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SUMMARY

A method is described for the synthesis of a dynamical model of a linear
system based on the use of orthonormal functions. It is shown that if the nominal
values of all poles of a system are known, and if only one pole changes from its
nominal value, then this change may be detected. It is alsc demonstrated that the
numerator terms of the transmission transfer function of the system may be found
provided the denominator is known. Active networks are described, for the
simulation of the relevant orthonormal functions.
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1. Introduction

The approximate determination of the dynamics of processes has been the

subject of several recent papers.

One form of adaptive conirol systems

(1)

, in which the controller is automatically

adjusted to maintain a particular performance index in the presence of random
variations of the system parameters, is based on the realization of a dynamical

model of the process.

This model, under normal operating conditions of the process,

must be capable of automatic adjustment to ensure that it remains a reasonable
approximation of the process when the parameters of the latter are subject to random

variation.

The approximation of a linear system, based on the use of
has been congidered in many papers, including those by Gilbert
A spectrum analyser has been described by Braun et al

functions.

e}

hogonal functions,
and Kitamori 3,
and uses a set of orthogonal

In these papers, very little knowledge, if any, is assumed of the process dynamics
in the determination of the approximate model.
nominal values of some of the system parameters are known, and this knowledge may
be used to realize the most economical model of the system. This approach is
justified on the grounds that there is no virtue in constructing an adaptive system
which doss not make use of all available information concerning the process. This
paper is concerned with such applications and a procedure is outlined, based on the use
of orthonormal functions, for the determination of a dynamical model of the process.

2. RBasic Method of Measurement

However, in many applications the

A null method is used and is similar to that described by Kitamori(3>, The
arrangement is shown in Fig. 2.1.
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Fig, 2.1.

Basic Arrangement




Block A represents the dynamics of the process to bz controlled.

Block B represents the dynamical model consisting of active RC networks whose
parameters are adjusted automatically to give a minimum value of mean square

error .e(t) .

Block D represents a squaring and averaging circuit, the cutput of which represents
the mean square error.

Block F represents the control circuits which control the adjustment of the parameters
of t}:,.g__r_xéodel. Only one parameter is adjusted at any time to give a minimum value

of eft)”. "
mf(t) represents the common input probing signal to both the process and the model.

Although the process is subject to random variations, if it is assumed that
these occur slowly compared with the response of the process, block A may be
represented in mathematical form by its transmission transfer function G{s),
where s is the complex variable ¢ + ju. In other words the process is assumed
to be time Invariant during the period required to estimate its characteristics and
to correct the model. If the process is assumed to be linear, then

Cl(s) = Gis). M{s) ' (2.1)
or cft) =[ g{d). mit - ). dan (2.2)
o+

where g(t) is the unit impulse response of the system.

If G*(s) represents the transmission transfer function of the model, then,

C*(s) = G¥s). M(s) (2.3)
or ¥ (1) */‘ g7 ) mt - 7 )dr , {(2.4)
7 ok

where g*(r) is the unit impulse response of the model.

elt) = cft) ~ ™) (2.5)
— . 1 Ifi % @ 8
elt) = Tlirz 5T j-T [c{t) - (t)] dt . {2.86)
;LT e 2
Thus elt)® = lim 57 f U g(d). m{t - Adr -f""g*m.m(t - 'r)d’r]dt. (2.7)
Lo -T L o o
Let f(t) = glt) - g¥(v) . (2.8)
e r 1 T
Then  oli = j [wf(}\). fr) | lim o [ mlt -2). mlt - r)dt| dn . dr
o ‘o Toe . (2.9)
ie el)? = f” [“’ f#N. flr) ¢(r-7)drdr , {(2.10)
O o]

where ¢{1) is the auto correlation function of m(t).



Now Fljw) = f e % g4y ay
where F(jw) is the Fourier Transfer of £{t).
- ~ ~jwt
Also @mm(w) f_: Hu) du
where @mm(@ is the spectral density of mf(t).
Thus ) = o f e Fijw) do
Zar e
D TR B Y
and dlu) = 5o f_.«:e Qmmiw) dw .
: NS SEY AR ¢ N
. g{n - 7) =5 J/m,e 2 {(w)dw.
roe oo
— 1 jw(h
Thus t)? = f] £(0). f('!)['é‘; / ) ) dw} ar dr
O O ~ -
1 L] o . o0 _ ;
-—%_./ e (W) { D 7(0) eJ“’"dm} U r)e 17 m] Jw
- O o]
1 PR}
= e @ . 3
o= ]m (@) Fliw). Fl-ju) dw
ie 02 == 1RG0 e (0 dw
T 2a “mi i mm ’
- L7 ot - afe s
- Jm;m;w G | e (w)dw

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

(2.

Thus for a given spectral density of the input probing signal m(t), the mean
square error e(t}° is minimised as G*(jw) becomes a closer approximation to G{jw).

The frequency response function G*(jw) is synthesized by a combination of
active RC networks which represent a set of orthogonal functions.

3. Orthogonal Functions

11)

12)

13)

14}

15)

.16)

17)

18)

19)

20)

An orthogonal set of functions G%(s), OZ(S} e Or(s), may be derived from any

set of linearly independent functions L (s); La(s) ... L {8), by making Or(s} a

suitable linear combination of Lw(s), with

x[lforq=r

A

R .
5 [_:)q (jw). Or(mgw) @mm{w}. dw

Or(S) may be represented by the equations(g’ 5).

0" g#r.



Lis) L (s)...L{s)
r r-1 4
P ...P
o1, T T, T 1,4
r-z,r I-2,r-~¢ T~2,1
P ..P
i, T, 3,04 1,14
O (s} =
r
P R P P e
r=i,r-t r-4,r-2 Tt rr r,r-t T,
P
=2, -4 I'=2,T=2 ez, re3,r Pr=q,T=-t r-4,1
P e P P .. P
»\} 1,0-4 1, r~2 i,1 i,r t,r-1 1,4
..... {3.3)
1 L~
where P Z e L Gw) L {~jw) @ (w) dw . (3. 3)
q,r 2o [ﬂ qj r min

Thus any set of orthogonal functions is dependent on the spectral density of the input
signal mf(t).

Consider the particular case when ¢ {w) is a constant which may be
normalized to unity. Such a spectral denﬁ’g}r} represents that of a white noise signal.
Although the latter is not physically reallzable, it may be shown, that, provided
& {w) is constant over a bandwidth which ig much greater than that of the process
under investigation, it is a reasonable approximation {o assume that & (w) is constant
over an infinite range of freguency.

If, therefore, iﬂmm(w) is assumed to be unity then equation 3.3 may be
expressed as

S T i -] 3
qu 5 [m Lq {3w). L;{j jwidw . (3.4}

it Lq(jw). Lr( ~jw) approaches zero more rapidly than ii—- as w * «, then

equation 3. 4 may be expressed as a contour integral where the contour encircles
the entire right half s-plane.

Thus, ) . e
5?;3 /CLq(s). Lri—-a) ds = 72-;;3_ v/quLq(s). Lr(—s) ds

(]

Lresidues of Lq(s). Lr(-s) in right
half s-plane . (3.5)
If a linear, stable, discrete parameter sysiem is now considered, iis {ransmigsion

transfer function is characterized by iis poles and zeros, which may be real or
conjugate complex.



For such a system the set of linearly independent functions may be expressed in
the form:~

1
Lk(s} = 5'?5 for k=1....m {3.8)
k
1
I"m-é-2r~1 {s)

2 a 2
s + 2a sta +5
r r 'r

and L {s) = sL {s)

)
)
)
) for r=m+1....n
)
m+2r m+2r-1 )
}

where Py @, and Br are positive constants.

If this set of functions is gubstituted in equation 3.1 the following orthonormal
functions may be derived.

Vap, Vap, 5 -p,
Ole) = 535, 1 Ofe) = m . (3.8)

and in general for k ¢ m

V - - -
o ls) = ipk . S+pk“1 ,,,,, S+pg . :+p‘ , (3.9)
STP  BTP 4 STR 5 ,
If r>m
VB T R 2 2 2
° &S)z v 4ar Qi + Br g 2“}?—-1 5 + @ 4 + ﬁrul
mt2r- 2 2 2 2 2 T
8 + 2ars + a, + Br 8 + 20:1‘”1 s + @ 4 + ‘Br—l
2 2 2
..... ° 2ﬁ'18+€!i+,31 . > Pm 5 {3.10)
Sz+2a$s+af+‘8? S+pm 8+ P,
Yda Vo + B2
T r r
= - - plp N(S) (3-11)
58 +2a s+a +B
T r r
.8 ‘!éécrr
and %+2r{5) = — - . Nis) . (3.12)

2
s +2a¢ s+a + 8
r r r



The transmission transfer function of the model may be expressed as

N
G*(s) = z k, Ofs) , (3.13)
i1 M
where
k, ﬁf)i 5 - P, 4 s - P,
kO (s) = . fori< m (3.14)
i1 a+pi s+pi_1 8 + Pp,
and
- )
0o ?;V’E% Lkis%—k;x@’?rﬁ;] g - zqis+a§+ ,8: 5-p,, ;
s) = . . o
1 g+ 2a, 8 + of + fF s 208 + o'+ g2 "Pm )
1 1 1 k] 4 k] )
s-p, )
. for is>m
s+p, }
..... {3.15}
From equation 2.20
= 1 [Ty
eft)® = 5o /_wiG(Jw} G (jw) @mm{w) duw {3.186)
With & (w) = 1 {3.17)
mm
———y 1 ® . %, 2
e(t)* = CP ’G(Jw) -G ijw}i dw {3.18}
I [ SN L P *
- ./-m[(}{jw) G (;w}] k;(njw) -G (-jw)] do . (3.19)

Substituting equation 3.13 into equation 3.19

1 [ 2 E ) ,
o =5 | (Jete] - [oga ) KO3 + Glga i K0, )] § do
e v YA

i1 i =
N
+ L kz : (3.20)
i=1
For the minimum value of et} by adjustment of ky
TN R
delt) 1 , . ‘{ _
e o /.w -2 |6t 0 (-j0) Jau + 2 - 0 (3.21)
P S Gli&) O.(~jw) du (3.22)
i 2% e i



T S

A

Since G{jw) Oi(—j w) approaches zero more rapidly than TS 88 W e
o
(3.21) may be expressed as
1
ki = Z Residues in right half s~plane of G{s) Oi€ -8) )
) (3.23)
M
= Z Residues in right half s-plane of G{-g) Oi{s) )

fori=1, 2 -~--- N.

4. Synthesis of the dynamical model

The transmission transfer function of a linear, discrete parameter gystem
may be expressed by the partial fraction expression : -~

a2 a, ak am b1s +»c‘
Ge) = 55" svet o S Rt 5T 2
g P, Py P g8 + 2e, S—i-af-i-ﬁf
b8+ c
+ ... . N H - . C (4.1}
g+ 2 t +
S h 2oy st eyt By
where the parameters j PP T B»a ‘BN are positive constants.
a ....a , b ....b_, ¢ ....c. are unknown constants which may have a positive
1 m 1 N 1 N

or negative sign.

4.1, Determination of the denominator terms

If, at any time, all but one, say Py of the denominator coefficients are known,

a model may be constructed in a way such that the minimization of the mean square
error, by variation of one pole position, gives the value of the unknown parameter.
Consider the model whose transmission transfer function is given by

- . - g - . 2 L of 4+ R
TR} A N - S 1> S i T W
Sty s*p SFtPry BT Py STPm & 4 2a s+ g%+ g

s® - 20,8+ a® + B2

N
2 2 1:{ 2 {4.2)

. 3 <
s%.‘;afN +a'N +ﬁN

Under these conditions, for Eﬁ;‘)? to be 2 minimum by adjustment of vy,
then from (3.19)

— 5 )

e{t) 1 o] , %, . . EY

v . L[ .2 ~ja) + G- + de = 0 4.3

o " | [cwe (-3 + Gl-jo) G¥0) | (4.3)
= -2 é—?;»- > Residues in the right half s-plane of G{-s) G*(s) . (4.4)



Hence
o ( Y2y )
S = 0 . .
3y \p, +7/ (¢.5)
i.e (pkﬂf}{ LY. V3y = ¢ . {4.6)
<\ ygy /
i.e P =V {4.7)

Thus #f  e{t) is minimized, the value of y required is equal to the unknown
parameier V.

If now the nominal values of all the poles of the system are known but in a
period, which is long compared with the measurement time, one pole can change
from its nominal value, this change may be detected by a slight rearrangement
of the model, i.e.

g - -p g - - - 2. +ef4+ B
e = 2L P N T T | S -Ph 5 - 2qstanh
% - T — I T . “ o RPN » PR
Sty 8TR BFPey SRy SF Py S*Pm g% 20 sralHp
§°- 20 _s+a’ + B2
N°N T PN “.8)
g 2 sta. + {32
BT aeySTeN T Py

The model has now an excess real pole compared with the system. If any cne of

the real poles {say pk} 1s subiect to variation, then the minimization of

8 N o ias )

3y e(t)” will again give the condition that P = Y- In this case, however, the
particular pole which has changed from ite nominal value is not known and a procedure
is necessary to give this infarm;ation. This may be achieved in the following manner.
After the minimization of e{t)” the factor (s - pﬂ\) is removed from the transfer

3+ p

function of the model. If no change in the minimum condition for el{t)® occurs as

a result of this operation then it is cbvious that < is the variable pole. If however,
/B P,

a change occurs, the factor &

5 > is re~inserted and the process repeated with
i

§ - B,
(E T 3 > This sequence of operations is repeated until the removal of a particular

& 8 - P N
factor ( gy px;/\ causes no change. The pole P then represents the nominal
8 ~p

value of the variable pole of the system and the redundant factor =T pr may be
r

removed from the model. The validity of this procedure is based on the assumption,
ag already stated, that the change in the pole position during the time of measurement
is negligible.

An alternative situation may arise, however, in that the variation may eccur in
either of the two nominal parameter values of a particular pair of conjugate complex



poles. If it is known that a particular pair of conjugate cormaplex poles has a
damping factor which ig subject to variation, this variation may be detected by a
slight rearrangement of the model with a transfer function of the form

2 2

zvu1w01(s +w01) 8 - Zigzwozs + waoa &= 24NWONS + woN

G¥*(s) = . e

gframw s+e® 4250 s+ W 8% 240 8+l

0‘3 01 Oy Oy ON ON
§-p 8 -p

...Mp’ S+pm . 4.9
1 m

where p represents the variable parameter and all other parameters are known.
1

Note 5w @ and w = V& +p2 {4.10)
r OI‘ by Gr r r

Under these conditions for e(t)® to be a minimum by adjustment of #, then

aeltP |, 8
du 9u,

Z Residues in right half s-plane of G(-8) G*s)=0. (4.11)
k]

-
. Z Residues in right half s-plane of G(-s) 5%—-@*(5) =0 {4.12)
o
— G(-s). 2 (sto )& -2ug st )
i.e. >__, Residues in right half s-plane of My 1

k| :G
2 2 2
(" +2uw s+w )
' o, '

2 2 i sese (4-13)
g - 2;116-)0 s + wo

]
i.e. E Residues of ! . 1 — =0 (419
(f+2u0 s+ @ )* 8 -2 w s+t
o, o, 1 o, o,

This results in the condition that,
L = u . (4.15)
1 1

Hence the model has followed the variation in %, by minimizing e{t)® by variation
of u, .
1




- 10 -

4.2 Determination of the nwmerator terms

The transmission transfer function of the sysiem as expressed by 4.1 may
be re-written as :-

) = A1 . Az s»p1+ Ak 5Py 1 8-p, Am 8P 1 8-P,
a+p, stp, 8*+p, s—i«pk S+pk—l s+p s+pm S+pm~1 s+p,
. B‘si-C1 S - P 8 -Pr_1 B~ P,
s + s2g,w +w® 5+ Pm s+ Pin-1 s+p
O G
2 2 2_ W +w? - _
Br 8 + Cr {s 52‘%4 worniword ) {s"-82%, o; ‘*’01) s-p. 8P 4
T re2g_w  +a? (s5rs2z @ +w® ) (s%s2z e +0® ) SPm SPhmg
r o ] r-1 o s} 10, O
r r r-1 r-1 LI
§-p,
’ s+p,
2 . . 2 o 2
B_s+C (e -828 w +u Yy {s®-s2Z w +u® ) 8-p 8~p
. N N N- Og.1 ON-1 fo, 0, m m-1
Sa*“SZéNw +u? (sz+822;N_1w +w? ) <s2+sz.>;,wo+w;) 5 Pm Pyt
°N °n °n-1 °N-1 1 O
8-p
J—
"Tstp,
Genee {4.16)
where g = ¢ and = ;az + B2, {4.17)
r o r o T r
r r
N v
i.e. Gl{s) = i &i Oi(S) where 61 is a constant fori=1....N .
ZJ ..... (4.18)
%
With the transmission transfer function of the model in this case given by :-
N
G¥(s) = L k, O,(s) (4.19)
%

the object is to determine the coefficients A ....A_, B ....B, and C....C..
q m 1 N 4 N

All these coefficients may be subject to variation but it is assumed that only one
coefficient at any time changes significantly from its nominal value, in the period
required for measuring the change.

Note ON(B) contains all the poles of the system which are assumed to be known.

o FEY
From equation 3.22, it is obvious that ki = f»i for the condition %Eé-ﬁ~ = 0.
i
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Alternatively from 3. 23,
k= L Residues in right half s-plane of G(s) O.(-8) (4. 20)
ffﬁk 8P _; s+p

k, = Z Residues in right half s-plane of G(s) . bt
§-p,  B-p s-p
k k-1 1
..... {4.21)
Y Epk Ak )
i.e. k= ——m—— }
k 2Py )
) {4.22)
Yip. =
or kk 2pk Ak }
- v -
Also B s+C 2 ?;rwo (-s)
k! = Residues of LA -2 . - , (4.23)
5 +820 0 +u? g% - 822 W + &
ro_ o r o o
r I r r
B
i.e. k‘; S S . )
ZV‘z;rwo )
T ) (4.24)
)
or k! 2VZ w = B . )
T r o r
r
B s+ C 2qrwor'w0
and k* = Residues of z z . L , {4.25)
v Sf+82Z w +w & -g2% w +u
r o ) r o o
r r r r
c )
f.e. kY = X R )
r 20 Y& @
o, ro )
} {4.26)
)
)

] r r
r

or 27 w. . w_ k* = C
ro
The above analysis indicates that all numerator coefficients may be found
provided that the poles of G(s) are identical to G*(g). Thus the search procedure
for the model adaptation should be that the pole variation is first determined before
an attempt is made to follow the changes In the numerator coefficients.
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5. Simulation of the Dynamical Model

5.1. The Basic Arrangement

It is required to generate the orthonormal functions so far described.
Use is made of a computing or operational amplifier associated with passive
linear RC two port networks. The use of one-port networks may be considered

as a special case.

The general arrangement is shown in Fig. 5.1.

L 'Lg Lz
Oty PASSIVE ooy PASSIVE
3 NETWORK * NETWORK +
{ A €2 B €3
o © S o © °

O ACTIVE @
NETWORK

s}fv% 0

Fig. 5.1.
Network B is a two port network placed in parallel with the computing amplifier
i.e. active network C.

(6,7)

It may be shown that,

A .
Ez{s) gM{s}

Ep- {5.1)
i 2
Ea‘S} N 2(8)
A Ig(s} forward short circuit )
where vy (8) = 15 transfer admittance of )
2t 1 F,(s)=0 network A )
I(s) —~ reverse short circuit )y {5.2)
and yB{s) . 2 transfer admittance of )
12 Els)| network B )
E {s)=0 )

provided that the following assumptions are valid.



{a) Networks A and B are initially relaxed {i.e. zero charge on all
capacitors) .

{b}) The forward open circuit voliage transfer function of the amplifier
-K G{s) * -« over the frequency range of interest. {K is a positive
constant and G{{@) is a rational function of the complex frequency 8) .

{c) *Sis} = 0,i.e. amplifier input impedance is infinite.

C o .
{a) yza(s) =« 1. e, araplifier output impedance is zerc .
A B,
¥y, 48) - ¥ (s)
K

B
{e) was) > for the frequency range of interest .

A ,
(fy It y@a(s) or f,jf(a} o gs s that 3{3(3) should approach infinity

as 8 ® o .

(yﬁ(s} = - ghort circuit admittance of output port of network A} .

(yﬁ(s) = short circuit admittance of input port of network B) .

5.2. Use of one-port networks

With networks A and B representing combinations of resistors and capacitors
between input and output ports, the conventional analogue computing eircuits are
given.

i.e. if A represents a resistance R and B represents a capacitance C

then 3% - . g}{;’g , (5.3)
BEs}

which is the transfer function of an integrator.

Also Eﬁfﬁ? - . R, (5.4}
E, (s) R, ’ )

if network A represents a resistance R and B a resistance R,

Network A may also represent several one port networks to each of which is
connected an input voltage.

For this case, F

(5.5)

&
@
L
P
E
|,



5.3.

Use of two-port networks

The parallel combination of standard T-networks to represent networks

A and B results in transfer functiong where coefficients are capable of independent
adjustment

admittance functions are given in Table 5.1.

Network A or network B may be arranged to comprise each of these networks

TABLE 5.1.
NETWORK Y2y (8) ( = my,z(s})
Ly c c Lo
+ ' + 2 2.2
R H o8 C R
St 2 €2 2R | +sCR
o ©
.Lg gc R i.g
E 4 + | 2s3CR
o R €2 2R 1+sCR
]
o s ’)
R ¥;2
\/\-M
+ i ]
zc .
€2 2R 1+ sCR
ot ©

maultiplied by a scaling constant k.

and

Thus for example if

A 1

A T
- b
T 2R

B

y_}z(s) =

2R

k C'R°+ k 2sCR + k
4 2 3
{1+ sCR) ’
k s®T% k 28T + k
4 2 1

{1+ sT) . '
L B2
k,s T+ kszs’l‘ + k&
{1 + sT)

The forms of T networks together with their respective short circuit transfer

(5.8)

(5.7)



E(s) k 8T+ k28T + k,
then e ’ (5.8)
E {s) ks T+ k 28T + k,

where T = RCand the k'lsare € 1 {5.9)

5.4. Simulation of the relevant orthonormal funciions

Ed v 2a
G () = i . {5.10)

(1)

where a is to be capable of adjustment and may be greater or less than unity .

1

= 11

If a o , {5.11)
where T is a positive pre-determined integer and k is a variable coefficient

and = 1,

- vV 2kT
1+ skT
The active network arramgement{ 7 which satisfies equation 5.12 is ghown in
Fig. 5.2 in which

then G*(s) {5.12)

5 represents a computing amplifier

C.F. represents a cathode follower

and T = 'RC .
Mote: The magnitude only of T is used in specifying resistor values ——

and 0.5 V2T, etc.

9+§‘v% %;’

W
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From Fig. 5.2.

BB vmm o v s
E {s) 1+ skT s+ a :
Also
E(s) = - {1- 2*’2"1:‘ > (s - a) (s
E (s) \ 2T{1 + skT) T {s+a) '
S “'o i
{ii) G¥e) = - 2Zw + , (5.
R R szééwo + ws g%+ széwo + W

13)

14)

15)

where wo may be greater or less than unify and % is a positive coefficient which

cannot exceed unity. It is required that Z may be capable of independent adjustment.

1
if W= T (5.18)
* - r vZ.sT vZ 1
then G¥s) = 2VT | - — - — . {5.17)
1+828T+s T 1+828T+s5 T
= ovT  [Gfs) + Gfa)) (5.18)
where VT &T )
Gfs) = - 2 )
1+ 8257+ T }
and \ {5.19)
Gls) = - vZ }
1 +8287+8 7T }
The instrumentation of G (&,) and G {e) is shown in Fig. 5.3.
1t Fe = - S ':z; -s2el il (5. 20)
s T + 8247 +1
This may be expressed as
_ L
Fis) = .~<1~ AN (5.21)
* 1+s28T+35 T
= - {1 +4vZ G{s}) {5.22}

The Ingirumentation of eguation 5.21 is also shown in Fig. 5.3.

the latter,

T = RC ,
at output A
VT E(s) = - — Yo 8T . E(s)

1+ 8247 + g* 7%

With reference to

(5.

{5.

23)

24}
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EA{S)
i.e. SEE) = Gq(s) . : {5.25}
At output B,
e
Eg(s) = ¥ Efs) = - 2 E(s) , (5. 26)
. 2 2
1 +824T +s8 T
EB(S)
i.e. £ (5) = GJs) . (5.27)
At output C,
Efs) = - (44 E(s)+E(s}) ,  (5.28)
E—'B(S) . 44sT
1.e. E”‘(g) - (l - Z 2} 3
4 1+828T+s5 T

- - (1 - 8247 + 8°T% (5.29)
1+ 82T + °T7 )

If the voltages EA{S) and EB(S), respectively,are multiplied by the coefficient

2VT the required orthonormal functions are obtained. It should be noted that a
four gang potentiometer is required to give the coefficients dependent on Z .

Alternative network arrangements may be derived in which independent adjustment
of 0 is also available as described in Ref. 7.

5.5. The Dynamical Model

The dynamical model of the system may be constructed by connecting, in tandem,
the networks described in 5. 3.

One possible arrangement is shown in Fig. 5.4. With reference to Fig. 5.4.,
networks N ... Nm are of the form shown in Fig. 5.2 and networks Nm+1 R NN

are of the form shown in Fig. 5.3.
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5.4. DYNAMICAL MODEL

Fig.
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8 -p )
fﬁ{s) = - By M(s) , ;
m 8 -p )
RO CHR )
i s+, )
: k=1 )
. o )
S -2 a momﬂ s+, ) )
£l = - = . f_(s). M(s) )
Iy sa & 22_:, " W s + w2 m )
m Om+1 Om+1 )
N s* - 25 @ s+ w; ;
fN(83 = Mi{s). f (s). ﬂ - L A )
m U F+2w g+w? )
r=m-+1 r o ts]
— r T i
2p
ofs) = - —= . M(s) y B30
s + p“ )
v’zpm }
O (s) = - . f {s} . Mis) }
m s + pm m-~1 )
}
2VZ T . 8T, . )
Oflsl = mle) . (- e )
1+ 825, T+ 8 'I*N ;
2 éNwON 8 )
= M(s) . < )ty )
g% + 822},Nw +w? : )
Yo% On )
)
SVETTUT . w - )
Ofs) = M(s) . < e )
B g%+ sz(:Nm + woa )
N N )

The transmission transfer function of the model is given by
G¥s) = L K Ofs) (5.31)

where Ki is a scaling coefficient which may be positive or negative. In Fig. 5.4.

this scaling is achieved by means of the variable resistors and in the case of

networks Nm+l B NN this scaling includes the factor 2 Ti' Switches S,. . 'SN

connect the outputs of the networks to the input of amplifier 1 or amplifier 2 to
take acount of the sign of Ki required.

With such a model each switch and the associated avariable resistor would be
operated sequentially to give a minimum value of ef{t) . Provision would be made
for one servo-drive to operate all sections.
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6. Practical Considerations

6.1. On-Line Operation

- For on-line operation the adaptation of the model, as already described, is
achieved by injecting the low level test signal into the input of the system in
addition to the actuating signal. The system output i8 then correlated with the test
signal to give the desired signal for comparison with the output of the model.

The test signal in this application has a flat power density spectrum over a
finite bandwidth, which with the latter, say, ten times that of the system, is
suggested as a reasonable approximation to white noise.

The requirement for the cross-correlation, however, is a distinct disadvantage
gince it involves the instrumentation of a time delay, multiplier and integrator.
Moreover, the assumption is implied that the process is ergodic which is not
strictly true with slowly-varying parameters. A compromise must also be made
in choosing a finite time of integration instead of an infinite period, and this
results in functions of the actuating signals, which in this case are noise components,
to appear at the output of the correlator. To achieve a reasonable signal to neise
ratio the integration period must be maintained at some value T, with the result that
changes in the system parameters can only be detected after a finite number of
periods T. This is due to the fact that several coefficients may have to be adjusted
and each adjustment occupies a number of periods T. Again, in order to obtain
sufficient information regarding the system response, several correlations having
different delays are required.

These considerations suggest the need for sampling and quantizing the ingmt asld
output signals. In this way the correlator can be considerably simplified(s' » 100
Alternatively, in some applications, the actuating signal itself may be used as

the test signal. However, as discussed in section 3, this means that the functions
forming the model are no longer orthogonal and the adaptation of the model occupies
a much longer time. Moreover, unless the signal approximates to white noise,
there is no guarantee that the model, which gives a minimum error function, is a
good approximation to the system.

Another factor is, that in a system having a large number of poles, there will
be difficulty in detecting a minimum if say a low-pass filter is used as the averaging
device. This is due to the fact that the output of the filter will be subject to random
variation due to inadequate filtering.

The above considerations are severe restrictions on the use of the methods

described in this paper. However, it appears that many of these restrictions are
imposed on any method of model adaptation based on the use of test signals.

6.2. The effect of system non-linearities

Another disadvantage of any method based on test input signals is the fact that
their presence may result in the system being operated in a non-linear mode over
certain periods. For the case of simple non-linearities,such as well defined
saturation effects, a possible cure might be the incorporation of identical non-
linearities in the model. The success of this technique would depend on the
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proportion of time the system was operating linearly to the time of non-linear
operation. This technique has not been investigated by the author.

6.3. The injection of test signals at several points in the system

If access is available to several points in the system, it would seem to be
desirable to construct models for parts of the system by using several test signals
and correlating the available output with the respective input signal in each case.

In this way, each model is simplified and the time of adaptation is reduced
as all the models may be adapted simultaneously. The disadvantage of this approach
is the duplication of test equipment such ag correlators. However, it may even be
advantageous to adapt each component model sequentially with the same test
equipment, if the time variation of the system parameter is sufficiently slow
compared with the measurement time.

7. Conclusions

The synthesis of a model based on the use of orthonormal functions seems to
have some merit.

The effect of non-linearities and inaccurate measurement technigues, however,
warrants closer investigation to ensure that a reasonable approximation to system
performance is achieved.
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