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Abstract—We propose a stereo vision based obstacle 

detection and scene segmentation algorithm appropriate for 

autonomous vehicles. Our algorithm is based on an innovative 

extension of the Stixel world which neglects computing a depth 

map. Ground plane and stixel distance estimation is improved 

by exploiting an online learned color model. Furthermore, the 

stixel height estimation is leveraged by an innovative joined 

membership scheme based on color and disparity information. 

Stixels are then used as an input for the semantic scene 

segmentation providing scene understanding, which can be 

further used as a comprehensive middle level representation 

for high-level object detectors. 

 
Index Terms—Dynamic Programming, Obstacle Detection, 

Stereo Vision, Semantic Segmentation, Stixel World 

I. INTRODUCTION 

n intelligent vehicle consists of many subsystems that 

are responsible of controlling the complicated process 

of autonomous driving and navigation. However, obstacle 

detection and scene understanding are the most critical parts 

of the system on which the passenger’s and vehicle’s safety 

rely on. Out of many available obstacle detection systems 

[1], in this paper we extend the promising Stixel World [2]. 

The latter representation is a particular scene tessellation 

which divides the scene into a set of rectangular sticks 

named “stixels”. Each stixel provides information of the 3D 

position and height of the obstacle along with the available 

free-space.  

Although the Stixel World algorithm originally proposed 

by Badino et al. [2] is able to achieve real-time performance, 

it requires dedicated FPGA hardware to apply the Semi-

Global Matching algorithm in order to obtain a dense depth 

map. A processing efficient solution is proposed by 

Benenson et al. [3] which allows stixel estimation without a 

depth map. In that case, even though the speedup is 

substantial, accuracy is downgraded compared to the 

original method. 

This work introduces a number of innovations compared 

to [3] achieving better accuracy while still neglecting the 

requirement of a dense depth map. In specific, ground plane 

estimation is improved by using an online learned color 

model which reduces the estimation error by a factor of two 

compared to [3]. In addition, the color road model is used to 

advance the stixel distance estimation and reduce the 

number of erroneously detected obstacles while it maintains 
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the missed obstacle ratio. Height estimation is enhanced by 

combining disparity information with color cues.  

Finally, our work takes advantage of this middle-level 

stixel representation and proposes semantic segmentation for 

scene understanding distinguishing pedestrians and vehicles 

from infrastructure and vegetation. This segmentation can be 

used as input to a high level appearance-based detector for 

precise classification with a significantly reduced search 

space. 

II. RELATED WORK 

Stereo systems are extensively used in the context of 

obstacle detection algorithms. Bernini et al. [1] proposes to 

categorize the algorithms into four groups. One of these is 

the occupancy grids algorithm which is further extended into 

the Stixel World [2]. A number of approaches are 

undertaken to improve the Stixel World representation [4]–

[6] with an important enhancement utilizing the online color 

modelling for the road versus obstacle segmentation [7], [8]. 

The stixel estimation can be also be leveraged by using pixel 

level semantic segmentation based on color cues and the 

geometric properties of the scene [9]. That approach is 

further extended utilizing convolutional neural networks 

[10]. 

Scharwächter et al. in [11] have proposed a multi-cue 

scene segmentation. Initially, the algorithm generates 

hypotheses for object regions using a multilayer Stixel 

World [12], which are then joined to obtain larger regions 

using DBSCAN [13] clustering. Then depth and height cues 

are integrated into the region descriptors introducing a bag 

of depth features. Lately, a multi-class SVM algorithm is 

used to classify regions into five semantic classes [14] which 

is further developed to provide spatial and temporal 

coherence for a semantic class label. The temporal 

coherence is ensured via a Hidden Markov Model and a 

Kalman filter is applied for the velocity estimation. Spatial 

filtering is performed through a Conditional Random Field 

to ensure global smoothness of the labels.  
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Fig 1. Stixel representation in camera image. Bottom image presents stixel 

representation in reference to laser data (best seen in color) 
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III. STIXEL ESTIMATION 

The proposed stixel estimation algorithm extends [3] and 

includes five processing steps. Initially, the pixel-wise cost 

volume is computed from rectified stereo images. Then, the 

color model is trained for the road segmentation and the cost 

volume is used to estimate the ground plane, which in turn is 

used to estimate the stixel disparities. Finally, the stixel’s 

disparity and color are used to estimate the stixel height. 

Throughout this paper we assume a stixel width of one pixel. 

A. Cost volume computation 

Given a pair of rectified stereo images, the matching cost 

volume is computed: for every pixel in the left image and 

every disparity value, the matching cost with the 

corresponding right image is calculated. The matching cost 

is computed as the vanilla sum of absolute differences over 

the RGB color channels: 
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where 𝐼𝑙  and 𝐼𝑟  are the rectified left and right images, 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 represents the number of color channels and u,v,d 

represent the column, row and disparity in respect. 

B. Road probability 

Assuming a road environment and a fixed camera set-up, 

the road probability Pr(u,v) at certain locations within the 

image is computed (Fig. 2 (a)). Then we use Pr(u,v) to 

generate a training mask for the online learning color model 

that is needed for the road segmentation. The training mask 

presented in Fig 2 (b) is based on: 
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C. Online learned color model 

Road pixel information in the input image can 

successfully leverage the estimation quality of the ground 

plane and stixel disparity. This paper introduces an online 

learned color model (OLCM) for road segmentation inspired 

by [7]. In specific, the color model is constructed as a 2D 

normalized histogram computed within the training mask (  

Fig 3 (a)). The histogram is based on the HSV color space 

and utilizes the hue and saturation channels which are 

discretized into 60x60 equally spaced bins. In order to obtain 

the road segmentation, the histogram is back projected onto 

the left and right input image, resulting in the probability for 

each pixel belonging to the road as 𝑃𝑙𝑟(𝑢, 𝑣) and 𝑃𝑟𝑟(𝑢, 𝑣) in 

respect. A road segmentation example is presented in Fig. 3 

(b). 

D. Ground plane estimation 

We estimate the ground plane by exploiting the v-

disparity representation [16]. The latter, is a summed pixel 

cost of the unidimensional slice of the cost volume as it is 

projected along the horizontal u-axis. Then the ground plane 

parameters are found by fitting a line to the low cost regions 

of the v-disparity image. Although it is assumed that the 

road is a dominant surface within the image, there are cases 

where this assumption is violated and the low cost regions in 

the v-disparity image are misplaced (Fig 4 (b)). 

In this work we overcome this problem by weighting the 

contribution of each pixel onto the v-disparity image based 

on the probability of the pixel being the road which is 

obtained using OLCM. The algorithm is expressed as: 
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where 
r r r( , , ) P ( , ) P ( , ) P ( , )l rP u v d u v u v u d v    . 

The improvement of the ground estimation can be clearly 

seen in Fig 4 (c) where the line is consistently on the low 

cost regions, comparing to original algorithm depicted in Fig 

4 (b). 

E. Stixel distance estimation 

The projection of the cost volume along the horizontal 

axis assists in ground estimation, while the projection along 

the vertical (v-axis) provides an estimation of the stixel’s 

distance.  

Following the approach of Kubota et al. [17], the depth of 

the stixel is estimated using 2D dynamic programming over 

a data term 𝑐𝑠 and a smoothness term 𝑠𝑠. The goal is to find 

the optimal disparity for each stixel by optimizing the 

following equation:  
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where ua and ub are neighboring columns within the scene. 

The 2D minimization problem is solved using dynamic 

programing in the u-disparity domain. 

E.1 Data term 

In [17] the stixel cost cs(u,d) defines whether a stixel is 

present in the image column u and comprises of the stixel 

cost co(u,d) and the ground cost cg(u,d). In our work we add 

an additional probability term cp(u,d) and the stixel cost 

becomes: 

  ( , ) ( , ) ( , ) ( , )s o g pc u d c u d c u d c u d    (5) 

    
(a) (b) (a) (b) 

Fig 2. (a) road probability, the darker the pixel color the lower the probability 
the pixel belongs to the road (b) corresponding training mask. 

  Fig 3. (a) example input image with outlined training mask (b) road 

segmentation obtained as 𝑃𝑟(𝑢, 𝑣) ∙ 𝑃𝑙𝑟(𝑢, 𝑣). (best seen in color) 
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where v(d) remaps a disparity value to the image row based 

on the ground plane estimation, v(ho,d) is the upper 

boundary of the object given by the disparity and height ho, 
which is computed using the ground plane estimate and the 

camera calibration, and finally fground(v)=v-1(d). 

The innovative probability term cp(u,d) suggested is 

calculated based on the probability of the road obtained 

using the OLCM. cp(u,d) encodes the reliance that the higher 

the probability of the road the more unlikely that the object 

of minimum height ho is present at distance 𝑑. The estimated 

stixels with a fixed height are shown in Fig 5.  

E.2 Smoothness term 

In a stereo system, some of the objects visible in the left 

image are occluded in the right image and vice versa. While 

processing the left image, any stixel behind the “one 

disparity less per pixel to the left” [17] should be invalidated 

by the occlusion constraint. This constraint is ensured by the 

smoothness term: 
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where da=d(ua) and db=d(ub) with ua one pixel left of the 

pixel ub. The 𝑠𝑠 = ∞ case ensures that no stixel distance 

violates the occlusion constraint. 

F. Stixel height estimation 

The actual height of each stixel is estimated as the 

likelihood of each pixel above the ground belonging to the 

estimated stixel disparity 𝑑𝑠
∗(𝑢). The likelihood is expressed 

by the membership function ( , ) ( , ) ( , )d cm u v m u v m u v  , 

where: 

  1( , ) 2 max(0, ( , )) 0.5dm u v m u v    (8) 

 
*

*

2

1 *
( ( ))

( ( , , ), ( , , ( ))
( , )

( ( ))
S

m m S

d N d u S

m c u v d c u v d u
m u v

N d u

   (9) 

 

*

*max

max*

2 *

max

max

max(| |, )

( , )
max(| |, )

c c
c c

m c c
c c

otherwise

  
 


 

 
 

 (10) 

and cm(u,v,da) is the local minimum of the cost function for a 

pixel at location (u,v) in the image belonging to disparity da, 

N(da) indicates a small neighbourhood around 𝑑𝑎 (e.g. ±5 

pixels), |N(da)| indicates the number of elements in 𝑁(𝑑𝑎), 

∆𝑚𝑎𝑥 is a small constant (this paper assumes ∆𝑚𝑎𝑥= 10) and 

𝑐�̃� is the cost value after applying a 5x5 mean filter. 

( , ) [ 1,1]dm u v    where 1 means full membership, -1 means 

no membership and 0 indicates no contribution. We 

improved height estimation by extending the disparity 

membership [3] by introducing an innovative color 

membership function mc(u,v). In order to obtain mc, we 

construct the color histogram within a rectangle R with 

coordinates * *

0

1 1
, ( ( )), , ( , ( ))

2 2
S S

w w
R u v d u u v h d u

  
  

 
 in the 

following order: column and row of left bottom corner, 

column and row of upper right corner. The parameter 𝑤 is 

the column window which is set to 5. Fig. 6 shows an 

example on the suggested stixel height estimation concept. 

F.1 Data term 

The membership function m(u,v) is then converted into a 

height cost ch(u,v): 
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where 𝑣(ℎ𝑚𝑎𝑥 , 𝑑𝑠
∗(𝑢)) indicates the top row of the object of  

height ℎ𝑚𝑎𝑥  at disparity 𝑑𝑠
∗(𝑢) and * ( )bottomv u  denotes the 

bottom boundary of the stixel. 

F.2 Smoothness term 

The smoothness term is defined as:  
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(a) (a) (b) 

    
(b) (c) (c) (d) 

Fig 4. (a) Example input image (b) corresponding v-disparity representation 

using original algorithm (c) proposed method (best seen in color) 
Fig 5. (a),(b) stixel estimation using original algorithm (c),(d) stixel 

estimation using the extended algorithm (best seen in color) 

 



 

 

where 𝑘1 is a scaling factor that penalizes the top shapes that 

are non-horizontal (set to 1) and ∆𝑧2 the minimum distance 

of adjacent stixels that influence each other (set to 3m). 

Fig. 7 compares the height estimation using the original 

algorithm and the modified version introduced in this paper. 

It can be clearly seen that color information enhances the 

stixel height estimation in texture-less and shiny regions like 

a car or building facades. 

IV. STIXEL SEMANTIC SEGMENTATION 

This paper proposes a two stage process to classify a 

stixel into two commonly encountered classes: the 

vegetation and infrastructure (V&I) and the car and 

pedestrian (C&P). First, a semantic class is assigned to 

every pixel within the stixels boundaries and then the 

semantic class is assigned to each stixel, based on the 

dominant class within that stixel. This approach ensures 

classification consistency. 

The pixel level classification is based on a feature vector 

constructed from 13 features divided into 3 categories 

namely: color, texture and geometric features. Pixels are 

classified using the Decision Tree classifier trained in 

RapidMiner Studio. 

A. Color features 

Color pixel features are extracted on two color spaces, the 

CIELab and the YCrCb. The color components of the former 

space are denoted as 𝐼𝐿𝑎𝑏
𝑘 (𝑢, 𝑣) where 𝑘 ∈ {𝐿, 𝑎, 𝑏}. From 

the latter colour space two channels are used, the Cr and Cb, 

which are denoted as 𝐼𝑌𝐶𝑟𝐶𝑏
𝐶𝑟  and 𝐼𝑌𝐶𝑟𝐶𝑏

𝐶𝑏 . These two channels 

of the YCrCb space provide illumination invariance. 

B. Texture features 

We extract simplified texture information from the local 

color homogeneity proposed in [18] consisting of the color 

standard deviation Φk and the discontinuity values Ek: 

 ( , ) 1 ( , ) ( , )k k kH u v E u v u v    (13) 
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The first feature is expressed as the color standard 

deviation in the CIELab space: 
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where 𝑤 defines a window size set to 5. The second feature 

represents the discontinuity in the color component 

( , )k

LabI m n  which is represented by an edge value based on 

the Sobel edge detector. The normalized edge magnitude 

𝑒𝑖𝑗
𝑘  (𝑘 = 𝐿, 𝑎, 𝑏) of the gradient at location (𝑖, 𝑗) is given by: 
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where 𝐺𝑥
𝑘 and 𝐺𝑦

𝑘 are the gradients of the color component in 

the CIELab space in the 𝑥 and 𝑦 direction respectively. The 

kernel size for the Sobel operator is set to 5 and for 

computational consistency the standard deviation of the 

color is computed within a window of size 5x5. 

C. Geometric features 

We extract two geometric features, the first being the 

height above the ground defined as ℎ𝑔(𝑢, 𝑣). This feature 

encodes the vertical position of the object based on the fact 

that objects are physically located on the top of the 

supporting ground plane. The second feature is a height of 

the stixel labelled as ℎ𝑠(𝑢) which is the difference between 

the top and bottom border. 

D. Stixel classification 

The special coherence of the segmentation is ensured by 

relying segmentation in stixels rather than pixels. Based on 

the assumption that a single stixel describes only one object, 

all pixels within this particular stixel belong to the same 

object. The class assigned to each stixel is based on the 

dominant class within each stixel. 

Classification examples are presented in Fig. 8 and clearly 

show that the stixel-level classification is superior compared 

to the pixel-level. 

    
(a) (b) (a) (b) 

    
(c) (d) (c) (d) 

Fig 6. (a) input image with outlined bottom stixel border, (b) disparity 

membership 𝒎𝒅(𝒖, 𝒗); (c) colour membership 𝒎𝒄(𝒖, 𝒗); (d) joined 

membership 𝒎(𝒖, 𝒗) (best seen in color) 

Fig 7. (a), (c) estimation with the original method (b), (d) height 

estimation with the proposed method (best seen in color) 

 



 

 

V. EXPERIMENTS 

A. Ground estimation 

We challenge our proposal on the Kitti stereo benchmark 

[19] against the stixel approach suggested by Benenson et al. 

[3]. The Kitti stereo benchmark includes 200 stereo images 

with a reference disparity map obtained by an accurate laser 

scanner that has depth estimation with centimeter accuracy. 

First trial concerns the ground plane error estimation 

which is measured based on:  
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where 𝑣𝑟(𝑑) is the reference ground line, 𝑣𝑒(𝑑) is the 

estimated ground line in the v-disparity image based on the 

matching cost and |𝐷| is a maximum disparity which in this 

work is set to 128. 

The reference ground line is estimated using the 

Labayrade’s algorithm [16] but instead of using Semi-

Global Matching [20] for the depth estimation, we exploit 

the reference disparity maps from the Kitti stereo benchmark 

in order to avoid errors of the disparity estimation algorithm.  

Table I presents the average ground plane error estimation 

on the entire Kitti database which shows that our proposal is 

more than twice accurate compared to [3]. 

B. Distance estimation 

In this trial we evaluate the proposed stixel distance 

estimation compared to the reference disparity maps 

provided in the Kitti stereo benchmark [19]. Therefore, 

stixels are converted into the corresponding disparity map: 
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The disparity across the stixels is constant as it assumes 

vertical obstacles, although some objects do not fully match 

this condition. To minimize this effect the stixel height is 

restricted to 80cm as proposed in [21]. 

The error between the reference 𝐼𝑑 and the stixel disparity 

map 𝐼𝑠𝑑  is calculated as: 
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The error is normalized using the reference disparity, in 

order to make the magnitude the of error uninfluenced by the 

distance. Depending on the sign of the error e(u,v), the stixel 

error is classified into a false positive FP error for 

mistakenly detected obstacles and a false negative FN error 

for missed obstacles. An example of error classification is 

depicted in Fig. 9 where red color depicts FP and blue color 

represents FN errors. 
Fig. 10 and Fig. 11 illustrate the number of FP and FN 

pixels in respect, in relation to the distance to the 

autonomous vehicle. Both figures indicate that the proposed 

extensions reduce the number of FP pixels by minimizing 

the amount of mistakenly detected obstacles while the 

amount of FN is maintained. 

C. Semantic segmentation 

We further evaluate our proposed solution in the context 

of scene understanding using the semantic dataset proposed 

by Xu et al. [22]. This dataset provides 70 training and 39 

test labelled images. Tables II and III present the 

classification results in a confusion matrix form for the pixel 

and stixel level in respect. The ground truth for the pixel-

level classification is obtained directly from the semantic 

dataset while for the stixel-level classification by applying 

Eq. 18 on the pixel-level ground truth. 

Table II shows that the pixel-level classification can be 

significantly improved ensuring spatial coherence, by 

assigning a single class for a stixel. The results for the stixel-

level classification (Table III) demonstrate a significant 

improvement providing an overall accuracy of 88.2%. It can 

be noticed that the recall and precision for both classes are 

considerably improved. In addition, it is worth noticing that 

the number of classified stixels is significantly smaller than 

the number of classified pixels. This reveals that stixel 

representation considerably reduces the amount of data 

while affording high accuracy. 

VI. CONCLUSION 

We propose an enhanced stixel estimation that neglects 

the computation of a processing deficient depth map, while 

in parallel affords high accuracy. This is achieved by 

exploiting an online learned color model which is used for 

ground plane and stixel distance estimation. The suggested 

method for ground plane estimation reduces the error by 

more than a factor of two, while the suggested stixel distance 

estimation reduces the FP and maintains the FN compared 

to current proposals. 
 

 

 

    
(a) (b) 

Fig 8. Red color represents the car and pedestrian class while green color represents the vegetation and infrastructure class (a) pixel level classification (b) 
stixel level classification (best seen in color) 
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Fig 9. (a) stixels estimation (b) reference disparity map (c) stixel disparity map (d) stixel error (best seen in color) 
 

  
Fig 10. FP classified pixels as belonging to an obstacle Fig 11. FN classified obstacle pixels 
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TABLE I 
GROUND PLANE ESTIMATION ERROR 

Ground estimation Error 1 normL   Error 2 normL   

Benenson et al. [3] 3.847 5.708 

Our proposal 1.770 2.600 

TABLE II 

CONFUSION MATRIX FOR PIXEL LEVEL CLASSIFICATION 

Accuracy: 78.360% 
Actual value 

PRECISION V&I C&P 

Predicted 

value 
V&I 1645595 191697 89.57% 

C&P 373584 401387 51.79% 

RECALL 81.50% 67.68%  

TABLE III 
CONFUSION MATRIX FOR STIXEL LEVEL CLASSIFICATION 

Accuracy: 88.180% 
Actual value 

PRECISION V&I C&P 

Predicted 
value 

V&I 30497 791 97.47% 

C&P 4060 5691 58.36% 

RECALL 88.25% 87.80%  
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