studies involve a step function
strain history. In order to deform the samples rapidly each set of five
strings was attached to a rigid bar, and hence the problem of applying
tensions separately to twenty strings resolved itself into moving four bars
outwards from the sample to predetermined positions.

Details of the system used are given in Figure 2. Coarse adjustments
to the deformation was provided at each gide of the test piece by the
threaded rods A, waich traversed nuts mounted on the supporting table and
contrelled the position of the attachment points to the large drawbars B.
Fine adjustment was provided by threaded rods on the ends of the central
three strings attached to B.

Stress relaxation studies involve the determination of the time
dependence of the stress system which maintains the deformation constant.
Preliminary experiments using dummy samples determined the position of B
which would produce a particular pure homogeneous deformation characteriged
by the values of Ay and M.  The threaded rods were adjusted so that the
marked grid on the sample fitted exactly a rectangular grid marked on perspex
vhich represented the desired deformation. The actual test piece was then
mounted and deformed by fixing the drawbars abt these predetermined positions.
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Tine adjustments were sometimes necessary to complete the deformation which
took less than one minute to perform.

Rivlin and Saunders (1951) had shown that the stresses necessary to
produce a homogeneous strain over the area of the test piece marked by the
orid can be calculated, within a W% error, from the Torces acting over the
central three strings of each side. Preliminary experiments further
established that the tension in any one of the three central strings
deviated from the arithmetic mean of the three tensions by lesg than 9%.

The total tensile forces, actiing over the central three strings on
each of two adjacent sides, were determined by noting the deflection of a
stiff phospher bronze ring R. Four resistance strain gauges were fixed to
each ring at the positions of greatest flexure, and incorporated in a bridge
network which gave an out of balance current proportional to the load
applied to the ring.

The bridge (Phillips PT1200) was temperature compensated, and the
proof ring calibrations were unaltered over the range of ambient temperatures
encountered, (18 = 2°C). Over the time period of the measurements the
bridge output current meter was subject to zero drift. A clamp was
installed which allowed the sample to be maintained in its strained state
as the load was removed from each proof ring and the zero corrected.

Stress measurements vere made on a lightly crosslinked natural rubber,
and a butyl rubber which were maintained at 25 £ 0.5°C in a suitable enclosure.
The temperature gradients in the enclosure produced differences of less
than 0.2°C between any two points on the test pieces.

Measurements were also made on the butyl rubber maintained at 0°C in
a mixture of ice and water. The ice-water mixture completely covered the
sample and was contained in a deep sided tray. Tk~ supporting strings
passed through gelatine windows in the tray which kept water losses to a

minimum without causing errors in the force measurement due to friction.

No stress re%axationéwas observed for the butyl rubber at 25°C and

the variation of S%- and §¥-with I, and I, was examined. Following the
1 2

procedure of Rivlin and Saunders (1951) groups of deformation were chosen
which represented particular constant values of I, and Io. The relationships
between Ay and Ay for constant values of Iy and Ip were derived by re-
arranging (4.11) and are shown graphically in Figure 3. The broken lines
represent the relationships between Ay and My for simple extension in the
x; and xp directions. Deformations represented by points to the left and
velow these lines would require at least one compressive force and are not

relevant to this experiment.

A further series of measurements on butyl rubber at 25°C involved
equibiaxial extensions when Ay = As. These results were compared with
simple extension measurements at the same temperature upon test pieces
cut from the same rubber cheet.
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6. Experimental Resulbs

- 1 o . o -

6.1 Butyl rubber at 25°C

W - - - - " - " - o

No stress relaxation was observed. The forces necessary to maintain
a geries 0"P dmormatﬂonc were measured, and the corresponding values of tj

oW
and t, and g** and T vere calculated from (4.14) and (4.15). The

dependence of 3T, and 315 on I and I, 1s shown gregphically in Figure L.

The results are tabulated in Table 1.

The results obtained under conditions of equi-~biaxial strain
(M = X5 = L) are given in Table 2. The function

oW O .
SIo + A ST; Ves calculated from (4.16).

The same state of strain could have been obtained by a pure compressive

stregs tz. Then t; = tp = 0 and from (L4.12), ts is given by
l Bw
ts = 2 <}z'~ l.j)(? (6.1)
where M = X723, It is interesting to compare these results with simple

extension meaqurementc on the same ruober. For an extension A in the X

direction Az = A and A o=2p = (A)T 2 and therefore from (4.12) since
t1 = tp = O.

S AR EAVZ-) S N1 A \
t3_.2<}\ - v)(é—f;-}-}\,é*f;/ (6.2/
ghe clmnlg extension results are given in Table 3. The values of the function
W 1 oW

1
ST, + A 512 have been plotted against 57 for the equ~01ax181 and simple

extension experiments. (Figure 5).

6.2 Natural rubber at 25°C, and oatyl rubber at 0°C

"The principal stresses needed to maintain a number of constant
deformations (XA; = Ap) decreased over a period of time to equilibrium values
~
. . oW W X
(Figures 6 to 8). The parameters T and 5%* were calculated from corresponding
1 2
values of t1 and to using (4.15) and their variation with time is shown in
Figures 9 to 12 and tables 4 and 5.

7. Analysis and discussion of the results

- - _ T g " > 0 oo P T T

There was no relaxation of the forceg acting on the butyl rubber at

2500. The strain dependence of Z¥W__ W and EYL has been repreqented in ﬁlgU.I’D 1{.

I oIz



by etraight line gelationships. The positions of the continuous straight
. oy s W . . ) W .
lines describing 3T, as a function of I; and Ip, and 55; as a function of

I were determined by the least squares method.

5 The small positive gradient (0.00097) of the continuous line between

W

gf;’and T, cannot have any significance because of the larger scatter of

the experimental points, but 5%* appears to be an increasing function of Ia,
1

for 3 < Ip < 30, such that

%-% = 1.45 + 0.00917 Is (7.1)

This is at variance with the observations upon sulphur cured natural rubber
of s%vlin and Saunders (1951) who found 5%: to be independent of I; and Ia.
If %%I is independent of I; then the top diagram in Figure 4 should be
represented by the series of horizontal linesg shown. The height of each
short line above the §3 axis ils the valuve of 5%; taken from the linear
relationship between4§%: and I». The experimental points are reasonably

compatible with this hypothesis with the exception of the points obtained when
I = 20.
oW

STS ig a decreasing function of I, such that
2

ST = 0.138 - 0.00348 I (7.
2

At any constant value of I, there is no trend in the variation of 5%;
with I;. The magnitude of 3%; represented by the sh;rt horizontal lines
has been abstracted from the observed dependence of'gf; on Io, and
represents the experimental results reasonably well.

The equivalence, to within a hydrostatic stress, of the equi~biaxial
deformation and a uniaxial (compression) deformation, has been discussed

: : oW 1 oW
in section (6.1). The values of SEI + iv'gf; have been calculated from
(6.1) and quoted in Teble 2 for the range 1 < 1/A" € 4., The same function

has been obtained from simple extension measurements on the same rubber,

(6.2 and Table 3), over the range 0.2 < 1/A' < 0.9. The variation of

oW 1 oy
o s S = . < F < . . Wi .
ST. + 3T ST. over the range 0.2 < 1/A 4 is shown in Figure 5
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Sirple extension measurements, before finite chain extensibility and
crystallisation effects are significant, (at about l/l’ = 0.4 in Figure 5)

X oW W
are usually interpreted assuming that 5T~ and ST are material constants.
oW _ . 1 oW ©l T2

However, 552 + 3 315 ig clearly not a single linear function of %T over
he range 0.4 < 1/A° < L.

ct

The experimental points in Figure 5 suggest a continuity of the
function over the complete range of 1/A\ whgch can only be explained
. - . n W W -
in terms of a strain dependence of’éﬁfz anﬁ.g;ig .
Corresponding values of l/k‘ and I, from Tables w and 3 have been
cubstituted into 7.1 and 7.2 to find g—% 2 % The predicted
values of this function are given in Table 6 and compared with the
xperimental values in Figure 5. The butyl rubber used in the general
biaxial deformation experiments was nominally the same as that used for
the equibiaxial and simple extension measurements. It is however
probable that the vertical chift between the experimental and predicted

oW 1 oW

valueg of §E-+ KT-§E~ ig due to batch variation in the rubber. It
1 2

the two sets of values are normalised at l/l’ = 1, then the rate of

change of agl and %%; with I, fits the observed dependence of
oW, 1 oW
51, T AT 312
to describe simple extension.

on l/l’ for equibiaxial strains, but is completely inadequate

Equibiaxial experiments have been performed by Rivlin and Saunders

(1951) who measured the deformation at the pole of a sulphur cureg naﬁura%a
rubber sheet inflated by a known air pressure. They found that 5¥Z-+ %T 3%;
decreases from about 1.9 kg.cm = at l/l’ = 1.5 to a minimum of about

1.7 kg.cm 2 at l/ = 7, and then increased to 1.85 kg.cm—‘ at l/ll = 12,
the maximum deformation observed. Tor continuity in their results in

the trangition from ! compression’ to gimple extension there must be a second
turning point, a maximum, in the function of il -+ ;7_Bw in the region of

/A = 1.

V]

*Ittis however probably a coincidence that the experimental point at
1/A = 0.849 lies below the linear portion of the simple extension curve,
and therefore shows perfect continuity with the equibiaxial gtrain results.

, oW . 1 oW
P 1 . =) 7~ e v o .
Tt can be seen from 6.2 that significant errors ln.giz + X sf; are

posgible as 1/M approaches unity.
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The principal stresses t; and tp which are necessary to maintain
the deformation in the butyl rubber at 0°C, decrease to equilibrium values
about 100 minutes after the application of the strain (Table 4 and Figure
8). However a number of the prinecipal stresses applied to the natural
rubber are still decreasing after 250 minutes. (Table 5, Figures 6 and 7).
Corresponding values of t1 and tp have been substituted into 4 15 to

give the parameters gﬂ;-and il as a Tunction of time. Tables 4 and 5
I oIz

Figures 9 to 12). For the butyl rubber these parameters must, of course,
reach equilibrium values in 100 minutes. Indeed, within the scatter of

S .
the points in Figure 11, §¥- may be invariant with tine. It is interesting
2
to observe that Sf; also appear to become constant for the natural rubber

after about 100 minutes although §¥~ for mogt deformations is continuously
decreasing. 2

A number of workers have attempted to explain the large strain
vigcoelastic behaviour of elastomers in terms of an elastic liguid theory.
We chall consider A.3, the constitutive equation of state for a viscoelastic
incompressible liquid postulated by Kaye (1962); and in another form by
Bernstein, Keareley, and Zapas (1963). Kaye defines the deformation in
terms of the relative positions of a particle at the current time t and
some past time t, and replaces the constants qur in 2.4, the series expansion

of the stored energy function, by functions of the elapsed time t - t+.

If an instantaneous deformation characterised by extension ratios s
in the directions xj; is applied to the sample at time = 0, and maintained
constant, then according to Kaye (1963), the principal stresses t, and
tz at time © > 0, are given by: -

o o
_ 2.2y [ 20 1 -2 3 =2 u/\ o0 ...
tj -tz = 2(lj"l3)h/ ggzdb - 2(kj A7) 374 at 7;5
- 0Q

- 0

* Kayes' equation of state is an extension of the equation of state for
a viscoelastic liquid developed by Lodge (1956). It is a logical
generalisation of the stress-strain relationships derived by Rivlin
(1948, 1949) to describe large elastic deformations in incompreseible
materials, and is discussed further in Appendix 2. It is also shown in
Appendix 2 that Lodgesf equation fulfills the necessary condition that
for small strains it describes a linear viscoelastic material.
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where j is 1 or 2, and Q is the equivalent to 2.4, the elastic stored
energy function, but describes an incompressible viscoelastic liquid.

[o¢]
1 1SN R
Then Q = Z qu(Jl-B) (72-3)% with B, =0 (7.4)
P,d=0

where J; and J» are the Ffirst and fecond invariants of the deformation
X3 OX3
_ ~1 N . .
tensor Sij = BEf&SEi&’ (see Appendix 2(i))

using the usval dumy suffix summation, so that

Ji= 8, ' (7.5)
and Jo = %(sgﬂ - saasﬁa)

. . N . . i
The parameters qu are functions of t -~ t° which tend to zero as t - t

tends to infinity. By comparing (7.3) with (4.13), the eguivalent equations

for an elastic g0lid it can be seen that

oW masz
- ] S et 7:6)

2]

oy oQ
and STo =f 572 alt-t’)
g

If (7.4) is to represent a viscoelastic solid then at least one of the .
parameters qu must be finite as t approaches infinity. It is reasonable

to consider O such that

Q = Byo(d.-3) + Bo1(JTz-3) | (7-7)

. . . . P e 3o na +_+!
where Bi, and By; are decreasing functions of tet » but are finite as t-t

approaches infinity. For example, assume:-
Wi ot
Bio = ™Y 4 pera(t-t') (7.8)
! :
and Boi = Pt De ka(t-t")

If the major surfaces of the sheet rubber sample are force free, then
(7.3) becomes

232y4A . B__-kit 2 3z2yL . D __-kot
by = 20528)(G + =) - 2 EASE)E + =) (7.9)
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The time dependence of 31, and 5%; for this particular form of g 1is

found by substituting (7.9) into (4.15), or by comparing (7.9) with (k4.12)

oW A B kit
then ST “a + B (7.10)
and %ﬂ;-~ £, D ket
Ig - B k.g

Consider the applicability of (7.9) and (7.10) to the results obtained
on the butyl rubber at 0°C.  Assuming that

OV
5%- ig invariant with time then, from (7.10), D/Kp must be zero, and (7.9)
2

becomes

A ;o 2=yl afy=2 4=2:B Kt
Y, =6 ,2055)y + 2132257 = 2B A5 (7.11)

C )
/6 has been determined from Table 4 as the mean value of 3%; for each

deformation. For each C/B two values of A/a have been found from (7,11

by considering the equilibrium values of t; and tz (Table 7). The two
values for each deformation are essentially the same, as indeed they must

be if the experimental results are correct. Thie further suggests that

the small amount of inhomogeneity in each sample does not affect the stress
measurement . Each deformation was carried out using a different test plece.
Although each test pilece was cut from sheets made under identical conditions
from the same uncured rubber mixture it is probable that variations in Aﬂx
and C/ﬁ are due to sample variations. There is no correlation of Aﬁi or
c/p with I or Io.

Y. has been plotted on a logarithmic scale as a function of the relaxation
time in Pigure 13. Tor some of the deformations there are deviatlons from
the linear relationships suggested by (7.11), at times greater than about
50 minutes. The logarithmic scale magnifies the effect of any errors in
emall values of Y., but the consistency in the direction of curvature suggest
that, if (7.6) isavalid, some of the chosen equilibrium stress levels were
too high.

The relaxation constant K; has been taken as the gradient of the best
straight line though the experimental points at time less than 50 minutes.
B/Kl has been determined from the intercept of these straight lines with
the t = 0 axis (Table 7).

A . . & o
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c/B Ao K; x 102 B/X,
T 1z g.em 2 g.om 2 (mins)™t g.cm 2

5.179 5 95 1490 5.79 108
1490 6.37 97
.27 5 180 1440 1.19 95
1465 2.8% 87
6.6L3 10 140 1160 4,15 96
1155 4h.0% 11k
6.hh8 10 132 1310 5.36 62
1305 3.1k 78
5 5.283 127 1385 2.52 85
1370 2.09 ok
5 6.011 137 1455 2.2% 10k
1kho 3.58 117
7 10.725 67 1515 3.35 148
1535 2.02 165

Table 7 he material parameters of (8.24). The first and second values

of A/ s K1, and B/Kl, for each deformation correspond to ¥, and ¥,
resnectively.

The material parameters all vary in an apparently random manner with
deformation. The variation of C/p and A/g corresponds to the scatter of
experimental points in Figure 4 in which

Y

O _ g AL
oI, OIo

are chown as a function of the strain invariants for butyl rubber under

equilibrium conditions. If these variations can be ascribed completely

to sample variations, then (7.11) represents the stress relaxation behaviour
of butyl rubber at O°C, at least up to relaxation times of 50 minutes.

There can ve no advantage in repeating this analysis for the natural
rubber at 25°C. Gimilar sample variations can be expected, and the
analysis is complicated by the existence of two exponential functions,
because d/Ké ig not zero for this rubber.

Berstein, Kearsley and Zapas (1963), and Zapas and Craft (1965) have
found that A.3% describes the stress relaxation behaviour of a number of
elastomers in simple extension when £ conbaing three strain dependent terms

such that

Q = P(3;-3) + Q(T==3) + R(T1-3)% (7.12)
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where P, Q, and R are interdependent Tunctions of the elapsed time (-t")
(Appendix 2 ii).

Zapas (1966) has reproduced (7.%), the equation of state derived by
Kaye (1963) to describe stress relaxation for a homogeneous biaxial
deformation.

Using a rather complicated potential function containing three
material paranmeters he is then able to describe the pure shear data of
Rivlin and Saunders (1951) on natural rubber, and a long term stresg-strain
isochrone Tor butyl rubber in biaxial extension at an unstated temperature.
He also examined the biaxial creep behaviour of butyl rubber abt small
initial deformations (I; ™= Iz ™ 3.1) over a time perlod up %o 164 hours,

ou : o

and found STo to increase continuouely from a negative value of aoﬁgt
2 W

- - o . - . . o
- 100 g.cm 2 gt 3 hours to about + 200 g.cm <. Negative value of 55;
at emall straine have also been reporied by Miguel and Landel (1966) from
the biaxial exbension data of a castor oll extended polyurethane elastomer,
for the strain invariant range 3 < I, Ip< 3.1.

It is obviously possible to define P, Q, and R, or the material
parameters of Zapas, as particular functione of the elapsed time, in a
further attempt to describe the observed stress relaxation behaviour of the
natural and butyl rubbers. However there was no observed correlation
between the material constants in (7.9) and the strain, which suggeste
that the 'Mooney type' potential function is adequate to describe the
limited mumiber of deformatione studied. A modification of (7.9) would
probably be necessary to describe the range of deformations covered by the
biaxial extensions on the bubtyl rubber at 25°C.

8.  Summary

- . - . o -

The principal observations which have been made about the behaviour of
rubber in a stabe of pure homogeneous finite strain can be gurmarised.

1. Homogeneous biaxial strains have been imposed upon a butyl rubber in
order to examine the variation of CW_ . .. OV ith ebrain under equilibrium
W 0I, 2
conditions. T2 exhibite the strain dep%§dence reported bv Rivlin and
2 oy . 1 oW
Saunders for natural rubber, bulb STo + ~7~§~—~is a continuously increasing
- Ill A Is ;
function of fT over the range 0.4 < T < 4. A% ieg the uniaxial extension

i
(or !compression') ratio.
2. he strese system needed to maintain butyl rubber (at 0°C) in a state
of biaxial strain, reduces to an cquilibrium valuve in about 100 minutes, but
W \ ; . ‘i1 s
ST, appears to be constant over the complete time range. Within the
2

limitations imposed by sample to sample variations the resvlte can be




dezeribed by a Viscoe%§stic 'Mooney type' stored energy Tunction.
T
msns v ;
Equilibrium valuves of ST are aleo observed for a lughly crosslinked
pel
o

natural rubber which exhibits continuous stress relaxation over the time
period of the measurements.

3. It has been shown theoretically that the heat build up during an
adiabatic deformation gives rise to a term in the stress-strain relationship
which corresponds to Cs. However the calculated magnitude of Cp is too
small.

It ie extremely difficult to decide upon a practical criterion for
the equilibrium state of a deformed rubber. However the results described
. . L W, . I
in this Note suggest that §E-ls a finite positive constant when all
o 3

observable stress relaxation has ceased. Furthermore a constant value of
QY . . - i .
ST has been observed under stress-strain conditions which are obviously

1

o trens : ; . W
not at equilibrium. There is therefore strong evidence that 3T, i
]
“l

finite under equilibrium conditions and the kinetic theory is not adequate
to describe the gum rubber in blaxial extension. The kinetic theory is
therefore inadequate to describe completely the elastic mechanical behaviour
of unfilled rubber.
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Appendix 1. Sample preparation

- " - - .t e - o - - -

The samples were prepared under controlled conditions. The detailled
recipes are given in Table 8, in which the numbers denote parts by welght.

Component Natursl rubber samples — Bubyl yubber samples
Natural rubber 100 -
Butyl rubber (Esso

grade 218) - 100 |

1

Sulphur - 2
Zinc oxide - 5
Stearic acid - 3 %
Accelerator - 1.5 .
Dicunyl peroxide 0.5 -

The biaxial and tensile samples were cut from sheets 25 cms. square
and about 0.25 cms. thick, which had been moulded and cured for fifteen
minutes at 150°C. Tach moulded sheet contained four 5 cm. square indentations
which were used for biaxial measurements. This allowed the lugs on the
biaxial samples to be cut from the thicker sheet.

The flow of excess rubber through the escape holes in a mould will
always result in an article which is mechanically anigotropic and inhomogenous.
The anisotropy in the samples was reduced to a minimum by using moulds with
a large number of symmetrically disposged flow holes, and by using the minimum
amount of rubber necessary to fill a mould.

A (secant modulus variationoof about S% was found for microtensile samples
cut in different orientations and positions from the plane of a 25 cm. square
sheet.

Further work showed thait swelling measurements are a comparatively
insensitive method of estimating the degree of anisotropy and inhomogeneity.
Tensile samples which had shown a 14% modulus variation, {cut from a
rejected sheet), were immersed in benzene, and the equilibrium lengths of
the swollen samples measured. The increase in length for all the tensile
samples varied by only 0.6%. The expected inverse relationship between the
order of stiffness, and the order of degree of swelling, was obgerved. The
degree of anisotropy, measured as a modulus variation, was not reduced after
swelling and deswelling the samples. There was no corrclation between
modulus variations and accurate density measurements.
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unatlons of state for viscoelastic materials
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(1) The equations of Lodge and Kaye

s s v o 8 o 2 1 ot e 7 S B . o o 2t 20 o o U e o i

Lodge (1956) has extended the kinetic tl’!eorj of rubberlike elasticity
by assuming that the crosslinks in the network have a fi inite lifetime, and
derives an equation of state:=

t
P ]_36 .y i) 7 axi éic.sl_. 14
s ™ ij= Ri. «:(t"t /5“ 7 5"1 dat (A.l)
1J X X
104 (94
- 00 .

which describes an incompressible viscoelastic liguid. Pij is the stress
tensor and X, and y; are the rectangular cartesian coordinates of a particle
at the current time™t, and a past time t! respectively. The repeated
suffix denotes su mka+1on, N(t-t') is the distribution function for the

1.

lifetimes of the effective network crosslinks. p is an arbitrary isotropic
pressure, and 6_, ig the unit matrix.
1J

he stress-strain relationships derived by Rivlin (19483, 1949) to
describe large elastic deformations in incompressible materials, can be
written.

e

W OX; 0X3 OW OXy oX
Piy m®i5 =251, S, 3%, " 915 Ox, Ox, | (a.2)

where x, and X: are the rectangular cartesian coordinateg of a particle
in the deformed and undeformed states respectively.

Kaye (1962) points out that (A.1) can be considered a mathematical
generaligation of (A.2) if the elastic material obeys the kinetic theory,

oF; ) - e s
that is if g = 0. He then examined a class of viscoelastic liquids
2
for which
£ 3.1
AR x; Ox3 00 0Ok 9%
. - o -A&- P - LY A
Piy - ®i5=2] I35 éxoc 53251 35z Jx, Ix (4.3)
- 00 ) J
vhere 0 = a[J.(%,t'), Jz( ,t7 )y t-t'] and J; and J, are invariants of the
v Onr s
. “i - . . . .
deformation tensor S;5 = <=7 -7, using the usual summation convention, and

are given by (7.5)

Zapas (1966) reports that an equation of state developed by Bernstein,
Kearsley and Zapas (1963, 196L4) for an incompressible viscoelastic liquid
can be manipulated into a form which is equivalent to (A.3).



If (A 1) and therefore (A.2) are to be useful for describing non
linear viscoelastic behaviour, then in the limiting case of infinitesimal
strain (A.l) must reduce to a description of linear viscoelasticity.

The equation of state for a linear vigcoelastic incompressible materlal
can be written, (Lockett 1965),

t
B .-d,.. =] o(t-t/)p_dt’ AL
-8y = o6, (a.)
- 00 811.
vhere ¢(t-t!) is a function of the elapsed time t-t', T 2(5~—- g-i), the

strain tensor for infinitesimal displacements LA and p 3 renresentq tﬁe

differentiation of pij with respect to the elapsed time.

{ !
Now x, = X, + u,, and * =X, + u{, and therefore x, = X, = u,-u, Or
i i i i i i i i i7i

du,
e R S T AR o S .
dAi = dlli = d(tnt‘) Ci(b t ) = uid’f (A 5)
vhere T = t-t’.
Hence x, = x' 4+ u.dr (a.6)
i i i
Ox, Ox,
. . c . - i .
We wish to examine the strain function of (A.1), ;5 = 5% BE%x.
If (A.6) ie differentiated with respect to X, then
dx, 3,
So7 =0, +t 5T (A.7)
%o * %
and therefore for infinitesimal strains S'j is given by
Si. ( +5—7*d‘1‘><3a+§"7‘3f (4.8)
If the second order term involving SE_ are discarded then
X,
J
du, o4,
sij = sij STl el (A.9)
J i
=8 + 2 ]
or Sij i3 Eeide (A.10)
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gince g}“gg = 5;,\;;

If T has a range of values from O to @, then substitution of (A-lo) into
(A.1) gives

t
N = 1 Y. ¢
Pij P 615 = fem.m(t t )eijdt (A.11)

- 00

when p/ = p + KT.N(t-t’). This is of the form of (A.k), the equation of
state of a linear viscoelastic material.

(ii) The potential function of Bernstein, Kearsley and Zapas

W g

In attempting to describe the stress relaxation of certain elastomers
in simple extension, Bernstein et. al. (1963) have used an equation of state
equ-valent to (A.3) in vhich & is given by

= nmK; + = K% + Ko (A.12)

N

where m, a, and b are functions of t~tf, and K; and Ko are invariants of
the strain tensor Ekﬂ’ such that

Ky = tr.E g (A.13)
Kz = tr.(E‘g)k{)/
Bxi Ox,
and Ek{)/ = %— [Sij a"}gg 5‘;{% - 5%} . (A.ll%-)

Now congider the deformation
. 1
Xq = AyX7

Aoxk \ (A.15)

il

X2
Xz = }\.3X¥5'
Then from (A.1%), (A.14) and (A.15)

Ky = 322 + 23 + 22 - 3] = i[7,-3] (4.16)

and Ko = 1/,0(08-1)2 + (A3-1)2 + (28-1)2] = 1/ gy 235-05,+31

since Jy =2 +28 + 25 and Jp = A2 + ASZ N33



Hence (A.12) may be rewritten

2
]

B(5,-5) + §(93-3)% + 2% - 2Tz - 27343) (a.17)

i

p(7.-3) + Q(Tz-3) + R(J1-3)2 (A.18)

where P = /2 + b, @ = -b/2, and R = a/8 + b/L. Therefore the viscoelastic
potential function of Bernstein et. al. is an extension of the ‘Mooney type'
viscoelastic function (7.7)-

Appendix 3

A - s 1, Y o

The evolution of heat in simple extension

At - R O N S 70, 0. I - 2 o o

The virtual work done in producing incremental deformations By, BA,, and
BA= in an isotropic material which is in a state of pure homogeneous strain
defined by the principal extension ratios Ay Ay and M5 is given by

8 = t AL b2 APhe + bz A3 (A.19)
where t1, to and tz are the principal stresses.

If the deformation is isoenergetic and adiabatic
W = J.5Q = Jpd ;A A=C.0T (A.20)
where 3Q is the heat evolved
p density of material of gpecific heat c.
ST increase in temperature
J mechanical equivalent of heat

. 2 3}
.7, Jpe BT = tl§%i + tgg%i + tj%%z (A.21)

For simple extension tp = tz = 0, and from (k.12)

oW 1 oW )

;
— 2 = T e
ty = 200 M)(gj{; + X 510 (a.22)

and therefore the increase in temperature §T for a finite increase O}y . in Ay
ig given by (dropping the suffix for convenience).
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9 9
Jc.BT :f 2(1.11—5)(531% ) (8.23)
X

In order to egtimate the magnitude of ST it is sufxlc;e t to assume the

kinetic theory of elasticity. Then.sf—-: Cy, and Sf" = 0,
1 2

and JpcdT = C [ AN + A2 4+ (M40 )7L "1 (A.24)

Adiabatic stress~strain relationships must take the temperature increase
into account.

The tensile strese t is a function of T and A and therefore an increment
in stress Bt is given by

, 0+
5t = §—~ 8T + 525\ (a.25)
If t is given by the kinetic theory (isothermal) relationship
Tk’**()w -— (A.26)
5 OA
and since from (A.21) 33\——- = Jpc.BT (A.27)

then by substituting (A.26) and (A.27) into (A.25) the adiabatic stress t,
is given oy

£ A
a 2.2
U=l 1
ty =f at = f Jplc}\T()\'g-j—\..)d}\ + t (A.28)
1
r 2 2 ]
- 02l e ¢ ST 5/ - A2 4 Ay - 1/2M)
= (A -}\')LN:{T * s o) J (A.29)

If the temperature increase give rise to a Mooney parameter Cp then (A.29)
must be compared with

= 2(32- 2)(C; + §2) (r.30)

Co Mk (AS/h - A3 + AE/h - 1/2)

G, = Fpe o) (a.31)
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Typically Nk = 3.10% dynes.cm™@ deg. *C
p = 0.95 em. >

o]

1l

0.47 cal. g™+ deg. C

Then if N = L

~
-

2ip

L
50

5 (a.32)

This is considerably lese than the value of Cp which would be expected if
experimental simple extension data for this hypothetical sample was analysed
in terms of the Mooney form of the stored energy function.  For example
Rivlin and Saunders (1951) found from simple extension data that Cp = 0.81 Cy.

i
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- .o 2 g.cm < g.cn g.cm"
5.179 5 2.0 0.95 11,950 2,560 1465 157
5.848 5 2.2 0.85 13,810 1,620 1620 8%
4,993 5 1.93 1.00 10,850 2,630 1740 83
4.493 5 1.7 1.16 8,040 3,870 1320 130
L.270 5 1.5 1.33 7,340 5,880 1450 11k
8.215 10 2.6 1.16 23,900 5,330 1705 66
7.823 10 2.5 1.21 21,000 5,750 1580 85
7.480 10 2.4 1.27 16,950 5,560 1615 L1
7.141 10 2.3 .32 17,200 6,030 1570 52
6.853 10 2.2 1.38 16,050 6,560 1605 L6
€.648 10 2.1 1.4 14,400 7,610 1475 11k
6.458 10 2.0 1.5% 13,450 8,150 1595 60
9.701 20 2.6 1.70 22,900 11,750 1550 63
9.434 20 2.5 1.77 20,450 11,960 1360 92
9.23%3 20 2.4 1.85 19,600 12,140 1610 36
9.028 20 2.3 1.92 17,450 12,350 1585 25
8.802 20 2.2 2.00 16,000 13,800 1310 9k
11.kok 30 2.7 £.02 28,500 16,500 1700 23
11.203 30 2.6 2.10 26,200 18,100 1680 55

D - - - --—.-.——.--.-—-—n.-_.-—-.u-.-.....—_.—..—........-....—-..—..a—-..—-——u--,——w...-
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g.cm 2 g.om 2 g.cm 2 g.cn 2
5 5.285 1.9 1.07 12,210 3,780 1550 183
5 6.011 1.8 1.25 9,980 L, 900 1495 89
5 6.521 1.7 1.50 9,250 6,330 1575 75
5 6.567 1.65 1.45 8,540 6,700 1460 100
7 7.4%31 2.4 1.05 17,900 4,350 1430 153
7 9.095 2.3 1.25 17,550 5,850 1560 87
7T 10.725 2.2 1.44 16,050 7,760 1490 100
7 12.156 2.0 1.70 12,620 9,270 1500 L1
9 15.218 2.6 1.47 24,100 8,800 1660 66
9 17.342 2.5 1.6 22,300 11,650 1485 115
9 8.9k 2.4 1.79 2i,h00 12,900 1665 68
9 19.961 2.3 1.92 19,250 13,950 1645 50
9 20.394 2.2° 2.05 17,950 15,550 1665 55
11 27.282 2.7 1.92 27,200 15,250 1660 60
11 28.795 2.6 2.05 25,900 16,750 1790 27
11 29.328 2.55 2.11 24,000 17,450 1585 58
11 30,073 2.5 2.18 24,700 19,350 1785 L7
11 30.048 2.4 2.27 21,000 18,900 1730 17

T N S 8 G T B P T D VT OO ST D 12 0 O St Sl T Sy S N e por D - - " > v o WS WD B - o~ - .
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Ay =2 %x(ﬂlg) by = tao g%%f%?*?w I Is
=2 =t oL onE (2/7\-14-?\'2) (2?\-14«1/3\'2)
g.om 2
1.083% 1.17 337E36 1840 3.07 3.08
1.167 1.36 608%8 1920 3.26 3.32
1.25 1.56 78817 1900 3.53% 3.71
1.3% 1.77 921:k) 1870 3.86 4.26
1.ha7 2.01 1086%7 1945 L.52 5.05
1.50 2.25 122%£20 1990 b7k 5.97
1.58 2.49 13LkeE57 2020 5.14 7.00
1.67 2.79 1h11x60 1972 5.71 8.52
1.75 3.06 149762 1972 6.2% 10.01
1.833 3.36 16255L5 2028 6.90 11.90
1.916 3.67 1738E7h 0 2050 7.42 1h.0k
2.00 %.00 1836588 2065 8.06 16.50
Table 2. Equibiaxial strain results for butyl rubber at 25°C. The

values of t are the mean values of t; and ts.
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ts MooEr 51, T TSI, b 2
g.cem 2 (g.cu"2) (2/Af4012) (A +1/212)
1915 1.18  0.849 1740 3.08 3.08
2870 1.275 0.785 1730 3.20 3.17
3760 1.365 0.733 1670 3.53 3.27
4600 1.455 0.688 1625 3.50 3.38
5540 1.545 0.648 1595 %.68 - 3.51
6400 1.635 0.611 1565 3.89 3.7
7350 1.73  0.578 1530 4.15 3.79
8350 1.82 0.550 1510 ol 3.94
9390 1.91  0.52k 1505 L.70 4.09
10320 2.00 0.500 1475 5.00 h.25
11520 2.095 0.478 1475 5.35 L.h3
12450 2.18  0.459 1450 5.67 k.57
15450 2.275 0.4ho 1415 6.C6 Lok
14690 2.365 0.423 14315 6.4k L.o1
16950 2.545 0.393 1390 7.27 5.24
18250 2.6 0.379 1385 7.7h 5.42
19550 2.73  0.366 1385 8.17 5.59
20900 2.82  0.355 1380 8.66 5.77
22100 2.91  0.34k 1380 9.15 5 .94
25200 3.09  0.32k4 1370 10.23 6.28
26800 3.18 0.315 1365 10.75 6.45
50300 3.37 0.297 1375 11.95 6.83
34100 3.55 0.282 1385 15.16 7.18
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