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SUMMARY

An investigation is made into the state of stress in a closed toroidal shell
of uniform thick-walled circular cross section, when loaded by uniform internal
and external pressures.

The general equations of the classical theory of elasticity, expressed in terms
of stress components, are solved approximately by expanding the solutions in power

s a . . ,
series in a small parameter | = / {a is the external radius of the cross section and

R
R the radius of the axis). This method was used (inter alia) by E. Gohner(l)

investigation of the twist and pure bending of the sector of a circular ring.

in his

The first approximation yields the known solution of the problem of L.ame for a
thick walled cylinder. The equations for the higher approximations reduce to the
problem of plane strain in a circular ring. Only the first three terms of the power
series are calculated in this report. The convergence of the series is not investigated.

* Dr. Kornecki is a Senior Lecturer at the Technion {Israel Institute of Technology),
Haifa and was a visiting Senior Research Fellow in the Department of Aircraft Design.
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i. Statement of the Problem. General Equations

It is convenient, because of the boundary conditions, to refer the torus to
orthogonal curvilinear co-ordinates o, & and ¢ (Fig. 1) defined as follows:

x = {R+ apsin®) cos ¢
y = (R + ap sinb) sin ¢ (1)
z = apcosf

where the symbols used are explained in Fig. 1. The non-dimensional radial co-
ordinate, p, varies in the range
b

a=§<p<1,

while © and ¢ vary between 0 and 2« .

The boundary surfaces p =1 and ¢ = ¢ are loaded by constant pressures.
The problem considered is thus an axisymmetrical one, which means that:

au av. _ _

5g ° 0, Y 0, w=0, (2)
where u, v, w denote the components of the displacement vector in the directions
p, &, and ¢ respectively.

Making use of the basic equations of the theory of elasticity in general tensor
form, or more conveniently in the form presented in Ref. 2 (pp 104-107), the
following sets of equations are obtained for the axisymmetrical problems referred
to co-ordinates p, © and ¢ .

The strain-displacement relations are:

1 3u 1 v | 1 . e a)
¢ T 3 o €% 35 (W + u) , € = «ﬁ-‘-‘(u sin® + v cos®),
1 ( du 8V
E3 E — — - B = =0.
Yoy TV ap(ao V"de) » Vim0 Yo
(3)
where a
u = 1+-§ p 8in© (4)

and the suffices p, t and ¢ correspond to the co-ordinates p , 6 and ¢
respectively.

The stress-strain relations are

E e

%

" - + - - =
o v(ot 06)’ Ee,t o

- : - ) =g - +o
) ) u(% +op), Ee,=0, v(crp Ot)

t
(5)

u

Ey 2(1+U)7“Dt=2(1+v)7';7"p£= 0 ; =0 .

Tig

The differential equations of equilibrium are reduced in the axisymmetrical case
to two only, namely:



3] -
4] 1 oT a .
—t = - + + - o + =
5o 5 (O‘p o, I8 Bn L(O’p oy, )sin rCcos 6] 0
do N\ (6)
ar 1 1 a . .
é_ﬁ + ;<2r+ TS + T [(Gt -0,) cos © +Tsm9] = 0

while two of the six equations of compatibility are identically satisfied in view of
(2), and the remaining four become

2 ar a 2 cosb ( )
- o—— + - —— - o
L (cp) X <Cp -0, 2 de) n [2 (a oé)sm & +7sin 2 J
+ 7o e = 0,
2 ar a_ 2cosb ( 2 )
do o - + D o -
L (ct) s Gp o, 2 86/ R )[2 (0 a)cos 6+ 7sin 26]

1+v p2 362 p dp

L (1) +2—[-‘1(o »0)-2"]+ & cosb ~g\-<~?‘->a 6 +o, - 20,)3028
p? L 96 "p ' Ru o] e t" \Ru p % t 2

7] e _6_(1, 05 _ 8
A 1+v 06 p 9p _,;2

S+1 BS] 0. (7)

1 . 8S , cos6 38 )

+ —_— 2o + 20 + 6 - + — ( 6 — =1 =0,

L (op) 2( )(cr sin o, cos Tsin 2 op) Ru 77 \°1% 3, > 36 0
where 2 2
A= 9 4 3; 8. + .j:_2 o7
ag p %  p d6°

a . @  cosB @ )
= 0+ = 6 — + ==
L o <sm 5 > 35 (8)

Our problem is thus to determine four functions o,, o, gy and 7, periodic in 6,
which satisfy the six equations (8), (7) and the following boundary conditions

¢ =-p 7 and v =0 at p =1
e © (9)
cp=~pi; and 7 =0 atp = o

It should also be noted that the solution must be symmetric with respect to the
plane =4+ w/2.
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Method of Solution

It is assumed that the solution can be represented in the form of a power

. series :
a (a\?
= - = | g PN =p, t,¢
% % o * R KR‘ k=p, t,2 {10)
a
T = TO + R T1 + (.ﬁ)
where the parameter 3 is supposed tc be small or

Introducing the series (10) into the basic equations (6), (7), expanding the term
j_c into power series and comparing terms with the same powers of the parameter

8

R gives the following equations for the first approximation :
8o 37
o, 1 < (6]
a = + - - +  — =0
{o) op p Op o %0 36 !
870 1 / agt [s) 2
b = = 4+ =27 + ————3———) = J
{o) 3p P & s a6
9 a‘ro 1 8°S \
C = A (0‘ ) - ( T - g, + 2 > g = 0 s
{o) ,0 p p,0 t,o0 26 1+v 3p
or
2 o \
= + - ——
o' 25 }
+ 1:: ( 3’_2 o + }.“ 0 ) = 0, {13)
VNP ge? p 9p
2 2
4+ - - -
e(o) = Af{r) o [%(Up’o Gt,o) 270]
+ -}— _é_. < 3‘. ?.S_o. - So) =
i+v @6 o o TOT ?
A (06 O) = 0

For the higher approximations, the system of equations (12), (13) becomes non-
homogenous.

) T o P T8 % T Mo Y T o) S T o) 0%, K (9

%2 T N o) P SO S by =gy gy posin® i ey =B, - psinb+ 1

d(a) = 1(’) - i(O) p siné + Plo) # ) = jm - j(o) p sin® + Yy (15)

Ao

= k -k 8ind +
2.2 - K0 " Koy P8I Fr



The formulae for a(n) c T are written down explicitly in Appendix I.

It is evident that the longitudinal stress component o, cannot be calculated
directly from the equations of equilibrium {(12) but must be determined by
integration of the compatibility equations {13). A more detailed analysis shows
that this integration enables one to calculate op , to within an additive function

Flp,8) = A + A,p sin6é + A p cos®
where A1, A, AS, are arbitrary constants.

Symmetry implies A, = 0. The two remaining constants of integration, A,
A,, will be chosen to make the resultant of the stress ¢, satisfy the integral
conditions of equilibrium, {18) below, which follow from (6) and (9). Rearranging
equations {6), integrating them over the cross-section and keeping in mind the
boundary conditions {9), one obtains the following expressions for the resultant force
and bending moment of the longitudinal stresses™:

-
J/z /1 o,p dp d6 = ’:rrr(azpi - po) » (16)
o &

2u 1 7
a0 o, sin® p* dp d& = 2a{dfp. -p ) - ‘ p ulo +qgldp do.
R j 4 i o P t

[0} [+4 (¢} &

Equations {16) will be used to determine A, and A, at each stage of the
approximation. The right hand side integral of the second equation (16) is to be
calculated in consistence with the order of approximation adopted in the differential
equations of equilibrium and compatibility.

3. PFirst approximation

It may be checked, by substitution, that the following sclution satisfies all
the differential equations {12), {13), the relations {16) and the boundary conditions (9):

CE C2
6 0 Gt 9= Cimm g =C T =0 17
where “p. -p Alp - p.)
C = - 20 : C, = 2 2l : (18)
1 -« 1 -

Ed
The bending moment lying in the equatorial plane 6 = + #/2 vanishes, i.e.

ar
f ]J o, cos®g” dp do= 0, in view of the symmetry of the solution.
0 o



4. Second approximation

Equations (14), after subsituting from formulae (1 7}, give

a Z sin® )
: 2 - — gin ,
Wooer T (20)
b(i) = 4 ;2— cosb ,
ac e
Cy = —;;g sin® | AR
2C2
Yo T T e
2C, - (21)
&,y = - =3 co86 , !
% s bad e
|
/:s(crgﬂ) = 0, j
where the am e egi) expressions are defined by Appendix I.
In view of (9) and {17), the boundary conditions to be satisfied are
° =0 and 7 =0 at p=1; p=a {22)
r i
Using an Ailry stress function, we may assume that the solution of the
equilibrium equations (20) is
2 C
T - L »aji-}—*+31 i Z sin®
o, p @ p? 86  2p '
0%, C, . .
9, = e + 5, Sin® {23)
ol = a {/ 1 @e 1 6@4 s Cz‘ 6
T4 36 \;2 1 p 9p T 2p cosv.
Introducing these relations into the compatibility equations {21) yields
808 = 0 {24)

Now, in view of the form of the particular integrals in (23), the biharmonic
stress function 2 should be taken in the form
§

d .
@1 = (d, o>+ —-;7 + di’p inp ) sin® {25}

s

where the constants d, d1 , and d;’ must be chosen to satisfy the boundary conditions (22).

Substituting (25) into (23) and afterwards into {22) gives

Ed;" - Cz
24, + ————D2 .24 =0,
1 2 4 E7-2
i ? {201
2(:14 - C2 2(:1‘i
2da@ + —s——— - — = 0,

1 2 o



Equations (26) are insufficient to determine the three unknowns. The third

condition to be satisfied is that of the single-valuedness of the displacement s*
This condition yields {cf Appendix II)

gr . 212y
4

I 1-v 21
Now, equations {26) imply

2
8(1 -v){1 + 2d
C ot (28)

2

a’r = -
4

8(1 ~v}{1l + &%

and after substitution into {25) and {23) one obtains

o = C2 < 2 ~«1~+ . 1>si6
[ 41 -v) 1+ 1+ p° nes

C \
- 2 3p 3 - 4v o 1y .
Gt,1 401 -v < 1+ a2 * o 14 o p:’) sin 9, (29)
T = it P L, e L cos 0
1 4{1 -v) 1+ a? o 1+ 0 ;5) ’

Introducing formulae (29) into the compatibility relations (21) yields **

a%a C {2 -v)

4 _ 2 s8in ©
ap® 1 -v p® ’

2 7 -
g g a9 Cl2-v
- + = 2 7 (30)
P 502 9p 1-v o

a A -

....6.3_. < 015’1 - }— (s} = C2<2 V} cos 6
96 dp o L,y 1 -v p*

Integrating these and adjusting the constants to satisfy the integral conditions
{16) of equilibrium, we find

C,(2 -v)
: (

- 2o 1y .
e, S WD) T a7 p)smﬁ (31)

*The general problem of single-valuedness of the displacements in the case of the
state of plane strain in a circular {closed) ring is studied by Timpe in Ref. 4 and
the results are quoted in Ref. 3 {pp 116-120). A different approach to the same
problem by means of complex function theory is to be found in Ref. 5 (pp 218-223).

*

*
See also Appendix II, equation {A.T}.




5, Third approximation

Introducing the relations {17), {29) and {31) into the right hand sides of equations
{15} one obtains

C : . 4
a,, = in®6 4 2 r X ( g 1-v @ 1 ) 26 |
{2) D:,; £ Bin + 4{1 - ;)} L Py + i+ Qa P + T+ ag. 53 CO8 J
€ \ (32)
inBcoss + 2 . P 6-5 oA 1 ) 6
b(a} = D, p sinbcosb+ i) ( T 5 + e o )sin 9
T S R TS N U TN T R U W B
{2 41 -v 1+ o2\ T Trert prT Trar pt)c°
C s
. _ 2 2 1 1 12(1 -v) 3a® 1 1
RO TE R I S R L | L+a? P _4—(:0526} \
C / a - ~ P LN (33)
€ = - k - b - 22 =, | sin 26
(2) 41 -v) 1+ of o° 1+a® p*
N 5 - v® 7 -5v
% 1 ~v [ T+ 2p cos 26} )
where C, (2 -u
D, = ———r (34)

{1 -v){1 + 9
and the a(a) v e€2} expressions are defined by Appendix I.

The boundary conditions to be satisfied are

o = 0, T = 0 atp =landp = ¢ (35)
Pz 2
Applying, step by step, the same procedure as for the previous approximations,

the stress components Up PO Ty and 7 can be calculated, satisfying
2 2 s 2 2 2

equations {32) and {33) as well as boundary conditions {35) and integral relatious {16).
Substituting these stresses and the expressions {17), (29) and {31) into the power
series {10), gives the final formulae :

C

= C + — + mf—z—— [ a L . 5—+ o 1 sin6+}— /Exz(f + cos 26)
Gp 1 o¢ 4{1 - ) {(R} 1+ o I 1+ a% E" 2 (B) r 8y
C C - oy 2
2 2 arv/ 3 3 -4 o 1 . 1 /a
= s s s ..._.\{ p v - - - —
o = C - F togm -w{, (I—‘;/ i+t 73 Tra? p3>sme+ 2_<R)
{f; + g,. cos 26) j
C VN N2 <36)
_ 2 P (aY gy (2e . 1) ging + L (2
% = Coram oy \&) @V \iGar "5 )ome t3 R) (f + ggcos 20)
C

( /a . . - .
B a &) 1 & 1 i a . {

pet U ST A L s 1(a
’ 34&{1 *U>L<R/)< 1+ & I 1+ ¢g° pg)COS@ 4 \ R fssnlgej

£

where f ... g,, f , are functions of the variable p alone and are written down in
xr .
Appendix 1.



In the limit, when the wall thickness becomes very small, (i.e. when
p * 1, a » 1), expressions (36) give

g = 0, T =0,
p
pa a a \ 2 (37)
= EZ -~ = gi + | = in" ©
S, T [2 Rsme <R) sin J
N2
EISE
o, o [1—!— 5 \f/ cos 26] , (38)

where t = a - b denotes the wall thickness of the shell, and p=p. - p_.
i o

Equations (37) coincide with corresponding formulae known from the membrane
theory of toroidal shells; however, the axial stresses g¢,, defined by {38), differ
by the small underlined term from the membrane solution.

6. Numerical example

The results of calculations for the case v = 0.3, = 0.5, a/R = 1/3, P, = 0,
and p, =p are illustrated in Figs. 2-5. The stress components 0 Op op and 7
are plotted against p for 8= OO, :g- , and - g Some conclusions may be drawn

from these figures :
{a) The shearing stress, 7, is very small, relative to the other stress components.

(b) The radial stress differs only slightly from its value for a cylindrical tube
(% = 0). It reaches its maximum negative value at p = @, where
g = -p,

p
in accordance with the boundary conditions.

{c) The hoop stress, o reaches its maximum value at points lying on the inner
surface, {p = o), with & = - #/2 (point A on Fig. 1). This is given
{for v= 0.3) by
. 3 \2
T D p 2 (a, 1.714a + 0.286a <a \
-2y = 2 + 2 9
o la-5) = Tpet T {a' *\ & PR R)Mq) (39)
where the coefficient, A{a), is plotted in Fig. 6.

{(d) The axial stress, o, , seems to be somewhat sensitive to the curvature of the

tube, a/R, and the convergence of its power series is rather poor. At the

points p =a, 6= - @[2, this stress is given by
N 2
oy . P z_(_e_._ 1.214 (1 - o)) e <_a_)
o, le, - T[2) = [a = —— =) 5ta) ] (40)

where the coefficient, &{a), is plotted in Fig. 6.

The equivalent stress will be critical at the points p = o, 6= - 7l 2.
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APPENDIX I
ao 9T _
“pn L(G "'n
op P o,n t,n )
or 90
2 + }—<21 + t,n)
g n 8
ar 828
2 n 1 n
- fe - +
O (0‘ ’n) ?(Tp’n t,n+2 a@) 1+ v ap2
. 2
LIPS ¥ CHNEEPPL. VT Al Y 2%
8% n o op,n %,n 36 L+v |p® 3% p 9p
a
s {7) y 2 i(a -g, ) -27 |+ L }—zsn *lasn
n p~2 00 “p, t,n n] 1+v [p 9pdb pz 36 ]
- | {o -g )sin® + 7 _ cos SJ
L ., ¢,n n
- - . .
_”(Ut: 9% n) cosd 7 sin 6 ]
_ do do
- lsing —222 + cos 0 p.n 7, 2 cosé
ap p 36 P n
- 9
0, cosé 9% n 2 cos6
- |sin® - T
gp P a0 p n
B ar ,ar
- {8in® — + cost < LER g -0 ):{
a p 90 p,n t,n
- a
) sinea%’ + cos 6 ac{’,,n + 1 <sine Sn cosb asn
L ap e a8 1+v 3p p 36
2 (o -, )sin®® + 7 sin206
,0 £, 0 o
- 2 in 98
2 (gt,o 0&,0) cos®¢ + 7 sin 26
{o +o - 2c ) sin® cos® + 7,
p,0 1,0 2,0 o

(o]

»2[0
0,

sin®® + ¢

A cos®p + T, sin 26
H

n=0, 1, 2.
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APPENDIX 1

Relations (3) and (5} imply

1 3u _ _ ~ .
Ea ip T {1 +v) cp vS {A.1)
1 /5V “) N
Pys 55 * uj = (1+v)ct~vS (A.2)
E 'au ov
— — e = {
P 38 v + p ap) 2(1 +v)r {A.3)

Integration of {A.1) gives

u= {1+ [ g do -u[Srj_p + f{8)

E : (A.4)
a3 J Y A .
where f{8) is an arbitrary function of the variable 8,
Relation (A.2) yields, after integration,
E f e o | VE
SV {1 +v);3j o, de va S dse . f udel + g{p) {A.5)

where u is defined by (A.4) and g(p) is an arbitrary function of the variable p alone.

On substituting equations {A.4), {A.5) and (23) into the relation {A.3), which
must be identically satisfied, the functions £(6) and g(p) will be defined, and the single-
valuedness of the displacements u and v checked.

To caleulate S, use will be made of equations of compatibility (21). Since
4C

2 2 a’r‘l ) 82 ( <az®1> 2 .
'52 (O‘p91 —Gtg‘! + é-é- = 5? A@i) -A é";ﬁ'/ - -“F‘;g sin © {A.6)

as can readily be checked, and since

/ a‘?@{\} 62‘1’1
Mo ) =4 08 - s :-A( )
8,1 \\ 1 ap /

in view of (24), the first equation {21) implies

5281 Y 2C2 "
-5—#-}—:5 = {1 +u}[a~63 ([‘;@1) - o3 S;ne}. {A.T)

On integrating this relation one obtains

~ C
S, = (1+v) L@ - = sin6}+f1(9)+p £,(0) (a.8)

Substituting (A. 8) into the remaining equations of compatibility shows that the
arbitrary functions f(6) and £(6) are
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f‘(a) +pf2(6) = A1 + Azpsine ,

C

thus 2
S, = {1 +v) [A@1 - -—p—- Sin@] + A+ A psin® (A.9)

where A| and A_ are arbitrary constants.

Equations (A.9), (23), (25) and (A.4) imply

. E .4 (2d'f' -C) 1 -2v) y A
[t —— = - — - —— g i
i, =% (1 -4vd,p + p2+ 5 Inp - 735 5 P sin ©
v
- Ap + 1(0) (A.10)
Equations {A.5), (23), (25) and (A.10) give :
a’ (2d” - C )1 - 2v) C(1+2v)
A E oLl 5ianaet s 5 o- . lnp + —
1+v -a 1 vic,p PE 3 np 5
v A, '
y/ I - o -
+(1 - 2vd’ - oy 3P cosb f £({6) d6 + glp) {A.11)

Substituting (A.10), (A.11), {23) and (25) into (A.3) yields :

C{l -2
‘if-+ff(e)de mz[i-émm —2d’;(1 —u)] cos ©

Cz(l - 2v)
f(0) 2{ — Zd’:(l ~v)! € cosb .

or

2

The right hand side of the last expression must vanish, because of the single-
valuedness of the displacements, and we obtain finally

C
. . 2 1-2v
d/ =

4 1 ~v

{27)
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m P+ 1)+ & = b Uty = ¥ 11e10N
d d 20+ s L2+ 1
d - - L i - - - -yZ - d - =
up(a- 2)z o 7t 7 ﬁ (- T)z s + (P+1) +@ a+ % -3¢ -v2 z ﬁ? Ha-2) e O - e ¥ mHM
— d U4+ 1 M o+ 1 Hw
= LRSS [NV S S D1~V A~ a - J L ago - v a =
m I Wﬁ?ss Ty” Ay ”* ! sre ¥ | AT Hapwag O g A
i
o) .
- a+tl @+ I+ T)
=4 du ag-1) - —— - 20 =
= a (T}~ 1) A Atz +7(1 + 1) s
B
< dutfa-gy - «Q, mm.w:.Tﬁ- - d P | - u =
e - Sy T T - £+ 3~ V . miﬂi;- ziog HAP g)+ve =
I PEIT) a1 o G2
T DM §) € 1 + §- A+ ap - 1
. J. d O+ O+
dus(a - —E LA BRI i S v i- - d - L TE 4
a-g) + %.M;T I M&.S V+MA«¢+S+@ g~ +M+V + 2 aZ 8-
A Cd 9150 I a+ 71 g &2+ TN+ T
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