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ABSTRACT 

The rapid development of nanotechnology has caused concerns about 

nanoproducts on human health throughout their lifecycle. As part of the consortium 

NEPHH (nanomaterial related environmental pollution on human health through their 

life cycle, funded by EU-FP7), this project aimed to assess the potential effect of novel 

polymer-silicon composites on human health from a lifecycle perspective, focusing on 

in vitro toxicity of raw silica nanoparticles (SiNP) and dust nanoparticles (NP) released 

from silicon-based polymer composites. The main objectives were to characterise a 

group of amorphous SiNP and dust NP in water and cell culture medium; assess NP 

toxicity potential in in vitro models; and establish mode of SiNP action.  

The selection of SiNP of size 7-14 nm was based on their wide use in 

developing polymer nanocomposites.  Dust NP were generated from mechanical 

processing of polymer composites made of   polyamide-6 (PA6), polyurethane (PU) and 

polypropylene (PP), each incorporated with SiNP or 3 other different silicon 

reinforcement materials.  The dispersion and size of NP in water and in cell culture 

medium were characterized using dynamic light scattering, scanning electron 

microscopy and transmission electron microscopy.  The chemical composition of NP 

was assessed by infra-red spectroscopy. NP were assessed in vitro for induction of 

membrane damage, intracellular reactive oxygen species (ROS), loss of cell viability, 

and cellular uptake by flow cytometry and confocal microscopy. In order to identify 

potential biomarkers for toxicity prediction, miRNA array and extracellular 

metabonomic assays were performed.  

The size of SiNP (10-100 µg/ml) ranged from ~200-500 nm in water and ~20-

500 nm in culture medium, indicating the presence of aggregates. The infra-red 

spectrum of SiNP dried from culture medium showed a slight difference as compared 

with that dried from water, indicating protein adsorption.  SiNP induced acute ROS 

increase, cell membrane damage, and reduction in cell viability after 48 h in human lung 

carcinoma epithelial A549 cells, lung fibroblast MRC-5 cells and skin HaCaT 

keratinocytes. SiNP were up taken by all 3 cell types, and located in the cytosol. Six 

early (<48h) SiNP responsive miRNAs were identified in A549 cells. SiNP also induced 
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early changes in metabolites including glucose, lactate, ethanol, phenylalanine, histidine 

and tyrosine. Dust NP generated from PA6 group materials were more toxic than those 

from other polymer composites when assessed at 25-100 µg/ml at 72 h in A549 cells.  

The results obtained from this study suggest that 1) both small and larger SiNP 

aggregates are taken up into the target cells; 2) conventional cytotoxicity assays 

combined with miRNA and metabonomic assays provide insight into the molecular 

mechanisms of the nanotoxicity; 3) metabonomics and miRNA assays can serve as 

robust tools for recognising sub-toxic dose-effect relationships; 4) the toxicity of dust 

NP from polymer composites depends on polymer type but not reinforcement materials.  

This study demonstrated the importance of lifecycle analysis as opposed to single stage 

analysis of novel materials. Further studies need to improve study design to enable 

interpretation of cytotoxicity in relation to NP size, physiochemical property and 

intracellular dose, and to simulate the health effect of polymer-silicon composites under 

more realistic scenarios. 
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CHAPTER ONE 

1 Introduction  

Nanomaterials/nanotechnologies hold great economic potential for many 

industries, and the European economy as a whole. As of April 2008, the Project on 

Emerging Nanotechnologies claimed that over 600 nanotechnology products exist, 

with new ones reaching the market at a pace of 3-4 per week (Woodrow Wilson 

International Centre for Scholars 2010). According to the estimate by the Lux Research 

group, the market potential of nanotechnology products could be worth up to USD 2.6 

trillion (around €1.9 trillion) by 2014 (Maynard, 2006).  

Despite the rapid growth in the development and application of nanomaterials 

over the last two decades, little is known about the environmental and health risks 

posted by nanomaterials. Initial research has indicated that some nanomaterials may be 

more toxic than their larger counterparts when interacting with living organisms. As 

activity shifts rapidly from research to the applications, there exists an urgent need to 

understand and manage the risks associated with the development of nanomaterials. In 

fact, the risk assessment of nanomaterials has now become the focus of much attention. 

To date the widely accepted view is that there are many unanswered questions on the 

potential environmental and health risks associated with the manufacture, use, 

distribution and disposal of nanomaterials. 

In addressing the concerns over the potential risk of nanotechnology, the UK 

Government published a strategic plan for responsible development of nanotechnology 

(HM Government, 2010) as highlighted in figure 1.1. This is aligned well with the 

global interest in the development of nanotechnology that offers better quality of life 

without compromising environment and human health.  
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Figure 1.1 Plan of action outlined by HM Government for the control of 

nanotechnology. 

 

1.1 Nanomaterials-related Environmental Pollution and Health 

Hazards 

Nanomaterial-related Environmental Pollution and Health Hazards (NEPHH) is 

a project funded by the European Commission under the 7
th

 Framework programme 

(CP-FP 228536-2), aiming to identify nanotechnology-related environmental pollutions 

and health hazards that could result from nanomaterial-reinforced products throughout 

their life cycle, and develop means to mitigate negative impact of nanomaterials. 

Through collaborations among the consortium involving 6 research institutes and 4 

nanotechnology industries, the NEPHH project will address the following challenges:  

1. Due to their small size, nanomaterials may have different interaction patterns 

from bulk material of the same composition with living organisms. Therefore the 
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methods for risk assessment of bulk materials are not suitable for the same materials in 

nano form. Regulators have attempted to address concerns about nanomaterials. 

However, size effects have not been addressed in the new European chemicals policy 

REACH (Regulation, Evaluation, Authorisation and restrictions of Chemicals), REACH 

aims to control the production and use of all chemicals and materials, limiting the 

potential hazards they may pose. The recommended limit of production of 

nanomaterials is quickly being reached, yet sufficient evidence of hazards posed is still 

required. 

2. Characterization of nanomaterials has proven to be more difficult than 

anticipated for several reasons. First, standard protocols have not been developed. 

Second, an analytical infrastructure to allow characterization is not consistently 

available or well-located. In addition, biologists, physicists, and material scientists 

working in this area do not always communicate effectively. 

3. Health, safety and environmental risks that may be associated with products 

and applications of nanoproducts need to be addressed throughout their life cycle, which 

requires integrated actions among the multidisciplinary teams.  

For the NEPHH project, polymer-silicon based conventional composites and 

nanocomposites will be used as model materials to develop protocols for risk 

assessment through products life cycle analysis.  Three engineering polymeric matrixes 

have been selected, including polyamides, polypropylenes and polyurethanes.  Silicon 

reinforcement materials including nanosilica (SiO2), layered silicates, glass fibres and 

foam-glass-crystal materials have been selected to produce polymer-silicon composites. 

The high potential of industrial scale production and therefore the likely release and 

disposal (intentionally or unintentionally) of raw materials and final products into the 

environment form the basis for choosing this group of materials. The specimens of the 

polymer-silicon composites will be provided by partners for assessing potential release 

of nanoparticles/nanomaterials under different scenarios, which include ageing and 

physical processing. The released nanoparticles and raw nanomaterials will be assessed 

for toxicity potential using different model systems. The results of the toxicity study 
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will inform the risk assessment of the chosen nanomaterials in comparison with 

conventional polymeric materials.  

The NEPHH consists of a number of groups based around Europe. These groups 

all partake in the project by heading a work package, the groups involved were:  

 Ekotek Ingenieria y Consultoría Medioambiental S.L. (EKOTEK) 

 Cranfield University. (CRAN) 

 Palladin Institute of Biochemistry of the National Academy of Sciences of 

Ukraine. (IBU) 

 Cracow University of Technology. Department of Chemistry and Technology of 

Polymers. (CUT) 

 Tomsk Polytechnic University. 

 Fundación TECNALIA. 

 Centre national de la recherché scientifique CNRS-ECCOREV. 

 Grado Zero Espace Srl. 

 Asociación para la prevención de accidentes. 

 Laviosa Chimica Mineraria. 

The details of the groups involved in each work package of the NEPHH project 

and the outcomes of the work packages are presented in table 1.1.  
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Table 1.1 Summary of NEPHH work packages, leaders of each work package and the target outcomes. 

Work Package Leaders  Target 

1. Technological Surveillance System.  EKOTEK  Develop a systematic, continuous practice for selection of ENMs. 

2. Working Nanomaterials: Supply and Preparation  CUT Manufacture of selected ENMs. 

3. Generation of Nanoscale Dust Particles from 

Macroscale Fibre Reinforced Nanostructures  

CRAN Generation of nanoparticles and nanodusts with a consideration of real 

life exposures throughout life cycle. 

4. Health Implications CRAN, IBC  Finding the effect of nanoparticles on the (i) lungs; (ii) structure of cells 

and expression of proteins  

5. Environmental Implications CRNS Assessment of persistence, bioaccumulation and eco-toxicity studies. 

6. Integrated Assessment EKOTEK Understanding the outcomes from WP 4 and WP 5, aiming to make 

available the understanding of safety, environmental and health 

implications. 

7 & 8. Dissemination of the Research  EKOTEK Communicating the reports gained from NEPHH.  
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Table 1.2 Summary of nanomaterials used for assessment by NEPHH. Table states the composition of each material using specific 

reinforcement materials 
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1.2 Definition of nanomaterials 

Nanomaterials are generally considered as engineered materials with 

morphological features on the nanoscale i.e. one or more dimensions or characteristic 

aspects below 100 nm, whilst nanoparticle refers to a particle which has at least one 

dimension below 100 nm. Some organisations, however, such as the International 

Standardization Organization (ISO) (ISO, 2008) technical committee and the Scientific 

Committee of Emerging and Newly Identified Health Risks (SCENIHR), suggest that 

the term nanoparticle should only be used for materials with 3 dimensions below 100 

nm. Therefore, materials such as nanofibres and nanotubes which may have a diameter 

of in the nanoscale (1-100 nm), but a length of several microns can no longer be 

considered nanoparticles. These are suggested to be nano-objects. The figure 1.2 

outlines the latest version of the definition of nanomaterials, which could be subject to 

revision according to future requirement.    

 

 

Figure 1.2 Schematic overview of nanomaterial definitions by ISO in 2008: 

differentiation of nanomaterials into nano-objects and nanostructured materials 

(ISO, 2008). 

 

For clarity within this thesis the term nanoparticle refers to materials with all 

dimensions to be between  1-100 nm and nanomaterial for all other materials with at 

least one dimension or physical character which is at the nanoscale  (ISO, 2008) 



 

23 

 

 

1.3 Life Cycle Analysis (LCA) 

LCA is a tool that aims to compare all environmental and health effects assigned 

to a product to improve the processing, create policies and help make sound decisions. 

LCA therefore identifies all environmental and health impacts, which are associated 

with the product at each step of its life. LCA is also an important factor in achieving the 

standardisation of assessment methods for nanotechnology and nanomaterials. The 

urgent need and application of LCA was highlighted as an outcome of the 1992 UN 

meeting in Rio de Janeiro, in which the decision to take the idea of sustainability as of 

utmost importance was recognised. The important facet of sustainability has a reliance 

of having a comprehensive LCA in order to truly have a full Life Cycle Sustainability 

Assessment (LCSA). In the form of ISO 14040 it gives the principles and the 

framework to test manufactured products. Furthermore, an initiative of ISO 14044 lays 

the guidelines and requirements for LCA studies (ISO, 2006). LCA in itself is one of the 

3 components of LCSA, with the other components being Life Cycle Costing (LCC) 

and Social Life Cycle Assessment (SLCA). The three pillars equate as shown:  

 

Equation 1.1 Life Cycle Sustainability Cycle Assessment: Life Cycle 

Sustainability Assessment (LCSA); Life Cycle Costing (LCC); Life Cycle 

Analysis (LCA); Social Life Cycle Assessment (SLCA) (Kloepffer, 2008) 

                         

As it is also unclear exactly how nanomaterial toxicity alters during its life 

cycle, many groups have highlighted this as a big concern. The understanding of 

toxicity must encompass all stages at which nanomaterials are potentially exposed to the 

environment and humans (Kloepffer et al., 2008). With LCA a focus strategies are being 

developed to tackle the gaps in knowledge and to address the unknown risks which may 

be attached to nanomaterials during different points in their life (Hischier et al., 2012; 

Bauer et al., 2008).    
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According to the LCA concept, the assessment of potential human exposure to 

nanomaterials and associated risk is summarised in Figure 1.3.  A products life is 

observed from the raw form through their processing and modification to the disposal or 

the recycling of the material. At each stage the potential of environmental and human 

exposures is to be assessed. The understanding of the impacts at each stage aid a better 

understanding of what problems may arise from the application of a product, not only at 

one stage and one point in time, but throughout the life of the product.    

 

 

Figure 1.3 Schematic diagram of LCA: The exposure to and risk assessment of 

engineered nanomaterials (ENM) throughout nanoproducts life cycle. The solid 

lines indicate the life cycle and the dotted line indicate  the points of NP release 

and risk assessment. This study focused on in vitro toxicity studies of raw ENM 

and waste/dust NP  as highlighted by red boxes. 
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LCA is a very important requirement for safe production and usage of 

nanoparticles. It was highlighted in the studies conducted by the Woodrow Wilson 

International Centre for Scholars, (2010), that the majority of nanotechnology products 

are being used in the healthcare and fitness sector.  It has been known that many creams 

and topical drugs contain nano sized substances, and nanocomposites have been used in 

a wide variety of sports equipment. Therefore LCA is a fundamental requirement for 

understanding of how a material will affect the surrounding environment and people.  

The advantages of a complete LCA studies of a product are to be able to identify 

the impact of a given material before the material is exposed to the environment and 

therefore, potentially to avert unnecessary risks to the environment and the people in 

direct contact (Seager and Linkov, 2008). However, it is not easy to conduct an accurate 

LCA on newly engineered nanomaterials, as the products in which they will be used 

may still be in the testing phase and therefore the final life span of the material may not 

be known. This element of uncertainty is highlighted by Seager and Linkov, (2008). Not 

only are the mechanical properties different at nanosize range, properties which may 

influence the toxicity of a material are also changed, such as chemical and physical 

properties; usually the material on the nanoscale is more toxic than its larger counterpart 

bulk material (Cho et al., 2009). 

Human exposure to nanomaterials can occur at many different points in the life 

of a material, at the processing stage of the material to the transportation and finally the 

final application of the material (Som et al., 2010). This would mean that not only are 

there variable points in the materials life that nanoparticle can be released, but also 

human exposure to nanoparticles can occur through different routes. Workers would be 

exposed during production, handling and transporting of the nanoproducts mainly 

through inhalation and dermal contact. However for the general public, the elderly and 

children, the exposure could occur through application and consumption of nano-

enabled products via ingestion and dermal routes.  By highlighting the possible routes 

of exposure it can also be predicted where the exposure will have greatest impact from 

which a suitable model can be derived (Christensen and Olsen, 2004). 
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There are few reviews of nanomaterial LCA, however they are not regarded as 

being comprehensive (Bauer et al., 2008). Most groups conclude that the ISO, (2008) 

and ISO, (2006) guidelines are sufficient to adhere to (Kloepffer, 2008). However, as 

understanding increases regarding NP toxicity more groups are working towards a 

better framework for LCA (Som et al., 2010; Irfan et al., 2012; Hischier and Walser, 

2012). Specifically Hischier and Walser, (2012) produced an excellent review regarding 

this subject. In the review they presented all recent studies specific to NP LCA. They 

concluded that the studies that have been published so far lack credible data, 7 out of 17 

studies used only 1 weight unit of material, this implies that an acceptable model for 

continuous release and exposure has not been established. They argue that this is only 

examining the risks associated with the production process and not the functionality of 

the materials.  

Taking the studies and reviews conducted thus far into consideration, this study 

focuses on helping to fill some aspects of this gap in knowledge regarding NP LCA. 

Through consideration of airborne release, physical characteristics, the toxicology of the 

released particles and the toxicology of the unprocessed starting material, a 

comprehensive set of data can be produced for assisting the health risk assessment of 

NP. 

 

1.4 Characteristics of nanomaterials and micromaterials used in 

NEPHH  

It is known that the properties of a material are altered when within the nanoscale, 

where the laws of quantum size begin to have an increasing influence (Volokitin et al., 

1996). Not only are the mechanical properties different at this size range, properties 

which may influence the toxicity of a material are also changed, such as chemical and 

physical properties; usually the material on the nanoscale is more toxic than its larger 

counterpart bulk material (Cho et al., 2009). 
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The idea that the properties of nanomaterial differ considerably from the bulk 

material can be traced back to as early as 1982, when Boutonnet et al., (1982) used 

microemulsions to generate ultrafine (UFP diameter = <100nm) monodisperse particles 

of Pt, Pd and Rh. Later, in 1995 this work was built upon to generate TiO2 nanoparticles 

(Chhabra et al., 1995), which was confirmed by Transmission Electron Microscopy 

(TEM) imagery. Further work, conducted in 2000 on TiO2 nanotubes, began to show 

changes in morphological, structural and chemical properties of these nanomaterials. 

They went on to show in fact that dependant on the size and form (nanoparticle or 

nanotube) the chemical structure can be altered by  the alteration of electronic 

interaction with atoms, leading to an increase in photo catalytic decolourisation (Zhang 

et al., 2000).  Using Fourier Transform Infra-Red (FT-IR) spectra assay, Zhang et al. 

(2000) also showed that the change in Ti-O-Ti bond while producing TiO2 nanoparticles 

from bulk caused this change in photo catalytic property; and that it may be due to 

electron interaction within atoms.  

These differences in chemical bonding and the effect on the properties of the 

materials can be advantageous in specific applications. This beneficial nature can be 

used to impart onto other materials and structures in the form of a composite. Studies by 

groups such as Wacharawichanant et al., (2008) showed that nanosized zinc oxide 

composites had increased mechanical properties, i.e. tensile strength and young’s 

modulus compared with micron sized particles in a composite. It is known now that the 

fracture toughness of an epoxy resin can be improved by dispersing spherical nanosilica 

within the organic matrix. This was shown by Chen et al., (2008) who used 12 nm 

spherical silica particles that caused the energy to dissipate throughout the material 

therefore to increase the energy required to fracture the resin, which without the 

nanoparticles is known to be brittle.  

In the NEPHH project, SiO2 and MMT have been used to develop polymer-

nanocomposites. For comparison, some microsized silicon particles were also used as 

filler to generate polymer silicon-composites.    This section reviews currently available 

information on the characteristics of these filler materials, which could be important 

features governing their toxicological behaviour in biological systems.  
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1.4.1 Silicon dioxide nanoparticles (SiO2 NP) 

Naturally occurring silicon dioxide or silica is found abundantly on Earth, 

present predominantly as alpha-crystalline quartz (figure 1.4b). Crystalline silica  has 

been classified by the International Agency for Cancer Research  (IARC) as  a probable 

carcinogen in 1987 and in 1997 it was reclassified as a Group 1 carcinogen, i.e. that 

there was sufficient evidence for carcinogenicity in experimental animals and sufficient 

evidence for carcinogenicity in humans (IARC, 1997). Crystalline silica is often used as 

a positive control in toxicology testing (Lin et al., 2006; Donaldson and Borm, 1998). 

Man-made silica, however, is predominantly in the form of amorphous particles (figure 

1.4a), these include fumed, precipitated, colloidal, and mesoporous silicas. Fumed silica 

is produced as dry aggregates under high temperature flame (Pratsinis, 1998), These 

silica particles have been manufactured at industrial scale to meet an ever-increasing 

demand for a wide range of applications including construction materials, cosmetics, 

food, and medicine (Fruijtier-Pölloth, 2012; Kumar et al., 2010).  

  

a                                                                                b 

 

Figure 1.4 Chemical structure of silica. a. amorphous structure of silica; b. 

crystalline structure of silica.  

Amorphous nanosilica is often used as filler to reinforce composites. Recent 

studies have been conducted using nanoindentation (a variety of hardness testing for 
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materials) to derive the elastic modulus of individual SiNP, the toughness/elastic 

modulus for SiNP is around 70 GPa (Tetard et al., 2008). The SiNP to be used in 

NEPHH are amorphous spherical particles with an average diameter of 12 nm sourced 

from Degussa Evonik. The SiNPs provided were, Aerosil 200 (hydrophilic) and Aerosil 

974 (hydrophobic). The Aersoil 974 surface was modified by dimethyldichlorosilane 

treatment, rendering it hydrophobic. Another two fumed SiO2 NP 7 nm and 14 nm were 

acquired from Sigma-Aldrich, both considered hydrophilic. As fumed SiNP are more 

likely to become airborne, therefore posing a higher risk for environmental exposure. 

Studies are deemed necessary to establish the toxicity potential of fumed SiNP. For 

these reasons fumed SiNPs were included as controls in toxicity study without surface 

modifications.  

 

1.4.2  Montmorillonite (MMT) 

MMT is a soft phyllosilicate group of minerals which form crystals, which in 

turn forms a clay. The clay is known to have 2 tetrahedral sheets on either side of a 

central octahedral sheet to form layer structure. The chemical formula and structure of 

MMT are as follows:  

Equation 1.2 Montmorillonite chemical formula 
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Figure 1.5 Structure of MMT as adapted from Grim, (1962). 

The individual layer has an up to 100 micrometre across and few nanometres in 

thickness. This high aspect ratio gives MMT its superb property as nanomaterials with a 

variety of applications. MMT has a considerably high modulus, a toughness of 170 GPa 

which is higher than that of titanium alloys around 105-120 GPa. The Society of Plastic 

Engineers (SPE) concluded as an outcome of ANTEC 2002 conference that the 

dispersion of nanoclays does increase the base properties of the resin used if dispersed 

uniformly and thoroughly (Cho et al., 2002). 

The basic material properties of MMT are (Rockwood specialities, 2006): 

 Modulus: 170GPa 

 Shape: Platelet 

 Aspect Ratio: 1 nm thick, 75-100 nm across 

 Surface Area: >750 m
2
/g 

 Particle: robust under shear, not abrasive 
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1.4.3  Glass fibres (GF) 

The GF has a similar structure to that of amorphous silica shown in figure 1.4. 

GF are also extremely light materials and have been used for a long time in the 

automotive industry in various applications. For example they have been used to 

strengthen plastics for making bumpers in vehicles. The basic material and physical 

properties are (MATBASE, 2009):  

 Modulus: 73 GPa 

 Shape: Fibre 

 Aspect Ratio: 8-20 µm thick, long fibrous material  

 Density: 2600 kg/m
3
 

GF are generally generated in micron size, combining with polymer matrix will 

create a strong composite. 

 

1.4.4  Foam-glass-crystal (FGC) 

The exact crystal structure of this material is not disclosed due to commercial 

use. Made totally from recycled glass with minimum virgin additives, FGC is preferred 

to be used in civil constructions and insulations due to its watertight nature. The use of 

this material allows structural and mechanical improvements in a given final product 

such as composite for making lightweight vehicles.  

Made from 98% recycled material and only 2% additives (inorganic salts) 

(ENCO Engineering GmbH Switzerland, 2004), FGC is a model of excellence for re-

cycling and green friendly environment. Due to lack of availability of published data on 

this new and innovative material, it is difficult to highlight the properties of this material 

with respect to this study. 
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1.5 Toxicology of Nanomaterials (both in vivo and in vitro) 

The area of nanotoxiocology was first recognized in the early 2000s 

emphasizing the need for identification of hazardous nanomaterials. In fact some 

concepts of nanotoxicology were derived from studies of ultrafine particles (UFPs), 

which are defined as particles smaller than 100 nm (Donaldson et al., 2000).  UFPs 

studies have led to a greater understanding of nanoparticles. Studies have shown that 

UFPs are more toxic than their related micron sized particles at the same dosage in both 

in vitro and in vivo studies. 

Rat models exposed to UFPs showed increased lung injury and pathology than 

rats exposed to larger particles of similar material (Donaldson et al., 1998). Studies with 

particles less than 50 nm in diameter also showed toxicity greater than larger particles 

after chronic inhalation exposure in vivo using rat models, leading to fibrosis and lung 

tumours (Oberdörster, 1996). The same dose both inhaled over 12 weeks, the UFP 

(approximately 20 nm) TiO2 particles, had considerably higher retention in the lungs, 

and bronchoalveolar inflammatory response as compared with fine particles 

(approximately 250 nm) in rat.  Some groups have worked on ultrafine particles for over 

10 years concluding that the particles with such small sizes make them increasingly 

difficult to remove from the contact area leading to a large deposit over time and 

sustained exposure, which in turn leads to prolonged contact. This prolonged contact 

was hypothesised to cause inflammation, with the vast surface area in contact with 

epithelial cells leading to possible generation of free radicals (Donaldson and Borm, 

1998; Oberdörster et al., 2004; Oberdörster et al., 2005) 

UFPs are produced in a broad spectrum of chemical composition and sizes, this 

heterogeneous nature of UFPs makes it difficult to compare the effect of the particles on 

human exposure to engineered nanoparticles, which may have a concise size range and 

shape (Donaldson et al., 2004). Once at a nanoscale not only does a material have 

differing physical properties to that of the bulk material but this change may cause a 

different biological effect, which suggests a possibility of toxicity being increased. 

Since the recognition of nanotoxicology, research into the toxicity and associated 



 

33 

 

mechanisms of nanomaterials has increasingly drawn attention from government, 

regulatory bodies, consumers and different industrial sectors including pharmaceuticals, 

chemical industry, and cosmetics. The studies so far have been conducted in a range of 

nanomaterials that have been prioritized for study in the EU and some other regions in 

recognition of the potential value of their applications. For critical review of 

nanomaterial/nanoparticle toxicity data published in peer reviewed literatures, Silica NP 

and MMT that are involved in NEPHH project, together with some representative 

nanoparticles of different forms as listed in the table 1 were selected, with an aim to 

understand the relationship of nanoparticle characteristics and  toxicity.      

There are some important measurements that used for toxicology studies, which 

are used to assess at which concentration a substance is harmful. These measurements 

allow for a better understanding of how to control toxic substances. Two of these 

measurements that are widely used are:  

- Lethal Dose 50 (LD50); calculated dose of a substance which causes the 

death of 50% of an entire defined experimental animal population. 

- Inhibitory Concentration 50 (IC50); calculated concentration of a 

substance which causes inhibition of growth in 50% of an entire defined 

population.   

Yang et al., (2002) worked on determining the effective concentration of a toxin 

in vivo and in vitro. It was suggested that IC50 in vitro is as accurate in the prediction of 

toxicity as LD50 from rats in vivo. It is also argued that not all cytotoxic responses are 

basal responses (Clemedson et al., 1998), but they are linked to the specific function of 

the cell line. These studies maintain the importance of both forms of studies, but also 

show there is a correlation between what results may be found.  

 

1.5.1 SiO2 NP  

It is known that crystalline silica is highly toxic, and a class 1 carcinogen 

(IARC, 1997).  Exposure to crystalline silica could lead to severe silicosis (IARC, 
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1987). This information was a product of necessity due to occupational health concerns 

dealing with inhalation of crystalline silica (Hessel and Sluis-Cremer, 1987). 

Furthermore a study by Calvert et al., (2003) showed that crystalline silica is also 

associated with lung cancer, chronic obstructive pulmonary disease, rheumatoid arthritis 

and tuberculosis. 

Amorphous silica on the other hand has been much less studied. Some brief 

work has led to the conclusion that amorphous silica has varying toxicity potentials, 

which may be dependent on other characteristics of the material, such as size, shape and 

surface chemistry (Warheit, 2001). The varying toxicity potential derived from different 

studies has caused concerns as to what causes differences in essentially the same 

substance.  Is it the size, the surface chemistry, or is it more complex than that? 

An in vivo study conducted on mice that were intratracheally administered with 

both amorphous and crystalline silica at 2, 10 and 50 mg/kg found that the amorphous 

silica nanoparticles induced a higher level of lactate dehydrogenase (LDH) increase in 

Bronchoalveolar Lavage (BAL) fluid and inflammation in the lungs at early stage than 

crystalline silica, BAL fluid collected via insertion of a tube into the bronchial pathway 

and fluid is squirted into the lungs then recollected for examination. LDH is an enzyme 

found usually inside cells, it is produced as a response to ROS; an increase of LDH 

suggests increase ROS. However, these effects were detected to have subsided at 1 and 

4 weeks after exposure. It was therefore concluded that the SiNP induced transient but 

severe lung inflammation (Cho et al., 2007). LDH is an enzyme which is present in 

cells, it is used to catalyse the pyruvate to lactate reaction. An increase of LDH in the 

BAL suggests the membrane damage of cells in the lungs. Another study examined the 

production of LDH in BAL in rats after inhalation of crystalline (3 mg/m
3
) and silica 

amorphous silica (50 mg/m
3
) for 6 hours a day and 5 days a week for up to 13 weeks.  

The amorphous silica produced almost twice the production of LDH in BAL than the 

crystalline. However, over the recovery period the levels of MIP-2 (chemokine 

expressed due to oxidative DNA damage) in rats treated with amorphous silica 

decreased to close to controls, whereas the level of MIP-2 in rats treated with crystalline 

silica remained high. High concentrations of amorphous silica over a prolonged period 
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caused pulmonary cell damage as indicated by initial high levels of LDH in BAL 

(Johnston et al., 2000).  

With all the work which has been conducted it is still not clear as to what is the 

underlying mechanism for these adverse inflammatory effects induced by silica, as 

presented by the studies above, although there seems some evidence that both 

inflammatory and oxidative stress are involved through a linked pathway i.e. oxidative 

stress triggering the production of inflammatory markers to initiate a response. It has 

been suggested that one may mediate the other i.e. oxidative stress leading to 

inflammation (Oberdörster et al., 1990; Oberdorster et al., 1992; Øvrevik et al., 2006; 

Park and Park, 2009; Huaux, 2007). 

Kaewamatawong et al., (2006) found moderate to severe inflammatory 

responses in mice which were intratracheally instilled with 0, 0.3, 3, 10, 30 or 100 μg of 

ultrafine colloidal silica particles.  Park and Park, (2009)  investigated the response to 

silica NPs both in vivo and in vitro. They found that mice treated with a single dose 

(50mg/kg) led to increased blood level of IL-1β and TNF-α, both associated with 

inflammation. With higher doses (100 and 200 mg/kg) SiNP induced splenocyte 

viability reduction, which was associated with the overproduction of nitric oxide (NO), 

a signalling molecule that causes the increase of  IL-1β and TNF- α concentration in 

blood. The increase in IL-1β and TNF-α expression was suggested to be the 

consequence of oxidative stress induced by ROS. These cytokines have been identified 

to be important mediators of inflammation caused by silica nanoparticle treatment (Park 

and Park, 2009; Sharma et al., 2007). 

As mentioned earlier there may be other factors which affect toxicity potential 

further than just crystalline structure. Size is one of the factors that have been explored 

by some groups who looked at the effects of different sized silica nanoparticles. Using 

SiNP particles sized 60 and 100 nm to treat A549 cells and THP-1 macrophages, it was 

shown that the smaller size induced a higher LDH response than lager particles 

(Wottrich et al., 2004). There are many other reports on size effect of SiNP toxicity, 

although sometimes contradicting to some degree.     
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Studies have also been conducted on testing the idea that particle surface 

property is a key factor in determining SiNP toxicity. Using erythrocyte haemolysis as a 

toxicity endpoint, the effect of surface silanol group on SiNP toxicity has been studied.  

It was suggested that the density of surface silanol group was associated with aerosol 

particle toxicity (Fenoglio et al., 2000; Murashov et al., 2006). More recently studies 

suggested that surface area, chemical, hydrophilicity and catalytic properties should all 

be considered when studying toxic properties of particles (Limbach et al., 2007) (Fubini 

et al., 1999). By heat treating crystalline silica, Fubini et al., (1999) altered the surface 

chemistry making one sample hydrophilic and one hydrophobic. It was found that 

hydrophilic sample was considerably more toxic than the hydrophobic sample as tested 

on mouse monocyte macrophages J774 (Fubini et al., 1999). However, they did not 

offer an explanation to their findings. This study leaves an interesting question to 

whether the same will apply to the amorphous silica.  

 

1.5.2  Montmorillonite (MMT)  

MMT has been used in a wide range of areas including construction materials, 

food and medicine. Although it is conventionally considered safe for use in food and 

medicine, MMT property could be changed after modifications as required in some 

applications.  

 It has been shown in rats that MMT can be absorbed into the body within 2 

hours without any accumulation in any specific organ or toxicity (Baek et al., 2012). 

The tests were conducted over 24-72 hours and at concentrations ranging from 0.5-1000 

µg/ml from single exposure orally.  

Very few in vitro tests have been conducted on unmodified MMT. Recently as 

the interest has grown in medical application of MMT, some groups have conducted 

toxicity experiments on modified MMT. Using Caco-2 cells as a model, it was 

suggested MMT-chitosan are biocompatible based on the observation that cell growth 

was enhanced in the presence of MMT-chitosan at 5 to 500 µg/ml (Salcedo et al., 2012). 
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A study by Styan et al., (2008) was also in favour of biomedical uses of MMT. 

However, with surface coating modifications they feared toxicological effects following 

release of coating molecules.  There are some other groups suggesting that with a 

suitable coating, MMT is a very good candidate for biomedical application (Zhuang et 

al., 2007; Zheng et al., 2007).   

 

1.5.3 Other inorganic nanomaterial toxicology 

Inorganic nanoparticles have been of great interest due to their applications in 

medical diagnostics and treatments. They include iron oxide nanoparticles (Fe2O3), 

titanium oxide (TiO2), quantum dots (QD), gold (Au) and silver (Ag) nanoparticles.  

 

Oxides:  

Iron oxide (Fe2O3/Fe3O4) 

Iron oxide is referred to as a ferromagnetic material; this means it will respond to 

an external magnetic field by producing a magnetic moment along the external field 

lines. This is caused by the alteration of the Weiss domains (magnetic domains). 

However, once the magnetic field is removed these domains can remain coupled and 

create a residual magnetism. Iron oxide based NP have been explored to develop cost 

effective, sensitive and versatile assays for medical diagnosis (Mornet et al., 2004).  

However, studies conducted in rat showed that exposure to 8.5 mg/kg twice a day 

for three days of iron oxide (Fe2O3) NP induces acute histopathalogical changes in liver 

and lung. There was no elevation in serum enzyme activities, which are often reported 

in vitro studies due to cell membrane damage (Wang et al., 2010). Studies using in vitro 

model, such as J774 cell line, suggested that iron oxide NP could interfere with cellular 

function causing cell membrane damage, as suggested by an increase in LDH leakage 

(Naqvi et al., 2010).  
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Titanium (TiO2) 

Titanium dioxide NPs are generally considered safe for topological application 

and have been used extensively in sun screen creams. A recent study, using rat liver 

cells (BRL 3A) as a model, showed that TiO2 NP had no toxic effect at lower dose ( <50 

µg/ml) but had significant toxic effect at higher doses (>100 µg/ml), as assessed by  cell 

viability and LDH leakage assays (Hussain et al., 2005).  

Installation tests using rat models have shown somewhat contrary results to the 

belief that TiO2 is an inert nanoparticle. After oral administrations over a period of 65 

days through feeding with 1% and 2% TiO2 NP, albino rats showed a significantly 

reduction in fertility and liver hepatic cell damage (EL- Sharkawy et al., 2010). 

 

Cerium (CeO2) 

Eom and Choi, (2009a) worked in vitro with CeO2 NP to assess their toxicity, and 

found that these particles induce oxidative stress in BEAS-2B (human bronchial 

epithelial) cells. They concluded that the induction of oxidative stress occurs through 

ROS generation leading to heme oxygenase (HO-1) upregulation via the p38-nrf-2 

pathway. Most interestingly they showed that larger particle induced a greater level of 

toxicity, which was against the idea that smaller particles are more toxic due to an 

increased surface area to volume ratio. 

In vivo studies have been conducted using rats. CeO2 was shown to induce 

apoptosis in alveolar macrophages (Ma et al., 2011). It was concluded that CeO2 NP 

induced inflammation, cytotoxicity and damage to airway, thus, inducing fibrosis in the 

lung through inflammation.  
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Gold  

The optical features that are present in gold nanoparticles make them extremely 

exciting for uses in biomedical applications (Han et al., 2007). However it has been 

found that smaller sizes of gold NP (<4 nm) can induce cytotoxicity via entering into 

the nucleus of the cell (Rivera Gil et al., 2010). It was suggested that it was not the gold 

NP themselves which caused toxicity, rather it is caused by unwanted residue molecules 

from the production process. In another study, it was observed that the gold NP were 

taken up into K562 leukaemia cells, but the toxicity was observed in cells treated with 

the control residue molecules and unwashed gold NP but not in the cells treated with 

washed gold NP  (Connor et al., 2005).  Khandelia et al., (2013) developed drug loaded 

gold NPs which were coated with albumin to stabilise them and to increase the uptake 

of the NPs into cells. Doxorubicin loaded and albumin coated gold NP were taken up by 

HeLa cells more efficiently. Field-emission SEM showed apoptotic bodies, confirming 

that the doxorubicin had been released. These studies provided evidence that NP size is 

not necessarily the fundamental aspect determining NP toxicity potential, which may be 

more closely related to chemistry of the particle or indeed associated with molecules 

that the NP carries, such as production residues or toxic chemicals loaded as drugs for 

theraputics. 

  

Quantum dots (QDs) 

Quantum dots are unique nanocrystals with distinct optical and electrical features, 

usually consisting of a heavy metal core coated with an inert outer shell (Bruchez Jr. et 

al., 1998).  Their fluorescence spectra make them ideal fluorophores for imaging uses in 

vivo (Chan et al., 2002).  

Toxicity evaluation of quantum dots (QD) is not so easy, as difference in their 

production process can lead to different chemical properties which in turn can convey 

different toxic potentials (Hardman, 2006). In each case the surface charge, size, outer 

coating and oxidative/photolytic state can be different. It was found that QD with CdTe 
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core are toxic in vitro to rat PC12 cells at as little as 10 µg/ml. It was also found that an 

uncoated CdTe core was even more toxic, causing cytotoxicity at just 1 µg/ml (Lovrić et 

al., 2005a). Studies show that QD coating itself may impart toxic effects without a 

chemical core, and surface charge is very important to the translation of QD toxicity 

(Hoshino et al., 2004). Studies using different sizes of QDs with equal surface charges 

revealed that cytotoxicity increases as size decreases e.g.,  2 nm quantum dot has greater 

toxicity than 5 nm quantum dot/ml (Lovrić et al., 2005b). These studies lead to a 

conclusion that QD toxicity is controlled potentially by three factors, the size, the 

surface charge and the core.     

Table 1.3 (p.46) is a summary of some toxicity studies conducted on a variety of 

NP. Most toxicity studies suggested that physical characteristics are an important 

contributor to the toxicity of any NP. The surface charge and the size, have all been 

shown to have some effect on cell viability in vitro and tissue/organ damage in vivo, 

suggests that it is impossible to predict NP toxicity based on any single parameter of NP 

characteristics.   

 

1.5.4 Organic nanomaterial toxicology 

Organic compounds are regarded as any compounds of gaseous, liquid or solid 

form containing carbon. In the same way, nanomaterials containing carbon are defined 

as organic. These would include the family of fullerenes, which are any molecules 

composed entirely of carbon such as buckyballs (C60/C70), carbon multiwall 

nanotubes/singlewall nanotube (MWNT/SWNT) (Immunologie et Chimie 

Therapeutiques, 2004) and polymer nanoparticles e.g. polystyrene nanospheres, 

polymer nanocomposites and dendrimers (figure 1.6).  
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Figure 1.6 Representatives images of nanomaterials. A) Representation of C60 

structure also known as buckyball, (Nature, 2011) B) Schematic diagram of 

styrene and polystyrene that may be used as a matrix in polymer 

nanocomposite, C) Single wall and Multiwall carbon nanotubes 

(SWNT/MWNT), (Immunologie et Chimie Therapeutiques, 2004), D) 

Polyamidoamine (PAMAM) dendrimers. 

 

Fullerenes  

There have been a number of studies conducted on fullerenes toxicity. A study 

by Yamawaki and Iwai. (2006) showed induction of morphological changes in HUVEC 

(Human Umbilical Vein Endothelial Cells) by 7.1 nm of C60(OH)24 fullerenes at 1-100 

µg/ml. Vacuole formation and cell density decrease were observed in a C60(OH)24 

concentration dependant manner. However, cell death was observed at the highest 

concentration of 100 µg/ml as assessed by Lactate Dehydrogenase (LDH) leakage 

assay. The chronic effects of low dose exposure to C60 (1 µg/ml) were also detected in 

endothelial cells, the cell adhesion was inhibited. A study using male rats demonstrated 

that treatment with water soluble C60 NP at 2.22 mg/m
3
 for 3 hours a day for 10 days 
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consecutively led to the bioaccumulation of fullerene nanoparticles and atherosclerosis 

in vivo.  However, the specific mechanism of toxicity was left unanswered. Baker et al., 

looked at bronchial alveolar (BAL) fluid after inhalation exposure to rats with 50 nm 

C60 particles. They found no statistically significant toxic effects of fullerenes (Baker et 

al., 2008).  

Sayes et al., (2005) also worked on fullerene cytotoxicity, using LDH leakage 

assay they showed increase cytotoxicity in Human Dermal Fibroblasts (HDF), however 

the dose metric used in this study was parts per billion (ppb), making it difficult to 

compare with similar studies using alternative dose metrics. Thiobarbituric acid (TBA) 

assay was conducted to measure lipid peroxidation caused by nano-C60, from this they 

concluded that lipid peroxidation is the mechanism of toxicity for fullerene. Studies 

conducted by the same group worked to identify the differences between C60 pristine 

molecules and derivative C60(OH)24, which is water soluble. The striking difference 

between the two molecules was the zeta potential, pristine zeta potential being ~-30 mV 

and the derivative being 0 mV. It was reported from this study that pristine C60 was seen 

to be 3-4 times more toxic in vitro then C60(OH)24. However, when assessed in vivo 

there was no difference in toxicity observed (Sayes et al., 2007). 

 Carbon nanotubes (CNTs) are also a member of the fullerene family. One of the 

most attractive features of nanotubes is the length to diameter ratio, which can be up to 

132,000,000:1 (Wang et al., 2009). Single-walled nanotubes can have diameters of 1-3 

nm whereas multi-walled nanotubes can have diameters of 10-100 nm. CNTs have 

extraordinary thermal conductivity, mechanical and electrical properties. These 

properties make them an exciting potential target for nanotechnology, but may also lead 

to increased toxicity. 

Herzog et al., (2007) conducted an in vitro study into the toxicity of single-

walled carbon nanotubes (SWNT) using three human cell lines, human lung carcinoma 

(A549), human skin keratinocyte (HaCaT) and bronchial epithelial cells (BEAS-2B). 

Their studies used clonogenic assays, which minimise substrate interaction with the 

nanotubes as there are no colorimetric substances added. As a comparison to SWNT 

they used carbon black, a by-product of incomplete combustion of petroleum used in 
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pigments. They found SWNT to cause significantly higher levels of cytotoxicity than 

carbon black. however their study did not identify the mechanism of toxicity. 

Donaldson et al., (2006), highlighted in their comprehensive review the need to 

consider the comparisons between MWNT and SWNT, also to consider during the 

production process if any residual material can be incorporated into the nanotubes 

which may change toxicological effects, this is illustrated in figure 1.7.   

Figure 1.7 illustrates the various aspects of CNTs that may influence the toxicity 

potential. It examines how each characteristic may influence the CNTs ADME e.g the 

solubility of any associated components and the size of the CNTs alone will influence 

which location the CNTs will be deposited. The figure then describes how the 

individual components have been shown to cause oxidative stresses from the induction 

of ROS which leads to inflammatory stress, and also to genotoxicity in the form of 8-O-

dG (8-Oxo-2'-deoxyguanosine). 8-O-dG is a major product of oxidation of DNA; over 

presence of ROS with the cell can initiate this oxidation. 
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Figure 1.7 Component related CNT toxicity. Associating physical characteristics 

of CNT to the toxicity as derived from literature and described by Donaldson et 

al., (2006). 

 

Based on the studies described above, it has been suggested that not only 

nanoparticle but also fibre could manifest toxicity of CNT. In a study using mice that 

were intratracheally instilled with 0, 0.1, or 0.5 mg of carbon nanotubes, a carbon black 

negative control, or a quartz positive control as a single dose, it was found on day 7 and 

day 90 that CNTs induced a histopathological toxicity effect in the lungs that was more 

severe than that induced by quartz nanoparticles and nano carbon particles, which were 

generally used as positive controls (Lam et al., 2004).  

In vitro studies conducted on alveolar macrophages concluded that the toxicity 

potency of the fullerene family can be sequenced to SWNT>MWNT>quartz>C60. 

SWNT caused considerably more cytotoxicity and inhibition of phagocytosis at low 

doses, whereas MWNT and quartz only induced toxic effects at high dose (Jia et al., 

2005). Geys et al., (2010) detected a reduction in cell viability with increased doses of 
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CNTs in A549 cells. However, they highlighted that surfactants and serums interacting 

with CNTs may influence the results and cause disparity. For this reason they called for 

strict standardisation for nanotoxicity and detailed descriptions of materials for 

interpretation. 

 

Polymer nanocomposites and dendrimers  

Nanocomposites are multiphase materials in which one phase as dimensions 

below 100 nm. Polymer nanocomposites are usually made from an organic polymer 

matrix such as polystyrene, polyamide, polyurethane or polyamide and inorganic 

nanomaterials.  Applications of these materials range from structural and mechanical 

uses to drug delivery and biological scaffolds.  

Rayavarapu et al., (2010) are one group who have worked with a polymer coating 

on gold nanorods. Synthesised nanorods were coated with either polystyrene sulfonate 

(PSS) or polyethylene glycol (PEG). In vitro viability assays were conducted on 

mammary adenocarcinoma (SKBR3), human leukaemia (HL60), Chinese hamster ovary 

(CHO) and mouse myoblast (C2C12) cells. It was shown that PSS coatings imparted a 

substantial decrease in cell viability in all four cell lines as compared to little or no 

reduction by PEG coatings, except the mouse myoblasts in which both coats caused 

similar reduction of cell vaibility. However, PEG coatings made the gold nanorods 

more stable in solution. 

Styan et al., (2008) studied the in vitro effects of polyether urethane matrix with 

montmorillonite (MMT) dispersion. The MMT was pre-treated with quaternary 

ammonium compounds (QAC) and amino undecanoic acid (AUA) to aid with 

dispersion. Using L929 mouse fibroblasts they found that organic modification was 

essential to achieve dispersion at nanoscale within the nanocomposite. The in vitro 

results showed an inhibition of cellular growth and cell membrane disruption in QAC 

modified MMT but no inhibition of growth was recorded for AUA modification. 
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Other inorganic nanomaterials could be stabilised by organic polymer coatings. 

For instance, iron oxide can have their toxicity lowered by organic coatings and 

association with organic materials. Iron oxides are rarely used without coating; this is 

due to their very poor solubility. Without coating they would accumulate under gravity 

leading to impedance of blood flow in circulatory system. More often than not the 

coatings are organic coatings such as polyvinyl alcohol, chitosan and polyethylene 

glycol amongst others (Gupta and Gupta, 2005). Cho et al., (2011) showed that the 

nanoparticle-antigen complex triggered more specific T-cell response causing delayed 

tumour growth, suggesting that coupling nanoparticle with antigen could lead to  

improved methods for cancer treatment.    

Another polymer which is used in production of nanocomposites is chitosan. 

Chitosan is a polysaccharide composed of randomly distributed β-(1-4)-linked D-

glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit), which is 

often polymerised and associated with nanoparticles for biological uses. One study 

combined gelatine chitosan and MMT to create a possible scaffold for regenerative 

medicine. Their studies showed that an increased amount of MMT decreases cell 

viability (Zhuang et al., 2007). 

It was found that chitosan polymer nanocomposite does not impart the levels of 

cytotoxicity expected from nanomaterials. This may be related to one of the aspects of 

physical character, the surface charge, as alteration of the surface charge alters the 

solubility and the stability of the particle in solution (Zheng et al., 2007). Results gained 

by other groups give weight to this theory (Chang et al., 2007), finding that the relative 

toxicity observed by chitosan-silica nanocomposite was significantly less than that 

observed for silica on its own. Chitosan has therefore been highlighted as suitable for 

clinical use. 

Dendrimer nanocomposites are nanosized hybrid molecules of organic and 

inorganic elements. These hybrids may contain topological ‘guest’ 

atoms/molecules/nanodomains held in place by dendritic polymer. Very little is known 

about the toxicity of these hybrids to date. The number of repeating branching cycles 

during synthesis is defined as generations (Gn). Jevprasesphant et al., (2003) worked 
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extensively with PAMAM (Polyamidoamine) (Figure 1.6D). Their results suggested 

that the increase in generation of dendrimers could cause a greater toxicity in 

comparison to control, which is consistent with an earlier study by El-Sayed et al., 

(2002), who showed that later generations (G3-G4) dendrimers exhibited toxicity on 

Caco-2 cells, whereas G1-G2 did not.  

In summary many groups have recognised potential applications of NPs in many 

areas. However, with these applications there are certain health concerns which are 

associated with application dependant exposure. The studies conducted thus far provide 

a rich knowledge source for a better understanding of the principles on the use of NP in 

a safe manner. A summary of the in vivo and in vitro studies conducted on various NPs 

mentioned in this section is presented in table 1.   
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Table 1.3 Summarisation of the variety of nanoparticle and the extent of in vitro and in vivo study conducted with summary of 

findings.  

Nanoparticle  Size 
In vitro cell line and 

concentration 

In vivo model and 

concentration 
Summary Ref  

C60(OH)24 <10 nm 

HUVECs 

1-100 µg/ml 

Mice were treated over 2 

weeks daily 40 mg/kg  

- Cytotoxicity occurred at higher 

concentrations in vitro leading to LDH 

leakage and inhibition of cellular 

growth. 

- In vivo experiments showed that this 

molecule protects from γ-radiation. 

Stopping ionisation and possibly 

enhancing immune function  

(Yamawaki and Iwai, 

2006) 

(Cai et al., 2010) 

C60 <10 nm 

HepG2 

>50 ppb 

Rats were instilled with 

single dose ranging 

between 0.2-3 mg/kg 

- Cytotoxicity occurs at high 

concentrations. Detectable membrane 

damage, preventable by using 

antioxidants. 

- Contrary to in vitro studies in vivo 

studies found no difference between 

nano-C60 and C60(OH)24 as compared to 

control, from   histopathological studies 

1 day to 3 months post exposure.  

(Sayes et al., 2005; 

Sayes et al., 2007) 
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SWNT d= 1-2 nm 

HaCaT; 

A549; BEAS-2B 

1-400 µg/ml 

Mice were injected with 

doxorubicin 

functionalised SWNT 

  5 mg/kg 

- Cell growth inhibition occurs and cell 

viability is decreased at higher 

concentrations 

-  Mice exposed to doxorubicin 

functionalised SWNT showed no toxicity  

apart from a  gradual excretion  of 

SWNT via reticuloendothelial system 

(RES) into faeces 

(Herzog et al., 2007) 

(Liu et al., 2009) 

MWNT d= 20 nm 

A549; T lymphocytes; 

Jurkat T leukaemia cell  

~400 µg/ml  

Mice were injected with 

functionalised and 

protein coated MWNT at 

20 mg/kg  

- T lymphocytes undergo  apoptosis at 

high concentrations, oxidative and 

inflammatory stresses seen in lung cells 

- Localisation for functionalised MWNT 

occurred in liver, bladder and kidneys 

after 24 hours after injection, MWNT 

coated with proteins accumulated in the 

lungs. 

 

(Han et al., 2010) 

(Bottini et al., 2006) 

(Jia et al., 2005) 

(Lacerda et al., 2008) 

 



 

50 

 

Dendrimers <10 nm 

Caco2; 

NIH3T3;U937;Rat2  

~1 µM 

Mice 2.56 g/kg 

intraperitoneal and 1.28 

g/kg intravenous  

- Higher concentrations exhibited the 

generation of ROS, leading to oxidative 

and inflammatory stress. LDH leakage 

was also observed in later generations 

- in vivo no toxicity or chemical changes 

to blood levels were observed up to 

2.56 g/kg of NP   surface modified with 

PEG. 

(Lesniak et al., 2005) 

(Naha et al., 2010) 

(Chen et al., 2004) 

Organic nano 

composites e.g. 

PU/PP/PA, PEG or 

Chitosan 

60-100 nm 

C2C12; HL60; A549; 

macrophages 

10-250 µg/ml 

Mice were subjected to 

subcutaneous 

implantation of PEG at  

10 mg/kg 

- in both in vitro (macrophage) and in 

vivo (mice) robust pro- inflammatory 

responses were observed for PEG 

hydrogels. 

- Chitosan stabilised nanosized 

materials for integrated and lower 

levels of toxicity in use. 

 

(Styan et al., 2008) 

(Lynn et al., 2010) 

(Chang et al., 2007) 
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Iron Oxide 10-30 nm 

J774 

25-500 µg/ml 

Rats inhaled  twice a day 

for three days at  

8.5 mg/kg 

-   Serum levels of LDH were increased 

in in vivo histopathalogical analysis. 

Revealing severe damage to liver and 

lung tissue 

-  Reduction in viability to 55% at higher 

concentrations increased generation of 

ROS. 

(Wang et al., 2010) 

(Naqvi et al., 2010) 

Titanium oxide <10 nm 

BRL 3A 

10-200 µg/ml 

Albino rats were fed for 

65 days with 1-2 %wt 

-  Reduction in cell viability and 

increased LDH leakage observed 

-  Rats exposed to TiO2 in diet developed 

liver damage and significant reduction 

in fertility. 

(EL- Sharkawy et al., 

2010) 

(Hussain et al., 2005) 

CeO2 10-50 nm 

ATCC; MRC-9;Beas-2B 

~1 mg/ml 

Rats were exposed to 

single intratracheal 

instillation of 0.15-7 

mg/kg 

- Reduction in cell viability observed 

through oxidative stress path way 

- In vivo inflammation, cytotoxicity, 

damage to air carrier system, 

enlargement of alveolar macrophages 

and ultimately leading to fibrosis. 

(Ma et al., 2011) 

(Eom and Choi, 

2009a) 
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SiO2 12-100 nm 

A549; Beas-2B; HaCaT; 

Lymphocytes; 

macrophages 

10-500 µg/ml 

Rats and mice have been 

exposed by intravenous 

injection and inhalation 

up to 10 mg/ml 

- Oxidative stress and inflammatory 

stresses regularly occurred in vitro 

systems leading to reduction in cell 

viability over time 

- Retaining of nanoparticles in lung, liver 

and spleen over 30 days occurred due 

to uptake via endocytosis by 

macrophages, ultimately this leads to 

organ damage. 

(Xie et al., 2010) 

(Park et al., 2010) 

(Johnston et al., 

2000) 
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1.6 Mechanisms of nanotoxicity  

Toxic substances can cause adverse effect at cellular and molecular levels by 

various mechanisms.  Depending on their physiochemical properties they may cause 

membrane damage or may be internalised, which may lead to further interruption of 

cellular mechanisms. For the majority of nanoparticles, their toxicity mechanisms are 

still not well understood, although associations have been made with their surface area 

to volume ratio. For example, the large surface area of these molecules can act as a 

catalytic surface for reactions to occur and therefore, reactive oxygen species to be 

generated. This section will review evidence forming the basis of our current knowledge 

on the mechanisms of nanoparticle toxicity.   

 

1.6.1 Possible uptake mechanisms of nanoparticles 

It is relatively uncertain how nanoparticles enter the cells to initiate toxicity. 

However, it is suggested that the uptake of the nanoparticles to different locations 

within the cell could result in distinctive toxicity via cellular location specific 

mechanisms (Mühlfeld et al., 2008). If NPs are located in the nucleus this will increase 

the chances of DNA damage as nucleic acids become exposed more directly to NPs. 

Kang, el al., (2010) studied the location of gold NPs near the nucleus leading to DNA 

damage as a cancer targeting drug. Ultimately the location of the NPs within the cell 

may be driven by the uptake pathway. 

A number of different pathways exist for possible particle uptake, including 

phagocytosis, macropinocytosis, clathrin-mediated endocytosis, clathrin- and caveolae-

independent endocytosis or by caveolae-mediated endocytosis, endosomes and passive 

transcytotic processes (Unfried et al., 2007). These mechanisms as shown in figure 1.8 

could provide access to different subcellular compartments, including nucleus, 

mitochondria and other parts of cytoplasm. The location may have a critical role in 

toxicity outcome. The nanoparticle uptake pathway could determine the model of 

nanoparticle toxicity.  For example, if NP enter the cells via the mechanisms that may 
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lead to exposure to the nucleus or mitochondria, it may be possible for NP to interact 

with DNA, leading to DNA damage or gene mutation.   

 

Figure 1.8 Possible mechanisms of particle uptake by cells. Particles may 

actively be taken up by cells via phagocytosis (A), macropinocytosis (B), 

clathrin-mediated endocytosis (C), clathrin- and caveolae-independent 

endocytosis (D) or by caveolae-mediated endocytosis (E) and finally passive 

uptake (F). Adapted from Unfried et al., (2007). 

 

In most cases of active uptake, particles will be transported via vesicular 

structures to form phagolysosomes or endosomes (A–D) but they may also be 

transported to the endoplasmic reticulum, cytosol or through the cell as part of 

transcytotic processes (E). Apart from these mechanisms, a passive movement through 

the plasma membrane with subsequent access to all subcellular compartments, including 

nucleus and mitochondria, has been proposed (F). The significance of particular 

intracellular localizations and entering mechanisms for specific cellular responses 

awaits further study (Mühlfeld et al., 2008; Unfried et al., 2007). 
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Dos Santos et al., (2011) studied the uptake of various sizes (40 nm-2 µm) of 

fluorescently labelled polystyrene NPs. They concluded that each size NP was 

internalised by all cells used (A549, HeLa and RAW J774.7). However, the uptake 

kinetics are highly specified dependent on the cell type.  

It is noted that phagocytosis is generally utilised by phagocytes such as 

macrophages, monocytes, neutrophils and dendritic cells for removing large particles 

(0.5-20 µm) (Deng et al., 2010; Erber et al., 1961). However, phagocytosis is suggested 

to be one of the mechanisms for NP uptake. The NP uptake pathways and size 

selectivity in other cell types are poorly understood and not well differentiated (Lesniak 

et al., 2012). Althought more recent studies such as, Mu et al., (2012), are beginning to 

explore the specificities of NP uptake, they suggest that an adhesive interaction between 

SiNPs and the lipid membranes of cells (HT29 and A549) may lead to a form of passive 

uptake for particles aggregating up to 500 nm in diameter. 

  

1.6.2 Oxidative and inflammatory stress 

The mode of action of NPs can be varied and dependant on a number of factors. 

Until now the majority of the research carried out on nanotoxicology has presented 

oxidative stress and inflammation in multiple testing systems (Eom and Choi, 2009b; 

Zhang et al., 2009; Kelly et al., 1998). These two pathways are also often suggested to 

be linked (Park and Park, 2009; Han et al., 2010). 

Oxidative stress is caused by the accumulation of Reactive Oxygen Species 

(ROS), ROS are highly reactive chemical molecules containing oxygen, e.g. oxygen 

ions or peroxides. ROS are produced naturally as a part of homeostasis and required for 

normal functioning of cells in many signalling pathways. Pathways such as the 

Akt/mTOR pathway use ROS to induce cell proliferation as illustrated in figure 1.9. 

However, introduction of NPs in to cell allows for a particle with a huge surface area to 

volume ratio to act as a catalytic surface for unwanted ROS generation. High levels of 

ROS lead to activation of inflammatory stress and cell damage (Han et al., 2010). 
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Figure 1.9 ROS regulation of cell proliferation. Akt/mTOR pathway uses ROS 

as signalling molecules to allow progression of cell proliferation Adapted from 

Pervaiz et al., (2009). 

 

Figure 1.9 is a representation of how ROS is a natural presence within cellular 

systems and controls some pathways such as the Akt/mTOR pathway. Oxidative stress 

has been shown to play a pivotal role in the progression of disease pathogenesis and 

tissue damage by induction of inflammatory responses (Roberts et al., 2009). These 

effects are believed to be due to NPs large surface area to volume ratio, on which 

reactions producing ROS species can occur (Karakoti et al., 2006; Wallace et al., 2007). 

However the details of such NP surface reactions remain unclear.    

Cells have built-in defences for neutralising oxidative stress by removing ROS 

by producing enzymes and using compounds like vitamins, such as vitamin C and E. 

Superoxide dismutase (SOD) is an enzyme that functions to counteract over production 

of ROS. McCord and Fridovich, (1969) discovered the enzyme which is  responsible for 
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catalysing the reaction of superoxide radicals (O2- + O2- + 2H
+
 = O2 + H2O2). By the 

presence of more reactive oxygen species the concentration of superoxide dismutase 

would also be raised and thus raising the concentration of the reaction products such as 

H2O2. McCord and Fridovich studied the levels of H2O2 within the cell to find that the 

presence of this molecule at high levels can trigger apoptosis through the Beclin-1 and 

Akt/mTOR pathway. It has been demonstrated that the oxidative stress induced by H2O2 

and TNF-α results in upragulation of NF-κB and activator protein-1 (AP-1), which 

could upregulate  production of IL-8, an important inflammation mediator that triggers 

phagocytes, such as microphages and neutrophils, to migrate to the damage sites for 

repairing, or further damage (Erber et al., 1961; Deng et al., 2010; Samuvel et al., 

2009).      

ROS generation may also cause lipid perioxidation and the oxidation of proteins, 

leading to the malfunction of those molecules.  Lipid perioxidation and protein 

oxidation are two important factors of tissue damage, as suggested by many earlier 

works (Gutteridge et al., 1980); (Firoze Khan et al., 1997); (Zhang et al., 2009). 

Prolonged exposure to ROS can lead to DNA damage or initiation of apoptosis (Auten 

and Davis, 2009) (Bourdon et al., 2012). 

Like oxidative stress, inflammatory stress is also a widely studied mechanism of 

toxicity. It is thought that oxidative and inflammatory stresses are very closely linked 

(Park and Park, 2009).  However, a study has suggested there may be other pathways to 

induce inflammation which are unrelated to oxidative stress. Deng et al., (2011) used 

polymer coated gold NPs to initiate inflammatory responses by inducing unfolding of 

fibrinogen. This promotes interaction with integrin receptor, Mac-1, activating the Nf-

κB signalling pathway. Nonetheless, majority of opinions still regard the NPs activation 

of inflammatory stress is based on co-mediation with oxidative stress (Oberdörster, et 

al., 2005; Rahman, et al., 2002). Many of the studies consider ROS mediated activation 

of TNF-α and NF-κB as the most likely mechanism.  

Suitable biomarkers for pro-inflammatory responses are important for toxicity 

prediction. Studies have highlighted a number of biomarkers which are present in many 

cells lines. However, some markers may be more suited for use in specific cell lines. 
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For example, it is known that IL-8 is upregulated under oxidative and inflammatory 

stress (Han et al., 2010; Øvrevik et al., 2006) in  A549 cells, a lung epithelial cell model 

that have been widely used to study the cellular and molecular mechanisms of 

inhalation toxicity.   

It is hypothesised the oxidative stress generation by NPs lead to activation of 

inflammatory stress. Park and Park, (2009) compared the responses to NPs both in vitro 

and in vivo, they reported that a single dose treatment to mice and RAW264.7 cells with 

SiNPs induced ROS generation, which in turn triggers a pro inflammatory response in 

vitro and in vivo. It was demonstrated in another study that the installation of single 

dose at 0.018, 0.054 or 0.162 mg of carbon black NPs in mouse lungs led to 

inflammatory stress, protein malfunction, cell membrane damage and DNA damage 

(Bourdon et al., 2012). 

After inhalation, nanoparticles may be deposited in the alveolar sacs of the lungs. 

Accumulation in the alveolar sacs could initiate a pro-inflammatory response, 

eventually leading to NP being engulfed by macrophage cells in an attempt to clear the 

foreign particles from the body, which may further trigger the production of factors that 

promote inflammation (Soto et al., 2007).   

Napierska, et al. (2010) highlighted in their review on SiNPs toxicity that the 

limited number of in vivo studies conducted all suggest that there is a reversible 

inflammation which occurs in the lungs. They expressed that there is a need for research 

with standardised materials and a range of nanosilica forms to establish which physico-

chemical property is responsible for toxicity. One property which has been identified is 

zeta potential, Cho, et al., (2012) suggest that a high positive zeta potential may cause 

inflammatory responses after uptake into phagolysosomes.   

  

1.6.3 Molecular pathways of nanotoxicity  

Interleukins are very important in the mediation of inflammatory responses; they 

are a family of pro-inflammatory cytokine thought to be involved in many acute and 
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chronic diseases. Kolb et al., (2001) demonstrated that transiently over expressed of IL-

1β in rodent lung epithelial cells by intratracheal administration caused an increase in 

IL-6 and TNF-α, acute inflammation and occurrence of interstitial fibrosis in alveolar 

tissue. They proceeded to conclude that IL-1β should be considered as a therapeutic 

target for fibrosis.   

Some other studies have also explored the effects of IL-1β and TNF-α on lung cell 

injury.  These studies have led to the conclusion that these factors are important in the 

progression of lung fibrosis. (Sime et al., 1998) described TNF-α as an early ‘alarm’ 

type cytokine.  In their study, TNF-α was upregulated as early as 3 days and peaked  on 

day 7-14,  as assessed by the ELISA (enzyme links immunosorbent assay) detection of  

TNF-α in the bronchoalveolar lavage (BAL) fluid. Although Sime et al. (1998) studied 

the effects of increased expressions of TNF-α by artificially over expressing in rat lung, 

this study demonstrated a causative role of NP in the secretion of TNF-α.   

Miyazaki et al. (1995) also studied the effects of TNF-α on lung fibrosis. Their 

results corresponded with the results found by (Sime et al., 1998) that TNF-α over 

expression causes inflammation in the alveolar sacs leading to lung fibrosis. Miyazaki et 

al., (1995) have also suggested that there is a very apparent link between the 

inflammatory response and the oxidative stress caused by inhaled toxins. Sharma et al., 

(2007) also found that the signalling molecule nitric oxide plays a pivotal role in 

inflammation. 

Many studies have identified the intermediate factors and transcription factors 

which regulate the inflammatory response.  NF-κB, IL-6 and TNF-α are such factors.  

Their presence, typically at injured sites, could be a result of oxidative response, and 

can further trigger inflammation.  In addition, as described before, ROS are important 

molecules in regulation of oxidative and inflammatory responses (Park and Park, 2009; 

Eom and Choi, 2009b; Wang et al., 2009).   Figure 1.10 describes the pathways by 

which oxidative stress may lead to an inflammatory stress, and how this may be 

mediated by NPs. These pathways involve activation of Nrf2, NF-κB by NPs internalls 

or activation of TNF-α by ROS externally produced due to NPs, leading to 

inflammatory responses including cytokine production (Kim and Vaziri, 2010).   
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Figure 1.10 Schematic representation of Nrf2 and NF-κB activation by NP 

induced ROS internally and activation of TNF-α by external NP ROS 

production. Oxidative stress induces dissociation of Nrf2-Keap1 complex 

allowing translocation of Nrf2 to the nucleus and associates with transcription 

factor small Maf, within the nucleus producing antioxidant tanscription. 

Oxidative stress causes phosphorylation of IκB, which activates NF-κB leading 

to transcriptional of genes encoding inflammatory cytokine and chemokines. 

Nrf2 and NF-κB pathways inhibit one another. Adapted from Kim and Vaziri, 

(2010). 

 

1.6.4 Possible involvement of microRNA in nanotoxicity  

The investigation of the role of miRNA in toxicity is a fairly new and very 

interesting field of study. Mature miRNAs are 21–25 nucleotides in length and partially 

complimentary to 1 or 2 mRNAs. The main function of miRNAs is to downregulate 

gene expression. This may be achieved by a variety of different mechanisms including 

mRNA deadenylation and cleavage (Lee et al., 1993). Sequencing studies are being 

undertaken by a number of groups (Dar et al., 2011; Vergoulis et al., 2012; Huang et al., 
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2011; Li et al., 2011b),  aiming to establish a fully sequenced online database of 

miRNA.  

The biogenesis of miRNA is illustrated in figure 1.11. It starts with transcription 

of primary miRNA by RNA polymerase II and III. This is followed by the cleavage of 

pri-miRNA by the microprocessor complex Drosha–DGCR8. This produces a precursor 

hairpin (pre-miRNA), which is exported from the nucleus by Exportin-5–Ran-GTP. 

Once in the cytoplasm, the pre-miRNA hairpin is cleaved by the RNase Dicer complex 

with the double-stranded RNA-binding protein TRBP, this produces the mature miRNA 

(Winter et al., 2009). An RNA-induced silencing complex (RISC) is a multi protein 

complex, which incorporates siRNA or miRNA. This can then bind to the 3’ UTR 

region of mRNA and silence the transcription. In some cases it also induced 

deadenylation, this is the degradation of mRNA with in the cytoplasm.   
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Figure 1.11 Schematic diagram of miRNA biogenesis. Pri-miRNA is produced inside the nucleus by RNA polymerase II or III, 

this is cleaved by Drosha complex to produce pre-miRNA hairpin in the nucleus. Hairpin pre-miRNA is exported to the 

cytoplasm, where is it cleaved to produce the final mature miRNA. The mature miRNA is incorporated into the RISC complex 

which binds to the 3’ UTR of mRNA suppressing the transcription of the mRNA Adapted from Winter et al., (2009). 
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 Early stages of research have suggested that some miRNAs could be associated 

to certain pathways which are involved in translation of stresses. Shah et al., (2007) 

used wild-type mice (n=5) to show changes in miRNA expression in response to Wy-

14,643 (peroxisome proliferator-activated receptor alpha [PPARα] agonist). They 

concluded that the miRNA let-7C has a role in tumour suppression and is up regulated 

after treatment. However, this study was limited to hepatic analysis of mice, further 

damage may also have occurred in other organs of the mouse body.    

 There are few publications available regarding miRNA regulation linked to NP 

toxicology. One study that has been published used Fe2O3 NPs, CdTe QDs and MW-

CNTs on NIH/3T3 cells found that the exposure to NPs led to alterations in mRNA 

expression (Li, et al., 2011). The present study aims to build on using a miRNA 

database to allow identification of specific miRNA sequences and their functions. The 

up and down -regulation information collected from post SiNPs treatment will give an 

indication to how the identified miRNA sequence regulates toxicity. This technique 

may prove to be a very good tool for detecting early toxicity effects in vitro. 

 

1.6.5 Metabolic effect of nanotoxicity  

Metabolites that are produced by cellular systems may be altered due to certain 

stimuli, such as NPs or chemicals. A systematic study of metabolite fingerprints of 

cellular processes is known as metabolomics, and the quantitative analysis of the 

dynamic metabolite response is known as metabonomics. Conventional study of 

metabolic markers of toxicity was based on changes of a few selected metabolites in 

response to toxicants. Application and methods of metabolomics in nanotoxicology 

study is a recent development allowing for a much wider selection of metabolic markers 

for analysis. 
1
H-NMR -based metabonomics is one among many different methods that 

have being developed for metabonomic study. Duarte, (2011) suggested the potential 

benefits of 
1
H-NMR as a non-invasive tool for detecting nanotoxicological and 

nanomedical effects. It was suggested that the changes in metabolites after chemical 
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treatment can be used to predict the phenotype of genetic mutation by comparing 

metabolic profiles of wild type and mutants (Szeto et al., 2010).  

Metabonomics has also been highlighted as a tool to examine oxidative stress in 

cells. With the ability to probe for changes of all the metabolite pathways known to 

researchers, metabonomics is an ideal high throughput tool for diagnosis of disease and 

clinic conditions (Liu, et al., 2011), based on the few reviews which have been 

published that 
1
H-NMR based metabonomics can also be a useful high throughput 

method for toxicity detection in vitro. Moreover, it may be used as a non-invasive 

method by utilisation of culture medium for analysis.  

The knowledge base for nanomaterial toxicology is ever growing and evolving. 

This evolution is aided by the advancement in technology and standardisation of 

assessment techniques (Fadeel et al., 2007). Even with this advancement there are still 

large gaps in the knowledge, such as uptake specificity and toxicity mechanisms and 

pathways. The literature reviewed regarding SiNPs suggests a strong link between 

oxidative stress and pro-inflammatory environment in vitro, it is still not well 

understood how the SiNP interacts with the cell structure to induce ROS and how the 

production of ROS specifically governs the production of pro-inflammatory factors.  
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1.7 Hypothesis  

Within the framework of the NEPHH project, I will participate in a work 

package to assess the toxicity potential and mode of action of silica NPs and nandusts 

generated from silicon-based polymeric composites using in vitro models. Based on the 

evidence that the characteristics including size, shape, aspect ratio and surface 

chemistry determines the toxicity properties of nanoparticles, the following hypothesis 

form the basis of my research.       

- Nanoparticle toxicity is related to specific physical characteristics. 

 

- Nanoparticles released from different nanocomposites have distinctive 

characteristics from ‘raw’ nanoparticles and therefore possess different toxicity 

potential. 

 

- Nanoparticles with different characteristic initiate different pathways of toxicity.   

 

- The toxicity potency is altered during the lifecycle of a material. This may be 

dependent on the processing and the addition of different materials/chemicals.  
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1.8 Aims 

The aims of the project are to investigate the potential toxicity of silicon-based 

engineered nanomaterials and nanoparticles released from nanocomposites and their 

toxicity mechanisms in vitro. Ultimately this project, in conjunction with NEPHH 

partners, will present data which will allow the establishment of risk assessment 

protocols and allow the safe use of nanomaterials to be implemented. NEPHH aims to 

establish a standardised and full LCA toxicity analysis of nanoproducts, available to 

both public and private sectors as a guide for nanoproducts safety assessment. 

 

To achieve the overall aims, my research will deliver the following objectives:  

1. Characterisation of engineered silicon-based nanomaterials (mainly SiO2 NP) 

and nanoparticles released from nanocomposites in culture medium. A range of 

methods will be utilised to characterise the shape, surface chemistry, dispersion pattern 

in culture medium.  

2. Study of nanomaterial/nanoparticle toxicity potential in in vitro models 

involving lung and skin cells. Toxicity dose will be established using different testing 

assays for different toxicity endpoints. 

3. Study of the relationship of toxicity effect and intracellular dose. 

4. Study of the relationship of the nanomaterials/nanoparticle characteristics and 

mode of action. A number of toxicity specific molecular pathways will be tested by 

conventional in vitro cytotoxicity assays and relatively novel approaches such as 

miRNA array and 
1
H-NMR-metabonomics assay to determine the mode of action of 

toxic nanoparticles.   
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CHAPTER TWO 

2 Materials and methods 

The materials used within the present study are summarised in table 2.1 with 

supplier and catalogue numbers.  

Table 2.1 Materials used in this study and suppliers. 

Material  Supplier Cat no 

3-Aminopropyl)triethoxysilane Sigma Aldrich  A3648 

0.5% Trypsin-EDTA (10x)  Fisher Scientific 15400054 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  Invitrogen M6494 

Carboxy-H2DCFDA Invitrogen C-400 

Cell counting chamber slides  Invitrogen C10312 

Dimethylsulfoxide  Sigma Aldrich  D8418  

Dulbecco’s modified eagle medium F-12 (DMEM) Fisher Scientific 31330038 

Fluorescein isothiocyanate Sigma Aldrich  F7250 

Human foetal lung fibroblast cell line  MRC-5 cells Sigma Aldrich  84101801 

Human keratinocyte HaCaT cells Cell line service 330493 

Human lung carcinoma A549 cells Sigma Aldrich  86012804 

Hydrogen peroxide Sigma Aldrich  216763 

IL8 human ELISA kit  Abcam  ab46032 

Isopropanol-1-ol  Sigma Aldrich  4028932L 

Lactate dehydrogenase kit Sigma Aldrich  TOX7  

miRNAeasy kit II  Sabioscience 217004 

miScript II RT  Sabioscience 218161 

miScript SYBR Green PCR Kit Sabioscience 218075 

Penicillin (10,000 IU/mL)/Streptomycin (10mg/mL) Fisher Scientific 15070063 

Phosphate buffer saline tablets (PBS) Fisher Scientific 18912014 

Potassium bromide  Sigma Aldrich  221864 

Trypan blue stain 0.4% Invitrogen 15250061 

Virkon®  Anachem 330002 
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The materials used in this project were sourced from a variety of suppliers. 

Some were provided by project partners others purchased after careful consideration of 

our experiments to ensure meaningful results in context of this project and wider 

application of risk assessment of nanomaterials. Thus, amorphous silica nanoparticles, 

with sizes of 7 nm and 14 nm respectively, were purchased from Sigma-Aldrich. Two 

silica nanoparticles, Aerosil 200 and Aerosil 974, were sourced from Evonik Degussa 

Polska (Warszawa, Poland) through consortium partners. Aerosil 200 was hydrophilic 

and Aerosil 974 hydrophobic after treatment with dimethylchlorosilane. In addition to 

these ‘raw’ silica nanoparticles, project partners provided nanocomposites which were 

mechanically processed to generate nanodust. These SiNP are all spherical shaped, 

produced through a dry process, and share similar primary particle size (average 12 

nm). 

These polymer composites were produced by the partners of this project, 

incorporating inorganic materials of glass fibre, foam-glass-crystal, montmorillonite and 

SiO2 nanomaterials into polymer matrices of polyamide, polypropylene and 

polyurethane. Two mechanical processes conducted to generate nanodust were designed 

to mimic real situations which the composite materials may undergo. These processes 

include crush and drilling. References (polymers without added inorganic materials) 

were also synthesized as controls for the release of nanoparticles. The dust generated 

from the mechanical test required filtering until nanosized particles are obtained and all 

large particles were omitted. The filtering was conducted at the School of Applied 

Sciences using nanofilters. Once this had been done nanoparticles were then delivered 

to partners for toxicity testing in different biological systems.  

The nanodusts generated from mechanical tests were labelled based on the type 

of nanomaterial and polymer matrix. The polymer matrices were Polyamide (PA6) and 

Polypropylene (PP) for drilling test, and polyurethane (PU) for crushing test. The 

components of the polymeric composites are listed in table 2.2.  
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Table 2.2 Components of the specimens synthesized for physical processing test. 

 

Cell lines were bought from various sources. Human lung epithelial carcinoma 

(A549) cells and Foetal lung fibroblast cell line (MRC-5) were acquired from Sigma-

Aldrich. Human skin keratinocyte (HaCaT) cells acquired from the cell line services 

(http://www.cell-lines-service.de), 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), carboxy-H2DCFDA, Trypan blue stain 0.4% and the cell counting 

chamber slides were purchased from Invitrogen (UK). Virkon
®
 was purchased as 

powder from Anachem (UK). Dulbecco’s modified eagle medium F-12 (HAM) 

(DMEM), 0.5% Trypsin-EDTA (10x) and Penicillin (10,000 IU/mL)/Streptomycin 

(10mg/mL) were purchased from Fisher Scientific. 

Phosphate buffer saline (PBS) tablets, lactate dehydrogenase (LDH) release kits, 

hydrogen peroxide (H2O2) and dimethylsulfoxide (DMSO) were purchased from Sigma 

Aldrich (Gillingham Dorset, UK).  The filler materials included microsized glass fibres 

(TGFS 473H in PA6-composite, TGFS 202P in PP-composite, Taiwan Glass Industry 

Corporation), nanosilica (Aerosil 200 in PA6-composite, Aerosil 974 in PP-composite, 

both ~12 nm, amorphous, fumed, Evonik Degussa Polska), organically modified 

montmorillonite (Deillite 43B in PA6-composite, Dellite 72T in PP-composite, 

LAVIOSA Chimica Mineraria), and foam glass crystal (Department of Silicate 

Technology and Nanotechnology, Tomsk Polytechnic University, Russia).  

 

Composite Inorganic Filler Filler supplier Filler 
(wt %) 

Surface modification  

PA6-MMT Montmorillonite  Laviosa/Dellite 
43B 

5 Tallowbenzyldimethylammon
ium ion PP-MMT Montmorillonite  Laviosa/Dellite 

72T 
5 Ditallowdimethylammonium 

ion PU-MMT Montmorillonite Optibent 987, 
Germany 

5 - 

PA6/PU-
SiO2 

Nanosilica Degussa/Aerosi
l 200 

5 - 

PP-SiO2 Nanosilica Degussa/Aerosi
l 974 

5 Dimethyldichlorosilane 

PA6/PP/PU-
FGC 

Foam glass 
crystal 

Tomak 
Polytechnic 
University 

5 - 

PA6/PU-GF Glass fibre Taiwan glass 
industry 473H 

5 - 

PP-GF Glass fibre Taiwan glass 
industry 202P 

5 - 
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Nanodusts were generated from crushing or drilling of the above composites, 

conducted by the project collaborator in the School of Applied Sciences (SAS) of 

Cranfield University. For drilling experiment, the specimen was mounted on a fixture 

(Figure 2.1) in the drilling chamber.  The sampling tray was used to collect the dusts 

which were produced while drilling. After the particle concentration in the air returned 

to the background level, the sampling tray was removed from the chamber and the dusts 

were suspended in 150 ml of deionised water (DW). An ultrafiltration (Vivacell 250 

ultrafiltration system, Sartorius Stedim Biotech GmbH, Germany) was then employed 

for size fractionation. Filters with a molecular weight cut-off of 5000 were used under a 

pressure of 3.5 bar. The concentrations of the nanoparticles in filtrates were determined 

by weighing 1 ml of particle solution using a balance (Precisa XR 305). The average 

weight of NP solution from 10 repeat measurements was compared with that derived 

from DW. The mass/volume concentration of NP in solution can then be derived. The 

NP retrieved from the dust were used for toxicity studies. Nanodusts were also obtained 

from crush test of the PU-composites specimens conducted by the partner in SAS.    

 

2.1 Characterisation of nanomaterials 

2.1.1 Physical characterisation 

Some aspects of the characterisation were conducted by our colleagues in the 

School of Applied Sciences (SAS). The generation of the nanodust is one such example. 

Using the mobility Particle Sizer SMPS+C (Condensation Particle Counter "CPC" 

5.403 With Classifier "Vienna"-DMA 5.5-U, Grimm Aerosol, Germany), which was 

connected to an electrostatic precipitator (ESP, Model 5.561 Grimm Aerosol, Germany) 

the generation of airborne NP was detected. The background level of NP was recorded 

for 1 h before drilling, which enabled normalisation of ‘noise’ or naturally occurring 

interference before measuring samples. The drilling was conducted in a self-designed 

chamber (Figure 2.1) using an angle drill (Makita BDA351Z 18V Angle Drill, drill bit 

Ø10 mm) over two measurement cycles (14 min/each) and sample collection was 

continued for 2.5 h after the determination of drilling. A high voltage (5000V) was 
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applied to the central electrode to attract the charged particles onto a sampling plate. 

The NP on the plate were then examined using a scanning electron microscope. After 14 

min, the drill bit was removed from the chamber and the opening was sealed. The 

chamber was kept sealed until airborne NP concentration returned to background level. 

 

Figure 2.1 Schematic diagram of drilling chamber. Drilling chamber specifically 

developed for airborne particle monitoring and dust generation. 

 

The PA- and PP-silicon composites were subject to drilling test and the airborne 

NP were monitored, dust NP collected. The PU-silicon composites were subject to 

crushing test and NPs were also collected.       

 

2.1.2 Dynamic Light Scattering (DLS) 

Dynamic light scattering (DLS) is a non-invasive technique which allows 

measurement of the size and size distribution of molecules and particles at the nanoscale 

(<100 nm) DLS typically can measure within a range of 0.2 nm to 2500 nm. DLS 

allows characterisation of particles and molecules, which have been dispersed or 

dissolved in a liquid. The particles motion, known as Brownian motion, in suspension 
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scatters the laser light at different angles and intensities. Using the Stokes-Einstein 

relationship the intensity fluctuations can be interpreted. 

Nanoparticles are known to be highly unstable in solution and are known to 

rapidly aggregate. From the literature it was suggested that the presence of FBS or 

another protein would have an effect on the agglomeration of particles more specifically 

it may stop the agglomeration (Cedervall et al., 2007b). The DLS measurements were 

therefore conducted both in water and culture medium to examine the possible influence 

of proteins. Furthermore, different time points after suspension, nanoparticles were 

examined for their stability over time in different solutions.   

 

 

Figure 2.2 Schematic diagram of DLS measurements. A laser is focused through 

a liquid containing analyte, measuring the hydrodynamic diameter. 

 

The fumed silica particles, which were supplied by Sigma-Aldrich
©

, were 

weighed and made into a stock solution of 1 mg/ml in culture media. After making this 

stock solution it was mixed thoroughly before analysing. From literature it was known 
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that a 100 µg/ml or less solution of silica is optimal to examine dispersion pattern with 

dynamic light scattering (Montes-Burgos et al., 2010). Therefore the particle solution 

was diluted at 10:1 to make a 100 µg/ml and then further diluted to make a 50, 25 and 

10 µg/ml in water and in culture medium. The NPs separated from the dust samples 

from the crush and drilling tests were diluted in culture medium to 100 µg/ml. The NPs 

and dust sample dispersity and size distribution in culture medium was measured by 

DLS with a Malvern Nanosizer S (wavelength 633 nm and power 4 mW Malvern 

Instruments Ltd, Worcestershire, UK). 

 

2.1.3 Measurement of silica NP Zeta potential 

Zeta potential is the potential difference between the dispersion medium fluid 

and the surface of the dispersed particle. Zeta potential is a reflection of the stability of 

colloidal dispersions, essentially indicating the level of repulsion between adjacent 

particles in solution. A high zeta potential value for small molecule/particle in solutions 

suggests a good stability i.e. the dispersion rather than aggregation. A low value 

suggests that the attraction between particles is high, therefore aggregation will readily 

occur (Jiang et al., 2009).  

2.3 Zeta potential value guidelines 

Zeta potential [mV]  Stability behaviour of the colloid 

from 0 to ±5,  Rapid coagulation or flocculation 
from ±10 to ±30  Incipient instability 

from ±30 to ±40  Moderate stability 

from ±40 to ±60  Good stability 

more than ±61  Excellent stability 

 

To measure the zeta potential of our solutions the SiNPs particles were 

suspended in 5ml water and 5ml culture medium, respectively, at 100 µg/ml. the 

solutions were then injected into the Malvern Zetasizer (Malvern Instruments Ltd, 

Worcestershire, UK) and ran through the machine with 30 cycles of measurements, an 

average zeta measurement was taken for each sample.  
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2.1.4 Scanning Electron Microscopy (SEM) and Transmission Electron 

Microscopy (TEM) 

SEM and TEM are electron microscopy technique, which produce images by 

scanning, for SEM, samples with a focused beam of electrons and transmission of 

electrons for TEM. The interaction of the focused electrons with the electrons on the 

surface of the sample produces various signals, which contains information about the 

sample topography. 

SEM produces various signals including secondary electrons (SE), back-

scattered electrons (BSE), characteristic X-rays, light (cathodoluminescence, CL), 

specimen current and transmitted electrons. Due to the nature of electrons the electron 

beams produced by SEM allow for the acquisition of high resolution images which can 

also represent the 3D structure of the surface.  

TEM uses transmission of electrons through an ultra thin specimen, the 

interaction of the electrons with the specimen generates an image. This image is then 

magnified and focused on to an imagining device or CCD camera. 
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Figure 2.3 Schematic diagrams of SEM and TEM principles. For SEM electrons 

are emitted from the electron gun and focused onto the sample by the objective 

lens. The back scatter electrons are then detected. TEM utilises electrons 

transmitting through a sample. The electrons are then focused onto the viewing 

screen. 

 

The use of electrons for SEM imaging requires a vacuum to avoid interference 

with atmospheric molecules. This required the sample to be dried and prepared for 

imagining. While drying the solution of nano particles aggregation occurred, 

expectedly. To minimise this aggregation a method to disperse in solution before drying 

on the SEM stub was used. SiNPs 7 and 14 were dispersed in culture medium at 

concentrations of 10 µg/ml and 100 µg/ml. Aerosil 200 and Aerosil 974 were dispersed 

at 100 µg/ml only,  this dispersion aimed to compare surface modification effect on size 

and aggregation as observed by SEM. A droplet of this solution was allowed to dry on 
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the microscope stub overnight. These were imaged the following day with High 

Resolution SEM (FEI XL30 SFEG analytical SEM). The observed SEM images were 

used to validate the result obtained from the DLS. 

The same preparation method was used to perform TEM imaging with a TEM 

grid used in place of SEM stub. The solution was prepared and shaken to disperse, then 

allowed to dry on the TEM grid overnight to be examined. The TEM used was a Philips 

CM20 operating at 200kV. 

 

2.1.5 Fourier Transform Infra-Red (FT-IR)  

FT-IR is based on information gathered by infra-red examination of samples. 

Light is generated from a source, and passed through a monochromater (this may be a 

salt prism). This separates the source wavelengths. The selected wavelengths are then 

passed through the sample, according to the chemical properties some light is absorbed 

and this is recorded by the detector. The collected radiation is presented in a spectrum of 

absorbance or transmittance (Gable, 2000).  

Fourier transform infrared (FTIR) spectroscopy is used to assess the identity of 

molecular interactions and chemical bonds present in a sample. Infrared light is 

transmitted through the sample, which is mixed with a reference material, potassium 

bromide (KBr), and compressed into a disc. The intensity of the light is detected and a 

spectrum is created of either absorbance or transmittance. Each 

absorbance/transmittance fingerprint is related to a specific bond e.g. C=O and C-H, in 

a molecule, which are analysed by the Fourier transformed algorithm. This method 

allows the molecular composition and quantity to be determined of any given 

compound.   
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Figure 2.4 Basic principle of Fourier Transformed Infrared spectroscopy. An 

infrared (IR) source emits light which is modulated to specific wavelengths. The 

absorbance or transmission of these wavelengths through a sample is detected. 

 

 

Figure 2.5 Example of FTIR absorption spectra of organic bonds. Measures % 

of transmission (Y-axis) across varying frequencies (X-axis). Absorption leads to 

a reduction in transmittance which occurs at specific frequencies for specific 

bonds. A C=O bond alongside CH2 bonds of varying symmetries and 

conformations are presented as examples. 
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FTIR was used to investigate the chemical composition of SiNP. The SiNP 

powders were mixed with KBr powder and compressed into discs using a uniaxial press 

(10 tonnes). The discs were examined and compressed by IR transmission. 

The SiNPs suspended in culture media at 1 mg/ml were washed with DI water 

and centrifuged to re-pellet the SiNPs in order to remove any excess debris from the 

suspension before being placed into discs applying. The pellet was dried at room 

temperature using the super vacuum (Eppendorf® concentrator 5301). The dried 

powders were pressed in a uniaxial into a disc as described above. . A transparent disc 

containing small amounts of the analyte was produced, which was then placed in the IR 

spectrometer (Thermo Nicolet Avatar 370) and transmission data was collected at a 

frequency range between 375 and 7800 cm
-1

.  

 

2.2 Analysis of cytotoxicity endpoints  

2.2.1 Cell counting 

Cell counting is a very important step in conducting any in vitro 

experimentation. Invitrogen Countess® is a machine specially designed to count cells 

and show viability of cells in a sample. It is much simpler and quicker than traditional 

manual counting method using haemocytometer. Similar to haemocytometer, the 

Countess® also uses trypan blue staining to differentiate between live and dead cells.  

Cells were detached from the growth surface area with trypsin. Once detached 

the cells were centrifuged and resuspended in fresh media. A small volume was 

removed from this suspension and placed into Eppendorf tube and mixed with equal 

amount of trypan blue. The mixture is pipetted into a Countess Chamber slide
®
 and 

analysed in the Countess
®
. 

For NP treatment, cells were stained with trypan blue for determining number 

and viability using a cell counter (Countess Automated Cell Counter, Invitrogen). Cells 

were seeded at a density of 1 x 10
4
 cells per cm

2
 of growth surface area in 96 well plates 
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and left to attach over night at 37°C with 5% CO2. The wells containing cells were 

filled with 200 µl of DMEM containing 25- 100µg/ml of different dust NP or ‘raw’ NP 

samples. Cells without NP treatment were used as negative control, whilst a silica 

nanomaterial of 7 nm (SiNP, amorphous, fumed) and H2O2 were used as positive 

controls in dust NP studies. These were then examined at different time intervals (4-72 

hours) for assessing different toxicity endpoints. 

 

2.2.2 Cell culture 

In vitro cell culture models were chosen based on their relevance to the routes of 

human exposure to nanoparticles and the initial and secondary contact sites of 

nanoparticles with the human body after exposure.  These include human lung epithelial 

cells, foetal lung fibroblast cells and, skin keratinocytes. 

Human lung adenocarcinoma A549 cells: type I lung epithelial cells acquired 

from Sigma-Aldrich. These cells were derived from the lung of a 58 year old Caucasian 

male (Health Protection Agency Culture Collections, 2011). These cells are known as 

being resilient and have the ability to be grown over long period of time. They are used 

to model in vitro responses which may be encountered in the lungs. 

Foetal lung fibroblasts MRC-5: acquired from Sigma-Aldrich. These cells were 

established from a 14 week old male foetus (Sigma-Aldrich, 2011). These cells were 

used to mimic fibroblast response to toxicity exposure in vivo. Using multiple lung cell 

lines could help to understand the cellular mechanisms of inhalation toxicity of NP.   

Human skin keratinocytes HaCaT: these cells were acquired from Health 

Protection Agency (HPA). This immortalised cell line was derived from a 62 year old 

male’s skin (Cell lines services, 2011). Like A549 for lung cells, HaCaT cell line was 

established as a model for skin and topological exposures toxicity study. 

Cells were suspended in DMEM supplemented with 10% FBS and 1% 

antibiotics. The cells were seeded at a density of 1 x 10
5
 cells/cm

2
 in flasks and 
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incubated at 37 °C under a humidified atmosphere with 5% CO2 and 95% air. The cells 

were subcultured every 3-4 days. To subculture these cells firstly they must be 

detached, as they are all adherent cells, with trypsin-EDTA (0.25%), followed by 

centrifugation at 1200 RPM in Thermo-Scientific (UK) centrifuges. The cell pellets 

were collected and resuspended for further culture. 

 

2.2.3 Optimization of cell culture   

It is important to optimise any assays before conducting the experiments to 

achieve reliable reproducible and biological relevant results. For cytotoxicity study it is 

important to optimise the cell growth patterns so that the treatments take effect in the 

growth phase of the cells, not in the lag or stationary phase. 

 

Figure 2.6 Schematic diagram of cell growth. Cell growth starts with slow 

growth in lag phase, followed by exponential growth in log phase, followed by 

stationary phase and lastly death phase. 

 

For the optimisation of the cell growth, cell counting was used to establish cell 

doubling time, which is the time taken for the cell number to double.  Cellular doubling 

times were logarithmic calculated using online calculator with multiple times point 

analysis (Roth, 2006). Cells were counted at seeding. For A549 and HaCaT cells, the 

seeding density was tested at 7000, 8000, 9000 and 10000 cells per cm
2
 of growth 
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surface area. For MRC-5, the seeding density was tested at 10000, 20000, 30000 and 

40000 cells per cm
2 

of growth area. Cell growth was monitored over 72 hours of 

culture. At each time points, cells were counted three times and the average of the three 

counts was used for cell growth doubling time calculation. 

 

2.2.4 Cell treatment with NP 

The dose selected for treating cells must meet some criteria. Firstly, it must be a 

standardised dose metric used by majority of research groups. The mass concentration 

(µg/ml) is the most frequently used metric for NP toxicity study currently, this dose 

metric is easily compared across a selection of NPs. There are other dose metrics 

available but they are difficult to apply across different NP shapes and sizes, until they 

are standardised mass/concentration is the most accepted option. . Secondly, the dose 

metric must be at a range high enough to induce observable toxic effects, without 

causing acute cellular death. So based on a 72 hour exposure the selection for 

concentrations of NPs was made according to what were reported in previous literature. 

Dependant on cell type, SiNPs ranged from 1-200 µg/ml were used in in vitro toxicity 

studies (Park and Park, 2009; Park et al., 2009). The IC50 of SiNPs as reported by 

Wang, et al., (2009) is 80 ± 6 µg/ml for 20 nm silica and 140 ± 8 µg/ml for 50 nm silica 

based on 24 hour of exposure in HEK293 cells.  The SiNPs used in this study are 7-14 

nm in size.  Based on these results, the concentration range of  10-100 µg/ml as used in 

the current study allows induction of cub-acute toxic effects over the period of 

treatment.   

 

2.2.5 Cell viability assay (MTT assay)  

MTT assay is a colorimetric test which measures the activity of enzymes 

(mitochondrial reductase) that reduce MTT to formazan salt, a purple crystal that is 

detected with photometric scanner. MTT is widely used as a tool for assessing cell 
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viability and cytotoxicity in vitro, as the conversion of MTT to formazan only occurs in 

viable cells with functioning mitochondria.  

 

Figure 2.7 Schematic diagram of the conversion of MTT to formazan salt. 

Reduction utilises the enzyme mitochondrial reductase. 

 

Cell viability was assessed at different time points of NP treatment. Cells were 

seeded in 96-well plates at 1x 10
4
 cells/cm

2
, to this 200 µl medium was added to each 

well.  After 16 h of seeding, cells were treated  with SiNP or dust NP for 24, 48 and 72 

h, when 150 µl of supernatant was removed and 50 µl of MTT solution (1 mg/ml) was 

added. The plate was incubated for 2 h at room temperature, followed by 3x washing 

with phosphate buffered saline (PBS) to remove all NPs which may interfere with 

absorbance measurements. Then 100 µl of  Dimethyl sulfoxide (DMSO) was added to 

solubilise the formazan salt crystals. After 20 minutes further incubation at room 

temperature, the plate was placed into a Thermo Scientific Varioskan plate reader and 

absorption was recorded at a wavelength of 570 nm. 

 

2.2.6 Cellular membrane integrity: lactate dehydrogenase (LDH assay) 

The LDH assay is a measurement of cellular membrane integrity. LDH is a 

stable cytoplasmic enzyme present in all cells and rapidly released into the cell culture 

medium upon damage of the plasma membrane. LDH activity is determined by a 

coupled enzymatic reaction. LDH leakage toxicity kit (TOX7-1KT) was bought from 

Sigma-Aldrich, whilst supernatant was taken from the same 96 multi-well plates used 
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for MTT assay. A mixture of LDH assay substrate solution, LDH assay cofactor 

preparation and LDH assay dye solution were prepared at a ratio of 1:1:1. Following 

this 140 µl of the LDH assay mixture solution was added to 70 µl of supernatant and 

left at room temperature for 30 minutess. LDH oxidizes lactate to pyruvate which then 

reacts with a tetrazolium dye to form coloured soluble formazan derivative, which  The 

was detected by a Thermo Scientific Varioskan plate reader at 490 nm. A background 

reading was taken at 690 nm as instructed by manufacturer; the final value was obtained 

by subtracting the reading at 690 nm from the reading at 490 nm.  

 

2.2.7 Intracellular ROS assay  

The increase of intracellular ROS, an indication of oxidative stress, was 

measured using 5-(and 6)- carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-

H2DCFDA), which when in contact with ROS is converted to fluorescent 5-(and-6)-

carboxy-2',7'-dichlorofluorescein by oxidative cleaving of one acetate group. After 

treatment with NP, the supernatant in the 96-well plate was removed and a fresh 50 µl 

of medium was added to each well. A 50 µl of carboxy-H2DCFDA solution at 5 µM 

was also added to each well. The plate was left in an incubator for 30 mins before 

reading with a Thermo Scientific Varioskan plate reader for fluorescence intensity 

(excitation at 490 nm and emission at 530 nm). 
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Figure 2.8 Chemical structure of ROS reagent in inactive and active forms. a) 

Structure of Carboxy-H2DCFCA, a non-fluorescent form of the molecule. b) The 

deacetylated, oxidized product DCF, the fluorescent form of the molecule. 

 

2.2.8 IL-8 production assay  

Enzyme-linked immunosorbent assay (ELISA) was conducted using the 

supernatants of the cell culture to detect for IL-8 concentrations, a mediator of 

inflammatory stress secreted from A549 cells, after incubation with particle samples for 

24 hours. The 24 hours’ time point was chosen as a test time point to ensure enough 

time for the treatment to take action at gene and protein expression level as reported 

previously  (Øvrevik et al., 2006; Rahman et al., 2002; Cho et al., 2007; Øvrevik et al., 

2006).  

For the analysis, IL-8 human ELISA kit (ab46032) was acquired from Abcam. 

The ELISA method was performed according to the instruction of the supplier as 

described in Appendix A. Each sample was conducted in duplicate as advised by the kit 

to obtain reliable results. Cell culture supernatant was taken after 24 h treatment with 

NP and added to pre-coated wells, to which biotinylated anti-IL8 was added.  The 

samples were incubated for 1 hour and then washed thoroughly twice. Streptavidin-

HRP was added, followed by 100 µl of TMB substrate solution, this solution give the 

ELISA protocol the visualisation by alter the sample colour dependent upon the analyte 

concentrations. The reaction stopped with H2SO4, and absorbance readings were taken 

at 450 nm (background reading) and 620 nm in the varioskan.  

a b 
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2.2.9 Labelling of SiNP with Fluorescein isothiocyanate (FITC)  

In order to visualise SiNPs and image them under a fluorescent microscope, 

SiNPs were fluorescently tagged with FITC according to the method reported 

previously (Stayton et al., 2009). The SiNPs (silica 7, silica 14, Aerosil 200 and Aerosil 

974) were suspended in 5% v/v APTES ((3-Aminopropyl) triethoxysilane)) in 100% 

EtOH (ethanol). These NPs were sonicated for 10 minutes and placed into shaker for 3 

hours at 60°C. After shaking they were centrifuged and the supernatant was removed, 

and the pellet was washed with 100% EtOH three times. The pellet was resuspended in 

1 ml of 5% glutaraldehyde, and left at 4°C for 10 hours. After centrifuging and washing 

with DI water, the pellet was incubated with FITC at a saturated concentration in PBS 

for 2-3 hours at room temperature. This was then rinsed with PBS until solution became 

clear. Final concentrations of the SiNP solutions were made ranging from 4 – 10 mg/ml. 

These were achieved by weighing the final dried powders 3 times and taking the mean 

of the readings and then suspended the powders in 10ml of culture media. These stock 

solutions were then diluted to working concentrations again in culture medium before 

treatment of cells.  

  

2.2.10 Cellular uptake of NP assay  

For cytotoxicity study, it is important to determine the intracellular dose of NPs. 

In this study, confocal microscopy and flow cytometry were employed to visualize and 

quantify the SiNP inside of cells.  

Confocal microscopy allows visualisation of the NPs inside of cells, giving 

indication of intracellular location. The principle of confocal imaging overcomes one of 

the limitations of traditional wide-field fluorescence microscopy. Conventional 

microscopy floods the whole specimen with excitation light. Causing excitation of the 

whole sample at the same time and the resulting image therefore also contains some 

unfocused background. However, confocal microscope uses a focused beam and excites 
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only specific areas of interest in a sample through a pinhole. The focused pinhole allows 

higher resolution but results in a lower intensity (Sheppard and Wilson, 1981). 

Cells were seeded into Ibidi
©

 chamber slides (Ibidi, Germany) at 1 x 10
4
 per 

well and allowed to attach overnight. Once attached the cells were treated with 10 µg/ml 

of SiNP-FITC and returned to the incubator. After 24 hours of treatment the cells were 

washed with cold PBS, followed by addition of the fluorescent nuclear DRAQ5 (1 

µg/ml) and lysotracker red (75 nM) stains and incubated for 30 minutes at room 

temperature. After staining cold PBS was used to wash cells and 4% paraformaldehyde 

was used to fix cells over night at 4°C. These chambers were then ready to be observed 

under confocal microscopy. Figure 2.9 represents the layout of the chamber slide used, 

it contains 8 separate chambers which can be treated individually and in the same slide 

allow comparison under a microscope.  

 

 

 

 

2.2.11 Assessment of cellular uptake by flow cytometry 

Similar to DLS, flow cytometry uses a laser scattering to measure size of cells. 

In addition it can be used to excite fluorescent molecules attached to cells or particles. 

The ability to measure both optical and fluorescent characteristics of single cells makes 

the flow cytometer a very attractive instrument for in vitro testing. In this project, the 

flow cytometer were used to determine and quantify cellular uptake of NP (Huang et al., 

2010).  

For the NP uptake study, the cells were seeded into 24 well plates at 1 x 10
4
 per 

cm
2
 (4.5 x 10

4
 cell no/well) and incubated overnight at 37oC for attachment. The cells 

were treated with SiNP-FITC at 10, 25, 50 and 100 µg/ml for 24 hours to allow uptake 

 Control Silica 7 Silica 14 Aerosil 200  

Aerosil 974 - - - 

Figure 2.9 Layout of Ibidi chamber slide for confocal microscopy. 
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to occur before detection.  The culture medium was removed and cells were washed 

with cold PBS to remove any excess SiNPs and debris which may interfere with the 

results. The cells were then trypsinated and detached from growth surface. The detached 

cells were transfered to Eppendorf tubes and placed on ice. The tubes were centrifuged 

at 1200 RPM and the trypsin was removed. The cell pellet was resuspended in PBS. The 

samples were placed back on ice and agitated before tested in BD Accuri C6 flow 

cytometer (bdbiosciences, Oxford UK).  

 

2.2.12 Assessment of cellular response to SiNP by metabolomic assay 

After conducting in depth cytotoxic assessment of the SiNP in vitro, it was 

thought that examining the sub-acute effects would reveal greater insight about the 

mechanisms of toxicity. Metabonomics utilises nuclear magnetic resonance (NMR) 

spectroscopy combined with multivariate statistics, to form a high-throughput platform. 

It requires  small amounts of sample to gain insight into the effect of toxins on cellular 

functions. Moreover, intracellular metabolites are also secreted and found in significant 

amounts in surrounding cell culture medium or other forms of biofluid, which provide a 

robust and non-destructive method to recognise dose-effect relationship of toxicity in 

biological models. This study utilised 
1
H-NMR to detect the protons present in a 

molecule, generating spectra of peaks dependant on the location of protons with respect 

to other protons present in the molecule. Sample was collected from culture media and 

cells to assess the metabolite molecules present in the culture medium and the cellular 

pellet using 
1
H-NMR. 
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Figure 2.10 Photograph of NMR instrument. 

  

1
H-NMR-metabonomcs work was conducted in collaboration with Prof 

Gooderham’s group at Imperial College London. Post treatment cell culture media was 

required for analysis of extra cellular environment, for this they were seeded in 6 well 

plates and allowed to attach overnight. Following seeding the cells were treated with 10, 

25, 50 and 100 µg/ml of SiNP. The cell culture medium was collected at 4, 12 and 24 

hours respectively, and transferred into a sterile Eppendorf tubes. The culture medium 

was centrifuged at 4 ⁰C, 1500 rpm, for 5 minutes.  The supernatant was removed and 

transferred to a fresh tube and stored at -40 ⁰C in freezer for NMR analysis. The frozen 

supernatants were transported on dry ice to Imperial College London for analysis. To 

analyse the frozen supernatant, firstly it was thawed. Once thawed  400 µl of media was 

mixed with 200 µl D2O phosphate buffer containing 1 mM of 1,1,2,2-tetra-deutero-3-

trimethylsilylpropionic acid (TSP) as internal standard and sodium azide (an NMR 

silent antimicrobial agent). 
1
H-NMR spectra were acquired using a Bruker DRX600 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) operating at a frequency 
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of 600.13 MHz and a temperature of 300 K. Samples were analysed in a standard 5 mm 

probe.    

A total of 75 
1
H-NMR spectra were acquired under automation using a Nuclear 

Overhauser Effect Spectroscopy (NOESY) water pre-saturation experiment. However 

from the total 75 samples 2 samples: 26 (4hrs, 10 µg/ml SiNP treated) and sample 73 

(12hrs, 100ug/ml SiNP treated) were found to have poor water suppression and 

removed prior to further analyses. Full resolution (32k data points) 
1
H-NMR spectra 

were automatically referenced to the internal standard TSP. Due to Fourier 

transformation of free induction decay the phase and baseline of NMR data require 

corrections. Phase and baseline were then corrected using the instrument software and 

data imported into Metlab for data analysis. The residual water peak (δ4.67-4.86) was 

also removed prior to multivariate statistical analyses. Constant receiver gain (rg: 128) 

was maintained throughout the automation. This was conducted to remove the need to 

normalise the dataset, limiting normalisation artefacts and allowing comparison and 

metabolite quantification across samples utilising the internal standard TSP.  

  

2.2.13 Analysis of global MicroRNA (miRNA) expression 

MiRNA may provide a new insight into the toxicity mechanisms of NP by 

highlighting changes occurring before cell viability is lost it may provide knowledge 

relating to uptake mechanism, cellular location and genotoxicty. 

MiRNA expression was analysed for changes at transcriptional levels. Cells 

were seeded in 6 well plates over night at 1 x 10
4
 cells/cm

2
 growth surface area. Due to 

the high cost, only SiNP 7 was tested in A549 cells for its effect at low concentration 

and an early time point. Cells were treated with SiNP at 10 µg/ml in triplicate. Cells 

without treatment were used as negative control. 

Total RNA was isolated and extracted using miRNAeasy kit II provided by 

Sabiosciences (West Sussex, UK), and purified through filtration and finally resuspened 

in RNA-free water to 350 ng/ml. The integrity of the extracted RNA was checked by the 
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Bio-Rad Experion and Picodrop. This solution was aliquoted and kept at -80°C until 

use. The RNAs were converted into cDNA using the miScript II kit provided by 

Sabiosciences. The cDNAs from cells with and without SiNP treatment were diluted in 

the miScript SYBR green RT-PCR array solution containing SYBR green dye (see 

Appendix B for detailed instruction).   

These dilutions of cDNA were analysed for miRNA expression. The human 

miRNA array was used (MIHS-216ZA-4). This array contains a total of 1008 miRNAs 

in a 12 x 96-well ring format. Each ring contained 88 sequence targets with 4 internal 

controls. Housekeeping genes were also present within each ring to allow normalisation 

of the results in post processing.  The PCR was performed in the Qiagen rotor gene PCR 

machine with a denaturation temperature of 94°C and 40 cycles of 70°C annealing and 

55°C extension.  

 

2.3 Statistics 

All the experiments with cells were performed a minimum of 3 times. For MTT, 

LDH and ROS assays, the data were expressed as mean values of 3 replicates with 

standard deviation (mean ± SD). The results were represented as a percentage of the 

negative control (cells without treatment). One-tailed unpaired student’s t-test was used 

for comparison of differences between each treatment with negative control and the 

differences were considered to be significant when p ≤ 0.05.   

 For the 
1
H-NMR data, the exploratory data analysis (EDA) using principal 

components analysis (PCA), an unsupervised (no target variable identified) data 

reduction technique, and the multidimensional data reduction projection method (Wold 

et al., 1987), were initially employed to detect major sources of variation and biological 

or analytical clustering pattern within the 
1
H-NMR data set. Another pattern recognition 

technique, partial least squares discriminant analysis (PLS-DA) which is a supervised 

technique (identified target variable) (Barker and Rayens, 2003), was used for 

classification of samples for percentage of specificity and sensitivity.   
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Prior to classification, the data obtained from the 
1
H-NMR metabonomics were 

subject to scaling treatments. These include 1) mean centring (MC): subtracting the 

average of every column in a given dataset from each value in the respective column; 2) 

auto scaling (AS): dividing MC by the standard deviation of each column in the dataset 

(normally referred to as unit variance scaling in metabolomics); 3) pareto scaling (PS): 

dividing MC by the square root of the standard deviation of each column in the dataset; 

4) range scaling (RS):  setting the minimum to be either 0 or -1 and the maximum to be 

1 and forcing every element to be scaled between the two values; and 5) normalisation: 

dividing each value in a respective column by the square root of the sum of the squared 

values in each column (van den Berg et al., 2006). In practice, PS can be a good 

compromise with AS as it enhances medium intensity observations and limits 

incorporation of noise into the dataset.  
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CHAPTER THREE 

3 Physical and chemical characterisation of silica 

nanomaterials 

3.1 Introduction 

As reviewed earlier in the introduction section, the characteristics of NP 

determine the nature of their interaction with biomolecules and cells and, therefore the 

toxicity potential (Warheit, 2001).  In addition, NP may exhibit different characteristics 

in different biological systems. For examples, formation of different aggregates in the 

presence and absence of proteins in cell culture media. Silica nanoparticles (SiNPs) are 

widely used in many industrial and commercial applications, the use of SiNPs in drug 

delivery and therapeutics/diagnostics is a widely growing field (Mu et al., 2012; Huang 

et al., 2010). SiNPs are also considered to be highly adaptive dependant on production 

methods, for example, mesoporous SiNPs have been highlighted as perfect candidate 

for drug delivery, imaging and catalysis (Trewyn et al., 2008). In the NEPHH project, 

the commercially available silica NP Aerosil 200 and Aerosil 974 were selected by the 

project consortium for their suitability as fillers in new silicon-polymer composites for 

application in automotive industry. Another two silica NP from a different commercial 

source, SiNP 7 and SiNP 14, were also included for toxicity evaluation.  The results will 

give some indications on whether SiNP from different sources will give rise to similar 

or different results in a toxicological study.  

The main methods which are used to characterise the shape of NPs are TEM and 

SEM, as these methods provide the only way of visualising objects at that scale. SEM 

provides excellent visualisation of surface shape and structure, allowing morphology 

and topography to be characterised very clearly. However, sample preparation can be 

cumbersome and delicate, especially for organic and non-conducting samples. TEM 

provides another excellent solution to analyse the structure and shape of a NP. TEM 

however cannot analyse the surface structures of objects but can give information on the 

shape and size due to the manner of image collection. TEM transmits electrons go 
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through a sample thus collecting a shadow of the image relating to its shape and size, 

whereas SEM uses back scattered electrons relating to in-depth surface structures. The 

disadvantage of such analysis is the requirement of samples to be within a vacuum. Also 

the size and price of equipment is beyond the reach of some laboratories and institutes. 

Electron microscopy requires specialist training for high quality image collection. These 

two techniques were used in this project for study of NP size and aggregate states.  

Apart from high resolution imaging, the technique DLS has also become the 

standardised method for size characterisation and distribution of NP in aqueous media. 

It is quick and relatively cheap. The main set back of this method is that it must assume 

that all particles are spherical in nature to determine a diameter. Therefore, irregularly 

shaped NPs will not be measured accurately. This technique was also applied in this 

project to characterize NP dispersion and size distribution in water and in culture 

medium. The results together with the information derived from SEM and TEM will 

provide more reliable characteristics of NP in the testing system. For chemical 

composition characterization, a number of techniques, including dynamic light 

scattering (DLS), zeta potential measurements, Fourier transform infra red, scanning 

electron microscopy (SEM) and transmission electron microscopy (TEM) have been 

used.  Based on the chemical specific signal spectrum the information on chemical 

composition of NP can be acquired by these techniques, among which FTIR proves 

more advantageous.  It detects chemical bonds present in the sample with a small 

amount of sample, simple preparation and instant measurement. For the current study, 

the chemical composition of NP in water and in culture medium was analysed with 

FTIR.   

In addition, NP zeta potential was also determined as described in the materials 

and methods section. The information on zeta potential could indicate the stability of 

particles in solution according to the surface charge The combination of the selected 

techniques for NP characterization is highly desirable for further toxicity study, as NP 

of different size, shape, chemical composition, could interact with cells differently, 

resulting in distinct consequences. 
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3.2 Results  

3.2.1 Size and shape as seen by SEM and TEM 

SiNPs dried from water and culture media were examined by SEM imaging.  As 

seen in figure 3.1, SiNP formed larger aggregates in water. The size of the aggregates 

could not be determined due to overlapping distribution of the aggregates Silica 7 and 

14 nm particles were dispersed relatively well  at 10 µg/ml, but formed lager aggregates 

at 100 µg/ml.  

 

 

 

Figure 3.1 Size distribution patterns relating to concentration in water. The 

silica 7 and silica 14 NPs are shown to aggregate at 10 µg/ml.  Presence of larger 

aggregates is observed at 100 µg/ml. Images taken at 30000 x magnification, 

scale bar = 1 µm. 

 

10 µg/ml 100 µg/ml 

Silica 7

Silica 14
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Like the above two SiNP, Aerosil 200 and Aerosil 974 were also formed larger 

aggregates at 100 µg/ml (figure 3.2). However the density of Aerosil 974 was much 

lower, which is attributable to the hydrophobicity nature of the sample.   Due to this 

nature, good dispersions are difficult to achieve as the majority of Aerosil 974 

aggregates form at the surface of the solutions. On the other hand, the hydrophilic SiNP 

disperses rapidly into the water and forms large aggregates with higher density in the 

solution.   

 

Figure 3.2 Aerosil 200 and Aerosil 974 NPs exhibit differing dispersion patterns. 

The particles were dried after suspension in water (100 µg/ml), and images taken 

at 30000 x magnification, scale bar = 1 µm. 

 

It is known that molecules in cell culture medium could interact with NPs to 

form the so called “corona”, which may have some effect on the NP size distribution. 

SEM examination of SiNP dried from cell culture medium could not produce good 

quality information on size and surface properties of SiNP, as illustrated in figure 3.2.  

It appeared that SiNP were covered by a film, which could be the result of adsorption of 

sugar and protein on the surface of SiNP.  SEM is therefore not a suitable method for 

study of NP in culture medium. TEM, however, is perfect for this application as the 

transmission of electrons through the material will allow the visualisation of particles 

deep below the surface film.  
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The TEM images (fig 3.3 and 3.4) indicate that the concentration does not have 

the same profound difference in dispersions in water  as observed by SEM. Figure 3.3 

illustrates a high density of particles imaged from a dried 100 µg/ml water suspension, 

similar to the SEM images taken at the same concentration.  

 

 

Figure 3.3 TEM image of SiNP 7 nm dried from water suspension. Particles 

were dispersed in water at a concentration of 100 µg/ml then dried. Image taken 

at 200000 x magnification. 

 

However, in figure 3.4, the suspension in culture medium is quite different. All 

NPs suspended in culture media were generally of a similar size aggregate. With the 

exception of Aerosil 974, which form larger aggregates at low concentration. This may 

be a result of poor suspension, resulting in clumps of NPs. The sizes of the aggregates 

varied from between 10 – 200 nm. On closer inspection it was visible that the NPs were 

generally closely associated with adjacent NPs (examples highlighted in red circles in 

figure 3.4). The large dark areas in the images upon closer inspection were images of 

crystallised sugar formed during the drying process. The lack of difference between 

density between the two concentrations may be a results of the drying of culture media 

which may remove a larger amount of NPs to the dried film on the surface.  
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Figure 3.4 TEM image comparison of low concentration (10 µg/ml) and high 

concentration (100 µg/ml) solutions of SiNP in culture medium. Red circles 

highlight agglomeration of particles. 



 

98 

 

All NPs form regular and generally circular particles other than Aerosil 974 

which forms irregular shapes as shown in figure 3.4, in which Aerosil 974 was pictured 

at 10 µg/ml in a largely crystallised section of the sample with the lighter areas 

representing irregular shaped aggregates. The interaction in culture medium suggests a 

protein linked interaction between the adjacent particles making the aggregates interact 

in a uniform manner, such as creating a chain or circular shapes.  

 

3.2.2 Hydrodynamic size distribution in water and in culture medium of 

Silica nanoparticles 

A monodisperse size distribution is visible in the DLS spectra of all 4 SiNPs in 

water (figure 3.5).  The smallest silica NP (7 nm) exhibited different DLS profiles at 

different concentrations. At 10 and 25 µg/ml, a peak in the range of 110-130 nm 

appeared, whilst at 50 and 100 µg/ml, a peak in the range of of 1000 nm-1200 nm 

appeared. The presence of the larger peaks in the DLS profile of SiNP 7 in water may 

reflect that the smaller NP (7 nm) have stronger inter-particle force to form aggregates 

as compared with the rest of the NP (sized 12-14 nm). 
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Figure 3.5 SiNPs dispersion in water at concentrations from 10 µg/ml to 100 

µg/ml. Size of NPs in water shows definitive indication of large and more 

monodisperse particles.    

 

There is evidence that proteins can decrease the aggregation of SiNP by 

interacting with NP surfaces (Cedervall et al., 2007a). As seen in figure 3.6, cell culture 

medium shows a ‘double-hump’ characteristic DLS spectrum, suggesting the presence 

of two main sizes of molecules sizing ~10 nm and ~50 nm, respectively. These peaks 

have been identified as being proteins present after the addition of 10% FBS (van Gaal, 

et al., (2010). In order to know whether the cell culture medium, which contains serum 

proteins as main components, has any effect on the SiNP dispersion pattern, the DLS 

profile of the SiNP in cell culture medium was also examined.  

The SEM imaging analysis of SiNP suggested a link between the suspension 

characteristics and concentration of SiNP. Thus, concentrations which would be used to 

treat the cells were all studied with the DLS to gain an understanding of to what NP 

sizes the cells would be dealing with at given concentrations of NP. Figures 3.5 and 3.6 
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confirm the findings of SEM imaging of SiNP (figures 3.1 and 3.2) that an increase in 

concentration leads to an increase number of larger agglomerates. As high concentration 

of NP leads to a larger number of particles within the same volume, the concentration 

increase means more particles present within the same volume. This causes the 

proximity of particles to reduce and therefore to increase the possibility of forming large 

aggregates. The larger aggregation may also be translated to altered toxicity of the 

SiNPs. Figure 3.6 shows a ‘double-hump’ characteristic spectrum of culture medium, 

suggesting the presence of two main sizes of molecules sizing ~10 nm and ~50 nm, 

respectively. These peaks have been identified as being proteins present after the 

addition of 10% FBS (van Gaal, et al., (2010). 

    

 Figure 3.6 DLS assay of SiNPs dispersion in culture medium and culture 

medium  as reference. The DLS profiles  of NPs in solutions indicate=  the 

increase of particle size in a concentration-dependent manner.    
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The difference in dispersion pattern of SiNP showed in water and in culture 

medium is an indication of the interaction of NP and proteins as suggested by Cedervall, 

et al., (2007). Interaction of protein and NP may be a fundamental factor in distribution 

of particle and aggregate size. It may also be a dictating factor in the translation of 

dispersion characteristics to toxicity.  

Figure 3.7 presents bar graphs highlighting the percentage of SiNP aggregates 

with size above 300 nm formed in culture medium at different concentration. It is clear 

to see that this percentage is increasing with concentration in silica 7, 14 and Aerosil 

200 samples. However, this is not observed in Aerosil 974 sample. The hydrophobic 

nature of Aerosil 974 may be an explanation to this difference. The increase in 

aggregate size and hydrophobic nature will drive the majority of larger particles to 

either sediment quickly or remain on the surface due to surface tension, making even 

dispersions difficult. 
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Figure 3.7 Presence of NPs with average size above 300 nm increases with 

concentration in culture medium. The graphs highlight an increase in the 

percentage of larger (>300 nm) particles proportional to the concentration of 

SiNPs.  

3.2.3 SiNP chemistry after interaction with culture media 

The DLS spectra in culture media indicated that there is possible interaction 

between NPs and proteins, which may lead to chemical changes to the silica. To 

examine whether the surface chemistry of the SiNPs was altered after dilution in culture 

medium the FTIR technique was used to identify the chemical bonds present on SiNP.  

As shown in figure 3.8, the peaks in the FTIR spectrum of culture medium 

correspond to the chemical characteristics of proteins and carbohydrates.   The peaks at 

2925 cm-1, 1650 cm-1 and 1384 cm-1 correspond to absorption of H2C, C=O and C-H 

bonds, whilst silica has signature peaks at 1100 cm-1 (Si-O stretch) and 470 cm-1 (Si-O 

bend), respectively. Moreover some peaks seen in culture medium were also present in 

the spectra of all SiNP dried from culture medium, although there were slight variations 

in the exact position of these peaks. This may be an indication of interactions between 

NP and protein molecules, resulting in changes in the proteins chemical bond or 

conformation, which could have significant implications for SiNP application in vivo, 

where proteins are main components of the serum.   

The FTIR analysis suggests that SiNPs chemistry is not altered upon suspension 

in culture medium. However, the interaction of proteins with SiNPs may alter uptake 

kinetics and cellular locations of NP (Lesniak, et al., (2012), therefore it may still have 

some effect in the translation of NP toxicity. 
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Figure 3.8 Infrared spectra of pure silica, dried culture medium and dried 

suspensions of SiNPs from culture medium. SiNP peaks are unaltered post 

culture media suspension. Culture media presence detected by C=O and C-H 

peaks. 
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3.2.4 Effect of culture media and water on the zeta potential of SiNPs 

The zeta potential of SiNP was measured in both water and culture medium at a 

concentration of 100 µg/ml. The results are presented in table 3.1, showing a difference 

in zeta potential between suspensions of SiNP in water and in culture medium. When 

suspended in water, the zeta potential was in the range of -27~- 31 mV, as opposed to -

8~-17 mV when suspended in culture medium. This suggests a destabilisation of the 

particles in culture medium.   

Table 3.1 Zeta potential measurements of SiNP in water and in culture media. 

 

 

  NP with a high zeta potential  (±) are  more stable and therefore more likely to 

have better dispersion in the solution they are measured in than the NP with lower zeta 

potential.  This seems to agree with the results from DLS assays, as at the same 

concentrations, a higher zeta potential of SiNP in water is associated with a far more 

well-defined monodispersed profile, and a lower zeta potential in culture medium is 

associated with the occurrence of a wider spread range of size distribution profile 

(figure 3.5 and figure 3.6).  In comparison with the hydrophilic SiNP, the hydrophobic 

Aerosil 974 had a smaller difference in zeta potential between suspensions in water and 

in culture medium.  This may be due to that Aerosil 974 is hydrophobic. The poor 

solubility of NP in water will have litte effect on the zeta potential of NP dispersed in 

water and in culture medium.       
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3.3  Discussion  

Characterization of NPs has given insight into the nature of size distribution, 

dispersion pattern, zeta potential in suspension and chemical composition of SiNPs. It 

was evidenced that these characteristic of SiNPs can be altered when dispersed in the 

biological solution, due to their interaction with molecules present in the system. It is 

apparent that this interaction does not change the chemical nature of the particles, but 

the primary size and zeta potential of particles are altered. Both zeta potential and size 

have been suggested to be the fundamental factors for the toxicity NPs (Napierska et al. 

2009; Cho et al., 2012).   

Although all the fumed SiNP used in this project were commercially available 

and supplied with primary size in the range of 7-14 nm, the size distribution and 

dispersion pattern as measured by SEM and DLS suggest that all the SiNP formed 

aggregates in both water and in culture medium, which is consistent with the results 

reported by Montes-Burgos et al., (2010) and Fubini et al., (2010). Both groups 

proposed that the size of particles dictated the toxicity in the systems under 

investigation. The reason for formation of larger size of particle aggregates in culture 

medium may be linked to the formation of protein coronas, in which proteins may act as 

‘linker’ molecules increasing the aggregate size (Cedervall et al. 2007b). Therefore, if 

these NPs cause toxicity in a concentration dependent manner it is less likely that the 

toxicity will be related simply to the primary aggregate size but rather to the size of 

aggregates.  

Further to DLS and SEM, the TEM analysis of SiNPs in culture media proved 

that they were polydisperse in nature. From TEM images (figure 3.4) it was seen that 

NPs were associated with adjacent NPs, this is highlighted in red circles. This 

observation  appeared to support the suggestions by Cedervall et al., (2007b), that NPs 

are clustered through linkers, although the identity/components of the linker molecules 

need to be further studied.  The aggregation and polydispersity of fumed SiNP makes 

the interpretation of size-toxic effect relationship more complex than that of NPs with 

monodisperse nature in solution, such as colloid SiNP (Kaewamatawong et al., 2006).       
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Small alterations in peak positions of organic chemical bounds were observed in 

the IR spectra (figure 3.8) of blank culture medium as compared with that in SiNPs 

samples dried from culture medium, which may be due to conformational changes in 

protein structures due to SiNP and protein ‘corona’ formation (Cedervall et al., 2007b). 

This interaction raises issues of the possible competitive inhibition of proteins/enzymes 

by SiNP as suggested by MacCormack et al (MacCormack et al., 2012). Further to this 

they investigated the effect of possible interactions between nanomaterials and 

protein/enzymes on the conformation and activity of LDH. However, they produced no 

evidence to suggest that SiNPs have any effect on LDH conformation or activity. 

Although this project showed no conformational changes occurring in silica chemical 

signature, the possible change in protein structure could potentially affect the activity of 

some proteins/enzymes, which could lead to alteration in cell biology (Lesniak et al., 

2012). It has also been suggested that the NP-protein interaction may affect the uptake 

and toxicity of SiNP in particular. The lack of corona could increase the interaction of 

NP with cell membrane interaction, leading to the increase in NP internalisation and 

toxicity (Lesniak et al., 2012).  

SiNP showed different zeta potential in water and in culture medium, suggesting 

that these NP have different potential to aggregate in different solution. The higher vale 

for zeta potential suggests a higher instability of particles in solution, and higher the 

possibility to aggregate.  The particles become more unstable with the presence of 

proteins, as suggested by the concentration dependent increase in formation of larger 

aggregates.  Both instability and a polydisperse nature may be directly linked. As 

proteins alter the surface charge of NP by competitive adhesion, the interaction between 

SiNP is restricted. Therefore, protein binding may dictate dispersity of NP in solution. 

This phenomenon may be associated with the electrochemical changes brought 

about by protein-nanoparticle interactions, suggested by Meiner et al., (2009),  

Cedervall et al., (2007a) and Cedervall et al., (2007b). As mentioned above, the zeta 

potential may play a pivotal role in dispersion characteristics and therefore is required to 

be measured. 
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Other studies, such as Karakoti et al., (2006) and Cho et al., (2012) have 

highlighted the potential impact zeta potential may have on the mechanism of toxicity. 

Jiang et al., (2009) also suggests that the pH of environment is the most important factor 

controlling the zeta potential.  Doymuş, (2007)  showed that pH can directly control the 

zeta potential of coal particles and allow control over aggregation. However, this study 

utilised culture medium which is mimicking the homeostatic pH for cellular growth, 

ensuring that the pH is not a contributing factor to cellular toxicity. 

Fully characterising the NPs will be critical in interpreting the size-, chemistry- 

and aggregation effects on toxicity. It will also aid the understanding the mechanisms of 

NP toxicity in vitro and in vivo.  
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CHAPTER FOUR 

4 Silica nanomaterial toxicity in vitro 

4.1 Introduction 

In vitro toxicology techniques are widely used to assess potential health hazards. 

From cosmetics to medicines the first form of testing is usually in vitro. For NPs it has been 

established that the characterisation of the particles is fundamental to assessing and 

understanding the toxicology of the sample. Once the characterisation is completed 

sufficiently the results of toxicological testing are easier to associate with a specific route 

and mechanism of action on the cells. The selection of in vitro cellular model for toxicity 

study is largely based on possible primary route of human exposure to NP. Considering the 

possibility that NPs may enter the blood stream, a wide range of cell types could be included 

in in vitro study.  

To mimic inhalation exposure a cell line that best represents a bronchoalveolar 

model must be chosen. Human A549 lung carcinoma cells and Beas-2B bronchial epithelial 

cells have been widely selected for this purpose in toxicity assessment (Soto et al., 2007 

Herzog et al., 2007;
 
Eom and Choi, 2009b; Park et al., 2010).  The induction of cytotoxicity 

by a variety of inorganic NPs over a short term treatment has been demonstrated in both cell 

lines. The toxicity mechanisms involved could include oxidative stress leading to the 

production of pro-inflammatory mediators (Soto et al., 2007). Another route of exposure 

which may be a result of NPs release during LCA is topological exposure. For this skin cell 

types such keratinocytes are widely used to model skin toxicity of NPs (Lu, et al., 2010; 

Samberg, et al., 2010; Park, et al., 2010; Yu, et al., 2009). Cellular Models provide a greater 

understanding of the mechanisms of nanoparticle toxicity at a cellular level. 

Based on the exposure routes expected during the LCA of the nanomaterials 

concerned in the NEPHH project, this study selected A549 cells as a lung model for 

assessment of NP toxicity. For comparison of cellular sensitivity, lung fibroblast MRC-5 

cells were also included.  Finally, the skin keratinocytes (HaCaT) were also utilized to 

model dermal toxicity. These cell lines are the most well established cell lines to model lung 
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and skin exposure, respectively. The A549 cells are a carcinoma cell line, this has 

advantageous features that they are long lived and can be used over a longer period of time 

or passage number. However, there are also limitations, such as a carcinoma cell line will 

not behave the same way as a primary ‘normal’ cell line. For this reason MRC-5 cells are 

also included   to serve as a variance of cell type and also a comparison between healthy 

primary cell reaction and a carcinoma cell line.  
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4.2 Results  

4.2.1 Optimisation of cell growth 

Before proceeding with toxicity testing the growth pattern of the cells under a given 

experimental condition must be investigated. As shown in figure 2.6, normal cell growth 

involves 4 phases: lag phase, log phase, stationary phase and death phase (figure 2.6). It is 

important for all in vitro tests to be conducted while the cellular system is under exponential 

growth, since other limiting factors such as senescence (cells cease to divide, normally 

occurring after about 50 cell divisions in vitro) and natural cell death could influence the 

cellular response to external stimuli.   

To allow cell growth at exponential phase during toxicity test, an optimal cell 

seeding density needs to be determined.  For easy comparison of results from different 

experiments using a variety of growth vessels, the seeding density is often defined as cell 

number/culture surface. To optimize the seeding density of cells for nanoparticle 

cytotoxicity assessment, cells were seeded at 7x10
3
 to

 
1x10

4
 cells/cm

2 
in 96-well plates  

(0.94 cm
2
/well). After overnight culture, cells were further cultured for upto 72 h and cell 

growth was determined by the MTT assay at 24, 48 and 72 h, and the absorbance was 

recorded as indicative of cell number.  

For A549 cells the seeding densities examined were 7x10
3
, 8x10

3
, 9x10

3
 and 1x10

4
 

cells /cm
2
 in 96-well plate (growth area 0.94 cm

2
).  Over 72 hours the cells at density of 

1x10
4
 cells/cm

2
 exhibited the best growth profile as indicated by higher initial absorbance 

and constant increase of absorbance over the time period. The same growth pattern was also 

observed for HaCAT cells.  These two cells lines also share very similar morphology as 

observed under light microscope. The MRC-5 cells, however, were a little slower in growth. 

The density of 3x10
4
 cells/cm

2
 was determined to be optimal for 72 h culture. 
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Figure 4.1 Growth of various cell densities over 72 hour period. Cells showed a 

consistent growth pattern over examined time period, as assessed by MTT as 

absorbance values. Error bars represent standard deviation of samples.  

 

The cell numbers as determined for the optimal seeding densities at 24 h, 48 h and 72 

h were then used for cell growth doubling time calculations. It was important to note that 

during the assay cells were initially cultured overnight before further culture for 72 h. 

Therefore, the actual time span in the 96-well plates could be as long as 96 hours.   

The cell numbers at different time points are presented in table 4.1. These numbers 

were uploaded in table format to http://www.doubling-time.com/compute.php (Roth, 2006). 

From this cell growth rate and the doubling time were calculated. The doubling time graphs 

and calculations are presented in figure 4.2. The doubling times were calculated as 20.84 

hours for A549 cells, 24.45 hours for HaCaT cells and 37.73 hours for MRC-5 cells.  Data 

showed that at the chosen seeding densities, these cells were remained in  exponential 

http://www.doubling-time.com/compute.php
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growth phase for up to 72 hour.  Based on these calculations the chosen seeding densities 

were suitable for the nanoparticle cytotoxicity study.  

 

Table 4.1  Optimal seeding density for cell growth.  Cell counts were taken at 

intervals of 24 hours over 72 hour period using A549, HaCaT and MRC-5 cell lines. 

 

 

Figure 4.2 Cell growth curves and calculations for all cell lines. Using logarithmic 

calculations a doubling time is calculated based on growth rate of cells over. 
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4.2.2 Multiple cytotoxicity endpoint assays  

In this study, cytotoxicity endpoints including mitochondrial function, cell membrane 

integrity and intercellular ROS level were analysed in 3 cell lines as described earlier. These 

multiple toxicity assays in combination allow elucidation the mechanisms of toxicity.  

The mitochondrial function is a reflection of cell viability, which is probed by the 

production of formazan salts using MTT reagent. The MTT assay indicated that SiNP 

exhibited no effect on cell viability at 24 h, whereas the positive control (H2O2 of 200µM) 

induced a significant reduction in viability at this time point.  SiNP induced a significant 

reduction in cell viability (< 0.05 as compared with vehicle control) after 48 h of treatment 

(figure 4.3). Generally a time-dependent effect was detected across all SiNP and 

concentrations applied. Silica 7 nm, silica 14 nm and Aerosil 200 were seemingly more 

toxic than Aerosil 974. The effect appeared not to be NP concentration-dependent, as a 

similar level of reduction in cell viability was detected across all concentrations of SiNP 

applied. The low toxicity of Aerosil 974 may be a reflection of poor dispersion characteristic 

of this NP.  

The ROS assay indicated that SiNPs of 7, 14 and Aerosil 200 induced a significant 

increase (p<0.05) in intracellular ROS at 12 hours as compared to vehicle control (figure 

4.3). After 24 hours, however, ROS level in NP treated cells gradually decreased. The 

decrease became significant at 72 h in SiNP7, SiNP14 and Aerosil 200 treated cells, which 

could be due to the significant loss of cell viability as detected by the MTT assay at 72 

hours. A similar trend of LDH change was also detected in cells treated with the positive 

control (H2O2 of 200µM). These results suggest that the total number of viable cells needs to 

be considered in determining the intracellular ROS level, and that intracellular ROS level 

should be normalised against the number of viable cells.    
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Figure 4.3 SiNP cytotoxicity assays in A459 cells. Left: MTT assay of cell viability 

over 72 hours. Right: Intracellular ROS assay over 72 hours of treatment. Results 

were presented as % of negative control. Error bars represent standard deviation. 

Bold line denotes 100% of negative control. (*= significance p<0.05). 
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The increase of LDH in cell culture medium, indicative of cell membrane damage, 

was detectable as early as 4 h after NP treatment, reached maximum at 12 h (figure 4.4) and 

then decreased, which was consistent with the trend of change in intracellular ROS. The 

effect on LDH leakage was more pronounced for cells treated with the 3 hydrophilic SiNP 

than those treated with the hydrophobic Aerosil 200. The detection of the SiNP effects by 

LDH and ROS assays suggest that these SiNPs are capable of inducing acute cytotoxicity, 

which, however was not detected by the MTT assay. The inability of the MTT assay to detect 

cytotoxicity at early time point may reflect 3 possible situations: 1) the sensitivity of the MTT 

assay is too poor to detect early toxicity, 2) residue SiNP may interfere with the readout of 

the assay when cell viability was only slightly decreased, 3) or the mitochondrion was not the 

initial target of SiNP acute toxicity.  A similar trend of LDH change was also detected in cells 

treated with the positive control (H2O2 of 200µM). 
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Figure 4.4 LDH leakage over 24 hours of NP treatment in A549 cells. Results were 

presented as % of negative control.  Early LDH leakage detected in a dose 

dependant manner. Error bars represent standard deviation (*= significance 

p<0.05). 

  

The limitations of the MTT assay in study of nanomaterial toxicity in vitro have 

been investigated with respect to different NPs including SWNT, MWNT and Carbon 

% of negative control 
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black NPs (van Meerloo et al., 2011; Jaszczyszyn and Gasiorowski, 2008). Although silica 

is shown not to interfere with MTT readings, for precaution the plates are washed to 

remove SiNPs before proceeding with taking the readings. These studies have concluded 

that MTT assay is highly sensitive to NP-induced toxicity.  Monteiro-Riviere et al., (2009) 

found that the MTT was sensitive to the toxicity induced by carbon black, SWNT and C60 

as compared to other methods.  MTT is considered as a valuable tool for study of toxicity 

of different NPs. In combination with other assays such as LDH leakage and intracellular 

ROS, it provides insight into the mechanisms of cytotoxicity.     

In addition to the induction of cytotoxicity, the potential of SiNP in initiation of 

pro-inflammation was also studied.  The induction of IL-8, a mediator of inflammation, 

was detected using an ELISA assay in A549 cells at 24 h after SiNP treatment at 10-100 

µg/ml (Figure 4.5).  The linear pattern (R
2
= 0.9824) of the detection results derived from 

using the standard provided by the supplier suggests that the assay quality is high and 

reliable for IL-8 quantification. Based on the optical density readings and the standard IL8 

concentration graph it was possible to calculate the IL8 production in each treated sample 

using the equation: 

 

Equation 4.1 Equation for ELISA concentration conversion line of best fit 

                  

  
        

      
 

 



 

118 

 

 

Figure 4.5 IL-8 standard curve and the production of IL-8 induced by SiNP in 

A549 cells.  IL-8 production in sample was presented as fold change of negative 

control. Standard deviation shown as error bars (* significance p<0.05). 

 

 The optical density readings were compared to the standard line to determine 

concentrations. The concentrations of IL-8 in each treatment are presented in table 4.2. 
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Table 4.2 IL-8 concentrations in the supernatants of cells treated with SiNP 

measured using line of best fit equation of IL8 standard. 

Sample Concentration (pg/ml) 
Control average  187.89 
Silica 7   

10 277.7607 426.9975 223.2406 

25 267.654 509.9583 247.8749 

50 222.9993 490.1608 288.9799 

100 404.5838 385.0833 352.081 

Silica 14   
10 199.4634 274.2813 411.9433 

25 227.5459 272.4933 434.695 

50 246.5679 335.574 551.5792 

100 324.0746 753.9787 408.6275 

Aerosil 200   
10 246.3104 188.9727 184.8642 
25 236.7888 205.7127 330.765 

50 287.9634 324.798 423.3083 

100 341.5143 506.1887 446.7242 

Aerosil 974   
10 236.7951 222.5613 250.7708 

25 244.6524 200.7413 256.1175 

50 289.5133 257.1647 282.9792 

100 257.4431 263.0473 323.9283 

 

This production of IL-8 in response to SiNP treatment agrees with previous studies 

that silica nanoparticles induced inflammatory responses, supporting a strong link between 

the production of IL-8 both in vitro and in vivo after NP treatment (Oberdörster et al., 

2004; Øvrevik et al., 2006; Park and Park, 2009).  

 

 

 

 

 



 

120 

 

4.2.3 Toxicity comparison between 3 cell lines 

Experiments of MTT and ROS were also performed in HaCaT and MRC-5 cell 

lines. The use of different cell lines gives a better indication to general toxicity for NPs. It 

could also be possible to identify cell type dependent mechanisms of cytotoxicity.   

In order to compare the sensitivity of different cell lines to SiNP toxicity, the 

results from the MTT and ROS assays were converted to percentage of negative control 

values. As shown in figure 4.6, 4.7, 4.8 and 4.9, similar response trends were detected in 

A549, HaCat, and MRC-5 cells as assess by the MTT assay at 24 h, 48 h and 72 h after 

SiNP treatment. At 24 h all three cell lines showed little effects; the only significant 

difference detected at this time point was for the positive control H2O2, to which the three 

cell lines responded significantly different from each other. At 48 h and 72 h, a time-

dependent reduction in cell viability was detected in all 3 cell lines. The reduction of cell 

viability became more apparent at 48 h and reached <60% at 72 hours.  
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Figure 4.6 Comparison of Silica 7 nm effect on A549, HaCaT and MRC-5 cell viability over a 24 - 72 hours period by MTT assay. 

Results are presented as % of negative control: red line is 100% of negative control and black line indicates the average effect of H2O2 

(200 µM) positive control treatment effect on all cell lines. Error bars are shown as standard deviation. *denotes significance (p<0.05).    
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Figure 4.7 Comparison of Silica 14 nm effect on A549, HaCaT and MRC-5 cell viability over a 24 - 72 hours period by MTT assay. 

Results are presented as % of negative control:  red line is 100% of negative control and black line indicates average effect of H2O2 

(200 µM) positive control treatment effect on all cell lines. Error bars are shown as standard deviation. *denotes significance (p<0.05).    
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Figure 4.8 Comparison of Aerosil 200 effect on A549, HaCaT and MRC-5 cell viability over a 24 - 72 hours period by MTT assay. 

Results are presented as % of negative control: red line is 100% of negative control and black line indicates average effect of H2O2 

(200 µM) positive control treatment effect on all cell lines. Error bars are shown as standard deviation. *denotes significance (p<0.05).    

* 
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Figure 4.9 Comparison of Aerosil 974 effect on A549, HaCaT and MRC-5 cell viability over a 24 - 72 hours period by MTT assay. 

Results are presented as % of negative control: red line is 100% of negative control and black line indicates average effect of H2O2 

(200 µM) positive control treatment effect on all cell lines. Error bars are shown as standard deviation. *denotes significance (p<0.05).   
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From figures 4.6-4.9 it appeared that A549 cells and HaCaT cells were more 

sensitive for SiNP induced reduction of cell viability as compared with MRC-5 cells, 

which was coincident with the fast growing pattern of the two cell lines as opposed to 

MRC-5 cells. It is also evident in all 3 cell lines that after 48 hours, cell viability was  

reduced to a very similar level by NP treatment at all concentrations.  

The assay of intracellular ROS indicated that SiNP caused an increase in 

intracellular ROS in all 3 cell lines as assessed at 12 hour of NP treatment (figure 4.10),  

although  some  variations in the response to different SiNP between these cell lines.   

A549 cells did not produce ROS in response to Aerosil 974, but in both HaCaT and MRC-

5 there is a 20% increase in ROS generation, suggesting difference in sensitivity between 

theses cell lines to the hydrophobic silica NP induced oxidative stress. As these cells all 

have a very similar level of NP uptake (figure 4.17), the difference in the production of 

intracellular ROS could not be associated with the intracellular dose of NP. Further study 

will be needed to differentiate the toxicity mechanisms of different SiNP in these cell lines.  
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Figure 4.10 Comparison of A549, HaCaT and MRC-5 cells intracellular ROS at 12 

hours of each NP treatment. Results are presented as % of negative control:  red 

line is 100% of negative control and black line indicates average effect of H2O2 (200 

µM) positive control treatment effect on all cell lines. Error bars are shown as 

standard deviation. *denotes significance (p<0.05). 

 

4.2.4 Dose dependent uptake of SiNP in three cell lines assessed by flow 

cytometry  

Flow cytometer offers a very reliable and effective method to test for cellular 

uptake of NPs. It assesses not only the size of cells or particles, it can also assess 

fluorescence present in a cell. This capability allows a fluorescent particle to be detected if 

it associated or has been taken up into the cell.  

After treated with fluorescently tagged (FITC) SiNPs for 24 h, cells were analysed 

for uptake of NPs. Figure 4.11 presents the flow cytometry profiles of A549 cells. The 

control cells show lower FITC intensity than those treated with NPs.  A dose-dependent 
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increase in fluorescence intensity was evident for cells treated with all the 4 SiNP.   It 

appeared that the uptake was more favoured for the hydrophobic Aerosil 974 than the 3 

hydrophilic NP, as indicated by the higher level of fluorescence intensity in cells treated 

with the lowest concentration of Aerosil 974 as compared with those treated with the same 

concentration of other 3 NP.   The cell counts, as indicated by the peak height in the flow 

cytometry profiles, appeared to be reduced in NP treated samples in a concentration 

dependent manner, which could be due to the reduction of cell viability.  
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Figure 4.11 Flow cytometry NP uptake analysis in A549 cells. Results were displayed as cell count vs fluorescence intensity. FL1 

represents the flourscent channel for FITC; any increase in FITC will lead to increased FL1 reading.
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The flow cytometry data can also be displayed as FL1 vs. forward scatter, which 

gives indication of cell size changes and therefore the status of cell health.  Based on the 

fluorescence level of control cells, a threshold level of fluorescence could be set.  It can be 

seen in figure 4.12 that the FITC intensity is low in the negative control cells, with only 

0.1% of them having intensity beyond threshold. The number of cells with higher FITC 

intensity increased in a NP concentration dependent manner for all 4 NP. However, it 

appeared that the cellular uptake of hydrophobic Aerosil 974 is higher than all 3 

hydrophilic NP, as evidenced by the higher number of cells with increased FITC intensity 

(96.6%) at the lowest concentration than the same concentration of other 3 hydrophilic NP 

(37.7-88%). The uptake of SiNP in A549 cells was concentration dependent. There 

appeared no apparent change in cell forward scatter, suggesting that the integrity of the 

cells were unchanged at this time point after treatment with all 4 SiNP at the concentration 

range applied.  
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Figure 4.12 Pattern of A549 cells distribution as displayed as forward scatter vs. FL1 (FITC). Threshold was manually set based on 

the distribution of negative control cells.   Cell uptake of NP was indicated by shift of cell distribution upwards beyond threshold.
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A concentration dependent uptake of SiNP was also detected in HaCaT cells.  

However the uptake of all SiNP at low concentrations (10-50 µg/ml) was lower by HaCAT 

cells than the uptake by A549 cells at the same concentrations (compared figures 4.10 and 

4.11 with figure 4.12 and 4.13). There appeared no apparent change in forward scatter, 

suggesting that the HaCaT cells were relatively healthy at this time point after treatment 

with these SiNP at the concentration range applied. 
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Figure 4.13 Flow cytometry NP uptake analysis in HaCaT cells. Results were displayed as cell count vs fluorescence intensity. FL1 

represents the flourscent channel for FITC; any increase in FITC will lead to increased FL1 reading. 
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Figure 4.14 Pattern of HaCaT cells distribution as displayed by forward scatter vs. FL1 (FITC). Threshold was manually set based on 

the distribution of negative control cells.   Cell uptake of NP was indicated by shift of cell distribution upwards beyond threshold.
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As shown in figure 4.15 and 4.16, the uptake of SiNP also occurred in MRC-5 cells 

in a similar fashion to A549 and HaCaT cells. There was a distinct shift in accordance to 

the increasing concentrations. The cell counts remained high until the highest 

concentration. This may be that the some cells were lost during the sample preparation as 

the cell treated with NP at the highest concentration could be too fragile to withstand the 

process.  
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Figure 4.15 Flow cytometry NP uptake analysis in HaCaT cells. Results were display using cell count vs fluorescence intensity.FL1 

represents the flourscent channel for FITC and any increase in FITC will lead to increased FL1 reading. 
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Figure 4.16 Pattern of MRC-5 cells distribution as displayed by forward scatter vs. FL1 (FITC). Threshold was manually set based on 

the distribution of negative control cells.   Cell uptake of NP was indicated by shift of cell distribution upwards beyond threshold.
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The detection of NP in samples treated with SiNP by flow cytometry suggests that 

cell uptake of SiNP occurred in a NP concentration dependent manner in all 3 cell lines.  

Further to this, the degree of NP uptake in the 3 cell lines was in the order of A549 cells> 

MRC-5 cells> HaCAT cells, which was particularly evident at the lowest concentration of 

SiNP. In addition, cell uptake of the  hydrophobic SiNP was more than hydrophilic SiNP.  

 

4.2.5 Confocal images of uptake 

Confocal imaging studies were conducted in conjunction with the flow cytometry 

to back up the findings and to define the cellular location of the NP. It can be seen in 

figure 4.17, a single slice image taken by confocal microscopy, the uptake of SiNP 

occurred in A549 cells at 24 h of NP treatment at10 µg/ml. This was in agreement with the 

results from the flow cytometry assay.   

As seen in figure 4.17, control A549 cells showed fluorescence staining of nucleus 

and very faint staining of lysosomes (A). In contrast, after treatment with SiNP for 24 h, 

the lysosome staining was enhanced (B-E). From these images it is apparent the presence 

of lysosomes is increased upon treatment with NPs, this suggests uptake may be utilising 

lysosome related uptake pathways. However, some NPs appear to be present within the 

cell without association with any lysosomal staining. The smaller aggregates of NP were 

generally associated with lysosome (stained with Lysotracker red). Whereas the larger NP 

aggregates were not associated with Lysotracker red staining.  This pattern of staining may 

be an indication of different NP uptake mechanisms. The larger particles may not be 

suitable for uptake via lysosomes, but they could be taken up through a different pathway.  

Importantly, both set particles were seen near the nucleus but not inside the nucleus, 

suggesting that SiNP may not interact with genetic materials directly.  
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Figure 4.17 Confocal microscopy of SiNP uptake in A549 cells. Cells were labelled 

with DRAQ5 (1 µg/ml) and Lysotracker (75 nM).  Cells were treated with FITC 

labelled SiNPs for 24 hours. A. control cells without treatment; B. cells treated with 

SiNP-FITC 7 at 10 µg/ml;  C. cells treated with SiNP-FITC 14 at 10 µg/ml; D. cells 

treated with Aerosil-FITC 200 at 10 µg/ml; E. cells treated with Aerosil 974-FITC 

at 10 µg/ml; F. Inset magnified from SiNP-FITC 14 to illustrate the staining 

pattern of Lysotracker with smaller NPs (yellow arrows), whereas larger NPs are 

without Lysotracker staining (red arrows).  
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There seems to be a distinct difference in the uptake of hydrophobic Aerosil 974 as 

compared with other SiNP. For cells treated with Aerosil 974 (figure 4.17 E), an enhanced 

lysosome staining was evident. Also the colour appeared to be orange rather than red as 

seen in cells treated with other SiNP (figure 4.17 B-D), which could be the result of 

costaining of the lysosome with lysotracker (red) and SiNP-FITC (green). This pattern of 

staining suggests that more hydrophobic SiNP were uptaken into lysosome as compared 

with other SiNP.  
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4.2.6 1
H-NMR assay of SiNPs effect on cellular metabolic pathways  

In order to assess the effect of SiNP on cellular metabolism, 
1
H-NMR 

metabonomic profiling of culture medium from cells with and without SiNP treatment was 

performed. For this study, A549 cells were treated with SiNP 7 nm for up to 24 h. Cell 

culture medium was collected for the 
1
H-NMR assay at 6 h, 12 h and 24 h. Principal 

components analysis (PCA) revealed a clear distinction between the samples acquired at 

different time points after treatment (Figure 4.18A). Further PCA at each time point 

revealed a clear separation across PC2 of the higher concentrations 50 and 100 µg/ml from 

controls and samples treated with lower concentration of SiNP at 24 h of treatment (Figure 

4.19B). 

 

Figure 4.18 PCA plots of 
1
H-NMR metabolites with respect to time and dosage of 

SiNP 7 treatment. A: a clear distinction can be seen between samples acquired at 

different time point of treatment. B: a clear discrimination was achieved between 

doses 50 and 100 µg/ml with untreated samples and samples treated with lower 

concentrations of SiNP 7 at 24 h. 

 

Table 4.3 presents the PLS-DA (partial least squares discriminant analysis) of the 

treatments of SiNP 7. After individual scaling of the data by the most suitable methods 

LVs (latent variables) were derived. SiNP 7 of 50 µg/ml retained the highest overall score 

for specificity and sensitivity at all the time points assessed.  SiNP 7 at 100 µg/ml scored 
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the same as SiNP 7 50 µg/ml at 12 and 24 h, whilst 10 and 25 µg/ml scored relatively low 

in comparison to 50 and 100 µg/ml at all the time points tested, suggesting that the effects 

of SiNP treatment is concentration dependent at all the time points tested.  

Table 4.3 Summary of the 2-way classification using PLS-DA of the NMR profiles 

of all doses at different time points. 

 

 

The latent variable (LV) numbers in Table 4.3 give indications of the dimensions of 

dose and effect relationship; the higher the number, the more complex the dose-effect 

relationship becomes.  At 4 h the LVs ranged from 2 to 6 across all concentrations of 

SiNP, indicating distinctive cellular responses to different concentrations at this time point, 

which may reflect the initial polydispersion pattern of SiNP-associated effect. At 12 and 

24 hours, however, the LVs range narrowed, from 2 to 4 across all concentrations of SiNP, 

indicating that the dose-effect relationship became less complex at these time points, 

which may suggest the reduction of polydispersity of SiNP at these time points. 

Interestingly, when all time points were taken into consideration together, the LVs 

increased in a SiNP concentration-dependent manner, indicating that the polydispersity of 

SiNP is concentration dependent. 
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In order to determine the metabolite identities, both the aliphatic and aromatic 

regions in the 
1
H-NMR spectra were analysed. As shown in figure 4.19, a number of 

metabolites were affected by SiNP 7 treatment. The most affected metabolites include 

glucose, lactate and ethanol in the aliphatic region (fig 4.19), and histidine, phenylalanine, 

and tyrosine in the aromatic region (fig 4.20). The effects were most pronounced for the 

treatment of 50 µg/ml at 4 h and both 50 and100 µg/ml at 12 and 24 h. Some other 

metabolites also responded to the treatment but their identities have yet to be determined. 

For example, the peaks at 3 ppm of detected frequency could be acetate-methylene protons 

of EDTA. The singlet peak at around 3.4ppm could well be oxidised nicotinamide, derived 

from cellular excretion of nicotinamide N-oxide. The peaks just below 4ppm are likely to 

be amino acid or potentially sugar protons.  According to the experimental metabonomic 

spectra data in the human metabolome database, the possibility of these peaks being folic 

acid, riboflavin, N-methylnicotinamide or niacin could be excluded (Human Metabolome 

Database Version 3.0 a-c). 
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Figure 4.19 NMR profiles normalised against the TSP internal standard and subtracted from control. A: SiNP 7 induced changes of 

metabolites at the aliphatic region. 

PPM
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Figure 4.20 NMR profiles normalised against the TSP internal standard and subtracted from control. SiNP 7 induced changes of 

metabolites at the aromatic region. 

PPM 
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The 
1
H-NMR metabonomic assay revealed that in A549 cells, SiNP 7 induced 

pronounced effects on some metabolites at early time points when cell viability was not 

impaired. The effects induced by SiNP 7 at 50 and 100 µg/ml were detected at 4 h and 12 

h.  Importantly, some effects were also detected at 24 h in cells treated with the two lower 

concentrations of the SiNP.   

 

4.2.7 miRNA targets for toxicity pathway detection 

For miRNA assay, A549 cells were treated with SiNP 7 for 24 h. Before assessing 

the miRNA gene expression by RT-PCR it is important to assess the quality of the miRNA 

and the presence of any contaminations, which may alter or have major effects on any 

outcomes. For this Bio-rad Experion was used. As shown in figure 4.20, each sample 

produced a thick and a thin band with size of ~1600 and ~4000 respectively, the 

consistency of these bands suggest a high integrity of these miRNA samples. This was also 

reflected by high RQI scores (maximum possible 10). The results also suggest that no 

damage or degradation occurred to miRNA during the process of extraction, freeze storing 

(-80°C) and thawing.   
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Figure 4.21 miRNA integrity assay. The molecular standard (green) and miRNA 

from controls and cells treated with SiNP (red) were separated by electrophoresis 

in Bio-Rad Experion chambers the miRNAs with acceptable quality are classified 

as green.  

 

 

The results obtained from the miRNA array assay could not be easily deciphered. 

Figure 4.22 is the volcano plot with data of pre normalisation. It was noted that the 

majority of miRNAs were significantly downregulated.  After contacting the data analyst 

at Qaigen UK, it was advised that these results required to be normalised. Although the 

internal controls and the housekeeping genes had worked in a stable manner, it was 

suggested that normalisation should be based on better internal controls from each ring. 
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The ratio of the required PCR cycle for miRNA to be used as internal controls vs those in 

SiNP treated samples  should be  <1.5. The miRNA analysis software (Qaigen© web 

based analysis software) would  select a miRNA set internal controls within each ring.  If 

such a miRNA set was identified, they were then used to normalise the whole set mRNA 

within each miRNA array.   

 

 

Figure 4.22 Total miRNA array volcano plot. A549 cells were treated for 24 hours 

with SiNP 7 at 10 µg/ml. The x-axis represents the fold difference in miRNA 

expression between control cells and those treated with SiNP 7. The red lines 

denote the significance level (p<0.05). 

 

Among the 12 sets of miRNA arrays, only array 2, 4, and 8 could be successfully 

normalised. The remaining sets did not contain a miRNA(s) which met the requirement for 

being used for normalization.  Upon explaining this circumstance to the experts at Qaigen 

they advised that this is an acceptable situation due to the magnitude of the experiment 

using unspecific targets.  Therefore the results from only 3 rings were further analysed.  A 

volcano plot was generated for each of the ring as displayed in figure 4.23.  From these 

results 6 miRNA sequences (other than the house keeping genes as shown in figure 4.23 as  

HK) were highlighted as upregulated after 24 hour treatment with SiNP. The sequences of 

the 6 miRNA and the known information about these miRNA and their target genes were 

collected and researched using online database program, TarBase 6.0. These results are 

presented in table 4.4. 
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Figure 4.23 Volcano plots of miRNA data from succesfully normalised miRNA rings (Ring 2, 4 and 8).  Red markers denote 

upregulated miRNA; green markers represent downregulated genes. The blue horizontal line is p<0.05 marker above which miRNA 

expression was either signifiacntly up or downregulated.  
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The information presented in table 4.4 highlights the novel nature of miRNA 

regulation studies. Little is understood how miRNAs specifically effect gene expression 

and how they behave in cell signalling pathways. Although the work has been successfully 

conducted on a number of miRNAs, there is no enough evidence to link the highlighted 

miRNA from our study to a specific cellular effect.  However several target genes of the 

SiNP responsive miRNAs appear to have roles in tumour suppression.  

 

It is important to note that this study of miRNA response to SiNP was very 

preliminary. Only miRNA response at 24 h to a single low concentration (10 µg/ml) of 

SiNP was studied. However, it was evident that alteration of miRNA expression was a 

relatively early event. In order to understand whether/what miRNAs were involved in 

SiNP induced toxicity,   further study will be needed to identify the time course and 

concentration-effect relationship of the miRNA response to SiNP. 

The sequences identified have been associated with target genes related to cell 

proliferation and regulation of tumour suppressor genes. Hsa-miR-95 is responsible for 

silencing SNX1 to promote cell proliferation (Huang et al., 2011). Wu et al., (2009b) 

identified an association between hsa-miR-188-5p and SUMO-conjugate-enzyme-UBC9, 

it has been shown to be integral in the posttranslational modification of sumoylation 

(transfer of SUMO protein to other proteins). It is further linked to a number of cellular 

processes through the control of sumoylation (Jackson, 2001). From all of the identified 

sequences the most frequently studied is hsa-miR-205, from these studies a number of 

targets have been identified for it. The majority of targets are related to tumour suppression 

and cell proliferation (Gregory at al., 2008 ; Dar et al., 2011).  
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Table 4.4 Upregulated miRNA identities and known information are shown for  fold change and p-value  (Wu et al., 2009b; Wu et al., 

2009a; Huang et al., 2011; Gregory et al., 2008; Dar et al., 2011). 
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4.3 Discussion 

SiNPs are representatives of nanoparticles that are manufactured in large 

quantity for different applications, therefore likely to interact with humans in many 

ways. Although it has been well documented that some smaller particles are more toxic 

than their larger counterparts, it is extremely challenging to study the toxicity potential 

of small MNP, such as SiNP <20 nm that have a very strong tendency to aggregate or 

agglomerate in the air, in biological media, and  inside cells. This nature of behaviour 

could govern their toxicity potential.   

The cytotoxicity of SiNP was studied in the in vitro models of A549, HaCaT and 

MRC-5 cell lines. In A549 cells, all the SiNP induced an increase in intracellular ROS 

and LDH release at 12 h, and a reduction of cell viability after  48 h of treatment at 10-

100 µg/ml. These effects were also detected in both HaCaT and MRC-5 cell lines. SiNP 

also induced a dose-dependent IL8 production in A549 cells at 24 hours, although the 

effect was not tested in other 2 cell lines.  The induction of ROS generation has been 

widely reported to be associated with cytotoxicity of different NP. Choi et al., (2009) 

reported a similar scenario, oxidative stress occurring at an earlier time point preceding 

to cell death in A549 and L-132 cells. Han et al., (2010) conducted in vitro tests with 

MWCNTs in A549 cells and suggested a link between the oxidative and inflammatory 

stress based on the increase production of IL-8.  

Identification of early cellular and molecular changes using relevant in vitro 

models is an important approach for toxicity prediction, as early changes may lead to 

cell death if the cell cannot sufficiently deal with the stress. The production of ROS 

which leads to an increased production of IL-8 is itself a response to deal with the 

problem, this has been described as a co-mediated response both iv vitro and in vivo 

(Øvrevik et al., 2006; Donaldson et al., 2008; Donaldson et al., 2008; Samberg et al., 

2010). The example of this mediation is presented by Han et al., (2010) who concluded 

that the production of ROS in A549 cells triggers the production of NF-κB, a protein 

complex which controls the transcription of DNA. NF- κB has been shown to be a 

precursor to the production of many pro-inflammatory factors. Although NP toxicity 

have been detected in many cell types, the associated mechanisms were not well 
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characterized.  However it was suggested that NP can induce toxicity either internally 

and externally.  Øvrevik et al., (2006) reported that NP uptake is not necessary for IL8 

induction. 

To understand the relationship of SiNP induced cytotoxicity with their 

internalization by cells, cell uptake of SiNP was studied by flow cytometry and confocal 

microscopy. From the flow cytometry experiments, it is clear that there is an association 

of SiNP with cells, although it was not conclusive whether the SiNP were taken up into 

the cells or associated with the cell membrane. When coupling these results with 

confocal images it was established that the SiNPs were taken up into the cell structure. 

Lysosomal dye and nuclear dye were used to assess whether the SiNP were taken up 

into lysosomes after endocytosis and or the SiNP were located inside nucleus. The 

results seemed to suggest the SiNP were uptaken by A549 cell via endocytosis and 

located mainly in the lysosome.  As suggested by Unfried et al., (2007) there are many 

uptake mechanisms but a majority of mechanisms are dependent on NPs being 

encapsulated by lysosome and transported to final location within the cell.  

From this work it is very interesting to note that the same cell and the same 

particles may induce various uptake mechanisms depending on aggregate size. 

However, this did not necessarily effect the final location of the SiNPs within the cell. 

All nanoparticles were located near the nuclear membrane, but did not breach it and 

enter the nucleus, indicating that SiNP do not interact directly with the nuclear DNA.  

Mu et al., (2012) suggested that 14 nm SiNPs enter cells through passive transport 

mechanisms at low concentrations (0.1 µg/ml) in both HaCaT and A549 cell lines, 

however there is no evidence of SiNP entry to nucleus, as observed under confocal 

microscope. Using TEM imaging technique, they suggested a similar subcellular 

location.  However, they found DNA damage occurrence s without nuclear entry of 

NPs, this occurs through generation of oxidative stress by ROS leading to oxidation 

product 8-oxo-dG. They confirmed uptake by TEM imaging finding that NPs are 

located in similar areas as this study showed by confocal.  

Metabonomics, combined with multivariate data analysis, is a powerful tool to 

study complex dose-effect relationships and biomarkers of toxic agents, and can also 
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generate models for toxicity prediction. 
1
H-NMR-based assay on extracellular 

metabolites requires minimal sample preparation, thus minimizing artefacts and 

allowing better correlation with in vivo study (Dekker et al., 2012; MacIntyre et al., 

2011). The 
1
H-NMR metabonomic assay revealed that SiNP 7 induced pronounced 

effects on glucose, lactate, histidine, phenylalanine, and tyrosine at early time points 

when cell viability was not impaired. The effects were detected at 4 h of SiNP 7 

treatment at 50 µg/ml and 12 h treatment at 50 and100 µg/ml.  Importantly, some 

effects were also detected at later time points (24 h) in cells treated with the two lower 

concentrations (10 and 25 µg/ml).   

Although the mechanisms for SiNP induced metabolite changes were not further 

investigated, the increase in some metabolites could in turn cause cytotoxicity or could 

serve as indications of cell damage. For instance, high concentration of glucose could 

result in oxidative stress and cell damage (Li et al., 2011a). As lactate is produced from 

glucose through glycoslysis in the cytosol then entering mitochondria to be oxidized via 

mL-LDH to pyruvate (Luo et al., 2012; Passarella et al., 2008), the increase of lactate 

could cause damage to mitochondria. It has also been reported that lactate can activate 

macrophages (Samuvel et al., 2009; Nareika et al., 2005). A recent study showed that in 

rat, zinc oxide NP induced an increase in lactate and glucose in urine, which is 

associated with kidney toxicity (Yan et al., 2012). It was shown that SiNP at doses 25 

µg/ml and above induced both lactate increase and membrane damage in A549 cells.  

Taking all these together, lactate production could be a sensitive and global marker for 

cell damage and toxicity.  In addition, SiNP 7 could also induce an increase of 

nicotinamide N-oxide, a potential biomarker of CYP2E1 activity that can be induced by 

ethanol and play a critical role in ethanol induced oxidative stress and toxicity 

(Cederbaum, 2009). The increase of nicotinamide-N-oxide coincided with the increase 

of ethanol suggests that CYP2E1 pathway could be involved in SiNP 7 induced toxicity. 

The increase in extracellular amino acids also suggests that SiNP may impair the 

mechanism of amino acids catabolism, preventing cells from utilizing phenylalanine, 

tyrosine and histidine.  The dose range of SiNP causing metabonomic alteration is 

consistent with that causing cytotoxicity as assessed by multiparametric toxicity 
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assessment, suggesting that metabonomic modelling could be a useful tool for 

prediction of toxicity.  

To further explore the mechanisms of SiNP cytotoxicity, the newly developed 

miRNA array technique was utilized.  The dysregulation of any miRNA caused by 

SiNP could pinpoint to a specific pathway and may elucidate further intricacies of 

toxicity mechanisms for SiNPs. The miRNA data was difficult to analyse and interpret. 

Assistance was acquired from the Qaigen technical staff.  It was advised that the web 

based software should be used for data analysis. This software allows automatic 

normalisation using the existing data. One or a set of miRNA that are well conserved 

between control and treatment (ratio <1.5 cycles) samples were chosen for data 

normalization.  

After normalisation 6 miRNA was positively identified as being significantly 

up-regulated. Three of the 6 miRNA have unknown gene targets, highlighting the 

novelty the work. The miRNA arrays used include a total of 1008  miRNAs, covering 

all the miRNAs that have been identified so far, although majority of them have 

unknown mRNA targets.  The 3 miRNAs upregulated by SiNP treatment may be 

critical in the translation of SiNP toxicity.  It is noted from the identified targets of the 

sequences that they are heavily related to cancer regulation, by controlling the 

expression of a tumour suppressor gene. Until now most of the focus with miRNA is 

towards cancer diagnosis and treatment (Dar et al., 2011; Huang et al., 2011; Wu et al., 

2009a; Wu et al., 2009b; Witten et al., 2010). 

Little work has been done on the involvement of miRNA in toxicity regulation. 

However, from what is established, the translation of NP toxicity is most likely via 

oxidative and inflammatory stresses. Oxidative stress triggers signalling pathways 

leading to NF-κB activation, which leads to transcription of inflammatory cytokines and 

chemokines (Tripathi and Aggarwal, 2006). The miRNAs that have been identified in 

this study are not directly known to interact with this pathway. However, a study 

conducted by Ma et al., (2011) observed that a large number of miRNA interact with 

NF-κB pathway, directly or indirectly. They propose that miRNAs may play a 

fundamental role in negative/positive feedback loops which control many functions 
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within the cell, including cellular pathways such as NF-κB. Detection of both ROS and 

pro-inflammatory cytokines may be an indication that all 3 miRNA in some way are 

involved. Further study into the specific role of theses 3 miRNA in SiNP toxicity could 

be useful for understanding the exact mechanism of NP toxicity and miRNA 

involvement. 

The work conducted on SiNP has shown toxic effects to occur as early as 4 

hours (LDH) and 12 hours (ROS). The ROS assay conducted at 12 hours detected 

elevated levels of ROS, this was indicative of oxidative stress. The theory that oxidative 

stress triggers signalling pathways to increase the transcription of cytokines is also 

supported by the increased production of IL-8 as detected by ELISA. It is plausible to 

assume the uptake of NP leads to ROS generation, which also indicates that toxicity of 

NP may be sequential, from uptake to ROS generation then initiation of pathways 

leading to NF-κB activation and finally transcription of pro-inflammatory cytokines.  
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CHAPTER FIVE 

5 Assessment of physiochemical property and toxicity of NP 

released from nanocomposites 

5.1 Introduction 

During the life of polymer products there are many applications involving 

some level of physical processing, such as drilling, cutting and impact crushing. 

These processes could all lead to the release of NPs. Studies on airborne particles 

have produced strong evidence that some NPs can be more toxic than larger particles  

both in vitro and in vivo (Oberdörster et al., 2005; Donaldson et al., 2000; Sayes et al., 

2007). Therefore it is important to consider the possible particle release while 

developing new polymer products including micron and nanocomposites. 

 The possible release and increased toxicity potential of NPs cause potential 

health hazards. To address the concerns about potential release of NPs from novel 

products and associated effect on human health, scenario specific approach through 

all life stages of a given product is necessary (Hischier, and Walser, 2012). A 

comprehensive LCA allows identification of any points in the life of the product that 

NPs or NMs may be released, and therefore if a risk is posed. This study investigated the 

possibility of NP release from polyamide (PA6)-, polypropylene (PP)- and polyurethane 

(PU) silicon composites during mechanical processing. 

Polyamide (PA6) is an engineered polymer that exhibits excellent thermal and 

mechanical properties. These properties make PA6 attractive for use in many areas.  For 

example, polyamide has been used to develop strong flexible materials such as Nylon 

and Kevlar. More recently, PA6 has been explored for developing high performance 

materials ranging from automotive industry (Teixeira, et al., 2013) to sportswear (De 

Schrijver et al., 2009).  Polypropylene (PP) is a semi-crystalline thermoplastic resin with 

commercial importance as an engineering polymer. With extremely versatile properties, 

PP has long been used to develop plastics for applications from food container plastics to 



 

157 

 

plastic chairs. The high mechanical, thermal and chemical properties make PP desirable 

as a matrix for nanocomposite products with possible use in automotive industries 

(Zokaei, et al., 2012). Polyurethane (PU), the third polymer used in this study can be 

both thermosetting and thermoplastic. Like PA6 and PP, PU also has a wide range of 

advantageous properties and applications. PU is used extensively as car seat foams 

(Obi, et al., 2012).  

These 3 polymers were used to synthesize polymer-silicon composites. Based 

on the potential applications of these materials, different mechanical processing 

techniques were applied. PA6- and PP-group materials were subjected to drilling while 

PU-group materials were processed under crushing. The mechanical tests were 

conducted through collaborator with Dr James Njuguna at the school of applied sciences 

(SAS) of Cranfield University.  The characteristics of the dust NP released from the 

testing materials were characterized both in the collaborator’s laboratory and at 

Cranfield Health  laboratory. The toxicity potential of the released NPs was studied in 

vitro using the human lung A549 cells. To our knowledge, this is the first comparative 

study of both the possible release and associated toxicity potential of NP from PA6-, 

PP- and PU-based polymers and polymer-silicon composites.  

 

5.2 Results 

5.2.1 Size and characteristics of particles provided by colleagues  

Some results and details regarding the dry size and shape of particles generated 

during mechanical testing were provided by our colleagues who collected the samples. 

SEM images presented in figure 5.1 shows that airborne NP generated from all the PA6 

group materials apart from PA6-MMT formed aggregates with sizes much larger than 

100 nm. The aggregation of the particles made the determination of individual particle 

size and shape difficult. Nevertheless, it was evident that both the reinforcement NM 

(nanosilica and MMT) and the microsized fillers (GF and FGC) used in the polymer-

silicon composites were not released freely. It is observed from the SEM images that 
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they were released as hybrid with matrix materials. NP released from PP-based and PU-

based composites were not examined by SEM due to the low amount of airborne NP 

collected.  

 

 

Figure 5.1 SEM images of NPs produced due to mechanical processing of 

polymer-silicon composites. Scale bars shown on images.  
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As shown in figure 5.2, during drilling more than 10 times more airborne NPs 

were generated from PA6 group materials than from PP group materials. The increase 

of air NP in the first 14 minutes and subsequent decrease in the second 14 minutes were 

detected while drilling all of the PA6 group materials apart from PA6-MMT composite. 

PA6-MMT had already been shown to generate larger particles from SEM images 

(figure 5.1). However, an increase of air NP of PA6-MMT was detected after 14 

minutes of drilling (figure 5.2A). 

 

 

Figure 5.2 SPMS-C recording of NP release during drilling of PA6- and PP- 

composites. A) Total concentration of PA6 release measured over 28 minutes. B) 

Total concentration of PP released over 28 minutes. C) Geometric mean size of 

released PA6 particles detected over 28 minutes. D) Geometric mean size of PP 

particles detected over 28 minutes. The number of NPs released from PA6 group 

materials is 10-fold higher than PP group materials.   
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The level of airborne NP generated from PA6-based specimens in the first 14 

min was in the order of PA6-SiO2>PA6-FGC>PA6-GF>PA6-REF>PA6-MMT. 

Interestingly, the low level of NP released from the PA6-MMT composite was 

coincided with larger NP size (~100 nm in the first 14 min and ~200 nm in the second 

14 min, figure 5.2C) in comparison with the NP released from other PA6 group 

materials (<50 nm).  In contrast, the airborne NP generated from all the PP group 

materials apart from PP-SiO2 composite continuously increased over both 14 minute 

measurement cycles (figure 5.2B). The size of the airborne NP also increased with time 

(figure 5.2D). In both groups the neat polymers (reference specimens) released 

relatively low level of airborne NP whilst polymer-SiO2 composites released the highest 

level of airborne NP. Thus it is seen that PA6 released higher concentration of NPs than 

PU, and with time the size of NPs increased while concentration of airborne NPs 

decreased. 

 

5.2.2 Hydrodynamic size distribution of dust nanoparticles in water and in 

culture medium 

As the nanodusts have been characterized for shape, morphology, and chemical 

composition at SAS, the only characterization carried out at Cranfield Health laboratory 

was their dispersity in water and in cell culture medium.  As a reference the DLS profile 

of blank culture medium (figure 5.3A) was analysed. This profile showed 2 peaks with 

intensity in the regions of ~10 nm and ~100 nm, respectively. This indicates the 

presence of nanosized objects and their agglomerates as showed previously (van Gal et 

al., 2010). As the raw silica nanoparticles (SiNP 7) was used as a positive control in 

toxicity study of dust NP, the DLS profile of SiNP 7  in water and in culture medium at 

at100 µg/ml were also analyzed  (figure 5.3B and C).  in water , SiNP 7 exhibited one  

peak which was measured at 100-300 nm by the DLS assay. In culture medium SiNP 7 

exhibited 3 major peaks (figure 5.3B), of which two have size greater than the given 

size 7 nm, suggesting the formation of agglomerates between silica NPs or between 



 

161 

 

silica NP and components of culture medium.  When dispersed in water (figure 5.3C), 

SiNP 7 exhibited one peak which was measured at 100-300 nm by the DLS assay. 

 

Figure 5.3 DLS spectrum of culture medium (A),  Silica 7nm DLS spectra in 

culture medium at 100 µg/ml (B) and SiNP 7 dispersed in water at 100 µg/ml 

(C). Culture media has 2 distinctive peaks present ~10-25 nm. Silica 7 nm 

dispersed in culture medium is polydisperse, and in water is monodisperse.  

Figure 5.4 shows the DLS spectra of the dust NPs suspended in water and in 

culture medium at 100 µg/ml. The DLS profile of the PU group dust samples in water 

suggests the presence of large monodispersed aggregates ranging from 150-500 nm 

(figure 5.4A).  The PU-GF sample contained the smallest particles and the PU-FGC and 

PU-SiO2 sample contained the largest particle aggregates. When dispersed in culture 

medium the nanodusts become polydispersed (figure 5.4B). The average size of the dust 

particles was between 25-35 nm, with the PU-GF sample containing the largest dust 

particles and PU-SiO2 sample containing the smallest dust particles.  However the 

particle size differences between different samples were not statistically different (figure 

5.4C). 
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Figure 5.4 DLS profiles of PU group dust nanoparticles in; A) Water, suspended 

at 100 µg/ml; B) Culture medium at 100 µg/ml; C) Presents the average size of 

dust nanoparticles in culture media. Peaks in water are largely representative of 

monodisperse pattern, culture media leads to a much more polydisperse 

suspension, however, the average size of particles is smaller than in water. 

 

The DLS spectra of PA6 group dust samples in water (figure 5.5A) suggest that 

they are similar in dispersion to PU group dust samples, both having large monodispersed 

aggregates present (>200 nm). The PA6-SiO2 dust sample contained the smallest particle 

aggregates, whilst the PA6-REF dust sample contained the largest particle aggregates.  

When dispersed in culture medium the nanodusts became polydispersed and generally 

smaller in size (figure 5.5B). The average sizes of the dust particles in culture medium were 

between 35-60 nm, with the PA6-GF sample containing the largest particles and the PA6-

REF sample containing the smallest particles (figure 5.5C).  
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Figure 5.5 DLS profiles of PA group dust nanoparticles in; A) Water, suspended 

at 100 µg/ml; B) Culture medium at 100 µg/ml; C) Presents the average size of 

dust nanoparticles in culture media. Peaks in water are largely representative of 

monodisperse pattern, culture media leads to a much more polydisperse 

suspension, however, the average size of particles is smaller than in water. 

 

DLS profiles of the PP dust samples suggest that like PA6 and PU dust samples, 

they were monodispersed in water and polydispersed in culture medium. The size 

distribution of particle aggregates was ~150 nm (figure 5.6A) in water, with the largest 

particles detected in the PP-FGC and PP-MMT samples. The size distribution of PP 

particles in culture medium was 35-50 nm (figure 5.6C). 
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Figure 5.6 DLS profiles of PP group dust nanoparticles in; A) Water, suspended 

at 100 µg/ml; B) Culture medium at 100 µg/ml; C) Presents the average size of 

dust nanoparticles in culture media. Peaks in water are largely representative of 

monodisperse pattern, culture media leads to a much more polydisperse 

suspension, however, the average size of particles is smaller than in water. 

 

 

Based on the results from DLS analysis and SEM results provided by Dr Sophia 

Sachse at SAS, it is clear that the dust NP from all samples exhibited a monodispersion 

pattern in water but polydispersion pattern in culture medium, and they formed different 

sized aggregates in different solutions. 

 

5.2.3 Toxicity assay of dust NPs from different polymer-silicon composites 

in A549 cells 

The effects of dust NP on cell viability was assessed by the MTT assay at 

treatment of 24, 48 and 72 h (Figure 5.7). Both SiNP 7 (10-100 µg/ml) and H2O2 (200 

µM), included as positive controls, induced a time dependent reduction of cell viability. 
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All the PA6-based NP also induced a time dependent reduction of cell viability with the 

difference becoming significant only at 72 h (p<0.05), although no significant 

differences between NP from different polymer materials were detected. The effect 

appeared to be dose dependent as showed at the latest time point. In comparison, the 

PP-based and PU-based NP appeared to have no significant effect on cell viability 

(figure 5.7). 
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Figure 5.7 Effect of dust NP on cell viability in A549 cells detected by MTT assay.   The viability of cells after treatment with 

dust NP were presented as % of  negative control ± standard deviation (*significance = p<0.05).
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The effect of dust NP on intracellular level of ROS was assessed at 12 h, 24 h, 

48 h and 72 h of treatment alongside positive controls. As shown in figure 5.8, the 

positive control H2O2 (200 µM) and SiNP 7 induced a consistent ROS increase before 

the time point of 48 h. The low level of intracellular ROS in the positive control 

samples at 72 h of treatment was due to the significant loss of cell viability.   The NP 

derived from the PA6 reference material appeared to have an early time effect (figure 

5.8), whilst all the rest showed no significant effect on the level of intracellular ROS.  
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Figure 5.8 Effect of dust NP on intracellular ROS generation.  The levels of intra cellular ROS after NP treatment were 

presented as % of negative control ± standard deviation (*significance = p<0.05). 
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LDH release was assessed on both PA6 and PP based NPs. The PU based NPs 

were not tested. There was no detection of increased LDH in the culture medium after 

dust NP treatment (figure 5.9), suggesting that no membrane damage occurred. A time 

dependent induction in LDH release was detected in samples treated with SiNP 7 and 

H2O2 at 24, 48 and 72 h (figure 5.9).  
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Figure 5.9 Effect of dust NP on cell membrane detected by LDH assay of cell culture medium. The LDH activity in A549 cells 

treated with different dust NP were presented as % of negative control ± standard deviation (*significance = p<0.05).
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5.3 Discussion 

Data from the SEM study on airborne particles by our colleagues, Sachse et al., 

(2011) in SAS suggests that the NP released from PA6 materials were in clusters with 

size larger than 100 nm. However in the DLS assay, NP with the hydrodynamic sizes < 

100 nm were detected, as indicated by the increase of intensity of NP in the size range 

of 10-100 nm in culture medium when the dust NP were added. These data suggest that 

some components in the culture medium prevented the formation of NP aggregates as 

suggested previously, indicating that NPs were present in the testing system. 

Different tests were performed to determine the toxicity potential of the NP 

released from the PA6, PP and PU polymer composites with different silicon fillers. It 

was observed that all PA6-based NP reduced cell viability in a time dependent manner 

as measured by the MTT assay by 72 hours of exposure. The effect was only significant 

at 72 h and appeared to be concentration dependent. The reduction in cell viability was 

not associated with the cell membrane damage or with intracellular ROS increase. The 

data suggests that the loss of cell viability was not due to oxidative stress and cell 

membrane damage but could be the impairment of cell metabolism, which however 

could not be further investigated due to shortage of dust samples. 

Due to the gravity, NP aggregates would gradually settle down on top of cells, 

which could affect cellular metabolism and growth as suggested previously (Allouni et 

al., 2009).  The DLS data suggest that increased number of larger aggregates formed in 

dust NP samples from PA6 materials than that from the PP and PU materials in culture 

medium, which could be attributable to the higher toxicity caused by the PA6-based NP 

as compared with the PP and PU-based NP.  There may be a secondary explanation to 

the toxicity of PA6-based NPs, which is based on the toxicity of caprolactam 

monomers. It has been shown that the monomeric form of polyacrylamide (PA6), 

caprolactam, is a toxic substance. Therefore, a production method using monomeric 

acrylic substances to produce PA6 may not be 100% efficient and leave traces of the 

monomer, which in turn could lead to toxicity (Autian, 1975). 
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The lack of variation in the toxicity potential amongst the dust NPs from PA6, 

PP and PU polymers with different filler materials could be due to the minimal 

difference in their hydrodynamic size distribution in the culture medium. Another 

aspect to consider is the very similar chemical composition within a given polymer 

materials group.  As the low amount (5 wt %) of filler agent has little effect on the 

surface chemistry of the released NPs.  According to the SEM images the fillers were 

not released freely but as hybrids within the polymeric matrices, therefore the filler 

materials will have little effect on dust NP toxicity property.  
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CHAPTER SIX 

6 General Discussion 

6.1 SiNPs toxicity in vitro 

6.1.1 Influence of NP size, shape and chemistry in toxicity 

The SiNP tested in this project are very similar in size range (7-14 nm), which 

does not allow the results to be interpreted in direct relation to size specific effect of the 

primary particle sizes. However the concentration dependent increase in their 

hydrodynamic size in culture medium could give some justification for any effects to be 

related to size. The DLS, SEM and TEM data all suggest that SiNP form aggregates 

when suspended in water and in culture medium. However TEM imaging study 

revealed that the NPs are clustered with adjacent NPs, which may not make their 

surface area inaccessible for reactions.  In essence it creates a larger structure while 

maintaining a massive surface area to volume ratio. Based on the work with   

mesoporous SiNPs, Napierska et al., (2009) suggested that the surface area is the 

defining characteristic upon toxicity. Therefore, a larger aggregate may cause higher 

induction of ROS generation and thus causing greater toxicity. 

As the surface chemistry of NP is an important determinant of NP toxicity, study 

of the difference of SiNPs chemical property in water and in culture medium would 

provide some insights into their reactivity with biomolecules and cells in the testing 

systems. As assessed by FTIR assay, suspension of SiNP in culture medium caused 

slight changes in the IR spectrum of SiNP, suggesting the adsorption of protein on the 

surface of NP and change in protein conformation. The changes were more pronounced 

in hydrophilic SiNP than in hydrophobic SiNP. 

SiNP induced a concentration dependent cytotoxicity as detected by the MTT 

assay at 48 h and 72 h after SiNP treatment in A549 cells, HaCaT cells and MRC-5 

cells. These results are consistent with the studies of Hussain et al., (2005) and Yu et al., 

(2009) who also found NP induced concentration-dependent toxicity. However Yu et 
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al., (2009) reported a significant toxicity in mouse keratinocytes after just 24 hours 

treatment with SiNP of 30 nm and 48 nm at 100 µg/ml. This difference may be 

attributable to a cell type specific response.  Although SiNP induced an increase in LDH 

leakage as early as 4 hours, this does not seem to correspond to any concentration-

dependant response. A concentration-dependent effect on LDH leakage was detected 

only after 12 hours of SiNP treatment.  The induction of intracellular ROS generation 

by SiNP was detected after 12 h treatment with SiNP. Taking all of the multi parametric 

endpoint cytotoxicity/stress test results   into account it appeared that the intracellular 

ROS and cell membrane damage are the mechanisms of SiNP cytotoxicity.  The 

membrane damage may lead to increased internalization of NP as seen in confocal 

images and detected by flow cytometry. However the lysosomal cellular location also 

suggests the cellular transport of SiNP via endocytosis.  The exact mechanisms of SiNP 

internalization need to be further investigated.    

Interestingly there was no significant variation of cellular response to the 

hydrophilic SiNPs. As compared to the hydrophobic Aerosil 974, the cellular response 

differs as indicated by the MTT and ROS assays. Due to the poor solubility in culture 

medium, the actual particle number of Aerosil 974 despersed in suspension was much 

less than the same concentration of hydrophilic SiNP, which could explain the low level 

of cytotoxicity elicited by Aerosil 974.  However the level of cellular internalization 

was higher for Aerosil 974 than for hydrophilic SiNP, as indicated by the flow 

cytometry and confocal microscopy assays. Collectively, these results suggest that the 

hydrophobic Aerosil 974 is less toxic than the 3 hydrophilic SiNP.  Fubini et al., (1999) 

and Cedervall, (2007b) suggested that hydrophobicity is a major influence on the 

translation of toxicity from physical properties, which appeared to be in a disagreement 

with the results from this current study. The different results between these studies may 

be due to other variations such NP chemistry, size and cell types.    

There appeared no significant variations between cell types in responses to 

SiNPs, as assessed by multiple end point toxicity assays, suggesting that a common 

toxicity mechanism(s) is shared among these cell lines.   
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6.1.2 Novel approaches to toxicity assessment  

A concentration-effect relationship of SiNP toxicity was detected and modelled 

by the 
1
H-NMRassay of extracellular metabolites combined with multivariation analysis 

of the attained data.  A clear concentration-dependent relationship was detected  in 

samples treated with SiNP 7  , suggesting that the concentration may be as important as 

size of aggregates in the determination of toxicity. Until now very little research has 

been conducted on NP toxicity using the 
1
H-NMR analysis of cellular metabolites.  

1
H-

NMR-based metabonomic assay allows high throughput and quantitative measure of 

samples for toxicology evaluation (Liu, et al., 2011). With these methods toxicity 

pathways and mechanisms can be mapped and compared with comprehensive 

information database. 
1
H-NMR metabonomics proved to be an excellent non-invasion 

technique for toxicity study in vitro and there is no reason that it cannot be translated to 

work in vivo.  

Further to 
1
H-NMR-metabonomics assay, miRNA assay that is relatively new to 

the field of toxicology was also employed to study the mechanisms of NP toxicity. Total 

miRNA analysis of SiNP effect provided some interesting insight into the cellular 

response to SiNP treatment at miRNA level. The identification of miRNAs that are 

upregulated due to SiNP when considered with the multiple end point assays suggest 

that the identified miRNA may influence the activation of signalling pathways to 

combat oxidative stress and lead to the transcription of pro-inflammatory factors, in the 

case of A549 the transcription of cytokine, IL-8. 

The use of the metabonomic and miRNA techniques allows for the study of 

early cellular and molecular events before any lethal effects were detected. Very few 

groups have focused on changes in miRNA expression as an indicator for toxicity. 

Koufaris and Gooderham, (2013), Yokoi and Nakajima, (2013) and Li et al., (2011b) 

are some of the first groups to take steps forward in this field. However, one of the 

restrictions of these studies is the identification of miRNA targets for toxicity 

interpretation. Thankfully the development of tools such as TarBase 6.0 (Vergoulis et 

al., 2012) allows researchers to upload findings and identify total miRNA sequence 
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targets. Using these tools researchers can identify the miRNA which are regulated by 

external stimuli and the molecular pathways these miRNA may be influencing.  

The results obtained so far provide some new insights about toxicity assessment 

of NP with tendency to aggregate in the testing system.  
1
H-NMR has proved to be a 

potentially invaluable tool in analysing early effects in vitro. Potentially the use of 

miRNA arrays can specify and reveal in depth information about molecular mechanism 

of toxicity.  Schrattenholz et al., (2012) emphasised the importance of proteomics in in 

vitro toxicology particularly the value of techniques such as mass spectrometry. Some 

studies are being conducted in the field of toxicology using such technique (Pedersen et 

al., 2012). These forms of studies have the potential to identify long term health effects 

that may occur due to exposures to NPs.  

 

6.2 Nanoparticles released from composite materials 

6.2.1 PA6 group materials generate more airborne NP than PP group 

materials during drilling process   

During the drilling test, PA6 group materials released more NP than the PP 

group materials. The difference in the release of NP could be due to their distinct 

physical properties. It is known that the melting points are ~165 °C and ~223 °C for 

PP and PA6 respectively (Sachse et al., 2011). The melting temperatures could 

affect how the materials behave when subjected to physical process which involves 

heat generation. Under the heat generated during high speed drilling, PA6 materials 

could be more brittle than PP materials, therefore more likely to generate NP. The 

concentration of NP in the air in the drilling chamber was first increased and then 

gradually returned to low level. The reduction of air NP while drilling was still 

ongoing (second 14 min) could be that when reached a certain concentration, these 

airborne NP formed aggregates with size beyond the recorder’s cut-off size. Moreover, 

due to the gravity the aggregates could move out of the air and settle down in the dust. 

The formation of aggregates was confirmed by the NP size increase with time   as 
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determined by the SMPS+C and also by the SEM measurements. Notably the polymer-

SiO2 nanocomposites generated the most airborne NP among all others in both PA6 

and PP group materials during the first 14 min of drilling. In contrast, among the PA6 

materials PA6-MMT produced the lowest level of airborne NP, suggesting that the use 

of MMT as filler agent could reduce the brittleness of PA6 polymer products.  

The observation that the PA6 materials released a higher level of NP than the 

PP materials is interesting as both are among the most applied polymeric materials. 

Although many previous studies have focused on the thermo-mechanical property of 

polymeric materials, few have paid attention to their ability to release NP. This study 

indicates that from the ability of NP generation point of view, PP group materials and 

PA6-MMT composite could be considered as environment and consumer friendly 

polymeric materials for applications involving drilling. For the rest of the PA6 

materials, improvement in product design is desirable in order to prevent or reduce the 

possible release of NP from the final products that are deemed to undergo physical 

process. Wearing masks may reduce the exposure of workers to particles, however not 

all masks have been tested for penetration of nanoparticles of different varieties.  This 

is the first report on the comparative study of two groups of polymeric materials for 

both the release and toxicity of nanoparticles.  

This study only simulated one scenario that is likely to occur during the product 

life cycle. For overall safety assessment, more relevant scenarios throughout the whole 

life stages of a given novel material need to be simulated (Roubicek et al., 2008) to 

fulfil the development of safe products. 

 

6.2.2 Dust NP from PA6 group materials showed higher cytotoxicity than 

that from PP and PU group materials   

SEM images showed that airborne NPs released from PA6-, PP- and PU 

polymeric products were in clusters with size larger than 100 nm. However in the DLS 

assays of dust samples dispersed in culture medium, NP with the hydrodynamic sizes < 
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100 nm were detected. These data suggest that some components in the culture medium 

prevented the formation of NP aggregates as suggested previously, indicating that 

nanoparticles were bioavailable in the testing system.    

Different tests were performed to determine the toxicity potential of the NP 

released from the PA6, PP and PU groups of materials. The entire PA6 group NP 

reduced cell viability in a time dependent manner as measured by the MTT assay. The 

effect only became significant at the latest time point (72 h).  The reduction in cell 

viability was not associated with the cell membrane damage and intracellular ROS 

increase. The slow reduction in cell viability while retaining cell membrane integrity 

suggests that the cells could undergo slowing down in metabolism but not cell death.  

Due to the gravity, NP could gradually settle down on top of cells, which could affect 

cellular metabolism and growth as suggested by (Allouni et al., 2009; Wittmaack, 

2011). 

The lack of differences in the toxicity property among the NP from different 

polymer materials groups could be due to (1) the insignificant difference in their 

hydrodynamic size distribution in the culture medium; (2) NP have very similar 

chemical compositions; (3) the addition of a low amount (5 wt %) reinforcement 

materials had little effect on the surface chemistry of polymer NP as the reinforce 

materials were not released freely but as hybrid within the polymeric matrix.    

    

6.2.3 Life cycle analysis  

This study demonstrated the importance of life cycle analysis as opposed to 

single stage analysis of novel materials. The raw SiNPs exhibited cytotoxic potency, 

whereas the dust NPs generated from the mechanically tested polymer-silicon 

composites were generally low in toxicity potency, although PA6 induced a slight 

reduction in cell viability by 72 hours that could be related to the PA6 matrix itself as 

this was also seen by PA6-REF sample. As was argued by Kloepffer, (2008), the 

toxicity assessment of materials from the starting material (raw materials) to the final 

products is a requirement. LCA of toxicity highlights stages where concerns about the 
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safety of the products need to be addressed, and safe measure to be introduced in 

handling of the different forms of the material from production to application. 

This study suggests that a raw NP which is toxic can be ‘neutralised’ and used 

safely by embedded in an organic polymer matrix at a low wt (NP) /wt (polymer) ratio. 

This idea of reduction of NP toxicity by the modification has been widely    

implemented in biomedical applications. such as drug delivery or molecular imaging 

(Jevprasesphant et al., 2003; Hoshino et al., 2004). However, it is possible that a 

modification may lead to a non-toxic material becoming toxic, or the modification agent 

itself may be toxic.  

The results of this study support the resolutions of ISO 14040 (ISO, 2006), 

which set out a framework and provided guidelines of LCA, testing of the manufactured 

materials in a fashion which mimics the scenarios of real life exposures.  
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Figure 6.1 Schematic diagram of LCA: Exposure and risk assessment prediction, the findings of this study are incorporated into 

the diagram. 

This project found at this stage 

of the life cycle of 

nanocomposites the chance of 

NP release is high. It is 

dependent on not only the 

nano/micro filler used but the 

method of wearing/testing and 

also the polymer itself. 

Raw NPs are more toxic than 

those released from a polymer 

matrix.  

Toxicity assessment for NPs 

requires more variety of testing 

methods, the unknown aspects of 

NPs behaviours may require 

novel methods to pinpoint 

mechanisms. 
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6.2.4 Development of approaches for risk assessment of nanoproduct on 

human health 

So far little work has been done on evaluation of the release of NP from different 

polymeric materials. This present study has developed integrated methods and protocols 

for monitoring and collecting airborne NP, separation of NP from the dust generated 

during mechanical test, and NP toxicity assessment using human in vitro cell models.  

The results from this study are consistent with the report by Tardif et al., (2009) that 

polymeric products even without any nanofiller can generate NP when submitted to 

mechanical process.  This present study also suggested that the addition of 

reinforcement agents can either increase or decrease the release of NP from polymer 

products.   For overall risk assessment of a novel product to human health, the toxicity 

data needs to be evaluated in connection with the ability of a given product to release 

NP.   

An integrated approach for monitoring, sampling and toxicity testing of NP was 

developed in the current study. The approach developed based on one scenario can be 

adopted for assessing the level of NP release from different products under different 

scenarios and the associated health effect.   
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6.3 Conclusion 

This project aimed to investigate the in vitro toxicity of raw silica SiNP and dust 

NP released from silicon-based polymer composites and mechanisms of SiNP toxicity. 

The results achieved so far suggest 1) both small and larger aggregates of SiNP were 

taken up into the cells and caused cytotoxicity via mechanisms involving intracellular 

ROS elevation and membrane damage;  2) conventional cytotoxicity assays  combined 

with miRNA array and 
1
H-NMR metabonomic assay could provide insights into 

molecular mechanisms of NP toxicity; 3) metabonomics and miRNA assays can serve 

as  robust tools for recognising sub toxic  dose-effect relationships; 4) the toxicity of 

dust NP from polymer composites depends on polymer types but not reinforcement 

materials.  

Importantly, this study explored new avenues to study the mechanisms of NP 

cytotoxicity. The miRNA assay allows the identification of factors that regulate the 

cellular response to NP at transcription level. The non-invasive 
1
H-NMR metabonomic 

profiling proved robust in identifying metabolic biomarkers of toxicity in vitro.  

This study also highlights the importance of LCA in assessment of health effect 

of new materials. Clearly the toxicity of a given material will not necessarily remain the 

same throughout its lifecycle. Alterations to the physic-chemical properties of materials 

during their lifecycle will inevitably alter their toxicity potency. Therefore, this study 

provides evidence supporting the concept that toxicity testing should be conducted on 

all stages of materials’ whole life.    

Some aspects of the original objectives were not achieved,  such as identification 

of specific uptake pathways and the mechanism of toxicity.  Although SiNP uptake   

and toxicity have been detected,  the mechanisms for each are still unknown. To 

understand which pathway is triggered by the NP toxicity studies should be conducted 

based on the template highlighted in this study. They must also maintain a focus on 

LCA of NP, the toxicity mechanisms of NP combined with LCA studies will lead to a 

complete risk assessment. Such risk assessments are necessary for safe applications of 

new technologies such as NPs.  
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6.3.1 Outlook and further study  

The outlook for nanotechnology is bright and there are many exciting 

possibilities. For industry there are little constraints, due to the lack of identified health 

hazard at present. This is where research must keep pace with a profit driven market. 

The standardisation of NP toxicity testing and characterisation is a major step to 

bridging the gap. Alongside the development of methods such as miRNA assays and 

metabonomics cellular changes caused by toxic NP can be potentially detected earlier. 

From these assays detecting cellular and metabolic changes the overall long term effect 

of NP can be predicted effectively. 

With ever-increasing novel nanoproducts being developed, LCA of nanotoxicity 

will play an important role in safe implementation of advanced materials in modern 

society without compromising environment and human health.  

Specifically from this project the next step must be to build upon the novel 

methods. The early results gave hope that these methods may be useful and lead to a 

better understanding of toxicity mechanisms and pathways, possible better than 

conventional methods could alone.  The way to build upon these results is through 

validation. The miRNA sequences that have been identified must be validated using 

specific primers, once validated the function of these miRNAs must be established from 

further assays of  the predicted targets of the sequences. Metabonomics has also given 

interesting results, which may provide a non-invasive diagnostic tool, not only in vitro, 

but possible all the way to clinical examinations. It is important to optimise the  method 

for  easier, quicker and more reproducible detection. 

In summary, the future plans for NP toxicity evaluation must include 

standardization of protocals for NP characterisation and testing,  and  validation of data 

gathered from novel techniques.  Work should be continued in a multidisciplinary 

manner, as this is the only way that the unknown questions about  NPs safety and can be 

addressed, through sharing  the knowledge between material engineers, biologists, 

toxicologists and ecotoxicologists to understand how  NP characteristics will translate 

into potential health hazards.  
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Appendix A 

Human IL8 ELISA Kit for IL8 Human ELISA Kit (1 x 96 Well Plate) 

Materials Required  

 Distilled water.  

 Pipettes : 5µl, 10 µl, 50 µl, 100 µl, 200 µl and 1000 µl.  

 Vortex mixer and magnetic stirrer. 

Procedural Notes/Lab, Quality Control:  

1. When not in use, kit components should be stored refrigerated or frozen as 

indicated on the vials or bottles labels. All the reagents should be warmed to 

room temperature before use. Lyophilised standards should be discarded after 

use. 

2. Once the desired number of strips have been removed, immediately reseal the 

bag to protect the remaining strips from degradation. 

3. Cover or cap all reagents when not in use. 

4. Do not mix or interchange reagents between different lots. 

5. Do not use reagents beyond the expiration date of the kit. 

6. Use a clean disposable plastic pipette tip for each reagent, standard, or specimen 

addition in order to avoid cross-contamination; for the dispensing of H2SO4 and 

substrate solution, avoid pipettes with metal parts. 

7. Use a clean plastic container to prepare the washing solution. 

8. Thoroughly mix the reagents and samples before use by agitation or swirling. 

9. All residual washing liquid must be drained from the wells by efficient 

aspiration or by decantation followed by tapping the plate forcefully on 

absorbent paper. Never insert absorbent paper directly into the wells. 

10. The TMB solution is light sensitive. Avoid prolonged exposure to light. Also, 

avoid contact of the TMB solution with metal to prevent colour development. 

Warning TMB is toxic avoid direct contact with hands. Dispose off properly. 

11. If a dark blue colour develops within a few minutes after preparation, this 

indicates that the TMB solution has been contaminated and must be discarded. 

Read absorbances within 1 hour after completion of the assay. 

12. When pipetting reagents, maintain a consistent order of addition from well-to-

well. This will ensure equal incubation times for all wells. 

13. Respect incubation times described in the assay procedure. 

14. Dispense the TMB solution within 15 min. following the washing of the 

microtiter plate. 

15. Exposure to acids will inactivate the conjugate. 

16. Substrate solutions must be at room temperature prior to use. 

Specimen Collection, Processing and Storage: 
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 Cell culture supernatants 
Remove particulates and aggregates by spinning at approximately 1000 x g for 

10 min. 

 

 Serum 
Avoid any unintentional stimulation of the cells by the procedure. Use 

pyrogen/endotoxin free collecting tubes. Serum should be removed rapidly and 

carefully from the red cells after clotting. For that, after clotting, centrifuge at 

approximately 1000 x g for 10 min and remove serum. 

 

 Plasma 
EDTA, citrate and heparin plasma can be assayed. Spin samples at 1000 x g for 

30 min to remove particulates. Harvest plasma. 

 

 Storage 
If not analyzed shortly after collection, samples should be aliquoted (250-500µl) 

to avoid freeze-thaw cycles and stored frozen at –70°C. Avoid multiple freeze-

thaw cycles of frozen specimens. 

When possible, avoid use of badly hemolyzed or lipemic sera. If large amounts 

of particles are present, this should be removed prior to assay by centrifugation 

or filtration. 

 

 Recommendation Do not thaw by heating at 37°C or 56°C. Thaw at room 

temperature and make sure that sample is completely thawed and homogeneous 

before assaying. 

Reagent Preparation:  

 Standard Buffer Diluent  
Add the content of the vial (X10) to 225 ml distilled water before use. 

 

 Standards 
Depending on the type of samples you are assaying, the kit includes two 

standard diluents. Because biological fluids might contain proteases or cytokine-
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binding proteins that could modify the recognition of the cytokine you want to 

measure, you should reconstitute standard vials with the most appropriate 

standard diluent. 

For serum and plasma samples use Standard Diluent: Human Serum and for 

cell culture supernatants use Standard Diluent Buffer. Reconstitute IL8 

Standard by addition of appropriate diluent. Reconstitute volume is stated on the 

label of the standard vial. This reconstitution produces a stock solution of 2000 

pg/ml IL8. Allow standard to stand for 5 minutes with gentle swirling prior to 

making dilutions. Serial dilutions of standard must be made before each assay 

and cannot be stored. 

 

 Controls 
Freeze-dried control vials should also be reconstituted with the most appropriate 

standard diluent to your samples. For serum and plasma samples use Standard 

Diluent: Human Serum and for cell culture supernatants use Standard Diluent 

Buffer. Controls have to be reconstituted with the volume of standard buffer 

diluent indicated on the vial. Reconstitution of the freeze-dried material with the 

indicated volume, will give a solution for which the IL8 concentration is stated 

on the vial. Allow control to stand for 5 minutes with gentle swirling prior to 

distribution to control wells. Do not store after use. 

 

 Dilution of biotinylated anti-IL8 
Preparation immediately before use is recommended. Dilute the biotinylated 

anti-IL8 with the biotinylated antibody diluent in a clean glass vial according to 

the number of wells to be used. See the next table for volumes to pipette.  

Number of Strips 
Biotinylated 

Antibody (µl) 

Biotinylated 

Antibody 

Diluent (µl) 

2 40 1060 

3 60 1590 

4 80 2120 

6 120 3180 
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12 240 6360 

 

 Dilution of Streptavidin-HRP 
Add 0.5 ml of HRP diluent to a 5 µl vial of Streptavidin-HRP. DO NOT 

KEEP THIS DILUTION FOR FURTHER EXPERIMENTS. Dilute immediately 

before use. Make further dilutions with HRP-Diluent in a clean glass vial as 

needed according to the following table:  

 

Number of Strips 
Streptavidin-

HRP (µl) 

Strep-HRP 

Diluent (ml) 

2 30 2 

3 45 3 

4 60 4 

6 75 5 

12 150 10 

 

 Washing Buffer 200x Concentrate 
Dilute 200 times in distilled water. 

Pour entire contents (10 ml) of the Washing Buffer Concentrate into a clean 

2,000 ml graduated cylinder. Bring final volume to 2,000 ml with glass-distilled 

or deionized water. Mix gently to avoid foaming. Transfer to a clean wash bottle 

and store at 2° to 25°C. Washing Buffer may be prepared as needed according to 

the following table: 

Number of Strips 

Washing Buffer 

Concentrate 

(ml) 

Distilled Water 

(ml) 
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1-6 5 995 

1-12 10 1,990 

 

Assay Protocol:  

1. Before use, mix all reagents thoroughly without making any foam. 

 

2. Determine the number of microwell strips required to test the desired number of 

samples, plus appropriate number of wells needed for running blanks and 

standards.  

Please note: Each sample, standard, blank and optional control samples should 

be assayed in duplicate. Remove sufficient microwell strips from the pouch. 

 

3. Add 100 µl of appropriate standard diluent (see preparation of reagents) to 

standard wells B1, B2, C1, C2, D1, D2, E1, E2, F1, F2. Reconstitute standard 

vial with the appropriate volume as described under reagents preparation. Pipette 

200 µl of standard into wells A1 and A2. Transfer 100 µl from A1 and A2 to B1 

and B2 wells. Mix the contents by repeated aspirations and ejections. Take care 

not to scratch the inner surface of microwells. Repeat this procedure from the 

wells B1, B2 to wells C1, C2 and from wells C1, C2 to D1, D2 and so on 

creating two parallel rows of IL8 standard dilutions ranging from 2000 to 31.25 

pg/ml. Discard 100 µl from the content of the last microwells used (F1, F2). 

 

Note:Alternatively these dilutions can be done in separate tube and diluted 

standard pipetted directly into wells. 

 

4. Add 100 µl of appropriate standard diluent to the blank wells (G1-G2). 

 

5. Add 100 µl of sample to sample wells and 100 µl of the reconstituted control 

vial to the control wells (H1,H2).  
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6. Preparation of biotinylated anti-IL8 : (see preparation of reagents). 

 

7. Add 50 µl of diluted biotinylated anti-IL8 to all wells. 

 

8. Cover with a plate cover and incubate for 1 hour at room temperature (18°C - 

25°C). 

 

9. Remove the cover and wash the plate as follows:  

a. aspirate the liquid from each well 

b. dispense 0.3 ml of washing solution into each well 

c. aspirate again the content of each well 

d. Repeat steps-b and c two times. 

 

10. Prepare Streptavidin-HRP solution just before use: (see preparation of reagents). 

 

11. Dispense 100 µl of Streptavidin-HRP solution into all wells, including the blank 

wells. Put back the cover. 

 

12. Incubate the microwell strips at room temperature for 30 minutes. 

 

13. Remove plate cover and empty wells. Wash microwell strips according to Step-

9. Proceed immediately to the next step. 

 

14. Pipette 100 µl of ready-to-use TMB substrate solution into all wells, including 

the blank wells and incubate in the dark for 12-15 minutes at room temperature. 

Avoid direct exposure to light by wrapping the plate in aluminium foil. 



 

212 

 

 

15. Incubation time of the substrate solution is usually determined by the ELISA 

reader performances: many ELISA readers record absorbance only up to 2.0 

O.D. The O.D. values of the plate should be monitored and the substrate reaction 

stopped before positive wells are no longer properly readable (maximum 20 

minutes). 

 

16. The enzyme-substrate reaction is stopped by quickly pipetting 100 µl of H2SO4 : 

stop reagent into each well, including the blank wells, to completely and 

uniformly inactivate the enzyme. Results must be read immediately after the 

addition of H2SO4 : stop reagent. 

 

17. Read absorbance of each well on a spectrophotometer using 450 nm as the 

primary wavelength and optionally 620 nm (610 nm to 650 nm is acceptable) as 

the reference wavelength. 

Suggested Plate Scheme:  

Standard  

Concentrations  

pg/ml 

Sample Wells 

  1 2 3 4 5 6 7 8 9 10 11 12 

A 2000 2000                     

B 1000 1000                     

C 500 500                     

D 250 250                     

E 125 125                     

F 62.5 62.5                     



 

213 

 

G Blank Blank                     

H CTRL CTRL                     

Limitations: 

 Do not extrapolate the standard curve beyond the 2000 pg/ml standard curve 

point. The dose-response is non-linear in this region and good accuracy is 

difficult to obtain. Concentrated samples ( > 2000 pg/ml ) have to be diluted 

with standard diluent or with your own sample buffer. During analysis, multiply 

results by the appropriate dilution factor. 

 

 The influence of various drugs, aberrant sera (hemolyzed, hyperlipidemic, 

jaundiced...) has not been investigated. 

 

 The rate of degradation of native IL8 in various matrices has not been 

investigated. 

Sensitivity:  

 The minimum detectable dose of IL8 is less than 29 pg/ml 

This has been determined by adding 3 standard deviations to the mean optical 

density when the zero standard was assayed 34 times. 

Intra-Assay Inter-Assay 

Sample n Mean(pg/mL) SD CV% Sample n Mean(pg/mL) SD CV% 

A 8 1934 11.71 0.60 A 40 1977 39.21 1.96 

B 8 267.3 5.35 2.0 B 40 249.9 15.34 6.13 

 

Linearity of dilution  
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 A human serum pool containing 1000 pg/ml of measured IL8 was serially 

diluted in standard buffer diluent over the range of the assay. Linear regression 

of samples versus the expected concentration yielded a correlation coefficient of 

0.99. 

Normal Serum Values:  

 On a panel of 32 human sera, 9 are below the detection level. 21 are ranged 

between 25 and 76 pg/ml with a mean level of 44 pg/ml. 

Recovery:  

 Recovery of IL8 added to pooled normal serum was 100% (84% to 114%) for 

IL8 concentration ranging from 2000 to 62.5 pg/ml. 

 

Total procedure length: 1hr 45 min 

 

Protocol revised: 24/02/09  
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