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SUMMARY

General equations are obtained for the deflections and stresses
in long thin unreinforced cylinders, which are subjected to an axial
load and internal pressure. By making suitable simplifying assumptions,
results are presented which show the variation of the structural weight
parameter with the structural axial loading index, for both pressurised
and unpressurised shells. An allowance is made for the effects of
shell initial eccentricities on the buckling stress coefficient K, i
accordance with R.Ae.S. data sheet 04.01.01.

Extreme cases are considered, in which the shell is agsumed to
be either fully effective (K = 0.8), o completely ineffective (K = 0),
in resisting axial compressive loads. For this latter case, complete
pressure stabilisation of the shell is considered, and it is shown that
the weight penalty involved in using this design philosophy, is negligible
for a certain range of the structural loading index.

A simple modification to the analysis for this case, i.e, K = 0,
is made to allow for the effect of an external longitudinal bending moment.
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NOTATION
constants in equation (1)
flexural rigidity
Young's modulus
axial compressive force
allowable stress
buckling stress
buckling coefficient
head of liquid in vertical shell
longitudinal bending moment
longitudinal acceleration (in g's)
internal pressure
stabilising pressure
radius of cylindrical shell
longitudinal force/in.
circumferential force/in.
shell thickness
radial displacerment

axial co-ordinate along length of shell measured from the
lower support point

weight parameter defined in equation (14)
density of shell material

Poisson's ratio

density of liquid in the shell



Notation (Continued)

A structural index, defined after equation (12)
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1. Introduction

This paper is concerned with the design problem of thin cylindrical
shells, which are primarily subjected to axial loading and internal
pressure, Such a problem is typical of ballistic missile shell structures,
in which the axial loading is due mainly to axial inertia forces, and
the internal pressure could arise from the hydrostatic effect of the fuel
in the tanks, or may be introduced for the purposes of shell stabilisation.

An attempt is made to assess the structural efficiencies of various
configurations, making due allowance for the effects of shell initial
irregularities.

A simple modification to the analysis is later considered to allow
for an external longitudinal bending moment on the shell.

2. Theory

The fourth order differentizl equation defining the axi-symmetric
radial deformation of a vertical, circular shell subjected to internal
pressure and axial loading may be written as

d*w

a4t w = p1-D+no(2-0 +—2 | .
dx* i 27 R

Len

The various terms in the bracket above correspond to a constant gas
pressure, a linear hydrostatic pressure, and a term containing the
axial compressive force,

g

For most missile structures, the fuel tanks are sufficiently long
for the solution to the above equation to be written as
2

w = e HE TA‘ cos ux + A, sin ux +%§ [p" +p(& - x)] ,
m e o 6 0 8 (]—)
where p’ = % 1 - §U + —-——}-1—5-;—- , and 4,4 = Et
; 20R p DR?

Solution of equation (1) depends upon the edge boundary conditions which
have been taken to be either fully clamped or simply supported.



The corresponding expressions for w are, for the fully clamped
edge,

w = BE [p’ w( £-x) - (p/ )8,  ~(p’+ot- D)z
Et | (ux) poux) |7

..... (2)

and for the simply supported edge,
nk

w o=
Et

wp] +0(%-x) - (p "*p@)e(ux) ] ' *

The relationship between the radial deflection w, and the tank hoop

force/in. T, , is
_ Etw pEy vE
L =5 *7% " zm
. =UxX -ux .
6 s g, ) = e sinux,
The fJnCthﬂS (/—lX) e COSUE ; & (!JX) e sinux

[

Plux) © R )
are tabulated in Ref. 1, page 394.

Under the assumed loading conditions, the axial force/in., T, ,
may be written

<2
To=% " Zm (4)

and the buckling design criterion for the shell in compression is given
by R.Ae.S. Data Sheet 04.01.01 as
-T

1 t =
fb = ‘-;c'-' = KE (3‘;‘{') . (O)
Substitution of equation (4) into (5) yields
] gt 2 '
p. = LI 2KE(“;) , : (6)
S 2 . R
TR

where Py is the internal gas pressure which stabilises the shell under
the compression loading F.
Clearly the introduction of the internal pressure gives rise to a

tensile hoop stress T, . 1f this stress must not exceed the allowable
t



hoop stress fa then the condition for fa is

Ew pRv vE
f = + - . 7
a R 2t 2Rt (7)

It can be shown that when x is small equations (2) and (3) may be
simplified, with very little error, to give respectively

nR ; -
= 4 - 8
W = Pt DJ (1 -¢), (8)
and R ¢
- 3 3“), + AN ~ B,
W MEt L Q;} {1 U} (9)

Substitution of equations {8) and (9) into (7) yields

ni pit v Fv
- £01 - - - -
R R o RIS 1wt (10)

for clamped edge conditions and a similar ex rression for the sim 15
? b
supported edge with Qf) replaced by 0.

When equation (6) applies, i.e. the shell is just stabilised by
internal pressure, p = P in equation (10) which becomes,

_|nR . _F _4y . 2KEt - _Vy
£ -M pv+ﬂ{t}(1 5 -2 [3. s1-3) ).

Inspection of this result shows that the maximum f occurs atux =u ,
when (1 -¢) = 1.0432., The corresponding maximum result for the
simply supported edge occurs at ux = 37, when (1 -6) = 1.067.

4

These results are for a long shell, but an investigation of the
effects of finite length of shell suggests that the most conservative
factor is about 1.09. This factor will be applied in the subsequent
analysis, and will be assumed to apply for either fully clamped or simply
supported edges. Hence if v = § equation (11) can be written as

f
a
2 - 09 & Yv) - 2.15K (%), (12)
where vy = [9‘&6- +)-5—] , and A = ~E-5 , is the structural
B E TR

index in compression.



3. Discussion of the parameter K

The results which are presented in the R. Ae. 5. Data Sheet 04.01.01
may be used to determine the buckling stress coefficient K for thin
walled unstiffened circular cylinders under combined axial compression
and internal pressure. It is generally considered that the depth of
initial irregularity of the shell wall (&) plays a dominant part in
predicting the buckling stress of circular cylinders, and this fact is
considered in the R.Ae.S. Data Sheet 04.01.01, where K is plotted

. b , 2
against - for various values of the parameter 2 (E{? The results

t E't
of a large number of experiments have been correlated in determining
these curves, which show the dependence of &/t on R/t.

For the purpose of this paper, comparisons are drawn between the
results cbtained using either &/t = 0 or 1, i.e. independent of R/t,
or in accordance with the data sheet for the more critical uppermost
line B.B. This line represents the limiting maximum values of 6/t
for over 80 per cent of all experimental results which were used in
the correlation.

4, Results

4.1. The unpressurised shell

Fig. 1 shows the structural efficiency of the unpressurised shell
in compression, compared with that of the pressure stabﬂlsed shell,
for a shell material having the properties E = 28 x 108 1b/in?,

o = .273 1b/in] and allowable tensile stress f, = 170,000 1b/in®,
The curve for the unpressurised shell was obtained by using equation
{6) with p = 0, in which case the structural index becomes

£y (13)
o= 2KE (5) . |

By assuming values for % in the range 100 to 3000, corresponding

values of 06/t and hence K were found from the R. Ae.S. Data Sheet
04.01.01 line BB. The structural index was found from equation (13)
and the weight parameter o which is plotted in Fig. 1 is defined by

‘- Tt ae



4,2. The pressurised shell

By specifying the allowable tensile stress to be fa = 170,000 1b/in?
equation (12) is presented in Fig. 1, for the pressure stabilised shell,
with the hydrostatic effect neglected, i.e.

fa R, t

5 1,09 T(-}f‘-) - 2.15K (*ﬁ) .

The fullline shown is in accordance with R.Ae.S. Data Sheet 04.01.01,
and the analysis is similar to that indicated above for the unpressurised
shell. The dotted line in Fig. 1 shows the effect of assuming K = 0, i.e.
the pressure to be such that no compressive stress is set up in the shell,
in which case

f

a R, A

= - 1.09 {t ) (E) .

Comparison of the solid and dotted curves for the pressurised shell
shows that for values of the weight parameter o <2 x 10"41b/in?

e ? > 1500 or A < 150, the assumption that K = 0 gives negligible

error to the weight parameter,

From Fig. 1 it may be concluded that for low values of the
structural index (low loads, large dimensions), the pressure stabilised
structure has a significant weight advantage. This result was previously
noted in Ref. 2 where curves which correspond almost exactly to the
solid lines in Fig. 1, were derived using Ref. 3. This reference
provided some of the experimental results considered in deriving
the R.Ae.S. Data Sheet 04.01.01. Iu Ref. 2, it was also shown that
for high values of the structural index, conventional stiffening is
optional in terms of structural eificiency.

The above results prompted an investigation into the effect of the
parameter §_ and hence K, on the structural efficiency, for various
t ’
values of v. The results are presented in Fig. 2, which was obtained
i i )
using equation (12), and values of %S_ - 0{(K=0.6)andK = 0 (%Q o ).

The value K = 0 corresponds to the case when there is no compressive
stress in the shell, in which case equation (12) becomes



R

a | R
= = L.09F (). (15)

The results indicate that the difference between the corresponding
curves, for the extreme values K = 0 and K = 0.8, decreases as

f? increases. This also implies that the effect of initial irregularities

3

decreases as T increases. This point is further emphasised by the
curve plotted for % = 1.0and v = 2x 10”6.

5. The effect of an external longitudinal bending moment

If an external longitudinal bending moment M is applied to the
shell together with the axial load F, then it may be shown that, for
the case when K = 0, equation (15) is still applicable provided that
the parameter (v) is defined as

nol % 2M

. e -

+
) B 3
E ™R I

voo=

In this case Fig. 2 still applies when v/ is read for ¢ .
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