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Notation

a, B
Xy, ¥

A, B

,(z)

I, (z)

Uk(w,z)

(z)

X11s X125 V11, Y12
Uzi, Uzz2, Uzs

Xp1, Xz2- Y21 Y22

curvilinear co-ordinates

Cartesian co=~ordinates

Lame's parameters (defined by eg. (1))
virtual displacements along ¢, B directions
radil

strain

arbitrary angle between O and */h

k~th order Bessel Tfunction

k-th order modified Bessel function

k-~th order Lommel function of two variables
Gaxma function

mmerical quantities defined by eq. (18)°
numerical quantities defined Dby eq. (23)*

mumerical guantities defined by eg. (24)°



Part 1 - Introduction
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1. Formulation of a boundary - value problem

In the theory of two-dimensional Michell optimum structures, there
arises the problem of calculating the lines of principal stresses and the
virtual displacements which are analogous to slip lines and velocities in
plane plastic flow. A detailed analysis of the problem has been given
in reference 1 and 2. Both analytical and numerical methods of calculation
are given in reference 3.

Two special problems are considered here, in which the strain fields
are generated from two given orthogonal curves with negative initial
curvatures. A curvilinear co-ordinate system (o, B) is defined such that
the magnitudes of the parameters ¢, f are chosen to be the angles between
the tangents of the curves and two fixed directions ox, oy, which are
cartesian axes with the same origin as (o, Ble (See figure 1).

If A, B are the radii of curvature of the o, B curves then the linear
element ds is defined by

ds® = APd® + B2@pZ2 ' (1)
where A, B are related by
QA OB
3 = % 3 = A5 (2)
and in the problems considered here A(x, 0), B(0, 8) are known functions.
rom (2), it is easy to show that

O=A

== ~A = 0
:‘fj (3)
5&55 -B = 0

The virtual displacement field (u, v) along O-B directions is governed
by (eq. (A7) of reference 2).

9%y

[dpB — % = -2 (%)
Loy v = 2eh

S¥ -v -

where e is the maximum strain. It is assumed here that the direct strain
along an G=curve 1s ~e and that along a B-curve is e.



2. Method of solution
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The second order partial differential equation

%%,-H=G (5)

with boundary values H(c,0), H(0,B) <§ -£—A§%> can be solved by means

of Riemann's method, which gives

Q s
H(o,8) = 5(0,0)T,(26B) + | 1 (a/(a5)) L +

O
B
‘ B oo
+ [ 1 (efate)) ks, +faf (24 )(B1))e(e ,m)asdn
o o o
(6)

Generally, no explicit solution will be available. If, however,
¢(t,n) is of the form
k

AN\ 2
&) e,

the double integral in (6) can always be reduced to a single integral
thanks to

%/ EXC =N (ﬂ\ e - o (1)

the proof of which is given in appendix A. Then it may be possible to
find explicit expressions for the integrals in terms of Bessel functions.

In what follows, two transformation formulae teken from references b
and 5 are of great value.

%
fJ (q sin §)J (p cos £).si 2*“'1@ SZMJ-@‘&@ _
o]
A+2r V2 ‘ s
2 i (1«:+1+*)1“(u+1+1’-)§-1> ( ) G T Tataese (1) 7o(/p%+a®
2

v (1 +u‘*‘3-“"3‘+v+1\i-s)
re5 s=0 25 5 F(l+r+l)F(v+s+l)(pg+q?)2

2
2

uﬁ<

o0

(8)



where (a:)n = a(a+m)(a+2} s ,(a—%‘n_l); (a)o =1 5 and
TN S Gl -
(z4r) I Az = B =7 . Z I, (/z)
v A . ) ¥ Vild
= .

3. Traaslormatlon formulae for the co-ordinate systems
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The co~-ordinate system (c, B) is related to the Cartesian {x, v)
‘gy (Eq, (99\ of reference 9\

[\pet = RS A vl

) o 19x _ 109y
ccos (B) =335 =3 33
)\ 10 1 Ox (10)
sin (B-q) = " E’&X %—' “‘é‘
or in integral form
(x=x_) + ily-y ) = f AExpli(p-a)}d, (11)
[}
where
rB
x iy = x2(0,8) + iy(0,8) = 1 J B(0,8) -Exp{ 18} B (12)

e}

When A is the Bessel function 10(2/015), the integral (ll) can be

represented by means of Lommel's funct of two vari a ble

Bap( 1 (a-a)}Z( -t @ . 1(268 &

k=1

il

o
f I (2/op) Expli(p-e)} o
o) .

]

Exp{i1(p-c)} .[U;L(eoz,ziw/é'é) + 1 Ue(aa,eﬁo?é)}

(13)*

1 See, for instance, reference 5, pp. 537/543. The Lommel function is
defined by:

s K
U lnz) = ) (U7 G g (2)

- m=0




4. Particular solutions
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Two particular solutions of strain fields are considered here,
the geometrics of which are presented in figures 2 and 3. Detail

calculations of the second case are given in Appendix B so as to

demonstrate the procedures.

(4a) In the case when the strain field is generated by two orthogonal

circular arcs of different radii, (figure 2):

A (@,0) =1y
{ (14)
. Bl(O:B) = Iz
then
{ ha(op) = 71 T (208) + =[5 T.(2/0B) (25)
Bi(a,B) = rlN@§ I(2/0B) + rzlo(zwaﬁ) :
which reduces, when ry = rs, to equation (4L) of reference 2. If the
virtual displacements on the boundary are given as ~
r up(a,0) = - ery(20+l)
vi(e,0) = ery
(16)
.{ u3(0,8) = = erz + e(rz-r1)(cos B ~ sin B)
v1(0,8) = era(28+1) - e(rz-ri)(cos B8 + sin B),
and A, B are given by (15), then |
up(e,8) = - ery(1+20)I_(2/08) - 2erz/op Ii(2/op) -
{ - e(rz-r1) [U1(28,2i08) + Ua(28,21/08)]
vi(@,B) = ers[I (2/0B) + 2/0p I1(2/0p)] + 2erpI (2/0B) -

- e(rz-ry) [UL(28,2i/08) - Ua(2B,21¥08)] ,

(17)

which reduces again, when r; = rp and e is replaced by - e, to equation

(63) of reference 2.



The co-ordinates (a,B) are then related to the Cartesian (xg,¥1)

’!Oy

(%1 = x10) + i(y1 = vi0) =[ Ar(a,B) . Bxpl{i(B-x)} d

.‘ N vo . R

= ry Exp{i(g~)}.[Us(2x,25/0B) + i Uz(20t,2i/08)] (18)

* 1o {Exp{i(a-cz)} [1 Ux(a,21/08) + U_(20,23/08)] - Exp(ip) }
and 8

X0 + 1 Ji0 = if rz Exp(if} &8 = ro[Exp(ip} - 1] (19)

; o

Combining (18) and (19) gives the following form for Xi, ¥i,

X1+ 1y1 = (ry x11 + r2 X32) + 1 (ry y11 + r2 y12) (18)"

Numerical values of X31, X1z, Y11, Yiz are tabulated in Part II.

(4b) In the case vwhen the strain fs_eld is generated by two orthogonal
curves of initial radii of curvature

[ Ax(C,0) = vy + rlxo(wzea) + ra.\/? I.(2/28a)
B2(0,8) = 2 + oI (2/(x-2)) + 71, [F T.(2/x2)p),

(20)

where 6 is an arbitrary angle (0 € 8 < %), (Figure 3).

then from (B.6)

8a(a,8) = rol1_(2/a(p¥28)) + I_(2/Blawn-28))) +

s ra { s T CEGRE) + (B2 5k, j

Bo(e,B; 1,725 26,m-20) = Ax(B,05 ra,ri; m-29 :29}

(21)

If the virtual displacements on the boundary are given by (generalising the



case considered in reference 6).

us(0,0) = - ery[(1+2o+ox-be) + 2 10(21/_275&)} -
- erp[I _(2/26a) + o200 I.(a/26a)] -
- e(ro=ry ) [Uy(,21/200) = ﬁa(am,erféﬁi)I
va(0,0) = ery[1+2/260 I,(2/200)] + era(1440) T_(2/283) +
+ e(ry-r2)[U(2r,2i/200) + Ua(2a,2i/20a)]
(22)
u(0,8) = = era[142/(x=20)p Tp(2/(x-20)8)]- ery(Tven-16)1 (2/(x-20)p)
- e(ra-ry)[Us(28,2:/ (x-20)B) + Ua(2p,21/(n-20)B)]
va(0,8) = eral(1428+10) + 28 I (2/(x-28)8)] +
+ ery[I_(2/(x-26)p) + 2/(x-28)p I (2/(z-20)8) +
+ e(ry-r2)[U(28,21/(x-20)B) - U2(28,21/ (x-20)B),
then after the calculations given in Appendix B, the results are
ualeB) = - ers[(1+aan-10)1 (2/B(am-20) + 2 I (2/a(p+a8)] -
- erp I_(2/0(p+20) + 2/a(p+2d) Ii(2/o(p+28) +
-+ 2Blom®) 1, (2/Blom-28)]
- (gmry)[Us (20, 2/G(BTE)) = Un(20r,21/a(EvE0)) +
+ Uy(28,21/B(am-20)) + Ua(28,20/B(om-20))]

V‘Q(O«',B; T1s¥2s 29:“"'29) = - UE(B,&S FosTys 1{«26,29) (23)
These depend upon Uiz, Usz, Uz3 defined by
ug(a,B) = = elrjus; + rougs + (ro=r1)uzs] (23)*

mmerical values of which arve tabulated in Part IT. -

Finally, the (xz, yo) co-ordinates are given by




-7 -

o4
{xo=x20) + i{ya=yoo) = hf\Aa Exp{ 1{B~)} dx

e}

r1{Exp{i(B=)} .[U(2x,2i/a(B+28) + Ui(2(crn-20),2i/B(0An-20 ) +
+ 1 Us(ox,2i/a(B+2e) + i Uz(e(a+n—ee),21#5@51553)}
Exp{iB} . [Us(2(x~20),2i/B(n=20)) + 1 Us(2n-26),21/B(x-20))1}
ro{Expli(B-a)}.[1 Uz (2,2i/a(B28)) + i Ur(2(a+n-28),2i/B(otn-20)) +
Uo(am,zi%§(§E§5) + U (2(on-20 ) ,23/B (047 -25)]
Exp{iB}.[1 Ul(Qkﬁ-dé) eiJgfzfﬁiv; + U_(2(x -26),21/B8(x-28)) + 11}
(2k)

U

+

1

B
X200 * 1 Y20 = i&/\Bz(O;B)-EKP{iB}dB

¢

= Tl{EXP{iﬁ}'[Ul(gﬁ:ai’iﬁ(ﬂ‘@@)) + 1 UQ(23,2iv§(ﬂ-29))} - i} +
+ ro{Exp(ip}.[1+1 U1(28,21/B(x-20)) + Ux(28,2i/B(x-20))] - 1}

(25)
Combining (24) and (25) gives expression of the form
Xz + 1 y2 = (rixoy + raoXez) + i(riyay + rayzz) (2u)”

5. Form of tabulation
Numericel quentities in equations (18)7, (23)" and (24)* have been ;
tebulated using @, B as parameters varying from O fto 135 degrees and 6 = "/L.

Two auxiliary tables of Bessel and Lommel functions are also given, so
that it is possible to calculate numerically expressions (15) and (17).

The tabulations of equation (18)" had been checked, when ry = rs, with
the table given in p. 350 of refervence 33 and the tabulations of equations
(23)° and (24)" had been partially checked by the special case of reference
6.

A1l calculations were carried out on a Pegasus digital computer, using
a library code for Bessel functions; and equations (18)" and (24)" are
caleulated by numerical integration using the Gauss formula. It is believed
that the errors of calculations nowhere exceed 0.1%.
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Appendix A  Proof of formula (7)

- e s

In proving formula {7), use has been made of the following rules
concerning Bessel functions:

d{z‘k.lk(z)} = z—kell+k(z)dz (A1)
d{zk.Ik(z)} = zk.Iknl(z)dz (a2)
T (z) + = 1/(z) - [1+ (-13)211 (z) =0 (83)
k z kB R E G Bl

It follows:

x9 'l'{‘
2 J’“ 1 (2/E)B)). ()% 1, (e/m)as

o) 1 k
e 2 ‘ 2

--[ (&) neGEE. 6 e +
o] 1+k Xk

e 2 . .=
+ [ TG |G e - EEPr e/ e
o)

1

) _f“ 9&:?.)‘2
B p-n

k
1(2/@E)E)) ()7 1,(2/en)as -

© 1+k k
a o 2 &
. f K;f;) e/ - 5 () Ik(z/f;n)J d{(%ff;) 1ﬂé¢(a-—§)(ﬁ-n>}
: |
k
Q. NE 2 I/ (2/kn)
= d/ g—’_'-%\f)zll(zv/(oz—-g)(ﬁ-n)) (,%) : [1’3;(2/&?1) + 5 -
% 4

2
- (1 r ) Ik(ev/enﬂae

i
(o]

(k)



Appendix B Analysis of results in (4b)
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In calculating the case Lb, formula (6) gives

. |
22(a,B) = 42(0,0)1 (2/0B) + follo(ew’(a—é )B) %%’—QZ a + f I (2/(B-n))B2(0,n)dn
0 0

(B1)
vhere As(£,0), Bo(0,n) can be obtained from (20).

By using formulae (8), (9) and (A1) (42), it can be shown that

B [
[ 1, = 2 12(2/68) | (se)

0

B
f I (/BT (2/ (=28 n)an = | =P Ta(2fBlom28)  (33)
A |

B f
f I, (266 L(e/) 552 an = 1 (2/6(am)) - I (2/oh)

0

“ (B4)
b/ IO(QV(Q-EFB) I-(2/20¢) gg«dg =
o Lk
(-1)F 2
T/ (1«:3):. (1 d 3;;3‘5 (20)7*" <§%§é~> I, (2/a(+28))
=0
= ‘\/‘B(;E I, (2/(B+28)) - \/% Ilv(a/('x'é) - 28 10(2@> (55)

Substituting these results into (BL) gives

As(a,p) = rl{IO(Ev/osz-}-%;) + Io(&/ﬁ(oz—m-ee)) +

+ 1o [ ,\/@ 1,(2/a(pr20)) + ,\\/&-&2—5 Il(Eﬂ/B(O:M-E‘G))—I

H
-

(B6)
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Similerly,

B2(0,8) = r1 [ ,\fé‘f—gﬁ Iy (2/B (on-20)) + V%;; Iﬂa/oa(&een] +

+ vz [T (2/B(o#n-28)) + I_(2/a(p+29))]

The virtual displacements are alsc calculated from (6)

04 ;
u2(e,8) = u2(0,001,(2468) + [ 3 (2/(ap) afeslay 4
o]

B app
+f I (2/a(g-n)) g’—‘%“—%g*ﬂldn -Eeff10 /(£ )(Bn)) B2(t,n)atan
o

o
(37)
From (B6), it is easily seen, by using (7), that
oY o 4
- eek/ L/ 10(24(a~§526~n)) Bo(§,n)dsdn
[e) O
= - 20 [ [ 1,(e/GEER)) Bals,8)aem
]
N’
= - 2e8 j B2(t,B)ds (33)
o

which can be integrated readily by using (a1)(a2).

The first two integrals in (B7) present only one type of integration
which differs from those in (32) - (B5) and (B3), namely,

k
~C :
o]
(B9)
Hence, integrating term by texm gives
o
f I (2/(o-£)B) Ui(2t,2i/208)d; = Uy(2n,2i/a(p+a0)) (B10)

o]
The result (23) can now be obtained by combining all the integrals
together.

(Fi?ally, the (x,y) co-ordinates can be calculated easily by using (13)
and (Al).
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FIG. I, CO-ORDINATE SYSTEMS.

FIG.2. FIELD GENERATED FROM TWO CIRCULAR ARCS. (RADH "n,ra)

FIG. 3. A FIELD GENERATED FROM TWO ORTHOGONAL CURVES,



