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8, Equation (6a) last term. For dedw read dedw
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18, Equation (29) for;/RTb read wJ%%—
¥ 2x o)

31, Table I, heading to first column for H read ©.



June 1963

T - oo

THE COLLEGE OF AERONAUTICS

e D0 1 W S W M O SO D W ML A S0 I U G G W

CRANFIELD

B h a3 40 08

The free-molecule flow characteristics
of concave surfaces

M.J. Pratt, B.A., D.C.Ae.

The problem of free-molecule flow over concave surfaces is
investigated, and general equations formulated for the 1ift, drag, and
heat transfer characteristics of such surfaces. The effect of multiple
reflections is taken into account by use of the Clausing integral equation
to determine the redistribubtion of molecular flux over the surface. It
is assumed that emission of molecules from the surface is purely diffuse,
and that the reflected molecules are perfectly accommodated to the surface
conditions.

The equations obtained are solved for the cases of (i) an infinitely
long circular cylindrical arc and (i11) a section of a spherical surface,
at hyperthermal velocities. It is found that under the above conditions
the local heat transfer characteristics are the same as those of the
corresponding convex surface, the total heat transfer being independent
of the geometry of the surface. As drag devices, the concave surfaces
examined prove only slightly more effective than a flat plate at similar
incidence, and as a generator of 1lift the cylindrically cambered plate is
significantly iInferior to the flat plate at similar incidence.
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Notation

D o .o

Roman symbols

R . 8 S 0 e e S o A

AB base area of surface

¢ molecular velocity

Cys cy, c, cartesian components of ¢

CD drag coefficient

CL 1ift coefficient

CH total heat transfer coefficient

D to%al drag force

Eint internal energy transfer rate to surface

E translational energy transfer rate to surface

=}
P
e
S

molecular velocity distribution function

F)
G) functions of (y,S)
H)
3 number of molecular degrees of freedom
K kernel of integral equation
L total 1ift force
m molecular mass
n molecular concentration (no. of molecules per unit volume)
N molecular mmber flux
Pressure
total heat transfer rate
r radius of cylinder or sphere

T2 distance between two surface elements



Greek symbols

- o " " S -2 o

Qs ¥

o, ¥

gas constant per gram of gas
molecular speed ratio = qw/Jﬁﬁﬁg
temperature (
free-stream velocity

spanwise coordinate of cylindrical surface

angle of incidence

%/2 -«

thermal accommodation coefficient

angle between free-stream and normal to surface

ratio of specific heats

~

angle between normal to surface and velocity vector
of muitiply reflected molecule

parameter relating reflection components of aerodynamic
coefficients to corresponding values for a flat plate at
similar incidence

polar coordinate of a point on the surface

limit on &

angle between L and 1ift vector at g

position vector of a point on the surface

gas density

area of the surface

shear force per unit area

polar coordinates centred at ¢

limits on @, ¥

sin @ cos (B-y)
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Subscripts

- v - - -

i

I

Superscripts

(c)
(s)

solid angle

limit on w

relating to
relating to

relating to
conditions

relating to

relating to

relating to

total number of incident molecules
free-~stream molecules or conditions

multiply reflected mclecules or surface

total number of reflected molecules

the cylindrical surface

the gpherical surface



1. Introduction

1.1 In gas flows at sufficiently low densities, the scale of molecular
motion can become comparable to the size of bodies of practical interest
in aerodynamic applications. VWhen the density is so low that the
effects of collisions between the gas molecules are far outweighed by
the effects of collisicns of the molecules with a body in the flow, we
have the régime of free-molecule flow, first defined in 1934 by Zamm (1).
The flow quantities are convected by the individual molecules rather
than transferred by the intermediary of collisions, and concepts such

as viscosity, which are intimately connected with intermolecular collision
processes, entirely lose their signrnificance. Tt is usual to define a
free-molecule flow as a flow having a Knudsen number greater than about
10, where the Knudsen number is the ratio of the molecular mean free
path-length to a typical dimensicn of a body in the flow.

In recent years the study of the aerodynamics of free-molecule
flows has been stimulated by the practical possibilities of flight in
the upper regions of the atmosphere. Numerous investigators have examined
the aerodynamic characteristics of bodies of various configurations in
free-molecule flows; an article by Schaaf and Chambré (2) conveniently
tabulates references to some of this work. A comprehensive summary of
the theory involved is given in a textbook by Patterson (3).

The majority of workers in this field have confined their attentions
4o bodies having surfaces which are either flat or convex, and comparat-
ively little research has been concerned with non-convex configurations.
Special problems arise in the treatment of such geometries owing to the
occurrence of multiple molecular reflections. Hurlbut (4) has obtained
some approximate results, while the following analysis is founded upon
an outline by Cohen (5) of the approach to an exact method of solution.
The present work presents an analysis of two classes of concave surfaces,
from which solutions for the 1ift, drag, and heat transfer are obtained.
At a late stage in the preparation of this work, two articles by Chahine
(6,7) were published, covering much the same ground, although the results
given are not entirely in agreement with those obtained here. The
present analysis appears to have certain advantages over the method used
by Chahine, notably in the treatment of axisymmetric surfaces.

2. Analysis

o o - -

2.1 Preliminary
. The total momentum and energy transfer to a body in free-molecule

flow arises from two components. Firstly, momentum and energy are
yielded up to the body by the incident molecules, and secondly, momentum
and energy are transported away from the body by the reflected molecules.
Since the molecular mean free path is large compared with the body dimenw
sions, the incident and reflected flows can be taken as separate and non-
interacting. The precise nature of the reflection of molecules from the



surface is at present still imperfectly understood, but a concise
summary of the present state of knowledge is given by Charwat (8).

In the following analysis a number of assumptions are made concerning
the reflection process:

(i) The reflection is perfectly diffuse. This condition implies
that the incident molecules are adsorbed by the surface and
later re-emitted with a Maxwellian velocity distribution.

The reflected molecules obey Lambert's cosine law of diffuse
reflection.

(ii) The velocity distribution corresponds to the temperature of
the emitting surface (i.e. perfect accommodation occurs at
the surface).

(iii) Wo surface poisoning or trapping of molecules occurs at the
surface.

Experimentally it is found (9) that for air on 'engineering' surfaces
(which by molecular standards are 'dirty' due to oxidation and adsorption
of gases) these three conditions are fulfilled fairly well, although
work by Roberts (10) has shown that the situation can be drastically
altered in certain cases involving clean surfaces. He finds, for instance,
that the reflection of helium atoms from a clean tungsten surface is almost
completely specular. This effect is apparently due to the fact that the
de Broglie wavelength of the incident atoms is comparable with the lattice
spacing of the tungsten surface. However, here it will be assumed that
we are dealing with 'engineering' surfaces.

The further assumptions will be made that:
(iv) The gas stream consists of a single molecular species.

(v) The surface temperature is constent over the surface and
invariant with time.

(vi) The surface temperature is sufficiently high to avoid Teold
wall paradoxes' (11). This condition stipulates that the
re-emitted molecules must have sufficient velocity to avoid
large increases in gas density building up at the surface,
which may lead to violation of the conditions defining a free-
molecule flow.

2.2 fThe molecular flux at the surface

A A A A Y ) S T v G AN D N T A I M OO T S oW W W T a0 B S D

The total incident molecular flux at a point ¢, on a concave
surface is given by -

N (g2) = 1 (62) + W (£1), | (1)



b
reflected molecules from the remainder of the surface.

vhere N is the flux of free-stream molecules and N, the flux of multiply

In the case of a non-concave surface the term N (gl) is zero; it is

this multiple reflection term which gives rise to bhe addltlona¢

complications inherent in the theory of the concave surface. If we
consider the number of molecules emitted per unit time by a surface
element dZo at 52 and intercepted by dZ, at gl we obtain, using the

cosine law of reflectlon,

a, (¢ )az, = S22 02 y (0)an @z, (2)

nra
12

in which the symbols are defined in Figure 1. Since Ni(gg) = Nr(gg)

from assumption (iii), we obtain from equations (1) and (2)

r
N, (¢2) = I (£2) +J K(51, £2)N, (62)d22, %)
1 -
in which K(¢1, £2) = cos B3 COS B2

Equation (3) is a Fredholm integral equation of the second type,
in which the kernel is seen to be symmetrical. This type of problem
was first formulated in terms of an integral equation in 1929 by
Clausing (12), who was concerned with the flow of rarefied gases through

pipes.

Using the coordinate system defined in Figure 2, the free-stream
molecular flux incident on a non-concave surface at the point & is given

by
N, (&) = L/ L/\ c. f( c)de dcydc ,

G o 0O

where f(c ) is a velocity distribution function whose significance is
pWaﬂned in any textbook on the kinetic theory of cases (for example
bhat by Kennard (13)).

The lower limit of zero on c. implies that molecules having negative

‘x-velocities cannot strike the surface at &. This equation may be

—



rewritten in spherical polar coordinates as

w(e) = ff n@coswfm £(c)dedn (&)

2

where c, = csinpcosy
de de de = cPsinpdpdyde
2,49, pdpdy
dp = sinpdpdy.
In the case of the concave surface, however, only those free-

stream molecules travelling in directions included in the solid angle
Q1 subtended by the boundary of the surface at ¢ can actually strike

the surface at &. Moreover, a further contribution to the total
molecular flux arises from impacts av ¢ of molecules reemitted from

other parts of the surface, whose velocities will be confined to the
solid angle Qo subtended at ¢ by the surface itself. Thus we obtain

the equation

N (e) =1 (6) + (&)
=L/1é;swn$coswhéﬁ £ {c )dcdw +u/;/g1mpcoayd/g fo(c)dedw
Q2

(5)

Here fl(c) is a Maxwellian wvelocity distribution funct¢on corresponding
to the free-stream temperature T " and including the superimposed free-

stream ve1001ty‘qm. The Iunctlon fg(_) is a Maxwellian velocity

distribution function for a gas at rest with respect to the surface,
corresponding to the surface temperature Tb'

In the case of momentum and energy fluxes at the surface we have
three contributions: (a) from incident free-stream molecules, (b)
from incident multiyly reflected molecules, and (c) from reemissions
of molecules at These latter are emitted isotropically with a

distribution function Fs(c c) corresponding to the surface temperature T,
within the solid angle Q3 Q1 + 02 = 2x. The cartesian expressions
have the forms

Normal momentum flux (pressure) D = m[Z]ﬁcif(c)dg
. W



Tangential momentum flux (shear) -

I
5]
CCT*)
TS

PR

b4

[}

[N
P

0
o

fol}

Q

b Tux Bl “de
Translational energy flux | B, = QLKY\CX(E'E)f(E)d:

We are led to the following expressions for the pressure, shear, and
translational energy flux at ¢.

[+]

b[[éln pcos ybéwﬂ £1(c)dcdm + m[]gln%pco&aw Oc fg( c)dedn
L/Yéln @cosavb/\ 4f3 (6a)

]

o(¢)

+

i

- o " )
(&) %[7gin%@COSWSin¢b/;4fl<S)dde + %Z]sin%$cos¢sin¢u/géfg(g)dc@n

197-)

o ~ 00
+ %[/;inawcos¢sin¢L/céfj(g)dcdm (60)
Qs o

Etr(g) = %UL/;in@cosyu/ésfl(g)dcdm + %u[ygin@cosw csfg(g)dc&n
01 ° 0z ©

Tt 00
_gé/simpcosxy% cSt5(c)dcdn (6c)

In fact the last term in equation (6b) vanishes on integration because
of isotropic reemission, the contribution to shear at the surface arising
from reemitted molecules is zero.

In calculating the heat transfer rate we must include also the
effect of internal degrees of freedom of the molecules, in the case of
gases which are not monatomic. Aosumlng equipartition of energy, each
molecule carries internal energy ~mRan~T where 3 nt is the number of
internal degrees of freedom. For a perfect gas Jtotal = 3 + Jint’ and
j = 2 -1 iving j. . = - 3 v o= 1)} The internal e
Jiorar = &/(r = 1), giving §, . = (5 - 3y)/(r - 1). The internal emergy

transfer is then, from equation (1)
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Eint(8) = <} =1 > 2 % % T T 7 M Ty
S -3 f
= <-~—17,,l>--1w (¢) 1% = Tof (7)

2.4 Drag, 1ift and heat transfer rate of the surface
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When an element d7 of the surface is inclined so that its normal
makes an angle B with the free-stream direction, its drag is

dD = dz(pcosp + Tsing) (82)
Similarly, a perpendicular 1ift force
dL, = dz(psing - Tcosp) (8v)

will exist, acting in the plane containing the free-stream direction
and the normal to the surface. Using equations (6) and (8a), the total
drag of the entire surface becomes

/230035 + tsinp)dz

JF{'(k//lln @COSZWU/“ c*fy(c)dedn +L[7éLn%$COS Wh/\éf (c)ded
u/y;ln WCOSawb/; f5(c )dcdw +h[]g1n Qbosaw c% f (e )&c&ﬁ }COSB

Qa

o

ner 00 J V00
+ [ML/gin%psinycos¢ L/céfl c)dcdw +u[];in?¢sin¢cosW. c*fa(c)dcdn
Q1 ~ Qe

A © .o
+L[/sin%@coswsinmv/‘c4f3(9)dcdm +b[7gin%@cos¢siﬂwh/e4f3(§)d0d®13iﬂé}d2
Ql c Q2 o ST,

(9)

Tn the sbove relation the integrals over Os in equations (6) have been .
written as the sum of integrals over (i and Qz. The second and sixth
terms, taken together, represent the drag of the surface due to Impacts




- 10 -

of multiply reflected molecules, while the fourth and eighth terms give
the drag due to reemissions of molecules which are, however, destined

to encounter the surface once more. These four terms, then, describe

a momentum transfer which is purely an internal process, and cannot
contribute to the total drag of the surface. The only events significant
in this connection are (i) impacts of free-stream molecules, and (i1)
reemissions of molecules into the free-stream, carrying momentum
completely away from the body. We may ignore the even~numbered terms

in equation (9), and rewrite it as

y {' v 00!
D= %/1[]15in%$icosawcoss + coswsimysiﬁé¥h/;4(fl(g) + fs(g)}dcdmdz
: - . =
Z Qy o

(10)
while similar expressions may be found for the 1ift and heat transfer.

The velocity distribution function for the resmitted molecules is
aasumed to have the Maxwellian form

(c) c2
ts(g) = (2’;’[?‘1‘;)3/2 e 2T, (12)

in which nr(g) is the molecular concentration of emitted particles at &.
Tt may be shown (vide, for instance, ref. (11), p. 401) that n and N

are related by

it

2 (8) = A B, (22)
7T

-
(e )/, [
5T

H]

from condition (iii). Using equation (11) we now find

%>l V00 4. Cz
ctrs(c)de =j prle)e® o - mE ac = % n_(& )BT (13)
»é i (2:7T, )%/ 2 L

on evaluation of the standard integral.

The velocity distribution function for the free-stiream molecules
is also Maxwellian, but includes the free-stream velocity U
o0



1
n (&) " 2RT_ ((c, - U cosp)®(c - U simg)% cf}
fi(c) = (§§;§273/2 e
1 (€ ) - §%§;{c2 - Zcq”sin@cos(3-¢)+ qf} (1k4)

= (aRT_)?/2 ©

From this we obtain

‘/ﬁc4fl(g)dc = %-n (g)RTD0 F(x,8)

{
o

Here y = simpcos(B-y) and § = U /Y2RT , the ratio of the free-stream
velocity to the most probable mdleculdr velocity, an important para-
meter in free-molecule flow theory which is known as the speed ratio.
F(x,S) represents the expression

( - a2 -
S0,) = (30 20557 + 3ot} {1 v ensue)em S0 210

-s2

2 A P
+ << x8 + = x-S ——
‘{“ 2V T

Finally, the expression for the total drag becomes

Tt

p =2 f ﬂsinacpcosqfcos(ﬁ—\y){% n (¢)T, + 2n ()T F(x,s)}- dwdz  (15)
Z Q1 :
By a similar process the 1ift is given by

L = %%/1[7;in2mcos¢sin(5-w}{%nr(é)Tb + th(é)?m F(X,Si}cosk(é)&mdz
z2 (16)

The angle )\ is that between the lift-vector of the surface element 47

at & and the direction in which the total 1ift is taken to act. In
gengral there will also be a transverse force, perpendicular both to the
drag and the 1ift, whose value is given by equation (16) with the sub-
stitution of sim) for cosa. Here we will deal only with surfaces which
are symmetrical about a plane containing the free-stream direction; the
1ift is taken to act in the plane of symaetry and the transverse force is
then zero.



For the translational energy transfer, we obtain from equation

(6c)
= %/ﬂ SinﬂPCOSﬂfjvcgs[fl(g) - £3(c)]dednds (17)
Z O o

Equation (7) mey be rewritten in the form

5 =3 r - c0
Eint(_g_) = (;—-—_—%) %—R{To?j[/ sinpcoswj c®fy(¢)dedn
) Ql O

[ r .0 s . 00
+ T\a/ jsinq)cosw / S CYLELA bejsimpcosw f e?f5(¢)dedw
Q2 uo e o

- 'Q/fsirrpcos‘n;rh/ c3f3(g)dcd&
Qo o

We may cancel the second and fourth terms, which describe a purely
internal process, to find for the transfer of Internal energy

int %g \7 - 1‘\ /.(/Slﬂ@COSWL/ ?[T fi(c) ~ T, f5(c)]ldcdndz

ZQ}_

E

(18)

Cormbining these two equations and integrating, we find for the total
convective heat transfer rate to the surface

ERT 3/a r 1
jjfsmcosxy =) ) [el0) + -( Lr,9)]
J
2RT. N>/ 2
b . 1 /7 + 1N\
~< :r(> nr(f'i) : ‘l:(y -1 ){d‘%iz’ (19)
in which
) —
a(x,8) = {%‘i xS + % 128> + %XSSSJ— {l + e:c‘"f"(}('S)‘}~ e e“S (1)
AP
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and

H(,8) = {2 x5 + -:QL-XBE‘P} {1 + erf(xs)} /o o527 (1)

1 el
+{§+%X282}€ S .

' The analysis so far is completely general, and the expressions
given for the drag, 1ift, and heat transfer by equations (15), (16)
and (19) are valid for any surface, whether concave or not. For non-
concave surfaces certain simplifications arise, since (; = 2x and

n (€)= n(¢).

—

2.5 The hyperthermal approximation

Most cases of practical interest, for instance satellites, many
of which at present have orbits in the free-molecule flow region of the
atmosphere, are concerned with speed ratios greater than about 6. We
see that in such cases the exponential term in equations (15), (16)
and (19) has its meximum value for y = 1, becoming very small as y — O.
The functions F(x,8), G(x,S) and H(x,8) also have their smallest value
for xy = 0. Since x = sinpcos(B-y), this implies that by far the greatest
contribution to D, L, and Q is due to molecules approaching each surface
element 42 in a small solid angle sbout the free-stream direction. This
is to be expected, since the free-stream velocity is considerably greater
than the average molecular thermal veloclity. It has been found (lh)
that for S > 6 the thermal velocities may justifiably be ignored in
comparison with the free-stream velocity. This is known as the hyper-
thermal approximation, and leads to a considerable simplification in

the theory.

In effect we now assume that each incident free-stream molecule
impinges on the surface travelling in the free-stream direction with
velocity Uy,- The total drag due to incidences of free-stream molecules
(i.e. the momentum they transport to the surface per unit time) is then
seen to be simply ABprS, where A, is the base area of the surface.
gince no molecule carries momentum perpendicular to the free-stream the
1ift due to the incident molecules is zero, while the translational energy
they transfer to the surface is %; o UP. The internal energy transfer
varies as qw, and may be neglected ?‘%omparison with the translational
energy transfer. We shall assume that the velocity of reemission of
molecules from the surface is sufficiently large that the reflected
molecules contribute appreciably to D, L, and Q. We thus replace those
terms representing the contributicns of the incident free-stream molecules
in equations (15), (16) and (19) by the simpler expressions given above,
which yields



- §RT% r~ [\®2 ¥ 5
= ABme; S &/ \j J[‘ sin wcoswcos(6~¢),pr(g)dwd@dz

I 0y =¥,
[*®2 ~¥o
L= z,rr f sinfpeosysin(p=y)o (& Jeosn(t Jaypdpss (20)
Z &4 -'i’-
.1 1 (BN 2 02
9“5%%ﬁ*§gqf§ > jf fsmmep(UW®®

Z &y Wl

where p (g) = mn (g), the density of reemitted gas at ¢, and we have

written dp = singdpdy. We see that the 1ift developed by the surface
is due entirely to the effect of reemissions.

2.6 Symmetrical surfaces

We may now perform the integration over g¢. The surfaces to be
considered will be (a) infinite cylindrical surfaces, with generators
normal to the free~-stream, and (b) surfaces axially symmetric sbout the
ree-stream direction. In either case, ¢ = n/2 represents a plane of
symmetry, and heunce the Iimits on ¢ are related by ¢z = - &;.
 Equations (20) now lead to

P BRTD rpta 1l 3
= Agp U~ + o %/t/ OT(E)COSWCOS(B“W>{COS®1 - 5003®1}d$d2
z =¥
3RT 1
T = p (g)cosus n(g~y ){cosd; - 3 ﬂosJél}cosx(g)dvdz
=¥
.1 1yl Rib e
Q=3 A U2 - ‘g"\z“_‘,l\/ =) f fp (g Jeosy(x - 201 + sin2p,;}dydz

(21)

In the above, p, and A are functions of the surface co-ordinates, and

in general for concave surfaces 0p = ®(Y¥,E). For non-concave surfaces,

®; = O and the limits on v are * x/2.



-15 -

In order to perform the ¥ - integration we must determine the
¥ - dependence of &, which entails specifying the nature of the surface
to a greater extent.

2.7 General infinite cylindrical surfaces

The problem of the cylindrical surface of finite span is three-
dimensional, due to the occurrence of end-effects. A simplification
to two dimensions is obtained by taking the span of the surface as
being infinite, when all variables become independent of the spanwise
co-ordinate. The 1ift, drag, and heat transfer coefficients can then
be ascertained per unit length of the surface.

Strictly speaking, in taking one dimension of the surface as
infinite we are violating one of the restrictive conditions defining a
free-molecule flow. Reemitted molecules travelling nearly parallel
to the spanwise direction, since their mean free path is finlte, will
certainly undergo collisions in the vicinity of the surface, either with
other reemitted molecules or with free-stream molecules. The incident
and reflected flows are thus interacting. The foregoing objection may
be overcome, however, by applying the results obtained for the infinite
surface to a surface having the same cross-section but finite span.
This span must be sufficiently large compared with the chord that end~
effects may be neglected, but not so large compared with the mean free
" path of the reemitted molecules that the free-molecule flow conditions
are infringed. The results of Sections 2. 8 and 2.10 are valid within
these limitations.

For the general infinite cylindrical surface with parallel generators
normal to the flow ®; = 0, and since the 1lift contributions from each
surface element act parallel and in planes of symmetry, A = O. Integration
over ¥ now ylelds. .

RT
D= ABani + 2: p (g){cosﬁ(¥2+wl)+ 51n(Y2+Yl)cos(Y24Yl-5i}
' 3
Rm
L = 51n5(Y2+Y1) - sin (Y2+Yl)sin(wgéwlﬁsi}d2
. / 2
§=Lap00 - (Zw)( 2‘;} o (8)1nH{(¥ ) eosH(¥ort, )az

(22)

Integration over the surface Z now involves specifying Y., ¥o and



P, @8 functions of the surface co-ordinates. To find Py the Clausing
integral equation (5) must be solved; the simplest case is that of the
circular cylindrical surface.

2.8 The infinite circular cylindrical arc

- o 0o e S S S e - S SO O RS DR 0 T D R S TR S B A DS S S v o e

This surface, with its co-ordinate system, is shown in Figure 3.
We shall deal first with the case where the chord of the arc is normal
to the flow. The analysis is restricted to values of @ between O and
x/2, so that no part of the surface is shielded from the free-stream.
Then in equations (22) the following relationships hold

4 = M -0 -0),
vo = 4(x -8+ @),
B =0,

substitution yielding (per unit length of the surface)

RT. O

= 2 b - . ;L
D= ABQOOUGO * 21 pr(e ){(T{ @)COS@ + SJ.I.(_}J{ rde
-6

RTb C)

L =75 P (9)(ﬁ - @)sind .7ds (23)
-0
. 5 /2@ . ) _
Q= AT g1 ] p_(6)cosocosde.rdf
@

Since the surface has infinite span, Py is a function of gonly.

In order to carry out the integration over 9, it remains to determine
pr(e), which entails solving the Clausing equation (3). The kernel of

the equation proves to be in this case

cosd 1 COSS Chr2sin®d 0,-65)
Ky = ——oh—b = ST '
T 7{ (z2-21 )5+hr2sin®3{ 61 -6 2| }2,

and hence we have

w0 O
n(02) =1(02) + [ [ (61,022,500, (62)rt02tza.

- 00 W
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The integration over zz 1s effected by a trigonometrical substitution
to give

e
1 - .1
N, (61) = W (02) + 3 f N, (62)sind 6162 @2 (2k)
| Yo |

In this form the equation has a degenerate kernel, and the standard
method of scolution is to express the relation as a palr of linear
simultaneous equations which may be solved in a straightforward manner
(15). Alternatively, Ni(G) may be expressed as a Fourier series

[eed

T

H.(6,) =a_ + > a cos md;,
1 Q L n
n=1

the coefficients a_ being determined in the usual manner by substitution
into eguation (2#)? However, in the present case a solution is obtained
most conveniently by differentiating eguation (24) twice with respect

to 61. Care must be exercised in that although si %@el~92§ is continuous
for -@ < 61 £ @, its first derivative is not. ' "

The number of free=-stream molecules incident per second per unit
a+-a of surface is given simply by N (61) = n U cosoy (volume swept
cu‘/gecond X particle concantratlon), and we thts have

6 C)
1
Ni(el) = n U cosfy + T_:fNi(Qg)Sin%(Ql-eg)ng + —i; fNi(Gg)Sin%(Qg-Ql)dég
-0 v o
Differentiation twice gives
dgNi(Ql) : 1 1o . N
__55§~—~ = -nU cosf; - igb/\Ni(@2)81n5(91_92>d92 + g-Ni(el)
-0
"'7;]F“ (62)sini(02-61)302 + 8 N, (91)
1 © 1
= -nU cosby - Igu/ﬁmi(@g)sinééélwﬁgid@g + 3 Ni(sl)' (25)

-0

The integral term may be eliminated between equations (24) and (25)
to give the simple differential equation



H
t..nl
e8]
1

dENi(el)
2
2

=P

T “
n U cosfy, (26)
whose solution is of the form

W.(61) = —2— n U cosgy + B8y + C, (27)

in which the constants B and C are determined from the boundary
conditions by substitution of this solution back into eguation (24).
We find

B=0,C=%nU(2- cosa).

The complete solution of the Clausing equation is thus
= 2 Lo ¢
Ni(e) = qué[h cost + 21L(2 cos®) (28)

Equation (12) may now be used to give

e

RT, [3 1
pr(e) = QWUQNJEER [E‘COQ@? Q(E - LOQCD)}, (29)

which expression must be substituted into equations (23). Evaluation
of the resulting integrals gives

[Rm f =z 1
— 2 “b - o)l & i = sing
D= ABmeQ + megx‘ﬁJ_*_-l(ﬁ u){&@4— sing + ;; sing cose J
2x
+ sin® ﬂg + é-sin@ 1n cos *}
1 I o) 2 8 hall1 S @ ‘
L =0 (50)
Q=240 U -0 U rmT (2 E)ging
ZABpoo 0 pmo o b \y~l/

These results are reduced to coefficient form with reference to the
base area per unit length, AB =2 r sin® (the heat transfer coefficient

= £y 3 — 2 _1—__ 3
Cy is here defined as Cp = Q/ 2z\,Bmem).



We find
_ (e) / in
Cy 2+€ (e) \/T
CL=O, (51)
o1 ifrlND 1
H 2\r-1/ T g2

where in equation (31)

r A
§No) = f{x o)1 v feom + Rl + Fsire - ocose | I

The variation of e(c) with ® is illustrated in Table 1 and Figure 7.

D (c)

It is apparent that for the case @ = 0, ey ' o= 1l; this gives the well-

known result for the drag of a flat plate normal toc a hyperthermal flow.

¢.. has in fact proved to be independent of @, the result being identical
H & & 2

to that for a flat plate (or, for that matter, any non-concave body)
having the same frontal area. This is entirely to be expected, since
in a hyperthermal flow the total number of incident free-stream molecules
per unit time, which is equal to the total number reflected completely
away from the surface per unit time, is dependent upon frontal area only
for given values of U and P " The energy yielded up by the incident

molecules is a fqnc*won only of U , while the average energy transported
away by the reflected molecules i% a function only of T, for perfect

thermal accommodation. Thus the surface configuration nowhere enters
into the total heat transfer characteristics.

2.9 The spherical surface

. B v . o 00 M S U B B PO W O > O W

The coordinate system for this surface is defined in Figure 4. Ve
shall consider only the case for which the surface is axially symmetric
about the free-stream direction.

We must first determine how ¢ in equations (21) varies with y. Now

r(cosd - cos®)

BC = cos(=y) cot® (32)
But from circular geometry
BC2 = MB.BN = rZsin®@ - OBZ (33)

2sin®g - r?{(cosg¢ - cos® )tan(e-y) - simg}®
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yielding finally, from equations (32) and (33),

d

2 I
2. _ __cos®(g-y) o2 [ )
cotd = (cosp - cos@)2 lSln*“ ““(“Osd - cosg)tan(6~y) - sing

.

(34)

Once again the analysis is restricted to cases for which
0<® < xn/2 so that no part of the surface is shielded from the free=-
stream.

The Clausing equation for the spherical surface has the constant
kernel

CO8d1co8B 1
Ko = el o2 == T{:—.ITE 3
T{I‘E T
12

and hence,
21 .@l
— \ e
Ni(@l) = Nm(el) +f /W mi(eg) . r®5in8 06 24F .
o ©

Since from the axisymmetry of the configuration 1 V is a function of @
alone, we may carry out the integration over ¢ to obtain
©
¥ = 1/ si . 5
(1) = ny cosy + & [ stmoa W,(02)002 (55)
o)

The solution of the equation is best found by mulﬁlply ng by sing; and
integrating with respect to 63

s

0 B 0 ©
Jf N.(01)sing1d6, = n U fsin@lcosé)ldel + % [sineldel [SiﬂegN.(92)deg
1 0 J 1 :
o)

O o]
Thus
e
/Ni(eg)sinegdgg = QnmUwsinE%@ s
A ‘
and

Ni(e) = q”Ug(cose + sin®3g ), (36)
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the contribution due to reflections being constant over the surface.
Equations (21) and (36) now lead to

C. =2+ eés)((%) @\/g“i ,

D
CL = 0, (57)
~ S +1\ To 1
Cy = 1 €I'(I )(®) é(%) T g3
[+
where

(s) __6__ [°f:2 Le3
= /(cos9+31n 219 )cosycos(6 -y ){ cosd - 3eos ®}singdyds

€D nsin®g J
o =¥
(S) 1 = Y2 s 21 . .
ey | = }EEEF%;~J/“ (cos@+s;n gg)cosw{ﬂ-2@+5192®}51ned¢de.
c =¥y

The coefficients are made dimensionless with respect to the base area
2 a2 . R . . N P
xr sin“g. Here ® is given by equation (34), and the limits on y are,
as in the cylindrical case,
Yo =3x ~0+0)

¥y = -3Hn -0 -0)

CL vanishes owing to the axisymmetry of the problem. Since the expressions
above cannot be integrated analytically they were evaluafe% numer ly
using a Ferrantli Pegasus computer. The variations of €} and e with @

are portrayed in Table II and Figure 8, and it will be noted tnat

s
H ’ ,
range of ®, whereas in Tact its value must be exactly unity, as previously

explained (Section 2.8). This affords some indication as to the accuracy

(s)

to be expected in the calculated values of €p -

is found to differ by less than 0.1% from unity over the entire

2.10 Extension of cylindrical surface theory = the L/D characterlstlcs

o . B 0 S D PN D G AH B O W e A D S 07 ML Y N TN U D R 05 SO D SO B WA T WP WSk K00 S R 0 O WE0 BN S S RAlS O R SR S DN M O R B S D ) S e e

P L T P o

The theory of the cylindrical surface is now extended to include
cases where the chord is not normal to the flow (see Figure 5). 1In



-0

order that no part of the surface is shielded from the Tree-stiream we
must impose the restriction ® < ¢, where ¢ is the angle of incidence.
The limits on & are now (7/2 - + @) and (/2 =g -@). It is in
fact found simpler to work in terms of ¢ = 7/2 - g3 we obtain for
the 1limits on ¥

Vo=3n -8 ~a +0)

(x ~@ +a" -9)

‘r‘

3
l.—.l

I

1
=

giving from equations (22)

BT, o+ @
D = 4p U2 + 7 | 0,(0)((x-0)coss+co s in 6 }rie
Q{":-"' 0
RT,_ [‘O‘ e
I = 2;\‘ :Lpr(@){ (n~0 )sing+sing sing }rde (38)
T
fya\ (BT 2 s
A ,l..x - + { j——.»-} ! ol P AP ad * hale’
=l - ) q,/ o1 (6)e0s20 cosz(o-oJrds.
Ojlru@

The equation for the variation of molecular flux over the surface is
identical with equation (2L), except that the limits on the integral term
become ¢ * @. It is solved similarly, the result of this somewhat

tedious process being

L,

hsiny cos:©
- ji} 1 2 oo
(COS§@+§'@ sins

| SN

3 * 1 3%
Ni(e) =nU [Ecoss 5 )(9~oz )+ Te0s0) (2-cos ®)

(39)

Equation (12) now gives pr(@), which 1s substituted into equation (38).

Integration and reduction to coefficient form with respect to the chord
2rsin® yield

C_ = 2sing + e(c)(@ 50) /1 . }ED_ sin%y
D D SNT
‘ . oo
- T
c = E]Ec)(@ ) 1/% ‘ “rfg' singcosy, : (k0)
[eed
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where
(C) 1 e .,
D EﬁSln?W'{(ﬂ ©) ( sing@ - °O8® W sin®oy(cose +1)
LcosZocos?i@ ® cos @ N
" Tcosde 2o sinke) | sine ©
2
si 2@ }C%Sin@ + %@ (2 - COS@® )]}_
= 4o
and

L1cos3p /@ cos® _ l) }

"@)[(COS@ 1)+ (cos50 +5 @sinz® ) ~ sind@

Once again CH is found to be dependent on frontal area only. The

factors eéc) and eéc) are chosen to refer CD and CL to the standard
results for a flat plate at the same incidence, namely

. Jr T . 5
CD = 2 singy + § z\/;—f-—- sin“
(2]

~ T
/i [,
CI" S*\fT singcosy

o0
The variations of e< c) and c£ c) with ¢ and @ are shown in Figures 9 and
10, while the varlatlonu of L, ; C.-and C /C are portrayed in Figures 11,

L /o [Ty

12, 13 and 1k and Table III for various values of gy © and 3 ,\/__,.
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At any point on a concave surface the three contributions to the
heat transfer are:

(i) Incidences of free—sareem molecules, each transporting a total energy
e (0,)-
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(ii) Incidences of molecules which have been multiply reflected, each
carrying an average total energy eb<* .

(iii) Reemissions of molecules from the surface, these molecules also
carrying average total energy e, (T ).

The local heat %transfer rate is therefore, per unit area,

B(g) = T (g)e, + W(L)ey - Flt)ey

—

However, since N, (g) = I (g) we have by virtue of equation (1)

]

B(¢) = N (g)e, + M(e)ey - M (e)ey - W(e)ey

Il

Noo<.§_) (eoc - eb) (l&l)

But this is precisely the result which holds for non-concave surfaces,

and it arises because of our assumption of perfect thermal accommodation
at the surface. With this assumption an impact and subsequent reemission
of a multiply reflected molecule leads to no net transfer of energy.

We see thus that the heat transfer characteristics of a concave
surface are identical with those of the corresponding convex surface, the
local heat transfer coefficient being given by the standard result

¢/ (g) = %%—l ~<:L @ﬁ) gb N é2>cos{3 (Lk2)

o oo
where B is the angle between the free-stream direction and the normal

Ao

to the surface at &.

3. Discussion of results

W i - DM (0 D S4B o S R

3.1 The effects of surface temperature and speed ratio

o —-.--—-—-—n—-———-.——-—.——.«u———_.—n.‘.——m—.--.———..—-——-.—-—

It is agparcnt from equations (31), (37) and (LO) that the reflection
contributions to Cp, C (which is enuwrely governed by reflection 1s) and CH

i

are proportional to Lhe parameter "(T /T Y2, The 1ift in particular,

therefore, will be strongly influenced by variations in this gquantity.
Ve are restricted by the hyperthermal approximation to values of

S > 6, and investigations of the upper atmosphere by means of satellite
observatlons have revealed that deytime values of T vary from ~ 1200°K

at an altitude of 200km to ~ 2000°K at 600k . Thege figures are very
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- approximate, being subject to large diurnal fluctuations and to con-
siderable uncertainty due to the difficulty of the measurements (16).
The surface temperature may be found by setting up and solving an
energy balance equation, using the heat transfer characteristics already
determined, and taking into account the effects of radiation. However,
this problem contains a great many variables, and satellite measurements
indicate that the surface temperature of bodies in the free molecule
flow. region remains at sbout 300°K. Thus a figure of 0.4 - 0.5 for

i i
(Tb/gw)a is realistic, leading to a maximum value for %(Tb/qn)a of
~ 0.1 for most applicaﬁigns cper%ting in this region. Figure‘lh shows
the important effect of g(Tb/?m)§ in determining the L/D characteristics

of a flat plate in free-molecule flow; this form of variation is typical
also of the curved surfaces studied.

A~ . 27 - - -t " S T fo W - 1" - - -

We consider first those cases which give rise solely to a drag
force (Sections 2.8, 2.9; Figures 7 and 8).  The drag of the surface
is determined by the balance between two conflicting processes. Firstly,
the effect of concavity is to channel the outgoing momentum, so that from
any point on the surface those molecules which escape completely all
carry a momentum component contrary to the free-stream direction. 1In
contrast, the corresponding convex surface permits a certain proportion
of molecules to escape in such directions that they tarry momentum
components travelling with the free-stream. The channelling of reflected
momentum by the concave surface leads to an increase in the reflection
drag. The second effect of concavity is to redistribute the incident
molecular flux over the surface, the increase in flux due to the multiple
reflections being proportionately greater on those parts of the surface
at low local incidences to the flow. - Since Lambert's law is assumed to
hold, most molecules are emitted in directions nearly perpendicular to
the surface, and hence a greater proportion of molecules are emitted in
directions nearly normal to the flow than would be the case in the absence
of multiple reflection, leading to a corresponding decrease in the

(c) (s)

reflection drag. The factors €p D

(37a) are both in fact found to be in excess of 1 (Figures 7 and 8); the
surfaces thus have reflection drag exceeding that of a flat plate normal
to the flow, for which €p = 1, and the first of the effects described
ebove predominates.

in equation (3la) and ¢ in equation

The maximum possible drag cocefficient for a concave surface would
occur if this channelling process could be taken to its logical extreme
and all the emitted molecules were constrained to travel exactly in
opposition to the free-stream motion. The average velocity of molecules
emitted diffusely at temperature Tb is 3/4 JEﬁRTb, leading to a value of
1.5 for ¢ .
Dmax ,
of concavity than those studied here may prove to have values of €p

Possibly surfaces having a considerably greater degree

approaching this maximum.
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Figures 7 and 8 show that the maximm reflection contributions to
the drag coefficlents of the two surfaces studied are larger than that
for the flat plate normal to the flow by ~ 5% for the cylindrical
surface and -5% for the spherical surface. For a realistic value of

%(Ei‘.b/‘itlm)_?3 the reflection contribution is in any case small (less than

~ 10%), and increments thereto of this order are unlikely to have any
practical significance.

Turning now to cases involving 1ift forces (Section 2.11, Figures
9-14 and Table III) it is found that once again the drag 13 substantlally
independent of concavity for practical values of l(T /T )2 (Figure 11).

The flat plate is seen to generate the most 1ift aﬁ a given incidence,
the value of C; falling off as @ increases. For @ = x/10 we have a

reduction in 1ift of ~ 3% over the flat plate value, and for higher
curvgtures the 1ift falls off rapidly. Maximum 1ift is developed at
an incidence of 45°, independent of curvature.

The L/D ratio (Figure 13) is largest at low incidences, the highest
value obtained being that for the flat plate at incidences approaching
zero, although the hyperthermal approximation is not strictly valid for
very low incidences since the molecular thermal velocities are not
necessarily negligible in comparison with the free-stream velocity
component normal to the surface. Of the surfaces examined, the flat
plate is plainly the most efflClenu as far as the generation of 1ift is

concerned, but with ~{T /T )2 < 0.1 the maximum attainable L/D ratios

are none the less very small (Figure 1k). One cannot in fact expect
mach gerodynamic 1ift in the free-molecule flow regime, and in practice
speeds must be high enough to generate substantial centrifugal 1ift in
the earth's gravitational field in order to sustain any vehicle at such
extreme altitudes.

It must be borne in mind that the theoretical analysis has been
restricted to those instances in which no part of the concave surface is
shielded from the free-stream; the necessary condition is that g2 © .
For lower incidences impacts of free-stream molecules will occur on the
couvex upper surface, giving rise 1o a negative 1ift component. The
shielding also leads to a reduction in molecular flux over the lower
surface, with a consequent further diminution in total 1ift. hus
although the L/D ratio increases with decreasing incidence until the
condition ¢ = @ is reached, it falls off markedly with further decrease
in incidence, being entirely negative for zero incildence.

3.3 Comparison with results obtained by Chahlne
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In his papers (6,7) Chahine has presented an analysis of both the
infinite cylindrical surface and the spherical suriace. His approach
to the problem is in principle similar to that employed here, though
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throughout he considers the three contributions due to the incident
free~stream molecules, the incident inter-reflected molecules, and the
emitted molecules, separately at each point on the surface (as in
equation (6) of this report). Rather greater generality is achieved

in the treatment of the energy transfer, however, by the introduction

of partial surface accommodation. The thermal accommodation coefficient
is assumed to be constant over the surface, the distribution of incident
energy over the surface being found from an equation analogous to the
Clausing equation for the distribution of molecular flux. This equation
has the form :

—

£,(8) = 1(8,(6), T, ') + l (1 - o B, (52)K(e2,52)0

in which n is a function of the incident free-stream energy, the surface
temperature and the accommodation coefficient.

Chahine's results indicate, as do those obtained in the present
anzlysis, that for perfect accommodation the heat transfer coefficient
(referred to the base area) is independent of surface geometry. However,
the values he obtains for the C_ and C. of the cylindrical surface do not
agree with those derived in SecTion 2 Of this report, he finds, for
instance, that the drag of a concave cylindrical surface with chord normal
to the flow is less than that of a flat plate at equal incidence, while
here it is found to be greater (Figure 7). The source of this discrepancy
appears to lie in the last term of the equation (2.35) of Ref. (6), which
should contain a factor 4. With this correction Chahine's analysis
yields the same results as that employed here. He quotes no numerical
results for the drag of the spherical surface, and to obtain one from
his paper it appears necessary to evaluate numerically a quadruple
integral involving an unwieldy trigonometrical function.

The method developed in Section 2, which considers only the effect
of incident free-stream particles and of particles reemitted directly
into the free-stream, appears the more suited to the investigation of
other classes of concave surfaces, especially in cases of axially
symmetric surfaces, since the equations lead to a double integral rather
than the quadruple integral resulting from Chahine's method. The task
of computation of the coefficients will thus be correspondingly lessened.

k., Conclusions

- " —— - -

An examination has been made of the problem of free-molecule flow
over concave surfaces. With the assumption of perfectly diffuse
molecular reflection with complete accommodation to the surface conditions,
general equations have been derived for the 1ift, drag, and heat transfer
characteristics of such surfaces. These equations have been applied to
the infinitely long circular cylindrical arc and to a section of a
spherical surface for the case of a hyperthermal flow velocity.
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The results obtalned indicate that the heat transfer characteristics
are identical with those of the corresponding convex surfaces, the total
heat transfer being independent of the surface configuration. The
effects of concavity are found, for the surfaces investigated, to be an
increase in drag and a decrease in 1ift, when compared to a flat plate
at the same incidence to the flow. For most practical cases, however,
the effect on the total drag is small, amounting to no more than about
1% for the extreme cases considered; the 1ift developed is more seriously
influenced. Of the geometries examined, the most efficient lifting
surface proves to be the flat plate, although the L/D ratios which can
be achieved under practical conditions are nevertheless very small.

5. Suggestions for further work

Clearly, scope exists for the application of the method developed
in this report to the examination of other types of concave surface in
Tree-molecule flow. Cases which may prove amenable To analysis are
(a) two flat plates of infinite span at an angle to each other, (b) an
infinite rectangular trough, {c) a reentrant cone, and (d) a circular
eylinder with a closed end. The chief problem appears to lie in
obtaining a solution of the Clausing equation for the molecular flux
redistribution. The method could also be extended to yield pitching
moments.

Chahine (6,7) has shown how greater generality may be achieved by
the introduction of partlial surface accommodation; possibly a further
type of surface interaction recently proposed by Schamberg (1?) could
be employed in a future analysis, to include the effects of imperfectly
diffuse reflection. At wveloclities too low for the hyperthermal approx-
imation to remain valid, the application could be attempted of an
approximate method due to Schrello (18) which holds down to 8 * 1. At
these lower velocitles the reflection contributions to the aerodynamic
characteristics will be proportionately larger, and the effects of con-
cavity more marked.

In any but the more simple cases the solution of the Clausing
equation will pose a severe problem, and it is interesting to note that
in an article by Larish (19) an analogy is pointed out between this
equation and the integral equation describing the illumination in a space
having non-gbsorbing walls which reflect in accordance with Lambert's
law. Larish suggests that the Clausing equation can be solved by means
of such an optical analogue, where the incident molecular flux is
represented by external light socurces. The intensity of illumination
over the surface then provides a measure of the emitted molecular flux.
The solution for hyperthermal velocities is particularly easy to find,
since the model need only be placed in a parallel beam of light. This
relatively simple experimental method for determining the molecular flux
redistribution would make possible the treatment of more complicated
surfaces than could be tackled by purely theoretical means.



Acknowledgement

AN - S S0 SO T3 Wk N> O S W Yo

- 29 -

The author wishes to express his thanks to Mr. E.A. Boyd of the
Department of Aerodynamics for proposing the problem, and for his
suggestions during the course of the work.

References

- — - - -

2. Schaaf, S.A. and
Chembré, P.L.

3. Patterson, G.N.

L.  Hurlbut, F.C.

5. Cohen, I.M.

Chahine, M.T.

[O)Y

7. Chehine, M.T.

8. Charwat, A.F.

9. Wiedmann, H. and
Trompler, P.

10. Roberts, J.K.

Superaerodynamics,
J. Franklin Inst., 217, pp. 153-166 (1934).

'Flow of rarefied gases' in

! Pundamentals of Gas Dynamics'

(H.W. BEmoons, Ed.), Sect. H, pp. 687-739,
Princeton Univ. Press, Princeton

(1958) -

Molecular Flow of Gases,
J. Wiley and Sons.

(1956).

Aerodynamic force coefficient for a generalized
control surface in free molecule flow.
(Unpublished).

Free molecule flow over non-convex surfaces,
A.R.S. Journal, 30, 8, p. 770
(1960).

'Free molecule flow over non-convex surfaces!
in 'Rarefied Gas Dynamics'

(L. Talbot, Ed.) Sect. II, p. 209,

Academic Press (1961).

Proceedings 11lth International Astronautical
Congress, Stockholm 1960, Main Sessions,

pp. 473-482. Springer-Verlag, Vienna.
(1961).

'Review of rarefied gas aerodynamics',

Ch. 8 of 'Current Research in Aeronautical

sciences! (L. Broglio, Ed.), Pergammon Press.
(1961).

Trans. A.S.M.E. 68, 57 (1946).

Proc. Roy. Soc. Alk2, 519 (1933).



1L,
1z,
13.

ll:L.

15.

16.

17.

18.

19.

Hayes, W.D. and
Probstein, R.F.
Clausing, P.

Kennard, E.H.

Ashley, H.

Courant, R. and
Hilbert, D.

Kil’lg-'HEle, D OG °

Schamberg, R.

Schrello, D.M.

Larish, E.

- 30 -

Hypersonic flow theory, Ch. 10, Sect. 1,
Academic Press (1959).

On the steady flow of very rarefied gases,
Physica, 9, p. 65, (1929).

Kinetic theory of gases,
McGraw-Hill (1938).

Applications of the theory of free molecule
flow to aeronautics.
J. Aero. Sci. 16, pp. 95-10k4, (1949).

Methods of mathematical physics.
Interscience, New York, (1953).

Review of earth~satellite orbital studies
at R.A.E., 1959-61 and their application
to Russian and Americen satellites.
R.A.E. Report No. G.W. 25 (1961).

A new analytic representation of surface
interaction for hyperthermal free molecule
flow with applications to satellite drag,
RAND Corp. Report P.1609 (1958).

Approximate free molecule aerodynamic
characteristics,
A.R.S. Journal 30, 8, p. 765, (1960).

Izvestila Akademii Nauk SSSR, Otdelenie
Tekhnicheskikh Nauk, Mekhanika i
Mashinostroenie 3, pp. 117-120 (1960).



- 31 -

Table I
Values of eéc)(@) for the cylindrical surface, chord normal to the flow
H eéc>
0 1.0000
/20 1.0000
/10 1.0001
35/20 1.0005
%/5 1.0015
7/ 1.0033
Z5/10 1.0063
7x/20 1.0107
br/10 | 1.0166
9/ 20 1.02k2
x/2 1.0333

Table II

- e e g -

Values of e(s) and eés) for the spherical surface, chord normal to the flow

e eés) eés)

0 1.0000 1.0000
n/20 0.9999 1.0003
x/10 1.0000 1.0005
35/20 1.0001 1.0006
<5 1.0016 1.0006
/b 1.00L4 1.0006
3:/10 1.0092 1.0007
77/20 - 1.016k 1.0007
/10 1.0262 1.0007
9t/ 20 1.0388 1.0007
n/2 1.053%9 1.0007

The values given here have been obtained by correcting the results of
a numerical analysis carried out using the Pegasus computer.



ele)

e all 020
0 1.0000
0.05x  0.9922
0.1x  0.9709
0.15x  0.939k
0.2x  0.9013
0.25%  0.8602
0.31  0.8195
0.351  0.7817
Ol 0.7490
0.45x  0.7227
0.5%  0.7037

Table TIIT

wox ens

The variation of ¢

St S0P R WD ot RS AU Bt KOD e o T S Wsh e PR s GRS DSBS TN N G0 WD 4P NG NS0 V0 BOF BV €5 A WSS 66 fas 18 S W) DAY 58

L

Values of C

o= /2
1.0000
1.0000
1.0001
1.0005
1.0015
1.0033
1.0063
1.0107
1.0166
1.0242

1.0333

L

L

c
and ¢

0.45x
1.0000
1.0002
1.0008
1.0020
1.0040
1..0069
1.0110
1.0164
1,02%3%

1.0317

O.he
1.0000

1.0008

1.00%2

1.0070
1.0120
1.0184
1.0260
1.0%49

1.04k49

with ¢ and 6.

0.35xn
1.0000
1.0020
1.0077
1.0164
1.0275
1.0k0k
1.0548

1.0701

and CD are obtained by substitution of

1

1

eéc) or eéc>

()

D

0.5

.0000
.00k1

0155

1.0%28

L0543
L0788
.10hk9

0.25x%
1.,0000
1.0078
1.0293
1.0616
1.1016

1.1464

0.2x
1.0000
1.0148
1.0555
1.1163

1.1912

0.15x
1.0000
1.0500
1.1127

1.2360

into equations (40).

0.1x
1.0000
1.073%8

L.2770

0.05x%
1.0000

1.3105

0

1.0000

.-ag..



CONFIGURATION FOR DETERMINATION OF THE KERNEL IN
THE CLAUSING INTEGRAL EQUATION (3}
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