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ABSTRACT

As future robotic surface exploration missions to other planets, moons and
asteroids become more ambitious in their science goals, there is a rapidly
growing need to significantly enhance the capabilities of entry, descent and
landing technology such that landings can be carried out with pin-point accuracy
at previously inaccessible sites of high scientific value. As a consequence of the
extreme uncertainty in touch-down locations of current missions and the
absence of any effective hazard detection and avoidance capabilities, mission
designers must exercise extreme caution when selecting candidate landing
sites. The entire landing uncertainty footprint must be placed completely within a
region of relatively flat and hazard free terrain in order to minimise the risk of
mission ending damage to the spacecraft at touchdown. Consequently, vast
numbers of scientifically rich landing sites must be rejected in favour of safer
alternatives that may not offer the same level of scientific opportunity. The
majority of truly scientifically interesting locations on planetary surfaces are
rarely found in such hazard free and easily accessible locations, and so goals
have been set for a number of advanced capabilities of future entry, descent and
landing technology. Key amongst these is the ability to reliably detect and safely
avoid all mission critical surface hazards in the area surrounding a pre-selected
landing location.

This thesis investigates techniques for the use of a single camera system as
the primary sensor in the preliminary development of a hazard detection system
that is capable of supporting pin-point landing operations for next generation
robotic planetary landing craft. The requirements for such a system have been
stated as the ability to detect slopes greater than 5 degrees and surface objects
greater than 30cm in diameter.

The primary contribution in this thesis, aimed at achieving these goals, is the
development of a feature-based,self-initialising, fully adaptive structure from
motion (SFM) algorithm based on a robust square-root unscented Kalman
filtering framework and the fusion of the resulting SFM scene structure estimates
with a sophisticated shape from shading (SFS) algorithm that has the potential
to produce very dense and highly accurate digital elevation models (DEMs) that
possess sufficient resolution to achieve the sensing accuracy required by next
generation landers. Such a system is capable of adapting to potential changes
in the external noise environment that may result from intermittent and varying
rocket motor thrust and/or sudden turbulence during descent, which may
translate to variations in the vibrations experienced by the platform and introduce
varying levels of motion blur that will affect the accuracy of image feature
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tracking algorithms. Accurate scene structure estimates have been obtained
using this system from both real and synthetic descent imagery, allowing for the
production of accurate DEMs. While some further work would be required in
order to produce DEMs that possess the resolution and accuracy needed to
determine slopes and the presence of small objects such as rocks at the levels
of accuracy required, this thesis presents a very strong foundation upon which to
build and goes a long way towards developing a highly robust and accurate
solution.

Keywords:

Structure From Motion, Shape From Shading, Hazard Detection, Digital Elevation
Models, Pin-point Landing, Adaptive Filtering.
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1 INTRODUCTION

One of the most important, and yet one of the most risky operations of all planetary surface
exploration missions is the entry, descent and landing (EDL) phase. This process is responsible
for delivering the spacecraft to its intended landing site, during which the spacecraft must be
decelerated from around 6–7km/s (for Mars missions) at atmospheric entry to near-zero velocity
for a safe touchdown. EDL typically lasts for around 15 minutes and involves a sequence of
critical tasks that must be executed reliably and with precise timing. It is often the case that,
due to the large distances involved, delays in radio communication between the spacecraft and
mission control are of the order of the duration of the entire EDL phase or longer (e.g. 13 minutes
one-way communication delay between Earth and Mars during EDL of the Curiosity Rover [1]).
Therefore, it is often impossible to carry out real-time manual control of the spacecraft during EDL,
leading to the requirement for EDL systems to operate autonomously. This chapter discusses
the current state of the art of EDL systems, the hardware that is most often employed and its
limitations. Following this the need for greater landing precision and more sophisticated autonomy
is presented, and a review of the computer vision-based techniques that have been proposed to
achieve this is given. Finally, we conclude with a discussion of the main contributions of this thesis.

1.1 Current Entry, Descent and Landing Systems

To date, all entry descent and landing (EDL) systems for landing spacecraft on remote planetary
surfaces have been predominantly based on technologies and concepts developed during the
early days of the space age. For U.S. missions in particular, these systems are mostly based
on those used for the Viking Mars landers, which landed on the surface of Mars in 1976 [2] .
All missions since have used this technology as the backbone design, and incorporated only
slight modifications aimed at increasing landing accuracy and reliability. However, even these
modifications are often based on previous technology; therefore there is a limit to how much the
system can be improved. For example, the 1997 Mars Path Finder mission employed the entry
and descent technology from the Viking landers and incorporated terminal landing architecture
derived from the 1971 Soviet Mars 2 & 3 landers [2] as well as an airbag system that can be
traced back to the Soviet Luna 9 Moon lander of 1966 [3].

The EDL systems that have been in use from the start of the space age up to the present
day are known as first generation EDL systems [4]. Such systems typically have large landing
uncertainty ellipses, with major axis lengths ranging from 200–300km (Pathfinder, Viking) down
to around 80km (Mars Exploration Rovers) [5], and typically result in a hard landing (velocity =
10–50m/s) [4]. With this type of system, mission designers are often forced to trade mission safety
and scientific interest, and choose landing zones such that the majority of the landing ellipse
falls within regions of relatively flat and safe terrain to maximise the chance that the spacecraft
will survive the landing [5, 6]. This approach therefore places tight restrictions on the choice of
landing site.

The reason for such large landing uncertainties in previous missions is due to the methods
used for navigation before and during entry and descent. Currently, space landers are navigated
with respect to initial position knowledge of the spacecraft prior to entry interface, which may
contain significant errors as this determination is often carried out through Earth-based
observations [7]. This initial position is then propagated solely using on-board inertial sensors
throughout the entry phase and some of the descent phase, which leads to a significant
degradation in accuracy as a consequence of error accumulation. During the rest of the descent
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phase, the height of the lander is often determined using a radar altimeter, which can also enable
vertical velocity determination. Horizontal velocity is also often measured using Doppler radar.
These radar systems enable velocity control to ensure a safe touchdown, and can be used to
reduce further error accumulation in the inertial sensors, but cannot be used to adequately
correct for the horizontal position error already accumulated during the inertial navigation phase.
Additionally, this suite of sensors is unable to provide any information on surface hazards. Thus,
current EDL systems are incapable of providing a safe, pin-point landing at a specific location on
a planetary surface.

In future missions, with their ever increasing focus on reduced cost and risk as well as
greater scientific return, the need for a precise pin-point landing at a site of significant scientific
interest, or in close proximity to previously deployed assets, is becoming a highly coveted
capability for next generation EDL. In general, scientifically interesting landing sites are not flat
and often contain many landing hazards, including significant variation in terrain elevation,
craters, and rocks [5]. Thus, for a spacecraft to land at a specific location on such terrain, it must
possess a number of sophisticated capabilities. These capabilities include: precisely identifying
the intended landing site and determining position with respect to the landing site; accurately
estimating motion parameters in all 3 dimensions; reliably detecting hazards such as highly
sloped terrain, rocks, crater rims, cliff edges, etc. and be able to identify alternative safe landing
sites in the event that the original landing site is determined to be unsafe; finally, it should be
capable of precisely controlling its trajectory in all six degrees of freedom in order to steer
towards the intended landing site and avoid any detected hazards.

Standards have been set regarding advanced capabilities of EDL systems for future NASA
missions as part of a project named Autonomous Landing and Hazard Avoidance Technology
(ALHAT). This project has specified that future space landers should be capable of detecting
surface hazards larger than 0.3m, slopes greater than 5 degrees, and have the ability to navigate
to a safe landing site with a diameter of 15m within 100m of a previously specified location [8–10].
Although the ALHAT project is primarily focused on autonomous landing on the moon in support
of aspirations of future robotic and manned NASA missions, the goals for landing precision and
hazard avoidance are applicable for a wide range of planetary exploration missions launched by
any of the world’s space agencies (e.g. these goals are also of particular interest to the European
Space Agency (ESA)).

A number of concepts have been proposed in order to achieve such precision and reliability
for landing on planetary surfaces. The two main ones, especially when it comes to hazard
detection, include the use of either computer vision based systems or LIDAR based
systems [11]. LIDAR, which is an acronym for Light Detection And Ranging, uses the same
principle as radar except that it emits pulses of laser light and detects the light reflected back
from the surface in order to measure distance. Scanning LIDAR systems would be able to
generate very accurate and dense digital elevation models (DEMs) of the surface during descent
that could be used to reliably identify surface hazards. However, LIDAR scanners typically have a
mass of around 10kg, consume around 25W of power [4], require significant on-board
processing power, and are a relatively unproven technology for space applications, making them
an expensive choice of instrument purely for use in EDL. Cameras, on the other hand, have a
long history of use in space; they are low cost, low power, low mass devices and are carried by
almost all spacecraft for scientific imaging and optical navigation. Thus their use in autonomous
navigation for the purpose of landing on a planetary surface can be realised with little or no
impact on typical spacecraft systems [12].

As a consequence of the benefits of using cameras as measurement instruments mentioned
above, computer vision techniques have been widely pursued for the development of next
generation EDL. Research in this area has mostly focused on two main autonomous capabilities:
absolute position and motion estimation, and hazard detection and avoidance. The techniques
proposed for absolute position determination tend to rely on having prior information (obtained
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from orbital measurements) on the 3D location of certain landmarks present at the intended
landing site and attempt to match features observed in the decent imagery with the known
features in orbital images. Thus the spacecraft must possess orbital images/terrain
models/landmark databases in on-board storage for reference during the descent. The form of
reference data used can have a significant impact on the design and performance of the system.
Examples of these techniques can be found in [7, 13–17]. Research into hazard detection has
made use of a variety of techniques for identifying and characterizing hazards such as rocks,
craters, steep slopes and surface discontinuities. Examples of some of the techniques that have
been investigated include: rock detection by shadows [18–20], jim texture analysis for
determining surface roughness and discontinuities [8, 20], shape from shading for determining
surface slope [20], and homography slope estimation [8,20].

1.2 Project Aims

The aims of this PhD project are to develop innovative concepts and techniques for accurately
estimating slopes and detecting other surface hazards such as small rocks that may present
potentially significant risks to the health of the spacecraft at touchdown. These capabilities are to
be provided via the use of on-board visual sensors and through the implementation of robust
computer vision algorithms and robust filtering techniques to enable accurate and reliable
estimates of the required terrain features. In addition to this, it is desirable that accurate and
dense metric estimates of terrain elevation are obtained to provide sufficiently detailed
information for a sophisticated hazard detection and avoidance module. Indeed, although rocks
can be detected using shadows, it is likely that dense 3D terrain modelling will be a prerequisite
for truly robust small rocks detection, in addition to being complimentary in estimating surface
slopes. Therefore, significant emphasis will be placed on constructing an accurate digital
elevation model (DEM) of the terrain around the intended landing site.

1.3 Review of Proposed Vision-Based Techniques

The first spacecraft to successfully land on a planetary body using vision based navigation
techniques was the Near-Earth Asteroid Rendezvous (NEAR) spacecraft, on 14th February
2001. What was remarkable about this accomplishment was that the spacecraft was not
designed to achieve this feat, yet the sophisticated optical navigation system was able to provide
the necessary accuracy in the trajectory for the spacecraft to make a safe touchdown. The
landing was sufficiently gentle for the spacecraft to sustain no damage and to remain operational
despite not having any form of landing gear [21].

The optical navigation system of the NEAR-Shoemaker spacecraft was designed to facilitate
orbit determination during the terminal approach and orbit phase of the mission, and was the first
mission to make operational use of landmarks identified in images. The adopted method
consisted of locating easily identifiable craters on the surface of Eros-433 and using those
landmarks to infer the relative position and thus trajectory of the spacecraft, as well as to infer
the rotation state of the asteroid, and the body-fixed coordinates of each landmark. Each
landmark was identified manually by the navigation team, and measured by dragging a cursor
around the rim of the crater. The (x, y) coordinates of the centre of each crater would then be
computed in software by fitting an ellipse to the set of points marked by the operator and then
calculating the central point of the resulting best-fit ellipse. Although labour intensive, this
approach was found to produce accurate results for the spacecraft trajectory, generally providing
an uncertainty of around 10m in the spacecrafts orbit [22]. The same technique was applied to
the landing scenario, and was found through post-landing analysis to have enabled a vertical
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velocity of 1.5–1.8m/s (target = 1.3m/s) and a transverse velocity of 0.2–0.3m/s (target = 0.2m/s),
and enabled the lander to touchdown within 500m of the target landing site [23].

Despite the success of the optical navigation system of NEAR-Shoemaker and the
unanticipated proof of concept that it provided through the initially unplanned landing on Eros,
the manual processing of landmarks was an onerous and time consuming activity – accurate
orbit determination was calculated on average twice a week during the orbit phase, and during
the descent phase 3 landmarks were identified and used in 4 out of 12 images after 15 minutes of
receipt of the images [22]. Indeed, had the landing been a critical part of the mission from the
outset, and had the mission not been in the low gravity environment of a comet, allowing for
extremely low velocities and hence time to allow for manual intervention, it is doubtful that this
technique would have been employed. The landing site was selected for its scientific interest, but
mostly to minimise risk to the spacecraft (smooth terrain and scarcity of boulders) and because it
was less sensitive to orbit timing errors due to the shape of the gravitational potential [21]. Thus
the landing site was selected based more on opportunity than anything else.

For missions in which it is critical that a spacecraft lands at a specific point of scientific
interest, a much greater level of accuracy and control would be required. Additionally, there may
be significant light-time delays between the spacecraft and Earth (e.g. 4–24 minutes between
Earth and Mars [1]) and the velocity of the spacecraft is likely to be far in excess of those of
Near-Shoemaker during its orbit phase, which was generally only a few m/s [21]. Therefore it is
clear that the spacecraft must possess significant autonomy, since arduous and time consuming
manual processing would be out of the question.

Even though the NEAR mission was the first operational demonstration of the use of vision
in descent and landing navigation, the use of these methods had been under investigation for
some time prior to NEAR-Shoemaker. Cuseo et al [24] investigated the use of machine vision
techniques for the purpose of autonomously guiding an unmanned spacecraft to a safe landing
on Mars. Their work concentrated on 3 areas: (1) monocular techniques to detect rough surface
hazards such as boulder fields; (2) optical flow or shape from motion techniques to determine the
3D structure of the terrain and detect hazards such as steep slopes; (3) recognition of landmarks
to reduce navigation errors and achieve a more precise landing, as well as assisting in hazard
avoidance. For rough surface hazards they employed a simple technique involving identifying
pixels that deviate significantly from their nearest neighbours, which was motivated by the need
to detect objects of 1m size that would be sub-pixel for a portion of the descent. This technique
would lead to the identification of regions of sufficient size and smoothness for a safe landing. The
optical flow technique consisted of tracking edge points in the image and using the displacement of
these points and the known camera motion to determine the range to the points. Kalman filtering
is used to incrementally improve the range estimates and to provide an estimate of the uncertainty
in each range. A surface is then interpolated to the tracked edge points to produce a map that
can be used to identify hazardous regions such as steeply sloped terrain. For landmark tracking
they employed a correlation method to identify surface features from stored templates of features
that had been identified from prior orbital imaging of the landing site. The features were matched
to the templates using a generalised Hough transform and evaluating multiple combinations of
scale, rotation and viewing perspective based on the estimated trajectory parameters. The image
location of the correlation and the template identifier (whose coordinates are known) are then
used to update the navigation state of the lander. Results from a real-time hardware simulation
using scaled terrain models indicated that landing errors could be reduced from 1km to 30m using
these techniques.

Poelzleitner and Paar [25] studied a scenario that focussed on landing site identification and
position initialisation during the early stages of descent, using pre-stored images and digital
elevation models of the landing site, which had been pre-selected and analysed using orbital
imagery. Computer vision methods were applied to images captured by a single camera
on-board the lander in order to match the camera view with the stored images of the landing site,
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thus enabling the position of the spacecraft to be determined with respect to the planned landing
spot. In their scenario, a 3D digital elevation model was generated using stereo imagery of the
landing site recorded by an orbiting spacecraft. These images were to be transmitted to Earth for
processing in order to generate the 3D digital elevation model as well as an image of the entire
landing ellipse, in which a number of landmarks had been identified and their coordinates
computed. The image and elevation model were then transmitted back to the spacecraft and
stored on-board the landing craft for use during descent. A robust matching algorithm, based on
feature vector matching, was applied to identify the portion of the landing ellipse that was in the
FOV of the camera in the first captured frame, and to identify features corresponding to the
pre-computed landmarks in the overall landing ellipse image. Once a number of features had
been matched, the on-board digital elevation model can be used to determine the 3D
coordinates of the features and thus compute the absolute position of the spacecraft. In this
work, the authors paid particular attention to the specific altitude at which the lander should begin
capturing and processing the images. The purpose of this was to ensure that the resolution of
the images captured by the lander camera was the same as that of the images recorded from
orbit, in order that the image scales match between the orbiter and lander. This highlights an
important consideration that must be taken into account when trying to identify a pre-selected
landing site, even though a number of more modern feature matching algorithms have been
demonstrated to be robust under changes of scale. The authors also suggested that the images
taken by the orbiter segment may have to be manipulated on Earth in order to produce images
that would have the same viewing angle and illumination conditions as those expected from the
lander during descent to facilitate comparison during the matching process. Again, this must also
be taken into consideration, despite there being a number of more modern techniques available
that incorporate rotation, affine transformation, and illumination invariance measures.

Paar and Polzleitner [26] applied the techniques developed in [25] to a Moon landing scenario.
The scenario was tested using a scale model to simulate the spacecrafts descent onto the lunar
surface, and it was found that navigation errors of less than 3m could be achieved from this
method.

Johnson and Matthies [27] developed an algorithm for on-board motion estimation to enable
precision guidance for autonomous landing on small bodies using a monocular vision system.
Their technique falls into the category of two-frame feature-based motion estimation, and thus
consists of automatic feature detection and tracking between a pair of descent images, followed
by 2-frame motion estimation, which is then coupled with laser altimetry data for scale recovery.
For each pair of images (recorded simultaneously with a pair of laser altimetry readings) a
number of features are identified at random locations in the 1st image using the feature detection
algorithm of Benedetti and Perona [28], which is itself a variation of the Shi and Tomasi [29]
feature detector and tracker. Since their application is intended for small body landing, for which
descent velocities are likely to be small and the motion is likely to be relatively free of sudden
changes, the detected features are tracked in the 2nd image using the optical flow based method
of Shi and Tomasi [29]. The tracked features are then fed into a linear algorithm, which is applied
multiple times using different sets of features to eliminate outliers and obtain a consistent set of
features, and then to obtain a robust least median of squares estimate of the motion. This motion
estimate is used as an initial estimate in a more accurate nonlinear algorithm that solves for the
motion parameters directly. The output of this algorithm is an estimate of 5 motion parameters
along with their covariance, which can then be combined with the laser altimetry readings to
recover the scale and solve for the 6th motion parameter. Two different techniques were
proposed for how to use the altimetry data based on the surface topography of the landing site
(smooth or rugged terrain) and the characteristics of the descent trajectory (mostly vertical
motion or with significant horizontal motion). The system was tested using real imagery obtained
from a gantry test bed and with simulated altimetry readings and was found to be of high
accuracy. The most accurate results for a simulated landing were obtained for a pure vertical
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descent, which was calculated to result in a landing position accuracy of 3.6m over a 1000m
descent, i.e. a 0.36% motion error. Motion errors were also calculated for pure horizontal motion
and for a 45° descent, which resulted in 1.8% and 1.3% errors respectively. Rotational motion
errors of 1% were also obtained. Although the results are very promising, the system would need
to be flight tested to determine its performance in a real-life situation.

Roumeliotis et al [30] continued the work of Johnson and Matthies [27] by incorporating
inertial sensor data to refine the motion estimates produced by the vision algorithm. Some
modifications were made to the vision algorithm to make it more applicable for landing on a
planetary surface. In this situation, significant shifts in rotation and translation are likely to occur
during the descent phase. To handle this, the feature tracking method was changed to a
correlation based technique instead of an optical flow based approach. The correlation method
adopted was that described in [31]. The motion estimation obtained from the images is similar
to [27] except that the initialisation for the non-linear filter comes from a simple global search of a
coarse discretisation of the rotation and translation space to find the minimum of a cost function,
instead of using a robust 8-point algorithm. Other than this the method is the same. The
processing of the relative pose measurements from the image based motion estimation and the
fusion of the IMU measurements is carried out using an indirect Kalman filter. The system was
tested on a gantry test bed, and although no estimated final landing site errors were stated by
the authors, significant improvements can be seen in their results when compared to vision or
IMU alone.

Bajracharya [32] focussed on real-time methods for hazard detection from a single image
taken during the descent. The real-time constraint meant that only simple methods could be
employed due to the complexity of image processing algorithms and limitations of computing
hardware at the time. The surface is assumed to change slowly in intensity when there are no
hazards present, therefore hazardous areas are identified when sudden changes of intensity are
detected. The image is first segmented by examining local intensity variations via a k-means
clustering algorithm that clusters pixels together based on their texture features. Outliers from this
clustering algorithm are then classified as either hazards or as shadows. If a region is identified
as a shadow, it is further examined to determine the potential hazard that may have cast the
shadow, such as rocks or craters. Once the entire image has been analysed a hazard map is
produced that highlights safe and unsafe areas. A similar approach to this is described in [33],
which also uses a clustering algorithm to detect rocks, but it does this on multiple scales via the
use of an image pyramid in order to detect rocks of varying size. Such an approach could be a
useful means of the rocks detection needed in this project. Other techniques that focus on hazard
detection are: [18] that uses shadows to identify rocks from images; [19] that uses edge detection
and ellipse fitting to identify craters, intensity gradients and homography-based slope estimation
to identify steep slopes and discontinuities such as cliff edges, and shadow analysis to identify
rocks; [20] that uses stereo vision for slope estimation and rocks detection, as well as shadow
analysis for additional rocks detection; and [8] that uses corner and edge detection coupled with
intensity variance to identify highly textured regions of an image, which are likely to be caused by
the presence of rocks, steep slopes, craters etc. Hoff and Sklair [34] adopt a different strategy for
hazard detection. They employ a feature tracking algorithm to track edge points across an image
sequence and use a separate Kalman filter for each feature point to estimate the 3D location of
the feature in order to construct an interpolated surface that represents the landing site terrain.
Using this estimated surface, hazards such as steep slopes can be identified.

The majority of methods in the literature that aim to employ visual sensors to perform a
pin-point landing focus on the motion estimation and navigation aspect of the problem. This has
mostly been achieved through the use a priori knowledge about the landing site such as
previously mapped landmarks measured from orbit. These known landmarks are then identified
in descent images using feature matching methods either in the 2D images themselves or in
on-board estimated 3D surface models that are compared with preloaded on-board digital
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elevation models from orbital surveys. By using these known landmarks the absolute position
and motion of the spacecraft can be determined, allowing a safe, pin-point landing at the
intended landing site. Examples of this type of approach can be found in [7, 13, 14, 17, 35–37].
Other approaches have used only information extracted from the images during descent in order
to carry out terrain relative navigation, such as in [14,38].

1.4 Contributions of Thesis

The primary focus of this thesis is on the development of preliminary methodologies for enabling
autonomous hazard detection capabilities that are sufficient to support pin-point landing
operations with future planetary lander spacecraft. The adopted approach for achieving this is to
use a single on-board descent camera for the estimation of 3D terrain structure using powerful
and sophisticated modern computer vision techniques. As will be discussed in subsequent
chapters, the problem of estimating scene structure from camera imagery is closely coupled with
the problem of estimating the motion of the camera and so these are often estimated
simultaneously (using methods known as structure from motion (SFM) or simultaneous
localisation and mapping (SLAM)). Consequently, this thesis also presents the development and
testing of a robust structure from motion method with respect to its ability to accurately estimate
the motion parameters of the spacecraft as well as the scene structure, despite the focus being
on hazard detection. Since depth information is lost in the projection of a 3D scene onto a 2D
image plane, the use of a single camera introduces problems in determining the scale of objects
observed in the images. Consequently, motion and structure can only be recovered up to an
unknown scale factor in the absence of additional information. This thesis describes a method of
fusing measurements from an IMU in order to directly estimate the unknown scale to enable fully
scaled metric estimates of both the scene structure and the motion parameters. Therefore,
unlike the other methods described in the literature and mentioned above, the method developed
here is able to provide accurate and robust motion and structure estimates without the need of
any prior 3D knowledge of the terrain surrounding the landing site.

A spacecraft descending towards a planetary surface can be subject to many complex
dynamic disturbances and influences, such as atmospheric turbulence, sudden shocks from the
firing of retro-rocket motors, variable rocket thrust during powered descent, etc. Each of these
will result in varying levels of vibration, which will manifest as varying quantities of image blur that
will affect the accuracy of measurements derived from descent images in a complex and
unpredictable fashion. This realisation motivated the further development the above mentioned
structure from motion algorithm into a fully adaptive and self-initialising algorithm based upon
two square-root unscented Kalman filters operating in a parallel master-slave configuration. In
this context, the master filter is responsible for estimating the scene structure and the slave filter
is responsible for adaptively re-tuning the master filter in the event of changing noise statistics.
This is the first time such a filtering framework has made use of the square-root unscented
Kalman filter. The two filters were also optimally initialised using particle swarm optimisation, and
also incorporated more traditional adaptive filtering methodologies in order to adaptively re-tune
the slave filter, if necessary, which further increases the novelty of the approach. Following on
from this, a sophisticated method of using shading information to recover scene structure was
examined and applied to descent imagery. This was then combined with the previous structure
from motion results in order to merge the two highly complimentary techniques to produce dense
3D digital elevation models of the terrain surrounding the landing site. To this author’s
knowledge, this is the first time such a combination of the two techniques has been carried out
within the context of hazard detection in EDL.
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2 CAMERA MODELS AND MEASUREMENTS FROM
IMAGES

This chapter discusses the concepts and techniques involved in the use of digital camera
systems as measurement devices and the types of measurements that are commonly made
from images in computer vision. It begins with a discussion of camera models and the geometry
and mathematics commonly used to describe the image formation process of a 2D image on the
image plane of a camera from the 3D scene within the camera’s field of view. This project makes
use of a monocular imaging system, i.e. a single camera, as the primary means of taking
exteroceptive measurements of the local environment. Therefore this chapter will primarily
describe the concepts behind monocular imagery along with its strengths and limitations,
however, a brief discussion of stereo camera systems will also be given in order to provide
justification for why this type of camera system has not been exploited in this project.

2.1 Camera Models

In order for cameras to be used as measurement devices, it is necessary to understand how 3D
scene points map onto the 2D image plane of the camera. The most common way of examining
this is with a simple geometric model known as the pinhole camera model, as described in detail in
Subsection 2.1.2. This assumes that all light rays enter the camera through a tiny pinhole aperture
such that only a single ray from any given point in the scene will enter the camera and form an
image on the image plane [39]. This feature of the pinhole camera is what enables sharp images
to be produced on the image plane - light rays emanating from any particular point in the scene
may be reflected from light coming from many different directions, but since a pinhole camera
only lets a single light ray through then this will result in a very sharply focussed image [39].
However, such a model is an ideal case and as such is difficult to achieve in practice. Also, by
only letting individual light rays enter the camera, long exposure times are required for the image
sensor to be able to register a legible image [39], which can result in such camera systems being
impractical in the majority of situations. In real camera systems, a lens is used, which, due to the
refraction of light rays through the lens material, enables more light to be collected and focussed
onto the image plane, allowing for shorter exposure times and brighter images whilst also allowing
a sharp image to be produced. We therefore begin with a brief discussion of a simple model of
lenses before coming back to the pinhole camera model. Later, in Section 2.2, we describe a
more sophisticated model of the effects that lenses can have on the image, in terms of lens
distortions and how these effects can be corrected mathematically, but for now we stick to rather
more simplistic and idealised mathematical descriptions of image formation.

2.1.1 Thin Lenses

To reduce the exposure time required to form a legible image, the light collecting capability of the
camera must be increased. This necessarily means that a larger number of rays emanating from
each individual scene point must be allowed to enter the camera aperture and fall upon the image
plane. One way of achieving this would be to increase the diameter of the camera aperture -
i.e. the pinhole. However, each scene point will reflect a collection of rays, perhaps from multiple
light sources, or due to scattering, reflections from other objects, the non-parallel nature of the
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Figure 2.1: Geometric properties of thin lenses: (a) all incident parallel rays are focussed to a
single point; (b) image formation of a point in the scene - Fl and Fr are the left and right focal
points, respectively, f is the focal length, and O is the lens centre (image source: [39])

rays emanating from the light source, or the light source having a not-insignificant physical size.
Each of these reflected rays will therefore have a slightly different angle of reflection, producing a
cone of light rays with vertex at the scene point and spreading further apart as distance from the
scene point increases. The end result of this is that each scene point becomes slightly spread
out across the image plane and therefore a reduction in the sharpness of the image is observed.
To overcome this problem, an optical system consisting of lenses, apertures and other elements
is introduced that is explicitly designed to refract incoming light rays so that all rays emanating
from a single scene point will be refracted such that they converge to a single point on the image
plane [39].

The basic function of any optical system, however sophisticated, can be understood using the
concept of an ideal thin lens, the geometric behaviour of which is illustrated in Figure 2.1. The
fundamental optical properties of the thin lens are shown in Figure 2.1, and are summarised as
follows [39]:

• Any ray entering the lens parallel to the optical axis on one side goes through the focus on
the other side.

• Any ray entering the lens from the focus on one side emerges parallel to the optical axis on
the other side.

Figure 2.1 shows the way in which the light rays emanating from the scene point P undergo
refraction as they pass through the lens and form an image p of P on the image plane. The point
at which the image comes into focus can be identified by intersecting only two known rays [39],
which we can construct using the rules listed above, i.e. by drawing a ray emanating from P that
is parallel to the optical axis, and one that passes through the focus Fl in front of the lens. These
two rays will then intersect at the point p on the other side of the lens. However, we can also draw
another ray that intersects the lens at the point O, which will pass through the lens undeflected
and also intersect with the other two rays at p. Using these three rays and the similar triangles
method, we can derive an equation that describes the location of the image point for any given
scene point. This equation is known as the fundamental equation of thin lenses, and is expressed
as:

1

Ẑ
+

1

ẑ
=

1

f
(2.1)
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where Ẑ = Z + f and ẑ = z + f . Figure 2.1 (b) could be extended to include all the possible light
rays emanating from the scene point P , which would show that all of these rays would intersect at
the point p on the right hand side, producing a sharply focussed image. The net effect is that the
camera’s light gathering power is increased through the use of a lens, but otherwise it is behaving
in much the same way as a pinhole camera – the ray that passes through the point O is the same
ray as that which would be the only ray admitted by the pinhole camera and any other rays are
refracted by the lens and focussed onto the same image point. The contribution of the lens is
therefore to reduce the length of time that the shutter would need to be open in order for the
image sensor to sufficiently register the image. We can therefore proceed with our analysis of
how scene points map to image points by considering the simple geometry of pinhole cameras.

2.1.2 Pinhole and Perspective Camera Models

A pinhole hole camera consists of a light-proof box with an image plane on one side, upon which
an image is projected by the light rays that enter through a tiny aperture (as if made by piercing
the box with a pin) on the opposite side. Unlike with a lens-based camera, the light rays entering
the aperture of a pinhole camera undergo no distortion or refraction, thus they follow a straight
line path from the scene point to the image point. Figure 2.2 illustrates the geometry of the image
formation process for a pinhole camera, which can be used to derive the following equations
relating the 3D scene points to the 2D image points through the application of similar triangles:

x′ = f
X

Z

y′ = f
Y

Z

. (2.2)

Notice the relative orientation of the two coordinate axes on the right of Figure 2.2. If the primed
coordinate frame, centred on the principal point, had the same orientation of the unprimed
coordinate frame, centred on the centre of projection (the pinhole), then Equation 2.2 would be
re-written as

x′ = −f X
Z

y′ = −f Y
Z

,

which is an illustration of the fact that the image produced by a pinhole camera is inverted, as can
be seen in the left side of Figure 2.2.

The image inversion issue can be avoided by treating the image plane as if it were in front
on the centre of projection and considering it to be a transparent plane with the observer at the
centre of projection. The image is therefore considered to be produced by the points at which
the light rays emanating from the objects in the scene intersect with the transparent image plane.
This arrangement is illustrated in Figure 2.3. When represented in this form it is known as the
perspective camera model, which may be regarded as the default camera model within computer
vision. With this model the image plane coordinate frame, centred on the principal point, has
the same orientation as the camera reference frame coordinate axes, centred on the centre of
projection.

From Figure 2.3 it can be seen that the perspective camera model consists of the image plane
sitting at a distance f (the focal length) in front of the centre of projection, O. The line through
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Figure 2.2: Image formation and geometry of the pinhole camera model. Note: the symbols have
the same meaning as in Figure 2.1 and in Equation 2.1

P

Figure 2.3: Geometry of the perspective camera model

O and perpendicular to the image plane is the optical axis, and o, the intersection between the
image plane and the optical axis, is known as the principal point or image centre. The image
of point P on the image plane is denoted p and lies on the straight line through P and O at the
point where this line intersects the image plane. By considering a 3D reference frame where O is
the origin and the image plane is perpendicular to the Z axis, the point P is represented by the
vector P = [XP , YP , ZP ]T . This reference frame is known as the camera reference frame. If the
coordinates of the point p in the image plane are given by xp and yp, the point p can be expressed
in vector form as p = [xp, yp, f ]T , where the zp coordinate is the distance of the image away from
the centre of projection, i.e. zp = f [39].

Using similar triangles, the xp and yp coordinates of the image point p can be expressed in
terms of the scene point coordinates XP , YP and ZP in the camera frame, therefore enabling us
to link the position of scene points with that of their corresponding image points [39]. This leads
to the basic equations of perspective projection, which are expressed as:

xp = f
XP

ZP

yp = f
YP
ZP

, (2.3)
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or in vector form as [
xp
yp

]
=

f

ZP

[
XP

YP

]
. (2.4)

Note that Equation 2.3 is the same as Equation 2.2, except that now we are dealing with non-
inverted coordinate axes and an image that is also not inverted. This is a much more intuitive way
of visualising the relationship between a scene and its image.

Digital images are captured by an image sensor such as a CCD or a CMOS active pixel
sensor. These devices consist of a rectangular grid of photo-sensors that convert the incoming
light rays into a voltage that is proportional to the incoming light intensity. These voltages are read
out from the image sensor, and then digitised into a 2D array or matrix of integer values. The
elements of this 2D matrix are known as pixels, where each pixel represents the light intensity
captured by an element of the photo-sensor (assuming a one-to-one correspondence between
pixels and photo-sensor elements).

Since computer vision algorithms work with digital images, the only information available to
the algorithms regarding the location of objects of interest in the scene are the pixel coordinates of
the image points of these objects in the digital image. The equations for the x and y coordinates of
an image point in relation to the 3D scene point (Equation 2.4), are written in the camera reference
frame, and represent the physical location of the image point in relation to this frame. Therefore,
in order to proceed, a relationship between the pixel coordinates and the image point coordinates
in the camera frame is required.

Relating the pixel coordinates to the camera frame requires knowledge of the characteristics
of the camera. These characteristics are known as the intrinsic and extrinsic parameters. The
extrinsic parameters are the parameters that define the location and orientation of the camera
reference frame with respect to some known world reference frame. The intrinsic parameters are
the parameters that link the pixel coordinates of an image point with the corresponding coordinates
in the camera reference frame [39].

2.2 Intrinsic and Extrinsic Camera Parameters

2.2.1 Extrinsic Parameters

The camera frame is fundamental to the perspective camera model and to the equations that are
derived from it that describe the relationship between image points and the corresponding scene
points. However, the camera frame is often unknown [39], and thus introduces a problem when
trying to relate the image information to the structure of the 3D world that the images represent.
What is needed is some way of determining the location and orientation of the camera frame
with respect to a known world frame using only image information [39]. This is the purpose of
the extrinsic parameters. For example, this is precisely what is done for the VISILAB images
in Chapter 6, in which images of a calibration pattern are used to measure the distance of the
camera from the terrain surface.

The extrinsic parameters are defined as any set of geometric parameters that uniquely identify
the transformation between the unknown camera reference frame and a known reference frame,
often called the world reference frame [39]. Typically these geometric parameters take the form of
a 3D translation vector, T, describing the relative displacement of the origins of the two reference
frames, and a 3x3 rotation matrix, R, which is an orthogonal matrix that can be thought of as
describing the rotation that would be required to bring the corresponding axes of the two frames
into alignment with each other [39]. Therefore, the relationship between the coordinates of a
point in the world frame, Pw = [Xw, Yw, Zw]T , to those of the same point in the camera frame,
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Figure 2.4: Transformation between the potentially unknown camera reference frame and the
known world frame coordinate systems

Pc = [Xc, Yc, Zc]
T , can be expressed in two ways:

Pc = R (Pw −Tw) (2.5)

or

Pc = RPw + Tc (2.6)

The first of these two equations describes a translation followed by a rotation, whereas the second
equation describes a rotation followed by a translation. The net effect is the same, however, it is
important to note that while the rotation matrices will be the same in either case, the translation
vectors will be different [39]: in Equation 2.5 the translation vector represents the displacement of
the origin of the camera frame with respect to the origin of the world frame, and is expressed in
the world frame coordinate system, hence it is expressed with the subscript w; in Equation 2.6 the
translation vector represents the displacement of the origin of the world frame with respect to the
origin of the camera frame, and is expressed in the camera frame coordinate system, hence it is
expressed with the subscript c. This process of translation and rotation between the two frames
is illustrated in Figure 2.4.

The extrinsic parameters of the camera therefore consist of the 3 elements of the 3x1
translation vector T, and the 9 elements of the 3x3 rotation matrix R. However, since R is an
orthogonal matrix describing a valid 3D rotation, thus it has a determinant of +1 and obeys the
following relationship:

RTR = RRT = I,

therefore the number of free elements of R reduces to 3. Thus, in total, there are 6 extrinsic
parameters that need to be determined for each recorded image in order to uniquely describe the
position and orientation of the camera reference frame with respect to the world frame during the
capture of the particular image in question.
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2.2.2 Intrinsic Parameters

The intrinsic parameters can be defined as the set of parameters needed to characterise the
optical, geometric, and digital characteristics of the camera, allowing the pixel coordinates of an
image point to be related to the coordinates of that point in the camera reference frame [39]. This
requires three sets of parameters:

1. The focal length, f , which specifies the perspective projection

2. Parameters specifying the transformation between camera frame coordinates and pixel
coordinates

3. Parameters specifying any geometric distortion introduced by the optics

Due to difficulties in manufacturing, it is unlikely that the centre of the image will coincide with
the principal point in the camera reference frame. Therefore, in order to express the camera frame
coordinates in terms of the pixel coordinates, we must determine the displacement of the image
point from the optical axis.

The coordinates of points of interest in the image are given in terms of pixel coordinates, i.e.
in units of pixels, with reference to the 2D image pixel coordinate system with origin at the top left
corner of the image, whereas the image coordinates in the camera frame represent real physical
coordinates measured with respect to the origin of the camera reference frame or equivalently (if
only considering the 2D location of image points on the image plane) with respect to the principal
point. Therefore, assuming a one-to-one correspondence between image pixels and photo sensor
elements, to convert the pixel coordinates into camera frame coordinates we must multiply by the
image sensor element size and translate with respect to the coordinates of the principal point. The
resulting equations for relating image pixel coordinates to camera frame coordinates are therefore
expressed as:

xc = − (xim − ox) sx

yc = − (yim − ox) sy
, (2.7)

where (xc, yc) are the 2D coordinates of the image point on the image plane with respect to
the camera reference frame, (xim, yim) are the coordinates of the image point in units of pixels
measured with respect to the top-left corner of the image, (ox, oy) are the coordinates of the
principal point in units of pixels measured with respect to the top-left corner of the image, and
(sx, sy) are the physical sizes of the image sensor elements [39]. The negative signs in these
two equations are due to the fact that the axes in the image pixel coordinate frame are in the
opposite directions to those of the camera reference frame as illustrated in Figure 2.5. Note that
it is possible to define the camera reference frame with a different orientation in order to avoid
this difference in axes direction and consider only a translational shift of the origins of the image
pixel frame and the camera frame. This can slightly simplify the equations by avoiding the leading
minus signs in Equation (2.7). Providing one is consistent in all calculations then this should not
introduce any problems. This is what was done in the structure from motion algorithms presented
later in this thesis.

The above equations (Equation (2.7)) are not the full story. In fact they are only valid for the
pinhole camera model, or for cameras with optics that conform perfectly to the ideal thin lens
model. In reality, lenses do not conform to the ideal model leading to geometric distortions and
most likely there will be additional distortions introduced due imperfections in the lens and
misalignments in the construction of the camera due to less than perfect manufacturing
techniques. These distortions effectively cause the pixels to be in a different location in the
image than what would be expected, resulting in phenomena such as the “barrel” or “fish-eye”
effect [40].
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Figure 2.5: Relative orientations of the coordinate axes of the image pixel coordinate frame and
the camera reference frame. Note that the origin of the image pixel coordinate axes is at the top
left corner of the image and that the principal point is not necessarily at the centre of the image.

Figure 2.6: Image showing the effects of radial distortion (image source: [41])

Lens distortions arise due to irregularities in the shape of the lens and due to the fact that it
is easier to manufacture lenses that are spherical rather than parabolic in their overall shape [40].
The dominant effect of these properties of real lenses is to introduce radial distortions, where
the magnitude of the distortion increases radially from the principal point of the image. These
distortions are usually small and can be modelled accurately using the first few terms of a Taylor
expansion around radius r = 0 [40], which results in equations of the form:

xim = xd
(
1 + k1r

2 + k2r
4 + k3r

6
)

yim = yd
(
1 + k1r

2 + k2r
4 + k3r

6
) , (2.8)

where (xd, yd) are the pixel coordinates of the distorted points and r2 = x2d +y2d. These equations
show that the distortion increases as r increases and that at r = 0, there is zero distortion [39].
For the majority of cameras, only the first 2 terms are normally required the third term is usually
only necessary for very wide angle lenses such as fish-eye lenses [39, 40]. The effect of radial
distortion can be seen in Figure 2.6, which shows that points that are further from the optical axis,
e.g. the outside corners of the grid pattern, are displaced towards the centre by a greater amount
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Figure 2.7: Cause and effect of tangential distortions (image source: [40])

than points that are closer to the optical axis. This is what causes the barrel effect seen in the
image.

The other significant type of distortion that may be present in an image is known as tangential
distortion, which arises due to misalignments of the image plane with respect to the lens and
vice versa [40]. These are principally due to manufacturing defects and/or the use of cheap
materials, but may also arise through mistreatment of the camera over time. Tangential distortion
is characterised by two parameters p1 and p2 such that [40]:

xim = xd +
{

2p1yd + p2
(
r2 + 2x2d

)}
yim = yd +

{
p1
(
r2 + 2y2d

)
+ 2p2xd

} , (2.9)

where the symbols have the same meaning as in Equation (2.8). The cause and effect of this type
of distortion are illustrated in Figure 2.7.

To summarise, therefore, the complete list of intrinsic parameters are the focal length f , the
pixel coordinates of the principal point (ox, oy), the dimensions of the image sensor elements
(sx, sy), the radial distortion parameters k1 and k2 (ignoring k3), and the tangential distortion
parameters p1 and p2, giving 9 parameters in total.

2.3 Camera Calibration

In order to reliably make use of measurements obtained from images in computer vision
algorithms the values of the intrinsic parameters need to be estimated to a high degree of
accuracy. Once these parameters have been fully characterised, any distortions that may be
present in the images can be corrected for by applying suitable transformations to the images.
This operation is known as undistortion and results in images that can be treated in algorithms
as if they were recorded by a camera that obeys the simple image formation geometry of the
pinhole or perspective camera. The process that is employed to estimate the intrinsic
parameters is known as camera calibration and involves capturing multiple images of a planar
object from a wide variety of different viewing angles, orientations and distances from the
camera. This planar object contains a regular pattern of easily detectable points with known
geometry and by detecting the precise locations of these points in all images of the set of

17



LUKE FEETHAM PhD THESIS CHAPTER 2. CAMERA MODELS AND MEASUREMENTS FROM IMAGES

Figure 2.8: Camera calibration pattern used in this project for calibrating the VISILAB camera:
consists of 24x 12 (usable) black and white squares of size 15x15mm

calibration images, and, using the known geometry, allows the intrinsic parameters of the camera
to be estimated. The most common type of pattern used for camera calibration is a chessboard
type pattern of black and white squares of a constant and known physical size. Each image of
the calibration pattern also has its own set of 6 extrinsic parameters describing the relative
displacement and orientation of the camera reference frame and the calibration pattern reference
frame (the world frame in this case) during the capture of that particular image, thus the extrinsic
parameters for each image are also estimated during calibration as these are required in solving
for the intrinsic parameters. The specific calibration pattern used in camera calibration in this
project is shown in Figure 2.8 and has a square size of 15x15mm. Further information on the
specific practical procedure used to calibrate the camera in this project will be given in Chapter 6,
whereas here we shall focus on the theoretical aspects of camera calibration.

In order to present the mathematical details of camera calibration, we first need to re-write
the previous equations in a slightly different form, so that we may combine them. This is
achieved by making use of a concept known as planar homography, which describes the
perspective transformation of a planar object when it is viewed through a pinhole or lens and
projected onto another planar object (the image plane), thus planar homography is defined as a
planar mapping from one plane to another [40].

Dropping the p subscripts from Equation (2.3) and combining this equation with
Equations (2.6) and (2.7), we can write

− (xim − ox) sx = f
RT

1 Pw + Tx
RT

3 Pw + Tz

− (yim − oy) sy = f
RT

2 Pw + Ty
RT

3 Pw + Tz

, (2.10)

giving an expression that relates the image pixel coordinates to the world frame coordinates
without explicit reference to the camera frame, where Ri, i = 1, 2, 3, is a 3-element column
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vector formed from the ith row of the rotation matrix R [39]. This equation can be re-written in
terms of a matrix product by defining two matrices M int and M ext, as

M int =

−f/sx 0 ox
0 −f/sy oy
0 0 1



M ext =

r11 r12 r13 Tx
r21 r22 r23 Ty
r31 r32 r33 Tz


, (2.11)

so that M int depend only on the intrinsic parameters, and M ext depends only on the extrinsic
parameters [39]. Now, by adding a “1” as a forth coordinate of Pw, i.e. expressing Pw in
homogeneous coordinates1, Equation (2.10) can be expressed equivalently as:

x1x2
x3

 = M intM ext


Xw

Yw
Zw

1

 , (2.12)

where

x1/x3 = xim

x2/x3 = yim
. (2.13)

Equation (2.10) in the form of Equation (2.12) is now in the form

q̃ = sHQ̃ , (2.14)

where

q̃ =
[
xim yim 1

]T
Q̃ =

[
Xw Yw Zw 1

]T
and x3 has been factored out and taken across to the other side and expressed as s to denote
that it is an arbitrary scale factor [40]. The matrix H = M intM ext is known as the homography
matrix, and contains all of the information about the camera that we are trying to determine.

An important simplification can be made to the homography matrix by considering the fact
that the object coordinates all lie on the same plane (the planar calibration pattern). Thus we can
set the object coordinate Zw to zero without any loss of generality to give Q̃′, which is defined

1 Given a point (x, y) on the Euclidean plane, for any non-zero real number Z, the triple
(xZ, yZ,Z) is called a set of homogeneous coordinates for the point. The original Cartesian
coordinates for a point (xZ, yZ,Z) can be recovered by dividing the first two elements by the third,
e.g. x/1y/1

1/1

 =

fX/ZfY/Z
Z/Z

 =⇒

xy
1

 =

fX/ZfY/Z
1

 or
[
x
y

]
=
f

Z

[
X
Y

]
.
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only for the plane we are interested in, instead of Q̃, which is defined for all of space. In doing this
one of the columns of R then becomes unnecessary [40]:

ximyim
1

 = sM int

r11 r12 r13 Tx
r21 r22 r23 Ty
r31 r32 r33 Tz



Xw

Yw
0
1

 = sM int

r11 r12 Tx
r21 r22 Ty
r31 r32 Tz

Xw

Yw
1

 . (2.15)

Therefore H is completely defined by the scale factor s, the intrinsics matrix M int, the translation
vector T, and the first two columns of the rotation matrix R [40].

It is Equation (2.15) that is used to solve for the camera parameters during camera
calibration, by computing the homography matrix for multiple views of the calibration pattern.
Since a rotational transformation is described by a set of three rotation angles, and a translation
is described by three offsets, each view of the calibration pattern results in six unknowns for the
extrinsic parameters plus the four unknowns for the intrinsic parameters (which are the same in
each view). This may seem like a problem because with every view we are adding an extra six
unknowns that must be calculated from the image data, however, each view of the calibration
pattern gives 8 equations, which allows 8 unknowns to be calculated [40]. Thus the full set of
intrinsic parameters could be obtained from just two images of the calibration pattern. However,
by using a large number of images the parameters can be estimated to a much higher accuracy
through the use of optimisation methods.

The preceding equation is initially used to compute the intrinsic parameters assuming that
no distortion is present in the images. In reality, however, the object points will be in the wrong
place in the images since this assumption is not valid. By combining Equations (2.8) and (2.9),
the undistorted image points, here denoted (xp, yp), are related to the distorted image points,
(xd, yd) (which are (xim, yim) in Equation (2.15)), by[

xp
yp

]
=
(
1 + k1r

2 + k2r
4 + k3r

6
) [xd
yd

]
+

[
2p1yd + p2

(
r2 + 2x2d

)
p1
(
r2 + 2y2d

)
+ 2p2xd

]
. (2.16)

The use of multiple images allows these extra intrinsic parameters to be estimated by collecting
a large list of these equations and solving for the distortion parameters. After these parameters
have been estimated the previous intrinsics parameters are re-estimated, and the whole process
is repeated until the desired accuracy is achieved [40].

2.4 Stereopsis

The above discussion dealt with camera models and calibration with respect to a single camera.
In this section we discuss the principles behind stereo camera systems, which allow for a direct
determination of the 3D location of scene points via triangulation. The principles developed
above are still applicable, except now we have two cameras to deal with, which introduces some
additional concepts.

A typical stereo camera rig consists of two cameras side by side, with a relatively short
baseline separation, an example of which is shown in Figure 2.9. For most purposes it is
desirable for the two cameras to be perfectly aligned with each other, i.e. for their optical axes to
be perfectly parallel. However, due to difficulties in manufacturing, this would generally be
impossible to achieve. It is therefore common for the configuration to be similar to that shown in
Figure 2.10, although generally to a lesser extent than what is indicated in this exaggerated
schematic. This misalignment can cause problems when calculating distances using the stereo
camera, thus this problem must be overcome before meaningful results can be obtained.
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Figure 2.9: Example of a typical stereo camera

Another challenge that must be tackled when using stereo cameras is the problem of identifying
corresponding features in the two images that are obtained in each frame. Additionally, the pixel
locations of these corresponding features must not be distorted and must be known with high
accuracy. Therefore the use of stereo cameras involves four key steps [40]:

1. Mathematically remove radial and tangential distortions from the two images by applying
Equation (2.16) to each image using the distortion parameters estimated during calibration.
This is known as undistortion, and the output of this step is a pair of undistorted images
that are consistent with the simple perspective camera model.

2. Adjust for the misalignment between the cameras using the baseline separation
parameter and rotation matrix describing the relative orientation of the two cameras
(additional parameters that are obtained during stereo calibration). This process is known
as stereo rectification and results in a pair of images that are row-aligned and rectified,
which means that the resulting images are consistent with those that would be produced
by a stereo system with perfectly coplanar image planes with the sensor elements being
exactly row-aligned (i.e. parallel optical axes and equal pixel y-coordinates).

3. Find matching features between the left and right images. This is a process known as
correspondence, and is carried out by exploiting the epipolar geometry (see [40] for details)
of the stereo rectified images – matching features will have equal y-coordinates.

4. Compute the distances (Zc-coordinate) for the corresponding features in the images
through a process known as triangulation, using the idealised stereo camera geometry.

For further details on steps 1, 2, & 3 see [40]. We now assume that these steps have been
carried out and move on to discuss triangulation (step 4) based on the simplified geometry of a
perfectly aligned camera pair.

2.4.1 Triangulation

In step 4 of the above list, we have a set of corresponding features identified in each image of
the stereo pair for which we want to compute the distance. To do this we need to make the use
of the idealised stereo camera geometry that is obtained mathematically from stereo calibration
(see [40] for details) and a method known as triangulation. Therefore, we assume that we have a
stereo rig that consists of two identical cameras (i.e. with the same focal length) that are perfectly
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Figure 2.10: Exaggerated schematic showing the likely physical characteristics of stereo camera
rigs, i.e. it will almost certainly exhibit some degree of misalignment (non-parallel optical axes)
between the two cameras

Figure 2.11: Ideal geometry of a stereo camera rig (image source: [40])

aligned and produce undistorted images. We also assume that the principal points of the two
cameras, l

x and orx have been calibrated to have the same pixel coordinates in their respective left
and right images [40]. The geometry of this set-up is then as shown in Figure 2.11.

A point P in the physical world will produce an image point pl in the left image and an image
point pr in the right image. If xl and xr are the horizontal positions of the image points in the
left and right camera frames respectively, and the cameras are separated by a known baseline
T , the distance Z to the scene point can be derived using Figure 2.11 by considering similar
triangles [40]:

T −
(
xl − xr

)
Z − f

=
T

Z
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therefore

Z =
fT

xl − xr
=
fT

d
(2.17)

where d = xl − xr is the disparity between the two view of the scene point P , which can be seen
to be inversely proportional to the distance [40]. Note that in Figure 2.11 xr is to the left of the
optical axis and is therefore a negative quantity in the Figure.

Equation 2.17 reveals an important issue with the use of stereo cameras. Since depth is
inversely proportional to the disparity, objects that are far away will have a disparity that is near
zero, and a small change in the disparity will produce a large change in the calculated depth.
However, when objects are close the disparity is large and small changes to the disparity will not
change the depth by a significant amount. Consequently, stereo vision systems have high depth
resolution only for objects that are relatively close to the camera [40]. This will therefore mean
that for the purposes of its use in Kalman filter-based Simultaneous Localisation and Mapping
(SLAM) or similar algorithms, objects that are far away will have a large measurement
uncertainty and this uncertainty will not be linear with respect to depth. In other words, slight
errors in the measured disparity due to influences such as image noise, feature tracking errors,
etc. can introduce potentially very significant errors in the determination of the depth.

In this project we are considering a landing craft descending towards the surface and trying
to construct an accurate 3D model of the terrain upon which the craft will touchdown in order to
reliably detect the presence of potentially mission ending hazards. In this descent scenario, image
based measurements of the terrain are expected to begin at an altitude of around 2000m above the
surface. Taking, as an example, 2 uEye cameras with GOYO lens that is used in Chapter 6 as our
pair of cameras, which have a 3.5mm focal length, and assuming a baseline separation of 20cm, at
an altitude of 2000m the disparities of detected features in the image pair will be around 3.5x10-7m,
which with a sensor element size of 5.3x10-6m is a disparity of approximately 0.07 pixels, and this
will be similar for all detected features since the height variation of the terrain within the field
of view of the camera is likely to be fairly small in comparison to the altitude. The localisation
accuracy of sub-pixel interest point detectors is of the order of 0.1– 0.02 pixels [42], therefore,
taking the best of these two uncertainties, the error in estimated depths from this altitude would
be of the order of ±600m, which is clearly unacceptable. For this reason, stereo camera systems
are not considered as a viable means of estimating scene structure using descent imagery in this
project. Instead, the use of a single camera (monocular imagery) is investigated.

2.5 Scale Ambiguity in Monocular Images

Due to the potentially very large errors in the estimated depths of scene points with a stereo
camera system at the operating altitudes of this project it was decided early on to adopt a method
based on monocular imagery, i.e. using a single camera. This approach leads to two main
classes of technique for estimating the depths of image feature points from information contained
within the interframe motion of these points from one image to the next: (1) the so called two-
frame methods, in which the essential matrix relating two views of the scene is estimated from a
collection of corresponding points (the essential matrix is a concept borrowed from stereopsis and
therefore this method can suffer from similar problems as stereo vision systems when disparity is
small - this can be overcome by increasing the baseline separation, which in this case is achieved
by ensuring a large interframe displacement, e.g. by recording two images sufficiently separated
in time) with estimates possibly being refined using batch processing techniques known as bundle
adjustment; (2) or through some sort of filter-based state estimation technique, in which depth
estimates are recursively refined with each successive image measurement of the feature point
positions. Each of these classes of technique will be reviewed in detail in Chapter 4.
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Figure 2.12: Illustration of the scale ambiguity problem in monocular imagery: A large far away
object can produce an identical image to that of a smaller and closer object

The main problem with monocular scene reconstruction methods is that, with only a single
camera, if the relative motion between the camera and the scene is unknown or the physical size
of objects in the scene are unknown, then it is impossible to determine how far objects are from
the camera - depth information is irreversibly lost in the projection from a 3D scene to a 2D image.
The problems this introduces can be appreciated by examining Figure 2.12, which demonstrates
how an identical image may be produced by a larger object far away from the camera and a
smaller object closer to the camera. Therefore, vision based methods for estimating motion and/or
recovering the 3D structure of the scene can, at best, only estimate such information up to an
unknown scale factor in the absence of any additional information from outside sources.

Fortunately, landing craft, almost without fail, carry a number of sensors that can provide
information relating to the true motion of the spacecraft. With the motion known, the scale
ambiguity problem can be overcome by observing the changes in the image positions of the
features over time – the way in which image features move from image to image will
overwhelmingly (especially for far away objects) be due to the relative motion between the scene
and the camera, but subtle differences from this primary image motion contains within it
information relating to the depth of the features in the scene. The types of additional sensors that
can provide information on true motion and that are often carried by spacecraft that are intended
to land on planetary or other remote objects include such sensors as inertial measurement units,
radar or laser altimeters, Doppler radar systems, etc. (see Chapter 1). With the use of
measurements from these type of sensors a data fusion strategy can be derived that enables the
direct estimation of a suitable scale factor that can be used to transform the unscaled estimates
of scene structure and motion derived from the images into fully scaled metric quantities. An
approach that makes use of inertial measurements for this purpose is presented in Chapter 4, in
which is is demonstrated that very accurate estimates of motion and structure can be obtained
even from high altitude for which the image motion is small. Later, it is assumed (under the
advice of ESA) that the motion of the spacecraft is known (supplied by another on-board system)
therefore the scale ambiguity issue is entirely avoided and there is no need to directly estimate a
scale factor.
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2.6 Conclusions

This chapter has described many of the details behind the use of digital camera systems as
exteroceptive measurement devices. It has outlined the geometry of the pinhole and perspective
camera models and described the concepts of camera calibration that together enable pixel-based
image information to be related to metric quantities expressed in the camera coordinate frame of
the camera system. A discussion on stereopsis was also given, in which it was described how
a pair of cameras can be used to recover fully-scaled measurements of the depth of objects in
the scene. However, example calculations demonstrated that at the initial height of the camera
system above the surface of the planetary body, a stereo camera system would not be capable of
providing the necessary measurement accuracy. Thus providing justification for rejecting stereo
vision in favour of monocular imagery. Finally, the issues involved in using a monocular camera
system, in terms of scale ambiguity, were outlined and methods of overcoming this ambiguity
were briefly mentioned in advance of a full examination of this problem in Chapter 4.
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3 FEATURE TRACKING

In monocular SFM, because of the scale ambiguity problem, and also because of the altitudes
involved in this project, structure is a weakly observable property. Therefore, if a filter-based SFM
algorithm is used, it is important that the image features are tracked for as long as possible in order
to allow sufficient time for the structure estimates to converge to an adequate level of accuracy
and hence allow for a proper decoupling of the structure from the motion. This chapter presents
two different types of feature tracking methods: the Scale Invariant Feature Transform (SIFT),
and the Kanade-Lucas-Tomasi (KLT) feature tracker. For the latter, two different variations of KLT
are described and their relative performance is analysed in order to highlight the weaknesses
inherent in the conventional formulation of KLT, and how these weaknesses can, to some extent,
be overcome by a more robust formulation of KLT that is not so prone to the accumulation of
errors that are typical in the conventional method. The main contributions of this chapter are a
realisation that the SIFT feature matching method is likely unsuitable for robust 3D reconstruction
in monocular SFM and that the KLT tracker should be implemented with additional constraints
(e.g. the TR-KLT algorithm) in order to reduce error accumulation and maximise the number of
images that features can be successfully tracked over. It is successfully demonstrated that the
TR-KLT algorithm results in reduced error accumulation compared to conventional KLT.

3.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) is a feature detection and matching method first
proposed by Lowe in 1999 [43] and later elaborated on in 2004 [44]. It is designed to identify
image features that are invariant to image scale and rotation, and robust to a substantial range of
affine distortion, 3D viewpoint change, image noise, and variation of illumination. The features
detected using the SIFT method are highly distinctive and discriminative in the sense that an
individual feature can be correctly matched with high probability against a large database of
features from many images due to the utilisation of a highly unique and invariant image feature
descriptor associated with each extracted interest point [43]. These powerful properties of the
SIFT feature detector are particularly appealing for the use-case in this project because
appearance changes due to scale will certainly occur in descent imagery as the camera gets
closer to the surface.

The SIFT approach to extracting feature points (referred to as keypoints by Lowe) consists of
4 main steps: (1) scale-space extrema detection, (2) keypoint localisation, (3) orientation
assignment, (4) keypoint descriptor calculation. These steps are summarised in the following
subsections.

3.1.1 Scale-Space Extrema Detection

In this step, a search is conducted in all image locations over a wide range of scales to identify
potential interest points that are invariant to image scale. This is achieved by first constructing
a sampled scale-space from the original image. The construction of the scale space is similar
in many respects to the construction of an image pyramid (as will be seen in the KLT algorithm
below), where each level in the pyramid is an image a factor of 2 smaller in height and width
than the image in the next level down, except that in the SIFT algorithm each pyramid level has a
number of sub-levels that are of the same spatial size but have different scales with respect to the
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Figure 3.1: SIFT scale space pyramid (left), constructed by repeated convolution with a Gaussian
kernel to obtain each sub-level image, followed by down-sampling to obtain each primary pyramid
level. Adjacent sub-level images are subtracted to produce difference of Gaussian images (right).
Image obtained from [44].

frequency domain. The sub-levels of each primary pyramid level are referred to as an octave, and
are generated by repeated convolutions with a Gaussian kernel, with standard deviation σ. Thus,
starting from the original image, a Gaussian blur operation is applied to the image to produce the
next sub-level image, which is then convolved again with the same Gaussian kernel to produce
the next sub-level image, and so on until the desired number of images in the octave is reached.
The next primary level up in the pyramid is constructed by re-sampling the sub-level image that
has twice the initial value of σ by taking every second pixel in each row and column. This next
pyramid level is used to construct sub-level images by further Gaussian blur operations.

Following the construction of the scale-space, the actual interest points are identified by
searching for scale-space extrema in difference of Gaussian images, which are obtained from
the scale-space pyramid by subtracting adjacent scale images within each primary pyramid level
– i.e. by subtracting adjacent sub-level images. This approach is illustrated in Figure 3.1. The
identification of a scale-space extremum point is carried out by comparing each sample point
(pixel) with its eight nearest neighbours in the current difference of Gaussian image and its nine
nearest neighbours in the scale above and the scale below, as shown in Figure 3.2

3.1.2 Keypoint Localisation

The previous step identifies a set of candidate SIFT keypoints via neighbourhood pixel
comparisons, with each keypoint being localised to pixel level accuracy. In this step, the
candidate keypoint is localised to sub-pixel accuracy by performing a detailed fit to the nearby
data for location, scale, and ratio of principal curvatures. Additionally, this nearby information
allows points to be rejected that have low contrast (and are therefore sensitive to noise) or are
poorly localised along an edge [44].

This step is carried out by expressing the difference of Gaussian image at the candidate
keypoint location and scale, D(x, y, σ), as a first order Taylor expansion:
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Figure 3.2: Identification of a SIFT feature as a maximum or minimum of the difference of
Gaussian images by comparison with it its 26 neighbour pixels in 3x3 regions at the current and
adjacent scales. Image obtained from [44].

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂

2D

∂x2
x (3.1)

where D and its derivatives are evaluated at the candidate keypoint location and x = (x, y, σ)T is
the offset from this point [44]. The sub-pixel location offset of the keypoint, x̂, is then obtained by
taking the derivative of this function with respect to x and setting it to zero, which gives

x̂ = −∂
2D

∂x2

−1
∂D

∂x
. (3.2)

3.1.3 Orientation Assignment

An orientation is assigned to each keypoint using local information from the Gaussian image,
L(x, y, σ), (not difference of Gaussian) at the same scale as the keypoint within a region centred
on the feature point, according to the following equations:

m(x, y) =

√
{L(x+ 1, y)− L(x− 1, y)}2 + {L(x, y + 1)− L(x, y − 1)}2 (3.3)

θ(x, y) = tan−1 ({L(x, y + 1)− L(x, y − 1)} / {L(x+ 1, y)− L(x− 1, y)}) (3.4)

where m(x, y) is the gradient magnitude and θ(x, y) is the gradient orientation. These local
gradient orientations are used to construct an orientation histogram of the sample points within
the local region around the feature point. The histogram consists of 36 bins covering the 360
degree range of rotations. Each sample added to the histogram is weighted by its gradient
magnitude and by a Gaussian-weighted circular window with a σ that is 1.5 times the scale of the
keypoint [44]. The peak value of the orientation histogram is assigned as the orientation of the
feature point.
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Figure 3.3: Computation of the SIFT Keypoint descriptor: An 8x8 image region is used to calculate
image gradient magnitudes and directions for each pixel surrounding the keypoint, which are
weighted using a circular Gaussian window (indicated by the circle). These are used to construct a
4x4 array of orientation histograms, which constitutes the feature descriptor for the SIFT keypoint.
Image obtained from [44].

3.1.4 Keypoint Descriptor Calculation

So far the feature points have been assigned an image location, a scale and an orientation,
which enable the definition of a local 2D coordinate system in which to describe the local image
region surrounding the feature point and hence enable the keypoint to be invariant to scale and
orientation. This step describes the calculation of a highly distinctive descriptor for the local image
region that is robust to the remaining image variations of 3D viewpoint change, affine distortions,
image noise, and changes in illumination in order to enable reliable matching across multiple
images [44].

Using the scale of the feature point to determine which Gaussian image to use in the following,
and the previously computed orientation to define a 2D coordinate system centred on the feature
point, as mentioned in the previous paragraph, a 16x16 grid of image sample points is defined
around the feature point. The image gradient and orientation of each of these sample points is
computed using the equations presented in the previous subsection and these are weighted using
a circular Gaussian window function to emphasise the sample points closer to the centre. The
16x16 grid of pixels is divided into 16 evenly sized sub-grids of 4x4 pixels. Each of these 4x4 pixel
sub-grids is used to form an orientation histogram consisting of 8 bins over the full 360 degree
range of orientations, where the magnitude of each bin is determined from the weighted sum of
the magnitudes of all orientation vectors that fall within that bin. This results in a 4x4 descriptor
array containing the 16, 8-binned orientation histograms, which is used to construct a 128 element
feature descriptor vector for each SIFT keypoint. This method is summarised in Figure 3.3 for
a simplified 2x2 descriptor array constructed from an 8x8 image region. The feature descriptor
vector is then normalised to unit length to reduce the effects of illumination changes.

3.2 Application of SIFT to Descent Images

One of the advantages of the SIFT feature tracker algorithm reported in [44] was that it is capable
of generating very large numbers of features that densely cover the image over the full range of
scales and locations. This could be extremely beneficial for generating digital elevation models
with the required accuracy and resolution for hazard detection since the requirements are for the
ability to detect small surface hazards in order to enable a safe and precise pin-point landing on
potentially hazardous terrain. Therefore a high density of tracked features will be required. This
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Figure 3.4: SIFT feature tracker applied to a 200 image PANGU descent sequence: Top – Feature
matches between image 0 (left) and image 1 (right); Middle – Feature matches between image
0 (left) and image 100 (right); Bottom – Feature matches between image 0 (left) and image 199
(right)

claim of a high density of features is verified in Figure 3.4, where it can be seen that a very large
number of feature points have been tracked reliably over a long image sequence.

The image dataset used in Figure 3.4 consists of 200 images with a frame rate of 20fps,
created using the Planet and Asteroid Natural scene Generation Utility (PANGU), which is a
software tool created for ESA by the University of Dundee for producing realistic terrain models
and images of the types of terrain found on planetary, asteroidal, and natural satellite surfaces
throughout the solar system. This image dataset represents a descent trajectory with pure
vertical motion at a constant velocity of 100m/s and with a constant rotational velocity of 3rpm
anticlockwise about the Z-axis. The ability of SIFT to extract and match a vast number of
features is immediately apparent, especially for image 0 and image 1 (top of Figure 3.4), which
contains 3459 feature matches. The features extracted from image 0 and successfully matched in
image 1 are used to construct a feature database from which the features extracted in all
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subsequent images are matched against. As time progresses and the rotation angle and scale
change between image 0 and later images becomes more significant, fewer matches are able to
be found. However it can be seen that a large number of matches are still found, with the middle
image of Figure 3.4 showing 1896 matches between image 0 and image 100, and the bottom of
Figure 3.4 showing 357 matches between image 0 and image 199, which is far superior to what
can be achieved with other feature tracking methods, such as KLT (as will be seen below). This
is a very encouraging result as it shows that a significant number of features should easily be
able to be tracked for long enough periods of time to allow the weakly observable structure
parameter estimates to converge to a suitable level of accuracy.

It would therefore appear that SIFT should be the feature detection and tracking method of
choice for 3D reconstruction during planetary descent. However, it has been reported in [42]
and [45] that SIFT features may not be the most suitable type of features required for reliable 3D
reconstruction, as was demonstrated in a simple application in [45]. While a much more rigorous
and extensive analysis of this possible unsuitability (than was given in [45]) would be required
in order to determine the full implications of this potential problem, it must be noted that in this
project it has not been possible to obtain any kind of reasonable results for the structure estimation
using the SIFT feature tracker, which would appear to support the above mentioned claims. A full
analysis of this problem is left to future work since it is beyond the scope of this project. In the
remaining sections of this chapter, the KLT feature tracker is discussed, and used as an alternative
to the SIFT algorithm despite it not being capable of providing the image feature density and
longevity that was observed with SIFT. KLT features should, however, be more suitable for 3D
reconstruction as they are predominantly corner type features, which are known to be reliable
features for 3D reconstruction. It is also important to note that the KLT feature tracker is more
computationally efficient than the SIFT feature detector, and so the use of KLT would be more
conducive to a real-time system.

3.3 Conventional KLT

The conventional KLT algorithm was first proposed by Lucas and Kanade in 1981 [46] as an
intuitive and straightforward means of tackling the image registration problem. The basic
assumption is that if given an image I and a later image J with some unknown interframe
motion, then a point (x, y) in image I has a corresponding point in image J that can be found by
minimising some measure of the difference between I(x, y) and J(x + dx, y + dy) where (dx, dy)
represents the image motion modelled as a straightforward displacement. This approach was
further developed by Tomasi and Kanade in [47] and Shi and Tomasi in [29] to include a feature
selection method that is optimal by construction because it is based on the way that the tracker
works, i.e. the features are chosen to have the specific characteristics required for the tracker
operate with maximum stability. Shi and Tomasi [29] also described a separate feature
monitoring method that enabled errors in the tracking to be identified and thus allow for
incorrectly tracked features to be removed from the tracking process so that their incorrectly
determined locations would not corrupt the output of any higher level computer vision algorithms
that depended on the tracking results. Due to the way that the tracking problem is formulated, it
is required that the interframe motion is very small, which may not be a realistic assumption to
make in many real world situations. To overcome this potentially restrictive requirement,
Bouguet [48, 49] developed a pyramidal implementation of the KLT algorithm, in which image
pyramids are constructed in order to artificially increase the scale of the images and therefore
allow the small displacement requirement to be fulfilled at the largest scale in the pyramid. The
tracking solution is iteratively refined over decreasing scales (increasing image size/resolution)
by propagating the tracking solution down subsequent levels of the pyramid until the original full
sized image is reached and the final tracking solution is obtained. This effectively allows for
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Figure 3.5: 1D simplification of the concept behind KLT

much larger displacements to be handled without problem. The pyramidal implementation of the
KLT algorithm described by Bouguet is what we refer to as conventional KLT, and its formulation
will be described below.

The basic premise of the KLT algorithm can be seen in Figure 3.5, which illustrates the 1D
relationship between two identical curves, F (x) and G(x), separated by a some unknown
displacement h. The left side of Figure 3.5 shows that when the displacement is too large and
the tangent is taken at a point in the more non-linear part of the curve F (x) is taken, the
displacement h that completes the triangle formed by the difference between the two curves at
the point x and the tangent line at the point x, does not represent the actual displacement
between the two curves. However, when the displacement between the two curves is sufficiently
small and the tangent is taken at a point within the more linear region of the curve, then the
displacement h more accurately represents the actual displacement between the two curves, as
shown on the right side of Figure 3.5. These two diagrams aptly describe the basic premise of
the KLT method and the assumptions on which it is based – that the displacement is small and a
linear approximation can be made. When these assumptions are valid, then in the 1D case, the
displacement can be obtained by utilising the definition of the gradient, which is approximately
given by

F ′(x) ≈ F (x+ h)− F (x)

h
, (3.5)

recognising that G(x) = F (x+ h), the displacement is then given by

h ≈ G(x)− F (x)

F ′(x)
. (3.6)

Taking this simple 1D concept and extending it to 2D, allows the KLT tracking equation to be
derived, which will be presented in the following subsection in the pyramidal form developed by
Bouguet [48].
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3.3.1 Pyramidal KLT Algorithm

Beginning with the assumption that the image motion can be represented by a small displacement,
the following approximation can be made

I(x, y) ≈ J(x+ dx, y + dy). (3.7)

Due to image noise and the possibility that the image motion is not completely described by a
simple translation, it is important to consider this relationship over a 2D neighbourhood. Now,
considering a point u = [ux uy]T in the first image I. The goal is to find the point v = u + d =
[ux + dx uy + dy]T in the second image J . Therefore, the goal is to find the displacement vector
d that minimises the residual function ε:

ε(d) = ε(dx, dy) =

ux+wx∑
x=ux−wx

uy+wy∑
y=uy−wy

{I(x, y)− J(x+ dx, y + dy)}2 (3.8)

Now, if we define I0 = I to be the “zeroth” level of the image pyramid – i.e. the original,
full sized image, where the image width and height for this level of the pyramid are defined as
n0x = nx and n0y = ny, respectively. The image pyramid is constructed in a recursive fashion,
using the results of one level to compute next level – i.e. compute I1 from I0 and then I2 from I1,
and so on up to the maximum pyramid level Lm. Thus, with L = 1, 2, . . . , Lm

IL(x, y) =
1

4
IL−1(2x, 2y)+

1

8

{
IL−1(2x− 1, 2y) + IL−1(2x+ 1, 2y) + IL−1(2x, 2y − 1) + IL−1(2x, 2y + 1)

}
+

1

16

{
IL−1(2x− 1, 2y − 1) + IL−1(2x+ 1, 2y − 1) + IL−1(2x− 1, 2y + 1) + IL−1(2x+ 1, 2y + 1)

}
.

(3.9)

The image width and height for the pyramid level L are then given by the largest integer that
satisfies the following expressions:

nLx ≤
nL−1x + 1

2
(3.10)

nLy ≤
nL−1y + 1

2
. (3.11)

With the image pyramid constructed the original point u is transformed to the point uL in pyramid
level L by

uL =
u

2L
(3.12)

The overall pyramid tracking algorithm proceeds as follows: first the solution is computed at
the top level of the pyramid Lm; this result is then propagated to the next level down (Lm−1) in the
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form of an initial guess for the pixel displacement at that level; this initial guess is then iteratively
refined for the level Lm − 1; this result is then propagated down to the next level (Lm − 2); and
so on until the bottom of the pyramid is reached at which point the final solution is the full image
displacement for the current image pair. Using gL = [gLx gLy ]T as the initial guess that is available
from processing the pyramid levels from level Lm to level L + 1, the residual equation that must
be minimised is now given by:

εL(dL) = εL(dLx , d
L
y ) =

uL
x+wx∑

x=uL
x−wx

uL
y +wy∑

y=uL
y−wy

{
IL(x, y)− JL(x+ gLx + dLx , y + gLy + dLy )

}2
. (3.13)

Once dL is computed by minimising this equation, the initial guess is propagated to the next level
down through the use of the expression

gL−1 = 2
(
gL + dL

)
. (3.14)

Note that no initial guess is available for the top level of the pyramid, but due to displacement
being scaled down sufficiently such that the assumption of small displacement is valid, the initial
guess can be given as

gLm = [0 0]T . (3.15)

At the bottom of the pyramid the final displacement is given by

d = g0 + d0. (3.16)

The solution the Equation (3.13) is obtained by differentiating with respect to dx and dy and
setting equal to zero to obtain the minimum as well as approximating J by expressing it as a Taylor
expansion truncated to the linear terms, to arrive at the equation

dL = (GL)−1bL (3.17)

which is solved iteratively for the displacement dL in each pyramid level, where

GL =

uL
x+wx∑

x=uL
x−wx

uL
y +wy∑

y=uL
y−wy

[
I2x IxIy
IxIy I2y

]
(3.18)

where Ix and Iy are the x and y image derivatives of image IL, and

bL =

uL
x+wx∑

x=uL
x−wx

uL
y +wy∑

y=uL
y−wy

[
δIIx
δIIy

]
(3.19)

where δI = IL(x, y)− JL(x+ glx + dLx,k, y + gLy + dLy,k), where k denotes the iteration step.
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3.4 IMU-KLT

Conventional KLT has a potentially significantly limited operating range in that it is only reliable
under small appearance changes from one image to the next. Thus it is only suitable in situations
where the inter-frame camera motion is small. The operating range may be extended somewhat
by employing a coarse-fine strategy via the use of image pyramids, as discussed above. However,
such an approach needs to be implemented by taking into account the maximum expected pixel
displacement, but even then it can only go so far and it is not adaptive in the event of sudden
disturbances in the motion of the camera. Typically, pixel displacements greater than a few 10’s
of pixels would likely result in tracking failure.

The basic aim of the IMU-KLT algorithm [50, 51] is to build in a degree of robustness and
adaptability to large image motions by using information supplied by an IMU. In the event of
large, unexpected camera ego-motion the previous known feature location (used as the initial
guess of the new feature location in standard pyramidal KLT) would likely be well outside of the
solution convergence region, leading to a failure of the tracking algorithm. However, by using IMU
measurements the location of the convergence region for each feature point can be predicted,
thereby providing a much better initial guess for the new feature location, which will hopefully
result in a successful convergence.

In real-time, video-rate tracking applications the main cause of large pixel displacements is
large camera rotational motion [50]. Therefore, the IMU-KLT algorithm only makes use of
gyroscopic measurements. However, it may be possible to further boost performance by also
including translational acceleration measurements, but this is not investigated here, and so for
the purpose of predicting the location of the convergence region for each feature point, it is
assumed that the motion of each feature arises due to a pure camera rotation. In this case, the
feature point motions can be described by a single 2D homography, H:

H = K−1RK (3.20)

where R is the inter-frame rotation matrix computed using gyroscopic measurements, and K is
a camera calibration matrix (for further details see [50,51]). The rest of the IMU-KLT algorithm is
similar to the standard pyramidal KLT technique as described in the previous section.

Figure 3.6 presents a comparison of the performance of IMU-KLT (right) with standard KLT
(left) over a 100 image sequence using synthetic images generated from a 3D planetary surface
model constructed using the Planet and Asteroid Natural Scene Generation Utility (PANGU). The
top row shows the detected feature points in image 1 of the sequence, in which the initial number of
features for the conventional KLT algorithm is 158 and for IMU-KLT it is 69. The middle row shows
the number of features remaining at frame 35 in the sequence, where for standard KLT there are
30 features remaining and for IMU-KLT there are 68. The bottom row shows the remaining features
at the end of the sequence. In this case there are only 14 features remaining for the standard KLT
and 56 remaining for IMU-KLT. Given that conventional KLT was allowed to start with many more
features and yet still ends up with far fewer features, it can be clearly seen that IMU-KLT offers
far greater stability over conventional KLT. Thus, IMU-KLT would enable a significantly denser
estimate of the scene structure. It is also interesting to note in this image sequence the rotational
motion was relatively small (0.02rad/s on both the Y and Z axes), but even in this case the benefits
of using inertial measurements are seemingly significant.

In implementing the IMU-KLT algorithm we have made some slight modifications to better
suit our needs. The most significant of these modifications was the introduction of sub-pixel
accuracy in the feature selection stage, the importance of which will be highlighted in Chapter 4.
Another modification was the prevention of further feature extraction after the first image, since,
to begin with (for initial testing purposes), we are only concerned with estimating the structure of
the initial feature points and attempting to maximize the duration over which these initial features
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Figure 3.6: Performance comparison between IMU-KLT (right) and conventional KLT (left) over
a 100 image sequence: Top – image 1; Middle – image 35; Bottom – image 99 (images are
numbered 0–99)

can be tracked. We have also simplified the representation of IMU measurements to better suit
the simulated IMU used in the early stages of the work carried out in this project.

The use of IMU-KLT in SFM was tested alongside a robust filtering method known as H∞
filtering, and the results of this are presented in Chapter 5.
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3.5 KLT with Time Reversibility Constraint

It has long been known that the conventional KLT algorithm suffers from an accumulation of errors
that will eventually result in instability in the computation of the iterative tracking solution, which will
ultimately lead to divergence and the loss of the feature. This can substantially limit the number of
images over which a feature point can be reliably tracked. Even the IMU-KLT algorithm described
above will still suffer from feature drift because, even though greater stability was observed, the
introduction of IMU data is only used to provide an updated initial guess for the feature point
position for the next image by shifting the tracking results from the previous image to a new
location based on IMU measurements. However, the tracking results themselves will contain the
accumulated errors from all previous steps. Additionally, because we were later advised (after
preliminary results had been obtained using EKF and H∞ filtering based SFM that also estimated
motion to high accuracy) that the spacecraft’s motion can be assumed to be known, we no longer
had a need to model IMU measurements, and so IMU-KLT was not investigated further. Instead
time was invested in a different formulation of KLT that is, at a fundamental level, more robust to
the accumulation of errors.

This accumulation of errors manifests as a phenomenon known as feature drift, that even
before the eventual loss of the feature point may introduce catastrophic errors in the calculations,
such as SFM, that rely on the results of the feature tracking. The feature drift problem is illustrated
in Figure 3.7 for a traditional corner-like feature, which shows two image sequences side by side.
The left column illustrates feature tracking in which there is substantial drift that eventually causes
the loss of the feature, whereas the right column shows feature tracking with no drift and this allows
the feature to be reliably tracked for a longer duration. This issue with drift was acknowledged
in [29] and was one of the motivations for developing the feature monitoring scheme that allowed
erroneously tracked feature points to be discarded.

An innovative way of tackling the drift problem was developed by Wu et al [52] by realising that
the problem is essentially down to a lack of any kind of constraint on the tracking solution. The
approach can be elucidated by considering what might happen if the tracking was carried out in
reverse time. If you took the results from a single forward-time tracking, i.e. the computed location
of the feature point in image J at time t and used this as the starting point for tracking the feature
point backwards in time to image I at time t − 1, the result would likely not be the same as that
which was obtained for the point in image I when the tracker was run in forward-time from t− 2 to
t− 1. To overcome this problem a mathematical constraint was applied to the tracking equation to
ensure that this time-reversibility property was fulfilled, without the need to actually run the tracker
in reverse-time. The resulting algorithm can be called time-reversible KLT (TR-KLT).

The form of the residual equation, with this constraint imposed, is expressed as:

ε(d,db) =
∑∑

W

{J(u + d)− I(u)}2 +∑∑
W

{
I(u + d + db)− J(u + d)

}2
+

λ
(
d + db

)T (
d + db),

(3.21)

where the first term is the same as the conventional KLT, the second term is the backwards
tracking term, and the third term is the forwards, d, and backwards, db, displacement constraint.
Differentiating this equation with respect to d and db, setting equal to zero to obtain the minimum,
and using first order Taylor expansions for I(u + d + db) and J(u + d), a solution can be obtained
in the form
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Figure 3.7: Drift in conventional KLT: Left column – Feature drift resulting in feature loss; Right
column – Tracking with no drift allowing longer tracking duration

d = U−1e (3.22)

where
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U = AD−1C + λD−1C − 1

2
B, (3.23)

e = (A+ λI)D−1 (V −W ) +
1

2
(S −R) , (3.24)

and where

A =
∑∑

W

(∇I)T∇I B =
∑∑

W

(∇I)T∇J

C =
∑∑

W

(∇J)T∇J D =
∑∑

W

(∇J)T∇I

R =
∑∑

W

I(∇I)T S =
∑∑

W

J(∇I)T

V =
∑∑

W

I(∇J)T W =
∑∑

W

J(∇J)T

(3.25)

3.6 Performance Comparison

In order to assess the performance of this more recent and sophisticated approach to KLT feature
tracking, which is described more fully in [52], it will first be compared against the conventional KLT
in a simple test of tracking stability, using a 100 image sequence of synthetic descent images, to
see how many features remain at the end of the sequence. Once this straightforward comparison
has been made, a more thorough analysis of the two KLT methods will be made using multiple sets
of synthetic images with various different types of image features present and with varying levels
of image noise in order to assess the accuracy of the two methods by measuring the tracking
errors with time compared to ground truth feature locations.

Figure 3.8 presents a side-by-side comparison of the two techniques for the 100 image
synthetic visible-band sequence, with the conventional KLT tracking results in the left column and
the TR-KLT tracking results in the right column. The top row shows the number of features that
are extracted from image 1, from which it can be seen that the number of initial features are
similar. The bottom row shows the remaining features in image 100. From this it can clearly be
seen that the TR-KLT provides significantly better performance in terms of tracking stability
through observing the number of features that are remaining – 65 for TR-KLT compared to 13 for
conventional KLT. This is a very dramatic difference and in fact it was surprising to observe just
how stark the difference in performance was.
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Figure 3.8: Comparison of TR-KLT with conventional KLT: Top Row – Features selected from
image 1; Bottom Row – Features remaining in image 100

Figure 3.9 shows the pattern used in analysing the tracking accuracy of the two different KLT
feature tracking algorithms. This pattern consists of a pure black and white chequerboard with
32x32 pixel squares, a number of Y shaped objects consisting of a central black line of single
pixel width encased within a one pixel width grey outline, and a number of Gaussian points with
a diameter of 7 pixels. This pattern was chosen because it would produce a collection of well
defined and easily detectable feature points for which ground truth feature coordinates are easily
obtainable. To construct the image datasets, this pattern is inserted into the top left (64 pixels away
from the edge to allow for the pyramidal scaling) of a 1024x1024 pixel image with a pure white
background, a slight Gaussian image blur operation is applied, and then for each subsequent
image the pattern is shifted 5 pixels to the right and 5 pixels down and random Gaussian image
noise is added with zero mean and differing variance values for each dataset. Each dataset
consists of 106 images, which, with the amount of image displacement used, results in a final
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Figure 3.9: Synthetic feature pattern used in testing the accuracy of TR-KLT and conventional
KLT: Left of red line – Feature pattern; Right of red line – Zoomed views of the different feature
types: chequerboard square (top), Y shape (middle), Gaussian point (bottom)

image containing the pattern in the bottom right corner with a suitably sized margin. The first
image in each of the sequences used in this analysis consists of an unblurred image with no
noise to ensure that the initial feature selection for both KLT algorithms results in identical feature
points that are uncorrupted by noise. Figure 3.10 shows a selection of the images used in this
analysis, with various levels of image noise.

To quantify the performance of the conventional KLT and TR-KLT algorithms, the Euclidean
distance of each point from its corresponding ground truth location is calculated to give the
tracking error for each point. The average tracking error for each image is then obtained by
computing the root-mean-squared tracking discrepancy over all feature points in the image. A
plot of these RMS errors has been produced for each version of KLT for a single trial of each of
the datasets to enable a direct comparison of the two techniques. The results of this analysis are
presented in Figures 3.11, 3.12, and 3.13.

Figure 3.11 presents the RMS tracking errors over the 106 image sequence of both the
conventional KLT and TR-KLT algorithms, where the images (except for the first image) are
corrupted by zero-mean white noise with an intensity variance of 0.0001. A trend line is fitted to
each set of results using linear regression. This plot shows that on the whole the performance of
the two algorithms are very similar in terms of tracking errors, with the trend being that the errors
do not appear to be significantly growing with time for either tracking algorithm. It can be seen
that the blue plot for the TR-KLT shows slightly smaller errors, which is more clearly shown by
observing the trend line, suggesting that TR-KLT gives slightly better tracking accuracy, however
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Figure 3.10: Example images used in testing KLT accuracy: Top Left – Image 0 (no noise); Top
Right – Image 50 (noise variance = 0.0001); Bottom Left – Image 75 (noise variance = 0.05);
Bottom Right – Image 105 (noise variance = 0.1)

the difference is not particularly significant in this case. Further tests were performed using the
106 image sequence with noise variances of 0.0005, 0.001, and 0.005, but these resulted in very
similar results to the 0.0001 variance case, and so these results are not included here. It was not
until noise variances of 0.01 and above were used that significant differences in performance
were observed. The results for the 0.01 noise variance dataset are presented in Figure 3.12,
which shows a clear difference in tracking accuracy from the two algorithms. Both tracking
methods begin with the same initial error, but the TR-KLT quickly shows stronger performance
compared to the conventional KLT. Trend lines have also been fitted to these plots using linear
regression, which clearly show that the conventional KLT is suffering from growing errors in
tracking accuracy, which confirms that conventional KLT can fall victim to the feature drift
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Figure 3.11: RMS tracking errors for conventional KLT and TR-KLT (image noise variance =
0.0001)
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Figure 3.12: RMS tracking errors for conventional KLT and TR-KLT (image noise variance = 0.01)
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Figure 3.13: RMS tracking errors for conventional KLT and TR-KLT (image noise variance = 0.05)

problem discussed earlier. The trend line for TR-KLT shows that the errors are actually
decreasing as time progresses. It would be expected that the tracking errors would either remain
approximately constant or exhibit a slight growth with time (due to the constraint only extending
back in time by 1 image) that is less pronounced than with the conventional KLT, therefore this
would seem to be a somewhat unexpected result. However this can be explained by the fact that
it was observed that the feature points for the Y features and Gaussian points were gradually lost
over the image sequence, eventually leaving only the chequerboard features, which result in
much stronger and hence more stable features, resulting in a reduction in average feature
tracking errors over the sequence. A similar gradual loss of these features was observed for the
conventional KLT tracker, however in this case the errors can be seen to still gradually increase
with time, which clearly demonstrates the superior performance of TR-KLT over conventional
KLT in this case. Figure 3.13 presents the rms tracking errors for the image sequence with noise
variance of 0.05. In this case, for both algorithms, the weaker features on the Y shaped objects
and the Gaussian points were lost almost immediately, and so in this case the results are almost
solely due to the stronger chequerboard features. Consequently, the results are more in line with
expectation in that they show growing tracking errors for both algorithms. However, for the
TR-KLT algorithm this is much less severe than with the conventional KLT, which is exhibiting a
comparatively very strong growth with time, indicating the susceptibility of this unconstrained
algorithm to much more significant feature drift. A further test was carried out using the image
sequence with noise variance of 0.1, one image of which is presented in Figure 3.10, however it
was found that the level of noise in these images was too severe for reliable feature tracking over
any extended length of time for both feature tracking methods, therefore a meaningful
comparison could not be made in this case.

From the analysis presented above, the advantages of the TR-KLT in terms of feature drift
and consequently feature stability over time are quite clear to see in comparison to the
conventional approach to KLT feature tracking. This feature method will therefore be used in
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favour of conventional KLT (in Chapter 6 onwards) as a suitable method for increasing
robustness and accuracy in the feature measurements taken from the descent images and which
are, in turn, used in the feature based structure from motion algorithm.

3.7 Conclusions

This chapter has presented the concepts and implementation details of two popular methods for
extracting and matching/tracking image features over sequences of images: the SIFT feature
matching algorithm and the KLT feature tracker. The SIFT algorithm was shown to be capable of
tracking vastly more image features than the KLT algorithm, however it was realised, through the
inability of the SIFT algorithm to successfully produce accurate structure estimates when used in
SFM, that SIFT features are often not suitable for monocular 3D reconstruction. In this thesis, 3
different variants of the KLT algorithm are utilised in SFM, and the details of these variants were
outlined in this chapter. These 3 variations of KLT are the conventional pyramidal KLT, IMU-KLT,
and TR-KLT. The IMU-KLT algorithm was able to successfully track many more features than
conventional KLT, but as will be seen in Chapter 5, it was not sufficiently accurate to produce
reliable structure estimates. The conventional KLT algorithm is successfully utilised in Chapter 4,
but as was shown in this chapter it is only capable of successfully tracking a small number of
features for any significant length of time. It was concluded that this may likely be due to the
accumulation of errors in the tracking solution over time, for each feature point, that not only
would introduce errors in structure estimation, but eventually leads to loss of the feature point due
to divergence. To combat this, an alternative formulation of the KLT tracker was investigated that
introduces constraints in the tracking equations to ensure time-reversibility of the solutions. This
chapter successfully demonstrated that this modified version of the KLT algorithm is able to track a
larger number of features for longer periods of time and results in much lower error accumulation
in the feature points over time in comparison to the conventional KLT algorithm.
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This chapter presents a multi-source, multi rate, recursive data fusion algorithm that aims at
combining a single camera, recursive, feature-based structure from motion (SFM) algorithm with
measurements from an on-board inertial measurement unit (IMU), using the Extended Kalman
filter (EKF). The chapter describes how the fusion of these measurements enables direct
estimation of the unknown scale factor that arises from the use of a single camera, and results
are presented showing that this leads to an accurate estimation of the motion parameters and
structure of the scene. The algorithm is tested using simulated IMU measurements and
artificially generated image feature points with simulated image motion throughout a 100 image
sequence (referred to as the ’pure synthetic’ test) as a means to validate the formulation of the
algorithm. Sequences of artificial images are also used that are generated from an artificial
terrain model of a planetary surface, using the Planet and Asteroid Natural Scene Generation
Utility (PANGU), to provide a more realistic test on representative images. These tests using
PANGU images are carried out from three different initial heights above the surface (2000m,
1000m and 500m), which represent challenging scenarios for the verification of the algorithm.
The SFM algorithm presented in this chapter is seemingly unique amongst the reported vision
based EDL methods in the literature for both motion and structure estimation in that it is capable
of using a single camera to produce fully-scaled metric estimates of both motion and structure
without the need of any prior information (e.g. known landmarks). However, this chapter makes a
number of simplifying assumptions, since at this stage the focus is on algorithm development
rather than true realism in the test scenarios. These assumptions are: that the spacecraft
descends at a constant velocity, with this velocity being representative of that of the NASA
Curiosity rover’s descent profile (for the initial altitude of each small test image sequence only);
that the attitude of the camera during capture of the first descent image of each sequence is
such that the camera frame is perfectly horizontal (Z-axis points in the nadir direction); and that
the motion of the spacecraft is entirely in the vertical direction. In addition to these some slight
rotational motion is modelled with constant angular velocity in order to partially simulate swinging
motion under a parachute and some residual spin from spin-stabilisation. Further to this, only
short image sequences are used so that there is no need to add new image features over time,
in order to simplify the assessment of the structure estimation by allowing all features to have the
same amount of time to approach convergence. Section 4.1 of this chapter gives a review of the
different approaches to structure from motion in the literature. Section 4.2 gives details and
assumptions relating to the type of landing scenario adopted in order to provide a test for the
developed algorithm. Section 4.3 gives an overview of the general system and defines the
coordinates systems used in the work. Section 4.4 describes the formulation of the recursive
feature-based structure from motion algorithm. Section 4.5 describes how the scale is recovered
through the fusion of SFM and IMU measurements, with Section 4.6 discussing the sequence in
which these two measurement sources are combined. Section 4.7 then describes how the
results of the estimation process can be used to obtain the absolute structure parameters and
construct a DEM of the landing site that could (with further development) be used in Hazard
detection. Section 4.8 presents the results from the pure synthetic test and the results of three
different test trajectories using PANGU images. Finally, the conclusions are presented in
Section 4.9.
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4.1 Review of Structure from Motion Techniques

The way in which 3D objects are projected onto a 2D image plane over a sequence of images in
which there is relative motion between the scene and camera not only depends upon the relative
3D motion but also on the 3D scene structure. Thus the image sequence contains information
that can enable both the structure and motion to be recovered. The structure and motion are
generally inseparable, i.e. one cannot be recovered without knowledge of the other. Therefore,
these two properties are often estimated simultaneously.

The class of techniques that focus on the recovery of both the scene structure and the relative
motion are known as structure from motion (SFM) algorithms. The SFM problem has been an
active area of research for around 40 years, and over this time there have generally been two
main approaches to addressing the problem: feature-based approaches that utilize a set of sparse
image features; and optical flow-based approaches that attempt to determine the 2D image motion
at every pixel and from this estimate the 3D motion and structure of the scene [53].

Optical flow methods begin by examining the instantaneous changes in image brightness
values from one image to the next in order to estimate a dense velocity map known as the image
flow or optical flow field [54]. This flow field essentially consists of a velocity vector for each pixel in
the image pair. To achieve this, these techniques rely on the local spatial and temporal derivatives
of image brightness values under the assumption that the brightness value recorded in the images
associated with a particular point in the scene remains constant between the images. Thus any
change in brightness of an image pixel (x, y) from one image to the next is due only to the relative
motion between the scene and camera. That is, the whole brightness pattern recorded by the
camera is assumed to have been translated due to the relative motion.

Once the optical flow field has been determined, the 3D structure and relative motion between
the scene and camera can be estimated using the information contained in the optical flow. This is
achieved by relating the optical flow field to the camera model and the motion of the camera, from
which a system of equations can be derived in terms of the optical flow, its first- and second-order
derivatives, and the 3D structure and motion parameters [54]. The system of equations consists of
12 equations in 11 unknowns and is therefore over determined. However, the equations are non-
linear and so a unique solution is not possible. A large number of different techniques have been
reported in the literature for solving these equations, which often involve restricting the nature
of the motion to be purely translational or rotational and/or restricting the imaged surface to be
planar (see refs [53–55] for a summary of some of the available methods).

Given that the optical flow field is based on derivatives, optical flow measurements are
inherently noise sensitive. Additionally, since there is potentially a measurement for every pixel in
the image, algorithms that utilize optical flow can be very computationally demanding unless the
flow-field is sub-sampled [55]. Thus optical flow techniques may be difficult to implement in
real-time applications. The majority of the techniques for flow based SFM are also formulated as
two-frame methods [56, 57] where a pair of images are analysed to give an instantaneous
estimation of the scene structure and the between frame motion. Extending this over multiple
frames to determine a full motion trajectory involves integrating the results from successive pairs
of images, which may lead to significant error accumulation due to the noise in the derivative
parameters [58]. However, more modern techniques have been developed to address the issues
with noise, such as using flow probability instead of estimating the optical flow directly as in [59],
or using an extended Kalman filter (EKF) in a recursive framework that utilizes affine flow
parameters within local regions, that are estimated using linear regression, as measurements
instead of direct optical flow [55].

Feature-based approaches to the SFM problem are based on extracting a set of relatively
sparse but highly discriminatory, two-dimensional features in the images corresponding to
three-dimensional object features in the scene, such as corners, occluding boundaries/depth
discontinuities, and boundaries demarcating changes in surface reflectivity [54]. These features
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are extracted from each image and inter-frame correspondence between the features is
established. Once a set of corresponded features have been identified, the 2D image locations
of these features can be used along with the camera model equation and motion models to
estimate the 3D structure and motion parameters. For reviews of feature based techniques
see [53,54,60,61].

The early work in feature based SFM was mainly concentrated on two or three frame
approaches. The first of this type of technique was that of Ullman in 1979 [62], who showed that
under the assumption of rigidity and orthographic projection, a set of equations could be written
relating the unknown 3D distances between the points to their known 2D image projections [63].
Each image would result in a different set of equations relating the same object points, and so
given enough images and enough points the equations could be solved for the unknown 3D
structure. Ullmann demonstrated that the structure could be recovered with at least three views
of four points and that the solution was closed form [63]. A more general approach by Roach and
Aggarwal [64] used the rigidity assumption to formulate the problem as a modified least squares
error method to solve the system of non-linear equations resulting from the use of perspective
projection. They found that two views of six points or three views of four points were needed to
provide an over determined set of equations. However, it was discovered that the method was
not very accurate unless considerably more points were used in the images. Another approach
to the two-frame problem is the so-called 8 point algorithm of Longuet-Higgins [65], and the
similar algorithm of Tsai and Huang [66]. The Longuet-Higgins 8-point algorithm [65] determines
the rotation and translation between the two views from the essential matrix, which is derived
using vector and tensor analysis, and then uses these motion parameters to determine the 3D
structure (depths) of the points. A similar method was independently developed by Tsai and
Huang [66], and was shown that in many cases the motion parameters, and thus the structure,
can be uniquely determined, given eight image point correspondences.

The two-frame approaches to feature-based SFM are derived for perfect features and for
images with wide baselines. As such they do not consider measurement errors in the feature
point correspondences. The presence of noise in the images often leads to violations of some of
the key assumptions on which these techniques are based, therefore they can exhibit numerical
instability in real-world situations [61]. The results obtained also only give a snapshot of the
motion and structure parameters. In many applications motion estimation results are required
over extended periods of time in order to provide an estimate of the full trajectory of the camera
or imaged objects. To address this issue, a great deal of work has been reported in the literature
to extend these techniques to long sequences of images, such as image streams from a video
camera. For more information see [53,54,60,61].

There are two main approaches to implementing this extension to multiple images: batch
techniques; and recursive techniques. Batch techniques often use a non-linear framework
similar to the classic relative orientation problem proposed by Horn [67], and perform a batch
minimization, such as a Levenberg-Marquardt non-linear minimisation, over the whole set of
measurements [61]. Thus, as each new image arrives, it and all previous images are processed
to compute the motion and structure estimates. Clearly, therefore, such techniques can be very
computationally demanding for large image sequences. In practice, this is a technique that would
not be applied as each new image arrives but would be applied intermittently on relatively large
sets of images; therefore it is not suitable for real time operation. Recursive techniques, on the
other hand, process each new image individually as it arrives, and sequentially update a
previous estimate of the motion and structure parameters. One way of achieving this is to repeat
the classic two-frame estimate, such as the Longuet-Higgins technique [65], and integrate the
results over time. Examples of this type of approach are the work of Oliensis and Thomas [68]
and Soatto et al [69]. However, given that image sequences are typically recorded at relatively
high frame rates, the baseline between successive images will be small; therefore the results
from each application of a classic two-frame approach will be prone to significant error. This
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issue was addressed in [68] and [69] by the use of a smoothing Kalman filter. Other recursive
approaches make use of the extended Kalman filter (EKF) to directly estimate the structure and
motion expressed in state-space form, instead of using the Kalman filter simply for smoothing
two-frame estimates [61]. These methods do not make use of two-frame techniques.

The first recursive EKF-based SFM algorithm was that of Broida and Chellappa [70], which
focused on the estimation of motion parameters of a rigid body undergoing unknown rotational
and translational motion, using measurements of noisy image coordinates of two or more object
correspondence points. The advantage of using the EKF framework is that the unknown
parameters are not a function of the number of image frames used, unlike the two-frame type
methods where the number of unknowns increases with the number of images used. Therefore
over-determination of the estimation equations can be achieved by using a large number of
frames, instead of a large number of feature points [70]. Another advantage is that since the
evolution of the state is governed by the kinematics model, the algorithm is still able to propagate
the state information in the event that the object becomes partially or even fully occluded. A
number of significant assumptions were made to simplify the estimation task: the structure was
assumed in order to fix the scale factor to enable absolute translational position and motion to be
estimated; the motion was constrained so that the dynamic equations were fully linear; and the
image match points and their measurement noise were assumed to be known a priori, thus no
attempt at feature tracking was made. This work was later extended to a more physically realistic
scenario in a later paper by Broida, Chandrashekhar and Chellappa [71], where in this case the
constraints on the motion were relaxed leading to non-linear motion equations, and now both the
structure and motion were estimated. However, the feature match points were still assumed to
be available. This algorithm also made use of a batch technique carried out on the first few
frames in order to initialise the EKF, which was demonstrated to lead to improved performance.
Azarbayejani and Pentland [72] improved upon the work of Broida, Chandrashekhar and
Chellappa [71] by reformulating the problem in terms of a slightly different geometrical
representation of the camera model, which allows the structure to be represented by a single
parameter in the state equation. This representation has the important property that the camera
is decoupled from the depth, which means that the model does not become numerically
ill-conditioned as focal length becomes large, allowing both the orthographic and perspective
cases, and anything in between, to be modelled without changing the representation.
Additionally, this also allows the focal length to estimated as well as the motion and structure
parameters, which means that knowledge of the camera need not be known in advance. This
formulation was shown to significantly increase the robustness and accuracy of the structure and
motion estimates.

While the early work on recursive feature based techniques focused on establishing the
theoretical underpinnings and general formulation of the problem, more recent work has focused
on addressing the issues encountered when applying the techniques in real-world applications.
One problem that has been looked at regularly in the literature is that of erroneous feature point
correspondences, known as outliers, which occur when using real-imagery as a consequence of
image noise and imperfect feature matching techniques. The presence of such outliers in the
measurement data can have devastating consequences for the results obtained from recursive
estimation algorithms. Examples of work in this area can be found in [73–76]. Another area that
has been investigated is the incorporation of inertial data to improve robustness in SFM
algorithms. Due to the properties of the EKF and the way that it is implemented in traditional
model-based SFM algorithms, robust results can generally only be obtained when the motion
varies smoothly. Non-uniform camera egomotion introduces system modelling error or makes the
algorithms converge to values other than the correct motion parameters. The addition of inertial
information enables more complicated motion to be handled and has been shown to decrease
the inherent biases and variances in motion parameter estimates [53]. It has also been shown
that a smaller number of features are required to obtain accurate and robust results when inertial
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data is exploited [77]. Further examples of SFM algorithms that employ inertial data can be
found in [78, 79]. While the work in these examples exploited inertial information as a means for
improving the robustness and accuracy of the overall SFM results [77,78], or exploited SFM as a
means of correcting for drift in the inertial measurements [79], Nutzi et al [80] showed that the
use of inertial measurements from a 3-axis accelerometer could actually be used to recover the
unknown scale factor in a single camera simultaneous localization and mapping algorithm, which
is a similar technique to SFM. The scale factor issue is implicit in all of the above mentioned SFM
algorithms, and arises due to the fact that any scalar multiple of the three scene point
coordinates results in the same image point. It is therefore impossible to determine the depth of
points in the scene using a single camera without further information, and therefore impossible to
determine absolute motion and structure. Recovery of the scale factor therefore enables
recovery of absolute translational motion, position and structure. The direct recovery of the scale
factor was also shown to offer improvements in robustness and accuracy in general. Finally,
improvements have also been sought through the use of different types of recursive filtering
methods. Venter and Herbst [81] proposed a recursive solution based on the unscented Kalman
filter, which was found to outperform the EKF methods when no initial data was available,
however in all other situations tested it did not offer any improvements over the conventional
approaches. Clipp et al [75] implemented a recursive solution using a pipelined pair of EKFs
acting on the same data but offset in time. The leading filter produced estimates of structure and
motion from all the available data, which were used to identify the best set of feature
measurements to be used in the following filter in order to improve the accuracy of the results.
Although encouraging results were obtained, this arrangement introduces a delay in the system,
which may not be suitable for certain applications, such as when the estimation results are used
in a closed-loop control system in which response time is critical, thus is unlikely to be acceptable
in the system proposed in this work. The vast majority of approaches to recursive feature-based
SFM algorithms have been based on the extended Kalman filter, or at least variants of it. The
reasons for this are most likely because the EKF is widely known and a well studied estimation
technique. However, the EKF is known to have limitations that are attributed to the underlying
assumptions of the Kalman filter, such as the assumption of zero-mean, uncorrelated Gaussian
noise, which may not be valid in all situations. Additionally, the EKF linearises about the current
state estimate and covariance in each time step using a first order Taylor expansion. However,
when the deviation of the estimated state trajectory from the nominal state trajectory is large, the
abandoned higher order terms will contain large values, giving rise to considerable linearisation
error that significantly degrades the performance of the estimator. These limitations prompted
research, carried out in this department, into reformulating the recursive feature-based structure
from motion problem using an estimator based on the L∞-norm, instead of the L2-norm, which
does not suffer from the same limitations [82]. Experiments were carried out on real and
synthetic images, comparing the algorithm with a traditional EKF approach based on the
formulation of Azarbayejani and Pentland [72], and significant improvements were observed.

The two main approaches to structure from motion (optical flow/feature-based) are vastly
different in nature and utility in the way in which they treat the concept of structure. Chellapa et
al [53] suggest that optical flow-based techniques are conceivably better suited to modelling the
3D scene, while the feature-based approaches are more suitable for estimating the 3D motion
parameters of the camera rather than the scene structure. Feature based techniques are also
better suited to applications in which it is expected that individual features remain visible for
extended periods of time and can thus be tracked over multiple images [83]. However, in our
work we require both highly accurate estimates of the motion parameters as well as an accurate
and dense 3D digital elevation model of the terrain surrounding the landing site. Research has
been reported in the literature that attempts to combine the two techniques in order to achieve
both of these characteristics – see [58, 84] for example. However, in this current chapter we will
be focusing mainly on the accurate estimation of the 3D motion parameters as this is arguably
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the most significant step in the development of a next-generation EDL since it is a prerequisite
for all of the other required capabilities. Additionally, since we assume that the landing site will be
visible for the full duration of the decent and for the majority of the decent image features will not
move rapidly out of the visual field, we adopt a feature based structure from motion technique
using a filtering framework. Therefore we are focusing on motion and sparse structure
estimation, leaving the development of a hybrid approach to further work. The motion
parameters must be estimated in real-time as the ultimate goal is for their use in a closed-loop
control system to guide the lander to its target landing site, therefore we require a recursive
algorithm. We also require the motion and structure parameters to be known in absolute
quantities, and given that inertial measurement units are common place on first generation EDL,
we chose to adapt the data fusion strategy of Nutzi et al [80] to the SFM problem in order to
directly recover the scale factor, and also due to its claims on increased robustness. We have
adopted the recursive algorithm of Azarbayejani and Pentland [72] for our SFM framework in
order to provide a straight forward verification of our approach, but with the view of extending this
work to the more robust formulation presented in [82] at a later date.

4.2 Landing Scenario

For the purpose of the work presented in this chapter, a number of assumptions are made
relating to the landing scenario, while at the same time ensuring that the situation remains
somewhat representative of that which may be encountered. These assumptions are as follows:
it is assumed that the spacecraft will emerge from the entry phase at a point that is above the
intended landing site such that the landing site will be in the field of view of the camera from the
beginning; the motion of the camera/spacecraft is assumed to be relatively smooth and stable
such that the landing site remains in the field of view for the duration of the descent; the velocity
at the start of the motion estimation process is known in advance (the reason for this assumption
will be discussed below); given that the current trend is towards larger, more capable missions,
the choice of velocity at a particular altitude is loosely based on the expected velocity profile of
the Mars Science Laboratory mission, presented in [85]; during the 100 image sequence it is
assumed that the velocity of the spacecraft remains constant, and any deviation will be modelled
as noise; and, the camera system and motion estimation process will be activated at a height of
2000m, and will operate continuously until touchdown.

4.3 Coordinate Systems and General System Overview

Figure 4.1 shows the coordinate systems used in this work. The position and orientation of the
camera frame at the time that the first image is captured is used to define the world frame. The
world frame is shown at the top of Figure 4.1. All motion and structure is described relative to this
world frame, that is, the translation and rotation of the camera frame in any subsequent image
(bottom coordinate frame in Figure 4.1) is defined with respect to the initial position at the start
of the motion estimation process. The structure parameters are the 3D coordinates of the image
features identified in the first image, expressed in the camera frame coordinates of this first image.
With the motion estimation beginning at 2000m, the first image will cover a large area surrounding
the landing site, and as the spacecraft descends, the structure of the scene captured in this image
will be recursively refined leading to a large 3D terrain model. Using this large model, a potentially
long list of alternative landing sites could be selected if the originally intended one is deemed too
hazardous. A large DEM with many possible landing sites identified introduces a high degree of
flexibility to the system that should contribute significantly to the reliability of the system.

Image features are identified in the first image and tracked across the rest of the image
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Figure 4.1: Coordinate systems: world frame (top), later camera frame (bottom). Global rotation
matrix Rw describes the rotation about the Xw, Yw, Zw coordinate axes required to rotate the
world frame into the orientation of the current camera frame. The incremental rotation matrix (see
later) also represents incremental rotations about the world frame axes. The translation vector,
Tw, describes the displacement of the current camera frame with respect to the world frame,
expressed in the world frame coordinate system

sequence using the conventional Kanade-Lucas-Tomasi (KLT) feature tracking method. The
image plane coordinates of these initial features are used in conjunction with the current
estimate of the spacecraft’s motion to calculate the measurement predictions in each iteration of
the SFM algorithm. Therefore, it is important that the original features are detected to sub-pixel
accuracy. For sub-pixel detection the method described in [42] is used to fit a paraboloid surface
to the Harris interest strengths of the pixels in a template window surrounding each interest
point. To achieve the necessary accuracy for motion estimation and structure recovery the
features must also be tracked to sub-pixel accuracy. For sub-pixel tracking the bi-linear
interpolation method described in [48] is adopted.

The original KLT method requires that the inter-frame motion of the camera is small. This
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Figure 4.2: System diagram

can be quite restrictive for real world applications, particularly in the case of a planetary landing
which may be subject to shocks and sudden movements due to high winds, control thrusters,
and potential swinging under a parachute. To overcome this the pyramidal implementation of KLT
developed by Bouguet [48] is employed, which utilizes image pyramids to increase robustness
by artificially reducing the inter-frame motion. The KLT algorithm is a well known feature tracking
method, thus it will not be described here. For details the reader is referred to [29, 46–48] and
Chapter 3.

The SFM algorithm provides estimates of the 3D motion parameters of the spacecraft as it
descends towards the surface. However, these parameters can only be determined up to an
unknown scale since only a single camera is employed. The reason for this scale ambiguity is
due to the loss of depth information as a consequence of the image formation process, as was
explained in Chapter 2. However, by fusing these estimates with measurements from an IMU,
which contains information about the absolute translational motion of the spacecraft, the
unknown scale factor can be directly estimated, and therefore the absolute motion parameters
and absolute depth in the scene can be recovered. To do this, two separate EKFs are used,
operating at different rates. One EKF is used to recursively estimate 3D motion parameters using
measurements from an IMU operating at 160Hz. In this EKF the translational motion is
expressed as an unscaled quantity by dividing through by the unknown scale factor, thus
allowing it to be directly related to the translational motion in the SFM algorithm. A separate EKF
is then used to estimate the unscaled structure and motion parameters from images captured at
40 frames per second (the SFM algorithm). These parameters are then used as measurements
in the first EKF in a separate measurement update operation in order to fuse the data from the
two separate sources. Note that since a separate filter is employed to perform the data fusion of
IMU measurements with the SFM filter estimates, ringing may occur when one filter converges
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before the other. It is therefore necessary to take care when selecting suitable tuning parameters
for each of the separate filters to ensure that the effects of this are minimised as best as
possible. A potential way of determining whether this phenomena is occurring would be to
examine whether the estimation of the scale factor is well behaved as a function of time and
shows strong signs of convergence to a sensible value. Figure 4.2 presents a schematic diagram
summarizing the operation of the overall system. Full details of the two separate modules and
the data fusion process are given in the following sections.

4.4 Structure From Motion Algorithm

The structure from motion algorithm developed in this work is categorized under the framework
for recursive recovery of structure and motion as well as focal length. The camera model used
in this algorithm is shown in Equation (4.1), where (Xc, Yc, Zc) is the 3D location of a point in the
camera frame, (x, y) is the image location, and β = 1/f is the inverse focal length. This camera
model equation is easily derived through similar triangles by considering the geometry shown in
Figure 4.3. Note that the origin of the camera frame is at the principal point rather than the centre
of projection (COP), as would normally be the case in the regular perspective camera model. The
authors of [72] point out that this form of camera model has the property that the representation of
the camera (i.e. β) is decoupled from the depth (Zc), which is important when focal length is being
estimated in addition to structure. Also this model does not become numerically ill-conditioned as
the focal length becomes large (i.e. it is also suitable for orthographic projection models, where
f =∞, in which case β = 0).

[
x
y

]
=

[
Xc

Yc

]
1

1 + βZc
(4.1)

By noting that the Z-component of the image plane is zero, Equation (4.1) can be rearranged
to give an expression relating the full 3D camera frame coordinates of a point in the scene to the
coordinates of the image of that point on the image plane:

Image Plane
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Z

X
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Feature Point

f
xc

COP
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camera frame

principal point
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Conventional pin-hole camera model

Image Plane
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Z

X
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Feature Point

f
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camera frame

optical axis

Camera model used in this work

Figure 4.3: Camera model geometry
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Xc

Yc
Zc

 =

xcyc
0

+ Zc

xcβycβ
1

 (4.2)

However, as mentioned above, the scene structure that is required is the 3D location of feature
points identified in the first image, i.e. in the world coordinate system. Thus Equation (4.2) can be
re-written as

Xw

Yw
Zw

 =

xwyw
0

+ αw

xwβywβ
1

 (4.3)

where in this case Zw = αw. The first term, in this equation represents the image location and
the second term represents the perspective ray scaled by the unknown depth αw. Therefore
point-wise structure can be represented with a single parameter per point [72]. Thus a set of N
feature points identified in the first image results in the set of structure parameters
{α1,w, α2,w, · · · , αN.w}.

In this work it is desirable to describe the translational motion as the 3D location of the camera
frame with respect to the stationary world frame (in world frame coordinates), which could be
represented by the vector

tw =
[
tX,w tY,w tZ,w

]T (4.4)

However, in [72], the translational motion is defined such that it describes the 3D location of
the world frame with respect to the current camera frame (in current camera frame coordinates).
This situation arises due to the measurements being carried out in the current camera frame,
making it more straightforward to directly estimate the motion quantities expressed in camera
frame coordinates. Nevertheless, it is still straightforward to describe the motion in terms of the
parameters that are of most use in this current application. Thus an equation can be written
that relates the 2D coordinates of the feature points as measured in the current camera frame to
the original 2D features in the world frame and the translation of the current camera frame with
respect to the world frame:

xc(1 + Zcβ)
yc(1 + Zcβ)

Zcβ

 =

1 0 0
0 1 0
0 0 β

 δR ·R
xw(1 + αwβ)− tXw

yw(1 + αwβ)− tYw

αw − (tZw
β) /β

 , (4.5)

where the subscript c denotes the current camera frame and subscript w denotes the world frame;
R represents a global rotation matrix describing a rotation of the coordinate axes from the world
frame to the current camera frame. Note thatR is treated as invariate within each estimation step
and an incremental rotation matrix δR , derived from incremental Euler angles, is approximated
using the following small angle approximation:

δR =

 1 δψ −δθ
−δψ 1 δφ
δθ −δφ 1

 . (4.6)
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The global rotation matrix, R, is updated following each measurement update step to incorporate
the estimated incremental rotation, to give the new global rotation to be used in the next time-step.

The translation vector
[
tXw tYw (tZwβ)

]T describes the translation of the current camera
frame with respect to the world frame in world frame coordinates. The minus signs in
Equation (4.5) arise because a translation of the camera by tw results in the feature points
appearing to move by −tw in the scene. Note also that tZw has been scaled by the inverse focal
length in order to overcome the fact that there is much less sensitivity to tZw

motion [72]. The
factor tZw

β appears in parenthesis to indicate that this would be estimated (if estimating motion
as well as structure) as a single parameter and not as a product of two separately estimated
parameters.

By representing the global rotation matrix in the form

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (4.7)

Equation (4.5) can be used to derive an expression for the 2D location of the ith feature point on
the image plane for any image in the sequence,

[
xi,c yi,c

]T , in terms of the image coordinates
of the features in the world frame and the known motion parameters at the time the image was
captured:

[
xi,c
yi,c

]
=

1

1 + Zcβ

[
A (xi,w (1 + αi,wβ)− tXw

) +B (yi,w (1 + αi,wβ)− tYw
) + C (αi,w − (tZw

β) /β)
D (xi,w (1 + αi,wβ)− tXw

) + E (yi,w (1 + αi,wβ)− tYw
) + F (αi,w − (tZw

β) /β)

]
(4.8)

where

Zcβ = G (xi,w (1 + αi,wβ)− tXw) +H (yi,w (1 + αi,wβ)− tYw) + I (αi,w − (tZwβ) /β)

and

A = (r11 + r21δψ − r31δθ) , B = (r12 + r22δψ − r32δθ) , C = (r13 + r23δψ − r33δθ) ,
D = (r21 + r31δφ− r11δψ) , E= (r22 + r32δφ− r12δψ) , F = (r23 + r33δφ− r13δψ) ,

G = (r31 + r11δθ − r21δφ)β, H = (r32 + r12δθ − r22δφ)β, I = (r33 + r13δθ − r23δφ)β.

Therefore, Equation (4.8) is the measurement prediction equation that can be used in a
filtering framework to predict the image coordinates of the feature points in each image
of the sequence.

Since we aim to estimate both the structure and motion parameters, the state vector
used in this estimation framework consists of 7 + N parameters – six for the motion of
the camera relative to the world frame, N structure parameters corresponding to the N
feature points extracted from the first image (world frame), and the inverse focal length,
β, of the camera. Therefore the state vector can be written

XSFM =
[
tSFM,X,w tSFM,Y,w

(
tSFM,Z,wβ

)
δφSFM δθSFM δψSFM β αSFM,1...N,w

]T (4.9)
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where the subscript SFM is used to denote that this is the state vector for the structure
from motion EKF.

The motion of a planetary lander as it descends through an atmosphere can
potentially be quite complex since at any point there may be variable thrust retro-rockets
firing, complex pendulous motion under a parachute, wind buffeting, etc. Thus, a specific
dynamics model is not specified for use in the time-update step of the structure from
motion EKF. Only, the addition of noise to account for any motion that may occur is
considered in the time update, in the form of the process noise covariance matrix Q.

4.5 Scale Recovery

Structure from motion algorithms using a single camera suffer from the problem that
translational motion and structure can only be recovered up to an unknown scale factor.
This problem arises due to the fact that a scene point can be at any arbitrary depth along
the same perspective ray and still give the same (x, y) coordinate on the image plane, or
put another way, any scalar multiple of the 3 scene point coordinates results in the same
image. It is therefore impossible to determine the depth of points in the scene without
further information, as was discussed in Chapter 2.

To overcome this problem, and enable structure from motion algorithms to run, it
is common practice to set a single parameter to an arbitrary value in order to fix the
scale. In two frame problems this is often achieved by fixing the length of the baseline
between the two cameras i.e. fixing the magnitude of the translational motion between
each image frame. It is argued in [72] that this is not a good practice because if the
motion between two frames is ever zero at some point, then the estimation becomes
numerically ill-conditioned. Additionally, since motion is generally dynamic, fixing the
magnitude of inter-frame translation to some constant value for all frames results in the
scale changing from frame to frame. Instead, it is suggested to fix a static parameter
such as one of the structure parameters by setting its initial variance to zero in the EKF,
which results in all the other parameters automatically scaling themselves with respect to
this value [72]. While this approach was demonstrated to increase robustness, it is still
not a good practice to adopt since this requires that particular feature to be visible across
the entire sequence [58], which is unlikely to happen in practice. In this work the need to
arbitrarily fix the scale is avoided altogether by directly estimating the true scale factor.

Inspired by the work of Nutzi et al [80], vision and IMU data are fused in an EKF in
order to directly estimate the unknown scale factor. An IMU provides measurements of
acceleration that are given as fully scaled quantities. These acceleration measurements
can be integrated to give information on the absolute trajectory of the spacecraft as it
descends towards its landing site. Fusing this information with the un-scaled motion
estimates from single camera SFM allows for the direct estimation of the scale factor,
which may then be used to give absolute estimates of the motion and structure
parameters. Acceleration data is acquired from a 3-axis accelerometer, as was also
done in [80]; however this work also makes use of measurements from a 3-axis rate
gyro to improve the accuracy of rotational motion estimation. As indicated above, IMUs
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are common place in current first generation EDL systems Thus, it is reasonable to
assume that the use of IMU data will have almost no impact on the EDL system design
for future missions since these instruments are included almost by default.

To incorporate the information from the IMU to address the scale ambiguity, a simple
kinematics model of the spacecraft’s motion is adopted, using the following time update
equations:

t
k

= t
k−1

+ v
k−1

T +
1

2
a
k−1

T 2

v
k

= v
k−1

+ a
k−1

T (4.10)

Θ
k

= Θ
k−1

+ω
k−1

T

where t is the translation vector, v is the translational velocity vector, a is the translational
acceleration vector, Θ is the total rotation Euler angle vector, ω is the rotational velocity
vector, T is the time step duration, and subscript k denotes the current time step number.

To make a distinction between the EKF used for structure from motion and the EKF
used to incorporate IMU measurements, the subscript KIN will be used to indicate
kinematics. Equations (4.10) show the underlying kinematics model that we use for the
kinematics EKF. However there is a subtle difference between the quantities represented
in these equations and the quantities in the state vector. Namely, incremental velocity is
used instead of total velocity as this was found to give greater stability. The state vector
for the kinematics EKF is as follows:

XKIN =
[
tKIN,w δvKIN,w aKIN,w ΘKIN,w ωKIN,w λKIN

]T (4.11)

where tKIN,w is the unscaled translation vector (and where now tZ is estimated instead
of (tZβ)), δvKIN,w is the full-scale incremental velocity vector, aKIN,w is the full-scale
acceleration vector, and λKIN is the scale factor, which is the quantity

λ =
|t
w,abs
|

|t
w,unscaled

|
(4.12)

Note also that all quantities are in world frame coordinates, denoted by the subscript w.
Special consideration needs to be paid to the translation vector in Equation (4.11).

The acceleration vector comes directly from the IMU and is a full-scale quantity. The
same applies to the incremental velocity vector since this is derived by integrating the
acceleration. However, in order to relate the translation vector in the kinematics EKF to
the one from the SFM EKF it needs to transformed to an unscaled quantity. Thus, the
time update equation for the unscaled translation vector must be re-written as:
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t
KIN,w,k

= t
KIN,w,k−1

+
1

λ
KIN,k−1

(
v
KIN,w,k−2

+ δv
KIN,w,k−1

)
T +

1

2λ
KIN,k−1

a
KIN,w,k−1

T 2

= t
KIN,w,k−1

+
1

λ
KIN,k−1

v
KIN,w,k−1

T +
1

2λ
KIN,w,k−1

a
KIN,w,k−1

T 2 (4.13)

The full kinematics time update equation in matrix form is therefore given as:



t̂−
KIN,w,k

δ̂v
−
KIN,w,k

â−
KIN,w,k

Θ̂−
KIN,w,k

ω̂−
KIN,w,k

λ̂−
KIN,k


=



I3
T

λ̂+
KIN,w,k−1

diag

 v̂+
KIN,w,k−2

δ̂v
+

KIN,w,k−1

+ 1

 T 2

2λ̂+
KIN,k−1

I3 03 03 03×1

03 03 T I3 03 03 03×1
03 03 I3 03 03 03×1
03 03 03 I3 T I3 03×1
03 03 03 03 I3 03×1

01×3 01×3 01×3 01×3 01×3 1





t̂+
KIN,w,k−1

δ̂v
+

KIN,w,k−1

â+
KIN,w,k−1

Θ̂+
KIN,w,k−1

ω̂+
KIN,w,k−1

λ̂+
KIN,k−1


(4.14)

where the set of elements shown in the 1st row, 2nd column involves element-wise division
of two vectors. Therefore the prediction model Jacobian matrix is expressed as

J
f,KIN

=



I3
T

λ̂+
KIN,k−1

I3
T 2

2λ̂+
KIN,k−1

I3 03 03
∂f1

∂λ̂+
KIN,k−1

03 03 T I3 03 03 03×1
03 03 I3 03 03 03×1
03 03 03 I3 T I3 03×1
03 03 03 03 I3 03×1

01×3 01×3 01×3 01×3 01×3 1


(4.15)

where

∂f1

∂λ̂+
KIN,k−1

=
1

λ̂+
KIN,k−1

v̂+
KIN,w,k−2

T − 1

2
â+
KIN,w,k−1

T 2 (4.16)

To fuse the vision and IMU data, two separate measurement update equations in the
kinematics EKF are required: one to incorporate the estimates of un-scaled translation
and total rotation output by the SFM EKF every time an SFM measurement update is
carried out; and one to update estimates of the un-scaled translation and total rotation
every time the IMU outputs measurements of instantaneous acceleration and rotational
velocity. Therefore, there are two inputs to the kinematics EKF: (1) the results from the
SFM EKF; and (2) the IMU. In the following equations the quantities output from SFM
will be denoted by subscript V , and the quantities relating to the output from the IMU will
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be denoted by the subscript I. The equations for the kinematics EKF IMU and vision
measurement predictions are:

ŷ
KIN,I,k

= H
KIN,I,k

X̂−
KIN,k

=

[
03 03 I3 03 03 03×1
03 03 03 I3 03 03×1

]
X̂−
KIN,k

ŷ
KIN,V,k

= H
KIN,V,k

X̂−
KIN,k

=

[
I3 03 03 03 03 03×1
03 03 03 I3 03 03×1

]
X̂−
KIN,k

(4.17)

and the actual measurement vectors are expressed as

y
KIN,I,k

=

[
a
IMU,w,k

ω
IMU,w,k

]
y
KIN,V,k

=

[
t̂+
SFM,w,k

Θ̂+
SFM,w,k

] (4.18)

It is important to note that all quantities in Equation (4.18) are expressed in world
frame coordinates, although they are not output from their respective sources in this
form. A transformation must therefore be applied before inserting them into the
kinematics EKF. The measurements returned from the IMU will be in the IMU coordinate
system. Transforming these quantities into the world frame involves pre-multiplying by a
rotation matrix describing the rotation from the IMU frame to the world frame. In practice
this would involve applying a minimum of 2 rotations: one from the IMU frame to a
body-fixed frame; and then another from the body-fixed frame to the world frame. Once
in the world frame the gravity vector must be subtracted from the acceleration vector to
give the pure translational acceleration. The body fixed frame in this work is the camera
frame, and since the IMU is being simulated, a simplifying assumption is adopted that
treats the IMU frame as being coincident with the camera frame. Therefore, the
transformation from IMU frame to world frame involves pre-multiplying by the inverse of
the current global rotation matrix, since the global rotation matrix describes the rotation
from the world frame to the current camera frame. The global rotation matrix used in the
SFM EKF describes the rotation from the world frame to the current camera frame,
which is in the form required to obtain the total Euler angle rotation vector for the
kinematics EKF, therefore no transformation is required.

Another consideration that must be taken into account is that in the SFM EKF the Z-
component of the translation vector is estimated as a product of the inverse focal length
and tZw and so to incorporate this quantity as a measurement in the kinematics EKF it
must be divided by the current estimate of the inverse focal length since in the kinematics
EKF the Z-component is estimated directly.

4.6 Multi-Rate Sequence

In general, IMUs are capable of returning inertial measurements at a much higher rate
than a camera is able to capture images. Therefore a final word relating to sequencing
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Figure 4.4: Multi-rate data sequence

is required. In this work it is assumed that the IMU returns measurements at 160Hz and
the camera operates at a frame rate of 40fps. This would allow the IMU and camera
to be perfectly synchronized, however in real-world systems this would be difficult to
achieve, not least because a frame acquisition rate plus processing rate of 40fps would
be unrealistically high. Therefore, while we presently ignore the unrealistic frame rate in
order to reduce programming complexity, we do allow some flexibility with respect to the
synchronisation by deliberately misaligning the two measurement sources as shown in
Figure 4.4.

The two different updates are processed as soon as the measurements arrive, which
results in a time distribution that may look like that shown in Figure 4.4. The time
between an IMU update and a vision update is denoted by TIV , the time between a
vision update and an IMU update is denoted by TV I , and the time between two
consecutive IMU updates is denoted TII . The appropriate value of T should be
substituted into Equations (4.10), (4.13), (4.14), (4.15), and (4.16), depending on the
situation.

4.7 Digital Elevation Model Construction

The unscaled structure parameters estimated in the SFM EKF can be used to generate
a DEM of the scene visible in image 1 to enable hazard detection. In principle, this DEM
could be generated at any point during the estimation process and iteratively refined in
real-time as the motion, structure and scale factor parameters are updated in each step.
However, currently, it is chosen to produce the DEM at the end of the estimation sequence
once the parameters have been estimated to sufficient accuracy.

Due to the way that the system has been formulated, the structure parameters
represent the un-scaled depth of the feature points along the Z-axis of the world frame,
as shown in Figure 4.5. The first step in generating the DEM is to convert these values
to fully scaled depths by multiplying by the estimated scale factor, i.e.

Ẑ
w,abs,i

= α̂SFM,w,i λ̂KIN (4.19)

The corresponding X̂
w,abs

and Ŷ
w,abs

coordinates for each feature point can then be
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Figure 4.5: Relationship between parameters required for DEM construction relative to the world
frame coordinate system

calculated using Equation (4.1) with Ẑ
w,abs

, the estimated inverse focal length and the
image plane coordinates in the first image.

Instead of depth in the world frame, the height of each point above a ground reference
plane is required, as indicated in Figure 4.5. If the height of the world frame above the
ground reference plane is known (i.e. the initial altitude at the start of the estimation
process) then this is a simple case of subtracting the absolute depths from the height of
the world frame, as follows:

Ĥ
abs,i

= Z
ref
− Ẑ

w,abs,i
(4.20)

The resulting DEM will be relatively sparse, to an extent depending on the number
of features remaining at the end of the estimation sequence. Thus to facilitate analysis,
coarse 3D surfaces have been created by interpolating between the estimated points.

4.8 Results

To validate the developed algorithm it was first tested using pure synthetically generated
data. That is, a set of regularly spaced artificial feature points with randomized depths
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were generated and then their motion on the image plane was simulated (with added 5%
random noise) for each image in a 100 frame sequence based on a straight forward
trajectory. In this way the feature tracking stage has been skipped, which eliminates one
source of potential errors. In order to model the image motion a camera with full field of
view of 30° and a focal length of 30mm was assumed. The pure synthetic trajectory
starts with the spacecraft at a height of 2000m, and moves straight down along the
positive Zw axis at a constant velocity of 100m/s, and rotating at a constant rate of
0.02rad/s anticlockwise about the Yw axis to simulate swinging motion under a
parachute. The IMU measurements were simulated based on an ADIS16385 6-degree
of freedom inertial sensor by Analog Devices, which has a gyro noise spectral density of
0.04° s−1Hz−1/2 and an accelerometer noise spectral density of 180 × 10−6g Hz−1/2.
The sampling rate for the IMU was chosen to be 160Hz. Since it is assumed that the
spacecraft is descending at terminal velocity (which is assumed to be known to high
accuracy a priori), the acceleration measurements returned by the IMU are simulated to
consist of just random noise. Likewise, the rotational velocity components are also
random noise, apart from on the Yw axis, which is simulated to be 0.02rad/s plus random
noise. The results from the pure synthetic data are shown in Figure 4.6, along with their
associated ground truth values.

Figure 4.6 a) and b) show fluctuations for the X- and Y -components of the absolute
translation, respectively, starting with fluctuations as large as around 1m, but gradually
decreasing to around 40–60cm near the end of the 100 frame image sequence to show
better convergence. The fluctuating nature of these two results is to be expected since
there is no significant motion in these parameters and the measurements from the IMU
relating to these components consist only of random noise. Nevertheless, errors in
position of a few tens of cm from a height of 2km are considered to be good performance
and the observed decrease in fluctuation magnitude shows that these parameters may
converge to greater accuracy over a longer sequence. The result shown in Figure 4.6 c)
for the Z-component of absolute translation, on the other hand, is quite exceptional.

This is a significant result in the validation of the algorithm, because the Z-translation
is arguably the most important component as it is the parameter in which there is the most
significant motion in the chosen scenario, and it is also strongly related to the estimation
of the structure parameters via Equation (4.12).

Figure 4.6 d) and f), for the X- and Z-components of the total rotation, also show
fluctuations, again due to there being no significant motion in these parameters. However,
it is important to note that the scale on these two graphs is 10−4rad, meaning that at
worst the magnitude of the fluctuations are less than 1/10 of a degree. Figure 4.6 e)
shows the estimation results for the Y -component of total rotation, and again these are
very good since it is also a parameter where there is significant motion. Figure 4.6 g)
shows very accurate results for the estimation of inverse focal length, which is another
important parameter due to its relationship with the Z-component of translation. Since
this is a very small number combined as a product with the relatively large Z-component
of translation, slight errors in the inverse focal length can result in large errors in tZ when
the two values are separated. Figure 4.7 a) shows the ground truth DEM and b) the
estimated DEM, which are presented in a top-down view, using identical colour scales
to represent elevation. The importance of accurate motion estimation results is strongly
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Figure 4.6: Motion results for pure synthetic data (2000m, 90° trajectory): (a) X-component
of absolute translation; (b) Y -component of absolute translation; (c) Z-component of absolute
translation; (d) X-component of total rotation; (e) Y -component of total rotation; (f) Z-component
of total rotation; (g) inverse focal length
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Figure 4.7: Structure results for pure synthetic data (2000m, 90° trajectory): (a) Top down view of
ground truth DEM at equal sparsity to estimated DEM; (b) Top down view of estimated DEM

reflected in this figure, which shows that the DEM results are also exceptional as only
very subtle differences can be seen between the two plots. The results obtained from
the pure synthetic data experiment therefore provide a strong validation of the proposed
algorithm.

A number of additional tests were carried out to further validate the performance of
the algorithm, this time using actual images. These images were produced using the
Planet and Asteroid Natural scene Generation Utility (PANGU), and represent physically
realistic images of a spacecraft descending towards a remote planetary surface. DEMs
of the terrain models used in these additional tests were created using the PANGU LIDAR
tool in order to provide a dense ground truth of the surface structure. These DEMs are
shown in Figure 4.8 for the three challenging test cases at altitudes of 2000m, 1000m, and
500m.

Testing with actual images requires the use of a method for detecting and tracking
feature points through the entire image sequence. The feature tracking method adopted
in this chapter is the conventional KLT algorithm. Feature detection methods are not
perfect and so it is likely that a small number of features will be tracked erroneously.
Therefore, these tests also provide insight into the general robustness of the algorithm,
as well as providing a test of performance in a physically realistic scenario. In addition to
this, a slight increase in the complexity of the motion has been introduced to provide a
more realistic test trajectory. The effects of using different initial heights above the
surface was also examined since this would result in larger inter-frame image motion,
which may introduce instability in the results. Also, because the ultimate objective is to
develop a system that will run continuously up until touchdown, this gives an indication
of the performance at various altitudes. The first of these tests starts with a very
challenging initial height of 2000m and has exactly the same motion parameters as in the
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Figure 4.8: Full ground truth DEMs for PANGU surfaces used in tests at: a) 2000 m initial altitude;
b) 1000 m initial altitude; c) 500m initial altitude
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pure synthetic test in order to provide a direct comparison. Thus, it moves directly down
at a velocity of 100m/s, with 0.02rad/s rotation on the Yw axis. Again, the IMU
measurements were modelled as random noise for the acceleration components since
terminal velocity is assumed, and the rotational velocity measurements were simulated
as random noise for the X-component and Z-component, and 0.02rad/s plus noise for
the Y -component. The results for the motion parameters are shown in Figure 4.9, along
with their corresponding ground truth values. Figure 4.8 a) shows a full dense ground
truth DEM from a height of 2000m above the artificial surface. This DEM covers the
same area as that in the field of view of the camera at a height of 2000m, based on a
camera with 30° full field of view and focal length of 30mm. Figure 4.9 h) shows the
estimated DEM alongside a sparse ground truth DEM, that was generated from the full
ground truth DEM by selecting points that correspond to the features tracked throughout
the image sequence. The estimation process was carried out over a 100 image
sequence, as was done in the pure synthetic test.

The X-component of absolute translation in Figure 4.9 a) shows divergence by the
end of the 100 frame image sequence, resulting in a final position error of around 10m.
It was found that this result could be improved by a long iterative process of adjusting
the tuning parameters in the EKF; however this had significant adverse effects on all the
other motion parameters. It is important to note that this is a component in which there
is no motion in the images so drift may be a consequence of the random noise in the
IMU signal, or more likely due to outliers in the feature tracking process and errors due
to linearisation in the EKF. Therefore further work into the cause and eradication of this is
needed, such as outlier detection and removal and/or more robust filtering methods. The
Y -component of translation, shown in Figure 4.9 b), shows fluctuations that appear along
the image sequence. This is similar in behaviour to that observed in the pure synthetic
test, indicating that the results may be driven by noise from the IMU. However, these
fluctuations are considerably smaller in magnitude than those of the pure synthetic test
(worst case 5 mm compared to 1m), thus these results can be considered to be very
good. In Figure 4.9 c), remarkable performance is again observed in the estimation of
the Z-component of translation, giving strong support for the potential of the algorithm for
the same reasons discussed above.

In Figure 4.9 d), a considerable improvement in the results for the X-component of
total rotation is observed compared to the results from the pure synthetic test, where
now the scale on the Y -axis of the figure is 10−5, compared to 10−4 previously. The
rotation angle can be seen to be fluctuating at first, but quickly settles to much less severe
fluctuations with a maximum peak-to-peak variation of around 4×10−5rad, which equates
to around 0.02°. Therefore, it can be considered that this parameter is estimated to a high
degree of accuracy, giving strong weight to the potential of this method for controlling the
descent of a spacecraft to pin-point accuracy. Figure 4.9 e) shows some discrepancy
between the ground truth value and the estimated value for the Y -component of total
rotation. The results appear to follow the general trend, in that an approximately constant
angular rate is estimated, but that this is slightly lower than the true value, meaning that
the total rotation is underestimated by the end of the sequence. However the amount by
which it deviates from the ground truth is only around 5.6 × 10−3rad (0.32°) by the end
of the sequence, which can still be considered a very good result. The results for the
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Figure 4.9: Motion results from 100 frame PANGU image sequence (2000m, 90° trajectory): a)
X-component of absolute translation; b) Y -component of absolute translation; c) Z-component
of absolute translation; d) X-component of total rotation; e) Y -component of total rotation; f) Z-
component of total rotation; g) inverse focal length.
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Figure 4.10: Structure results from 100 frame PANGU image sequence (2000m, 90° trajectory):
a) Top down view of ground truth DEM of equal sparsity to estimated DEM; b) Top down view of
estimated DEM.

Z-component of total rotation in Figure 4.9 f) are generally comparable to those obtained
in the pure synthetic test. The rotation angle is seen to be fluctuating around the ground
truth value, but in this case with slightly less severity. However, a slight positive trend is
also observed that may or may not continue over a longer sequence. Regardless, this
can still be considered a highly accurate estimation of the Z-rotation since in the worst
case the estimation is in error by only 0.2° at the beginning of the sequence, and quickly
settles to less severe fluctuations. Figure 4.9 g) also shows a very good estimation of the
inverse focal length, which is seen to quickly converge to the ground truth value, finishing
with a discrepancy of only 4.2× 10−4mm−1.

Figure 4.10 shows that, for the most part, the estimated DEM (b) is in close agreement
with the sparse ground truth DEM (a) over much of the region of coverage. However, it
can be seen that there are still some anomalies around the edges, especially in the
rightmost region. Over the estimated surface it can be seen that in the best-case there
is a discrepancy of approximately only 3–5m, which is very acceptable considering this
DEM is estimated from a height of 2km. However, in the worst-case there is a discrepancy
of around 22m in the bottom left corner which is still reasonable, but shows that not all
the feature points are estimated to high accuracy. The reason for this may be due to a
combination of outliers in the feature tracking, EKF linearisation errors and errors in the
estimation of the scale factor caused by the poorly estimated X-translation, which itself is
likely due to the presence of outliers and linearisation errors. It is also worth mentioning
that large numbers of features were lost during tracking over the 100 frame sequence, due
mainly to divergence whilst iteratively refining the tracking solution in the KLT algorithm.
Thus the resulting DEM is very sparse, and covers only a small area of the terrain in the
field of view of the camera, as can be seen by the white region surrounding the DEM in
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Figure 4.10, where there are no feature points present.
The results of a different test using PANGU images are now presented. This time the

spacecraft starts at a height of 1000m, in order to provide some insight into the
performance of the developed technique at a later stage of the descent, and also to
investigate whether a better quality DEM can be obtained by starting at a lower altitude,
as might be expected. In this case the velocity of the spacecraft is 80m/s straight down,
which is assumed to remain constant throughout the 100 frame sequence. Rotational
velocity of 0.02rad/s on the Z-axis is now also introduced to simulate some residual
rotation from spin stabilization during the entry phase, as well as keeping the 0.02rad/s
rotational velocity in the Y -axis. These results are shown in Figure 4.11.

Figure 4.11 a) again shows the presence of drift in the X-component of absolute
translation, although now to slightly less severity, ending with a discrepancy of 7.8m.
Figure 4.11 b) also seems to be showing signs of drift in the Y -component of absolute
translation, although the final value is only around 33mm, so this can still be considered
an exceptional result from the challenging height of 1km. Figure 4.11 c) again shows
exceptional performance in the estimation of the Z-component of absolute translation,
which is important as this is the parameter in which there is the most significant motion.
Signs of drift are now also observed in the X-component of total rotation in Figure 4.11
d), but again the scale in the figure is 10−4rad, meaning the final value is in error by only
a fraction of degree, which is still a very positive result. Figure 4.11 e) shows similar
general behaviour to that obtained previously in Figure 4.11 e) for the Y -component of
total rotation. The final value in this case still only has a discrepancy of around 0.01rad
( 0.6°). Now that there is significant motion in the Z-component of rotation it is observed
in Figure 4.11 f) that the results for this parameter are no longer driven by noise, and in
fact it is observed that this component is estimated to a very high accuracy, where the
final error is only 0.05°. Figure 4.11 g) shows that again the results for the estimation of
the inverse focal length are very good.

The degree of similarity between the estimated and sparse ground truth DEM shown
in Figure 4.12 is now much greater. A few anomalies are still present; however, these are
much less significant than in the previous case. The maximum discrepancy is now only
around 8m, which is comparable to the best-case discrepancy in Figure 4.9. The best-
case in Figure 4.12 is now only around 0.5m. It can be seen that the bottom portion of
the DEM has roughly the same elevation values as is observed in the ground truth, thus
indicating that the general shape and depth is correct for this region of the DEM. Overall
the shape is very similar and the errors are much smaller, implying that greater accuracy
can be expected as the spacecraft gets closer to the surface. However, comparing this
DEM with that in the previous case, a clear difference in size can be observed. It was
noticed that the rate of loss of feature points was much larger than in the case at 2000m,
which was due to a greater tendency of divergence in the iterative tracking step of the
KLT algorithm. This suggests that as the camera gets closer to the surface and the inter-
frame image motion increases, there is significantly reduced stability in the KLT tracker.
This results in a much sparser DEM, and in this case resulted in a much smaller DEM
due to the remaining features being relatively closely clustered.

Figure 4.13 presents the results from another PANGU sequence, with the spacecraft
starting at an initial altitude of 500m, to investigate whether decreasing the altitude even
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Figure 4.11: Motion results from 100 frame PANGU image sequence (1000m, 90° trajectory): a)
X-component of absolute translation; b) Y -component of absolute translation; c) Z-component
of absolute translation; d) X-component of total rotation; e) Y -component of total rotation; f) Z-
component of total rotation; g) inverse focal length.
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Figure 4.12: Structure results from 100 frame PANGU image sequence (1000m, 90° trajectory):
a) Top down view of ground truth DEM with equal sparsity to estimated DEM; b) Top down view
of estimated DEM.

further will lead to further improvement in the DEM as was seen above when going from
2000m to 1000m. In this case the velocity of the spacecraft is 60m/s, and again the
trajectory was chosen so that the spacecraft is moving directly downwards. The
remaining motion parameters are identical to those in the 1000m case.

With the initial height at 500m there is a further improvement in the X-component
of translation in Figure 4.13 a), although drift is still observed in this parameter. The
final value is now in error by around 5m. If nothing else this supports the hypothesis
that the results are expected to improve as the spacecraft gets closer to the surface.
The Y -component of translation also shows an improvement over the results obtained
for the 1000m case, where it is observed in Figure 4.13 b) that the worst case error is
around 12mm. Figure 4.13 c) again shows very good results for the Z-component of
translation, as in all the previous cases. Figure 4.13 d) shows a marginal improvement
in the X-component of total rotation and the final discrepancy in this parameter is still
only a fraction of a degree. In Figure 4.13 e) a slight degradation in the estimation of the
Y -component of total rotation is observed compared to the 1000m case. This is likely due
to a slight increase in the number of feature outliers or increased linearisation error as
the inter-frame image motion increases as the spacecraft gets closer to the surface. The
results in Figure 4.13 f) and g) for the Z-rotation and inverse focal length, respectively,
show that these two parameters are still estimated to a very high degree of accuracy, as
was observed in the 1000m case. In this case the Z-rotation can be seen to be fractionally
better than in the previous case, and the inverse focal length appears to converge quicker.

Figure 4.14, in general, shows a high degree of similarity between the two DEMs,
with the overall shape appearing to agree quite closely. Therefore we can conclude that
this shows an improvement over the DEMs presented in Figure 4.12, although the
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Figure 4.13: Motion results from 100 frame PANGU image sequence (500m, 90° trajectory): a)
X-component of absolute translation; b) Y -component of absolute translation; c) Z-component
of absolute translation; d) X-component of total rotation; e) Y -component of total rotation; f) Z-
component of total rotation; g) inverse focal length.
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Figure 4.14: Structure results from 100 frame PANGU image sequence (500m, 90° trajectory): a)
Top down view of ground truth DEM with equal sparsity to estimated DEM; b) Top down view of
Estimated DEM.

improvement is not as dramatic as that observed between Figure 4.10 and 4.12. The
best case discrepancy is now 0.4m (compared with 0.5m previously) and the worst case
is now approximately 6m (compared with 8 m previously). Therefore, these results give
further support to the expectation that more accurate results should be obtained as the
spacecraft gets nearer to the surface.

The above DEMs, particularly those of Figure 4.12 and 4.14, are particularly small
and sparse. This is a consequence of a large number of feature points being lost during
the tracking process. The main reason for the loss of features may be due to drift in
the minimization step of the KLT algorithm, which is based on a pure translation image
motion model (see [29, 46–48] for details). If the tracking solution for a particular feature
does not converge after a fixed number of iterations, divergence is assumed and that
feature is rejected. This explains the sparsity, and to an extent the size of the resulting
DEM, however the actual size of the DEM is coincidental since it just so happened that
the remaining features were relatively closely clustered in Figure 4.12 and 4.14.

To examine the potential of the current method for producing accurate DEMs of a
larger area, and to increase the density of the DEM, the number of images in the
sequence was reduced so as to retain a much larger number of features spanning a
larger area of the initial image. Figure 4.15 presents the results from the trajectory with
500m initial altitude, with velocity of 60m/s in the Zw axis as before, but now for only a 36
frame image sequence.

The results for the motion parameters in Figure 4.15 in general show a slight
improvement in all parameters except the Y -component of translation in which some
drift is observed although this is very slight as it only drifts to a value of 8 mm. Also in
the X-component of translation, a significant improvement is seen (final value of 0.8m
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Figure 4.15: Motion results from 36 frame PANGU image sequence (500m, 90° trajectory): a)
X-component of absolute translation; b) Y -component of absolute translation; c) Z-component
of absolute translation; d) X-component of total rotation; e) Y -component of total rotation; f) Z-
component of total rotation; g) inverse focal length.
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Figure 4.16: Structure results from 36 frame PANGU image sequence (500m, 90° trajectory): a)
Top down view of ground truth DEM with equl sparsity to estimated DEM; b) Top down view of
estimated DEM; c) Rotated view of ground truth and estimated DEMs.

compared to 5m) even though the drift behaviour is still present. The DEM in The DEMs
in Figure 4.16 are now around twice as large and can be seen to be denser from the fact
that some clear fluctuation is now observed in the surface. However this fluctuation
should not be occurring as can be seen by comparing it with the ground truth DEM.
Overall the estimated depth/elevation values appear to be in relatively close agreement
over much of the surface. However it can be seen that now the minimum error is
approximately 2m and the maximum error is around 22m. The point at which the worst
case error occurs can be clearly seen in Figure 4.15 i), which shows the DEM from a
different view point. This point is a clear outlier in the DEM, which otherwise is showing
good agreement for the overall shape of the estimated terrain. This again highlights the
need for a reliable method of removing outliers from the feature tracking or more robust
filtering techniques. The fact that the DEM has reduced general elevation accuracy may
also suggest that the depth parameters require a longer sequence in order to converge.
Further work is required to determine if this is the case, and if so a modified feature
tracking method may need to be employed to enable the features to be tracked reliably
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for longer period of time. However, it can be concluded from the results of the motion
estimation that the use of a greater number of image features has the potential to lead to
a greater degree of accuracy in the estimated parameters.

4.9 Conclusions

In this chapter a multi-source, multi-rate data fusion algorithm has been presented that
combines recursive feature-based structure from motion with measurements from an
inertial measurement unit, as a means to directly estimate the unknown scale factor
present in single camera structure from motion algorithms. It has been demonstrated
that this approach is capable of providing highly accurate and robust of estimates of the
3D motion parameters and scene structure using a single camera. It is believed that the
approach proposed has very strong potential to supply the sensing accuracy required to
achieve the landing precision and hazard detection requirements of future missions to
autonomously land a spacecraft on the surface of a remote planetary body at a
preselected site of scientific interest.

The work presented here represents only a small part of what would be required in
a full, next-generation entry, descent and landing system, and thus only tackles a subset
of the capabilities needed by such a system. However, it provides an important first
step and solid foundation on which to build the required extra capabilities. Although very
promising results have been shown for the estimation of the motion parameters and DEM
construction, a further investigation to provide an alternative feature detection algorithm
and a more robust filtering technique is possible. The issue of sparsity must be addressed
in the currently estimated DEM in order to maximize its usefulness in hazard detection
and avoidance. Therefore, many more features, and the ability to track them for longer
periods of time is clearly required. Alternatively, an altogether different method could be
applied for estimating the structure of the terrain, such as a shape from shading algorithm,
which could then be combined with the current technique as a way of filling in the gaps
between the feature points.
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5 INCREASING ROBUSTNESS

The structure from motion framework described in Chapter 4 was chosen due to its
reported claims of increased robustness compared to the other techniques discussed in
the literature. The same is also true for the decision to adopt a feature-based method
over an optical flow-based method. In this chapter, we look at additional measures that
can be employed to further increase the robustness of the estimation of the scene
structure by examining ways in which the filtering framework can be made more robust
in comparison to the conventional techniques such as the standard extended Kalman
filter, as used in the previous chapter. In this chapter, we present two different alternative
filtering approaches that have been applied in an attempt to improve upon the results
presented in Chapter 4. The first of these is a method based on the H∞ filter, which
despite its potential for greatly improving robustness, unfortunately did not result in
particularly significant improvements. The second approach is by far the largest
contribution of this thesis, which consists of a fully adaptive, self-initialising filtering
framework based upon a parallel master-slave filtering framework built on the
square-root unscented Kalman filter. In this filtering arrangement the master filter is
responsible for estimating the structure parameters and the slave filter is responsible for
adaptively re-tuning the master filter in the event of suboptimal initial tuning parameters
and possibly changing noise statistics. The chapter concludes with a set of
proof-of-concept structure estimation results that demonstrates the feasibility of the
approach. More conclusive testing of this method is presented in the remaining chapters
of this thesis.

5.1 State Estimation Algorithms

The most widely used filtering method in state estimation for linear systems is the
Kalman Filter (KF). The reason for this is that it is relatively simple to implement, it is
robust, tractable and it is provably optimal in the case of Gaussian noise distributions for
both the measurement and process noise. However, many real life systems are not
linear in nature, therefore the application of the Kalman filter to non-linear systems can
be very difficult. One of the most common approaches is to implement the Extended
Kalman Filter (EKF), which linearises the process and measurement model equations
about the current state estimate, via the use of a first order Taylor expansion, so that the
linear KF equations may be used to update the state of the system. This linearisation
step gives rise to a filtering framework that is sub-optimal, which in some cases can be a
source of significant error, especially when the system is highly non-linear (i.e. when the
higher order terms of the Taylor expansion are significant), in which case the
performance of the EKF can become severely degraded, often to the point where
divergence may occur [82]. The EKF can, therefore, often only be reliably applied in
situations where the system dynamics are almost linear on the time scale of the update
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intervals [86]. Another potential drawback from standard Kalman filtering theory is the
underlying assumption that the noise processes acting on the system are assumed to
be fully known and governed by a Gaussian distribution, as mentioned above. However,
this assumption can often be invalid in many applications, leading to further difficulties in
successfully applying the EKF.

These issues have been well known for a long time, and so many attempts have
been made to derive alternative filtering techniques that either attempt to entirely bypass
those aspects of the EKF that lead to the above mentioned weaknesses, or that attempt
to overcome these limitations by incorporating additional mechanisms or constraints in
order to increase the overall robustness of the filter, despite the inherent limitations, to
prevent the filter from diverging. An example of a filtering technique that falls into the
latter of these two categories is the extended H∞ filtering (EH∞F) method developed by
Einicke and White [87, 88]. The H∞ filter achieves robustness in the face of uncertainty
in the system model and/or uncertainty in the characteristics of the noise disturbances
by effectively minimising the worst-case estimation error. In Section 5.2 we present a
detailed discussion of the EH∞F and assess its suitability for SFM estimation in the
context of planetary descent. Despite performing well in motion estimation, it
unfortunately was found not to offer any significant improvement in the estimation of the
structure parameters, thus leading to the development of an alternative method that falls
into the first category mentioned above. This second approach is the subject of
Section 5.6, but some additional details are also presented in the remainder of this
section.

To overcome the limitations of the EKF when applied to significantly non-linear
systems, Julier and Uhlmann [86, 89], and Julier, Uhlmann and Durrant-Whyte [90]
proposed and demonstrated the effectiveness of a Kalman filter type algorithm that does
not require linearisation of the system models. This is achieved through the use of the
unscented transform, which is based on the idea that it is easier to approximate a
probability distribution than it is to approximate an arbitrary non-linear
function [86, 89, 90]. In the unscented transform, a small number of deterministically
chosen points are selected such that their sample mean and covariance match the
distribution that is being approximated. These points, known as sigma points, are then
transformed using the full non-linear system models, to yield a cloud of transformed
points from which an estimate of the transformed mean and covariance can be
calculated. This method of propagating the probability distribution of the state of the
system was demonstrated to produce much more statistically consistent estimates of the
true distribution than can generally be achieved using the EKF. The unscented transform
has the added benefit of being able to approximate non-Gaussian distributions since its
deterministically chosen sigma points can encode higher order information. The
resulting filtering algorithm, known as the Unscented Kalman Filter (UKF), is, according
to [89], also of the same order of computational complexity as the EKF, therefore it does
not require any additional computational resources to implement. For these reasons, the
authors of [86,89,90] recommend the use of the UKF algorithm over the EKF in virtually
all applications.

Despite the reported benefits of using the UKF over the EKF, it is not without its
implementation difficulties. Covariance matrices are, by definition, at least positive semi-
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definite matrices. In the conventional UKF algorithm, calculation of the sigma points
in each time step requires taking the square-root of the state covariance matrix, which
is only uniquely defined for positive definite or positive semi-definite matrices. For any
other type of matrix a solution is not possible. However, due to machine inaccuracies
in representing floating point numbers, the repeated matrix square root operation, often
achieved using the Cholesky factorisation, can lead to an accumulation of errors that
can result in the state covariance matrix becoming non-positive semi-definite, causing
the Cholesky factorisation to fail. For this reason, and also for the fact that the Cholesky
factorisation is the most computationally expensive operation in the UKF algorithm, van
der Merwe and Wan [91] proposed the Square-Root Unscented Kalman Filter (SR-UKF),
which directly propagates the square root of the state covariance matrix instead of the full
state covariance in order to avoid the need to re-factorise for the computation of the sigma
points in each time step. The resulting algorithm is not only more computationally efficient
(in certain formulations), but it also guarantees positive semi-definiteness of the state
covariance matrix [91], which may lead to improved performance and increased ease
of implementation. It is for this reason that the SR-UKF was selected as the backbone
filtering framework for the work presented in Section 5.6 of this chapter.

5.2 H∞ Filtering

The majority of recursive SFM algorithms presented in the literature utilise estimator
frameworks based on the L2 norm, mainly in the form of the extended Kalman filter
(EKF). However, as briefly touched upon above, it is widely known that the EKF has a
number of limitations that may lead to significant degradation of the accuracy and
robustness of the computed solution if certain conditions relating to the underlying
assumptions of the EKF are not met. The EKF assumes that the statistics of the noise
signals are known in advance and that this noise is governed by a Gaussian distribution.
This is often not true in practice, and as such may lead to instability in the filtered results.
The EKF is used when either the measurement or dynamics model, or both, are
non-linear functions of the state variables. In each time-step, a linearisation about the
current state parameters is carried out via the use of a first order Taylor expansion, and
then the state is updated using the linear Kalman filter update equations. This
linearisation may be a source of significant error, especially when the system is highly
non-linear (in this case the higher order terms of the Taylor expansion become
significant), in which case the performance can become severely degraded [82].

The EKF attempts to minimise the variance in the estimated state variables, but this
is a sub-optimal solution when the measurement and dynamics models are non-linear
functions. A more robust filtering framework, known as H∞ filtering, can be derived
through an application of game theory in which nature (the adversary) is viewed as
trying to maximise the error in the state by introducing large disturbances in the system,
whereas the engineer’s goal is to try and find a state estimate that minimises the error.
By setting up a cost function in which the numerator consists of the weighted mean
square error of the state (the property that we are trying to minimise) and the
denominator consists of the disturbances that nature is trying to maximise, this forces
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nature to play fair by ensuring the disturbances remain bounded. This type of cost
function is difficult to minimise directly so instead a performance bound is applied and an
estimation strategy is developed to ensure that a state estimate is found that results in
the cost function being less than the chosen upper bound. In other words the goal is to
find estimates that satisfy a worst-case performance criterion. For more details
see [87, 88, 92, 93]. This type of estimation strategy is more robust in the face of
unknown noise statistics and modelling uncertainty, and can be easily extended to allow
higher order terms in the Taylor expansion to be modelled as additional noise
uncertainties that are functions of the state estimation error, thereby also making it more
robust when dealing with highly non-linear systems [82]. The EH∞F approach of [87,88]
was adopted for the filtering framework of a similar recursive SFM algorithm for use on
an unmanned aerial vehicle (UAV) equipped with a single camera by other researchers
in our department, where it was found that it offered superior performance over the
classic EKF. The results of this work are presented in [82]. It has also been applied in
this project, and published in a conference paper – see [94], where it was found to offer
an improvement in the estimation of the motion parameters compared to the EKF.
However, it was unfortunately found not to offer any improvement in the estimation of the
structure parameters, and so an alternative method was ultimately sought that will be
presented in Section 5.6. However, until then we proceed with a presentation of an H∞
method similar to that of Einicke and White [87, 88] applied to the highly non-linear SFM
algorithm presented in the previous chapter, as an attempt to improve estimation
accuracy and robustness.

Consider a system with a non-linear measurement function

yk = h (xk,vk) , (5.1)

where xk is the state vector and vk is the measurement noise vector. Expanding h in a
Taylor series about the current state estimate x̂k gives

h (xk) +H x̂k · (xk − x̂k) + ∆h (xk − x̂k) , (5.2)

where ∆h represents the higher order terms of the Taylor series expansion, which is
a function of (xk − x̂k), and H x̂k is the Jacobian matrix of h with respect to the state
variables and evaluated at x̂k. Rearranging Equation (5.2) gives a linearised equation for
the measurement function

zk = H x̂kxk + vk + qk + rk (5.3)

where qk = h (x̂k) −H x̂k x̂k and rk = ∆h (xk − x̂k), which expresses the uncertainty as
an additional exogenous input satisfying the H∞ performance criterion
‖rk‖22 ≤ δ2h ‖(xk − x̂k)‖22.

Uncertainties due to modelling errors in the system equation can be incorporated into
the model in a similar way to which the higher order terms of the measurement model
were included. This leads to a process model equation of the form

xk =
(
F x̂k−1

+ ∆F

)
xk−1 + wk−1 (5.4)
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where F x̂k−1
is the process model Jacobian matrix, ∆F represents the higher order terms

in the Taylor series expansion of the non-linear process model equation, and wk is the
process noise vector. Rearranging Equation (5.4), and assuming that sk = (∆F xk−1) is
proportional to ∆F (xk − x̂k), the uncertainty of the system matrix can be associated with
the estimation error. This results in

xk = F x̂k−1
xk−1 + wk−1 + sk (5.5)

where sk represents an additional exogenous input satisfying the H∞ performance
criterion ‖sk‖22 ≤ δ2F ‖(xk − x̂k)‖22.

The system represented by Equations (5.3) and (5.5) can be solved by introducing a
scaling of the input noise signals in lieu of the additional inputs sk and rk, which can be
regarded as simple weights. The problem may then be re-written as

xk = F x̂k−1
xk−1 + cwk−1

zk = H x̂kxk + cvk
(5.6)

where c = 1− γ2δh2 − γ2δ2F . See [88] for proof of this approach and further details.
The EH∞F can now be obtained by applying the linear H∞ equations in a similar way

to which the EKF is obtained using the linear Kalman filtering equations. This results in
a set of equations that are identical to the standard EKF equations in all but the state
covariance update equation in the measurement update step, which is now expressed as

P k|k = P k|k−1 − P k|k−1
[
−I HT

k

] [P k|k−1 − γ2I −P k|k−1H
T
k

−HkP k|k−1 HkP k|k−1H
T
k +Rk

]−1 [−I
Hk

]
P k|k−1

(5.7)

Equation (5.7) represents the only change to the formulation of the SFM algorithm
that was presented in Chapter 4, except that this now introduces an additional tuning
parameter, γ, that must be manually tuned for optimum performance. In addition to this,
we now also investigate an extra means of increasing robustness, not by making further
changes to the SFM filtering formulation, but by making use of a modified approach to KLT
tracking that aims to increase robustness through the introduction of information provided
by inertial measurements. This modification to the KLT tracking algorithm was discussed
in Chapter 3.

5.3 H∞ Results

Testing the performance of the EH∞F with IMU-KLT was carried out in much the same
way as the tests in Chapter 4 in that a sequence of 100 artificial images were generated
from a simulated planetary surface using PANGU. The image sequence represents a
short section of the descent phase for a spacecraft following a semi-realistic trajectory.
The results presented in this section are again of a deliberately challenging scenario in
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which the spacecraft begins at an initial height of 2000m above the surface. The initial
velocity of the spacecraft was chosen to be 100m/s straight down, again roughly based
on the expected velocity profile for the Mars Science Laboratory spacecraft, presented
in [85], in order to provide representative test conditions at this altitude. In addition to
this, a rotational velocity of 0.02rad/s was applied to both the Y - and Z-axes to simulate
pendulous motion under a parachute and some residual spin from spin-stabilisation
during the entry phase. Both the translational and rotational velocities were assumed to
remain constant over the entire 100 image sequence. All other motion parameters were
set to zero with random noise applied for the IMU measurements using representative
noise figures based on an ADIS16385 6-degree of freedom inertial sensor by Analog
Devices. Figure 5.1 presents the results for the estimated motion parameters along with
ground truth values.

Figure 5.1 (a) presents the results for the X-component of full scaled translation of
the spacecraft with respect to the world frame. This graph indicates that there is an issue
in the estimation of this parameter. The ground truth indicates that the translation should
be zero, but instead the estimated quantity diverges exponentially to a value of around
10000mm (10m) over the 2.5 second duration of the image sequence. The apparent
lack of robustness in the estimation of this parameter may be caused by a number of
different factors such as IMU drift or errors in feature tracking. It was found that this
component could be improved through applying different values to the tuning parameters
although this resulted in significant adverse effects on the other parameters, particularly
those in which significant motion is present, which may be considered the more important
parameters. Nevertheless, further investigation is required into the cause and eradication
of this erroneous result. Figure 5.1 (b) shows the results for the Y -component of fully
scaled translation. In this case the results are much more positive since, although some
divergence is observed, the final result is only in error by around 7mm. In this case, a
likely cause is that the results are driven by the noise in the IMU signal. In Figure 5.1 (c),
exceptional performance is observed in the estimation of the Z- component of translation,
where it can be seen that the results follow the ground truth very closely for the whole
duration of the image sequence. This is a significant validation of the proposed algorithm
since this parameter can be considered to be one of the most important. Motion along
the Z-axis is the least sensitive component to distinguish in single camera SFM, therefore
a strong performance for this parameter is very significant. It is also strongly related to
the depth of the feature points, suggesting that it should be possible to obtain accurate
structure results using this algorithm.

Figure 5.1 (d) presents the results for the X-component of total rotation. Here it is
observed that signal appears to be mostly influenced by noise, which is to be expected
since there is no motion for this parameter. However, this result still represents very
good performance since the final result is in error by only 1.3x10−3rad (0.07 degrees). In
Figure 5.1 (e) and (f) the results are again remarkable as they are seen to follow the
ground truth very closely. These parameters are also important given that they are
parameters in which there is significant motion, and so it is important that they are
estimated accurately.

Figure 5.1 (g) presents the results for the estimation of the inverse focal length, in
which it is observed that the estimation of this parameter converges rapidly to the correct
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Figure 5.1: EH∞F motion results from 100 image PANGU sequence (2000m initial altitude, 90°
trajectory, 100m/s vertical descent velocity, 0.02rad/s rotational velocity about Yw- and Zw-axes):
a) Xw-component of fully scaled translation; b) Yw-component of fully scaled translation; c) Zw-
component of fully scaled translation; d) Xw-component of total rotation; e) Yw-component of total
rotation; f) Zw-component of total rotation; g) Inverse focal length.

85



LUKE FEETHAM PhD THESIS CHAPTER 5. INCREASING ROBUSTNESS

Figure 5.2: EH∞F structure results from 100 image PANGU sequence (2000m initial altitude, 90°
trajectory, 100m/s vertical descent velocity, 0.02rad/s rotational velocity about Yw- and Zw-axes): a)
Sparse ground truth DEM; b) Estimated DEM; c) Errors in estimated Xw feature point 3D position;
d) Errors in estimated Yw feature point 3D position; e) Errors in Zw feature point 3D position.

value of 1/30mm. This is also an important result since it is bound together with the Z-
component of translation, and it is also what allows metric values of the other components
to be obtained without prior calibration of the camera. Therefore, a quick convergence is
important for the accuracy of the other motion parameters.

Figure 5.2 (a) presents the ground truth DEM of the terrain that has been artificially
reduced in density by selecting those points from a full resolution ground truth DEM that
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Figure 5.3: World frame (Xw, Yw) positions of IMU-KLT tracked feature points in EH∞F SFM for
2000m initial altitude

correspond with the tracked feature points. These points can be seen in Figure 5.3. This
was done so that a direct comparison can be made with the estimated results, which
are shown in Figure 5.2 (b). As can be seen very clearly from the figure, there is a
problem with the estimated structure results since it in no way resembles that of the
ground truth. This problem is further indicated in Figure 5.2 (e), which shows the errors in
the estimated depth for each of the tracked feature points and from this it can be seen that
the majority of the errors lie within the range [0m, -100m], with some even approaching
−150m. These errors also lead to errors in the (Xw, Yw) coordinates that can be observed
in Figure 5.2 (c) and (d), as these are calculated using the camera model equation and
the estimated depths. The reasons for this problem are not fully understood especially
given that the motion estimation results appear to be very accurate. It may simply be
that 100 images did not provide sufficient time for the structure estimates to converge to
sufficient accuracy now that there are many more feature points, or it may be an unknown
bug in the code. Further investigation is needed to determine what this problem is.

A comparison is made in Figure 5.7 between the motion results of the EH∞F and
some results using the EKF-based SFM algorithm presented in Chapter 4, except that in
order to make a direct comparison between the EH∞F algorithm and the EKF algorithm
for the 2000m initial altitude case, the EKF algorithm was run on the same image dataset,
which unlike the results in Chapter 4 now also has a rotational velocity of 0.02rad/s about
the Y -axis. The EKF is now also run using the IMU-KLT tracked features. However, we
first present the results from the EKF in Figure 5.4 before examining the comparison in
Figure 5.7.

Figure 5.4 (a) shows the estimation of fully scaled translation in the X-direction. In
reality there is no motion in this parameter since the spacecraft is moving solely in
vertical direction down towards the surface, however the estimated results show a clear
exponential divergence, which by the end of the 100 image sequence has reached a
value of above 14000mm (14m). This behaviour was also noted in the results of
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Figure 5.4: EKF-SFM motion results from 2000m initial altitude, 90° trajectory, 100m/s vertical
descent velocity, 0.02rad/s rotational velocity about Yw- and Zw-axes, using the IMU-KLT feature
tracker: a) Xw-component of fully scaled translation; b) Yw-component of fully scaled translation;
c) Zw-component of fully scaled translation; d) Xw-component of total rotation; e) Yw-component
of total rotation; f) Zw-component of total rotation; g) Inverse focal length.
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Figure 5.5: EKF-SFM structure results from 2000m initial altitude, 90° trajectory, 100m/s vertical
descent velocity, 0.02rad/s rotational velocity about Yw- and Zw-axes, using the IMU-KLT feature
tracker: a) Sparse ground truth DEM; b) Estimated DEM; c) Errors in estimated Xw feature point
3D position; d) Errors in estimated Yw feature point 3D position; e) Errors in estimated Zw feature
point 3D position.
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Chapter 4, Figure 4.9, however now it is slightly more severe. This may be a
consequence of now having many more features, which may mean that a number of
them are of poor quality, i.e. perhaps containing sufficient tracking error accumulation
that over some subset of the features contains a consistent bias, whereas before a large
number of features were lost during the tracking and so those few that remained should
have been of very high quality and thus have a low accumulation of tracking error in
order to have survived that long. Alternatively it could simply be a result of suboptimal
tuning as a consequence of the manual tuning procedure that was employed, which may
not necessarily result in an optimal tuning. Figure 5.4 (b) also shows divergence for the
results of the fully scaled Y -component of translation but not as severe as the
X-component. By the end of the sequence the Y -component has diverged to a value of
-600mm (-6cm), which is by no means a significant cause for concern, but it is not as
good as the previous results in Figure 4.9, which showed a reasonably stable noisy
oscillation that was biased around the -1mm line. The reasons for this observed
divergence are likely to be the same as those given for the X-component. Figure 5.4 (c)
shows the results for the estimation of the Z-component of fully-scaled translation, which
demonstrates extremely accurate performance, which is much the same as before.
Again this is the most significant parameter since it is the Z-component of translation
that has the most significant motion and it is also motion that is difficult to estimate using
a single camera because the inability to determine depth from a single image means
that there is reduced sensitivity to motion in this direction.

Figure 5.4 (d) shows the results for the estimation of total rotation about the X-axis
throughout the image sequence, which shows that the results are very accurate. Even
though they are slightly biased, the total rotation oscillates approximately around
7x10−4rad, which is an angle of approximately 0.04 degrees when the true rotation is
constant at 0 degrees. Therefore this can be considered to be very accurate.
Figure 5.4 (e) presents the results for the total rotation about the Y -axis, which, as
before, has a constant rotational velocity of 0.02rad/s. It can be seen that the estimated
result tracks very closely with the ground truth value for the first 40 images, but then
begins to slowly diverge and by the end of the 100 image sequence it deviates by
approximately 6x10−3rad, which is an angle of only 0.3 degrees. This is again a very
strong result, indicating that high accuracy can be achieved, but the slow divergence
indicates that further investigation is required to see if this would continue or at a later
point would re-converge. It is worth noting however, that this type of rotation is difficult to
estimate since it produces image motion similar to vertical translation downwards in the
left half of the X-Y plane and upwards in the right half of the X-Y plane, thus there is a
reduction in sensitivity to this kind of motion, as mentioned above. The magnitude of
rotation is also very small, which means there is potentially a weak signal to noise ratio.
For these reasons this result for rotation about the Y -axis is very encouraging.
Figure 5.4 (f) shows extremely strong performance in the estimation of the total rotation
about the Z-axis, which can be seen to almost perfectly follow the ground truth values. It
would be expected that this motion parameter is estimated to a higher level of accuracy
than that which was observed for the Y -axis rotation since rotation about the Z-axis
leads to much more significant inter-frame image motion, and so therefore this result
increases confidence in the tuning parameters arrived at via the manual tuning
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Figure 5.6: World frame (Xw, Yw) positions of IMU-KLT tracked feature points in EKF SFM for
2000m initial altitude

procedure.
Figure 5.4 (g) presents the results for the estimation of the inverse focal length,

which shows that a reasonably rapid and accurate convergence is achieved. This is an
important result since the inverse focal length is an important parameter due to its
relationship with the Z-component of translation. The inverse focal length is a small
number and therefore its combination as a product with tZ , which is a relatively large
number, means that slight errors in B can lead to large errors in tZ when the two values
are separated via division. Therefore the accurate estimation of this parameter also
increases confidence that a somewhere close to optimal set of tuning parameters has
been found.

Figure 5.5 (a) shows the sparse ground truth DEM from a top-down perspective,
which has been derived from a full-resolution (with 1:1 pixel correspondence with the
first image in the sequence) ground truth DEM by selecting those points that correspond
with the location of the tracked features in the first image of the sequence and
interpolating between these points. The feature point positions in the first image of the
sequence are can be seen in Figure 5.6, which provides a clear indication of the density
of the ground truth and estimated DEMs. Figure 5.5 (b) presents the DEM produced
from the estimated depths of the tracked features. Even though the filter has been able
to accurately estimate many of the motion parameters it is abundantly clear that there is
a problem in the estimation of the scene structure and this can be further seen in
Figure 5.5 (e), which shows that the majority of the errors in the estimation of the
structure parameters lie in the range ±70m, with some points having an error in excess
of -150m. These errors in depth also lead to the observed errors in the range of
approximately ±20m in the Xw and Yw coordinates of the feature points, which are
calculated using the camera model equation and the estimated feature depths, along
with the 2D image coordinates of the feature points in the first image of the sequence.
This poor performance for the estimated depths is somewhat surprising given the
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performance observed in the previous EKF results in Figure 4.10. The most significant
difference between these results and the previous results is the use of the IMU-KLT
feature tracker and the fact that this resulted in many more features being tracked over
the 100 image sequence so it would possibly seem that the IMU-KLT tracker results in
higher levels of tracking error accumulation, which means that there is more significant
measurement uncertainty. Alternatively it may simply be a case of insufficient time for
the structure parameters to converge given that there may now be a greater degree of
measurement error and an increased number of parameters to estimate in the filter state
vector. Further tests should be conducted to gain a greater understanding of the
limitations of this approach with respect to structure estimation.

To enable a full comparison between the EH∞F and EKF results using the IMU-KLT
features, Figure 5.7 presents the estimation errors for each of the motion parameters
and root-mean-square errors for the Xw, Yw, and Zw coordinates of the tracked feature
points. Looking at Figure 5.7 (a) and (b) it can be seen that for the X and Y components
of translation, the EH∞F provides improved performance for the estimation of these two
parameters, in the range of around 4m for the X component and about 0.6m for the Y
component. While, in both cases for the EKF and the EH∞F, divergence was observed
for both of these parameters, it is clearly much less severe for the EH∞F than for the
EKF, especially in the case of the Y parameter, therefore it seems that the EH∞F is
keeping the estimation errors more bounded than for the EKF, which is what would be
expected given that the EH∞F is designed to do this. This gives an indication that the
EH∞F is behaving somewhat in line with expectation, even though it was unable to
prevent divergence entirely. Figure 5.7 (c) tells a different story, however. Here it can be
seen that the EKF gives much better performance and appears to show that the results
have satisfactorily converged to a constant error of around 1m, whereas it seems that
the EH∞F results are actually diverging, resulting in a 4m error by the end of the
sequence, so in this case the estimation error appears to be unbounded. Its possible
that this may converge to a constant error at a later time, and so more investigation is
needed to examine this, however it is still clear that the performance of the EH∞F is
unsatisfactory relative to the EKF, even though from Figure 5.1 (c) the results do in fact
appear to be very good, and a 4m error at 2000m altitude is more than satisfactory, but
only if it does not continue to grow too severely over time, which, unfortunately,
Figure 5.7 (c) seems to suggest that it might. This may simply be a sign that the tuning
of the EH∞F is too sub-optimum and that more effort is needed in manually tuning the
filter to obtain better results, or again it could be due to the presence of larger than
desired tracking error accumulation in the IMU-KLT features, which might suggest that a
more robust feature tracking method could be required.

Figure 5.7 (d) presents the error comparison between the EH∞F and the EKF for
the X-component of total rotation. Here it can be seen that the two filters perform very
similarly and both result in errors of only a fraction of a degree away from the ground truth
value of 0 degrees. In places, however, it can be seen that the EKF gives marginally better
performance, however the difference is largely insignificant, and more testing should be
performed to be able to draw a stronger conclusion about the relative performance on
this motion parameter. For the Y component of total rotation, shown in Figure 5.7 (e),
the difference in accuracy is more significant, with the EH∞F performing better. The EKF
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Figure 5.7: Comparison of estimation errors for EH∞F and EKF based SFM algorithms with IMU-
KLT for a 100 image PANGU sequence with initial altitude of 2000m, vertical descent trajectory at
a constant velocity of 100m/s, and with 0.02rad/s constant rotational velocity about the Yw and Zw

axes: (a) Error comparison for X component of translation; (b) Error comparison for Y component
of translation; (c) Error comparison for Z component of translation; (d) Error comparison for X
component of total rotation; (e) Error comparison for Y component of total rotation; (f) Error
comparison for Z component of total rotation; (g) Error comparison for inverse focal length; (h)
RMS error comparison for Xw, Yw, and Zw 3D scene coordinates of the tracked feature points
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results show a clear sign of sudden divergence after the 1s point, whereas the EH∞F
results only increases in error through out the sequence, which means that the EH∞F
is more robust to divergence, as would be expected from the properties of the EH∞F.
Figure 5.7 (f) presents the results for the Z-component of total rotation and shows that
both filters perform well for this parameter, as was observed in Figures 5.1 and 5.4.
Here, though, the EKF performs slightly better, but on the whole the difference is likely
not particularly significant, given that the observed difference is approximately an order
of magnitude less than those of Figure 5.7 (e). The reduced accuracy of the EH∞F
compared to the EKF in this case may be an indication that the tuning is not quite optimal
and therefore greater accuracy may be achieved by an increased effort in the manual
tuning of the filter, however, more investigation is needed to firmly establish the limitations
of the new filtering method for this motion parameter.

Figure 5.7 (g) presence the comparison between the two filtering methods for the
estimation of the inverse focal length. In this plot it can be seen that both approaches
converge to high accuracy very quickly, which, as mentioned before, is important for the
estimation of the tZ component and the structure parameters. The EH∞F performs better
than the EKF for this parameter since it converges more rapidly and achieves a slightly
more accurate final estimate than with the EKF.

Figure 5.7 (h) shows the overall rms error for all of the structure parameters for each
filtering method. Here it can be seen that both filters produce unsatisfactory estimates
of depth as was seen earlier in the DEMs. It actually seems that the EKF gives slightly
better performance for the structure (Zw – which is the most important here since it is the
actual parameter that is estimated), however, this is practically irrelevant since they are
both very poor, with rms errors of approximately 50m. These results suggest that there is
likely something wrong with the tuning parameters or that neither filter is robust enough
to estimate this weakly observable parameter, or alternatively (perhaps even additionally)
the IMU-KLT algorithm is not accurate enough to provide the quality of measurements
required to accurately recover the scene structure.

5.4 Conclusions from H∞ Filtering

The H∞ filtering method presented above has demonstrated that it is capable of
providing accurate estimates (particularly when the signal to noise ratio is high) for the
motion parameters of a spacecraft during descent towards a planetary surface in a
short, proof-of-concept test based on a 100 image sequence representing a subset of
the descent images that would be produced during a full descent. The EH∞F is
designed from the bottom-up to be more robust than other filtering techniques, such as
the ubiquitous EKF. The results obtained using this filtering method do appear to give
support to this claim for some of the motion parameters, however, in some of the motion
parameters the EH∞F did not provide a fully clear advantage over the EKF and in others
the EKF was shown to produce more accurate estimates. So, while there is some
evidence that a more robust and accurate estimation of the motion state of the
spacecraft can be achieved using the EH∞F when compared to the EKF (mostly in
reducing or preventing divergence in those parameters that did not possess any actual
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motion), the results are somewhat inconclusive. A more thorough investigation into the
quality of the tuning parameters for the filter would be required to fully appreciate the
limitations of this filtering method, however, given that the EKF is a more straightforward
filtering method and is easier to tune, further investigative work into the EH∞F was
decided not to be a particularly suitable approach to providing a more effective means of
improving on the accuracy and robustness of the results already obtained from using the
EKF. For this reason, and because neither filtering approach provided anywhere close to
satisfactory results for the estimation of the structure parameters, a more sophisticated
approach to state estimation was investigated for use in this application, that not only is
based on a more robust filtering formulation, but also attempts to adaptively adjust the
tuning parameters in the event that they are determined to be sub-optimal, the details of
this are presented in the remainder of this chapter.

The EH∞F (and EKF) was also used in conjunction with a supposedly more robust
method of tracking features throughout the image sequence, known as the IMU-KLT
algorithm. While this new feature tracker did appear to be more stable in that it was able
to keep many more features alive throughout the 100 image sequence than that of the
conventional KLT algorithm, it did not result in an improvement in the estimation of the
scene structure. In fact, it resulted in far worse estimates than was observed with
conventional KLT and the EKF. Since the EKF was also re-applied, in this chapter, using
measurements from the IMU-KLT tracker, and resulted in a severe degradation of the
structure estimation, it is possible that the IMU-KLT algorithm may result in a greater
quantity of error accumulation in the feature point positions, to the point where it
becomes unusable as a feature tracker for 3D reconstruction. While a much more
detailed analysis would be required to firmly determine this possibility, it was decided
that a potentially more accurate means of tracking features would be beneficial in future
work on this problem, and so development work was carried out on implementing a
reportedly more robust KLT feature tracking algorithm in order to not only track more
features for a longer period of time compared to the conventional KLT algorithm (as was
seen with IMU-KLT) but do so in a way that is more immune to error accumulation. The
formulation of this alternative KLT algorithm was presented in Chapter 3.

5.5 Adaptive Filtering

The standard Kalman filter [95] was originally developed for the purpose of trajectory
estimation for the Apollo program in the 1960s, thus it was developed to be well suited
for situations that may contain a number of significant transient modes, such as during
the launch of a space vehicle [96]. It would therefore appear that the Kalman filter is
capable of performing well in situations in which the process and measurement noise
statistics are time-variant, and indeed, the standard formulation allows for this by
enabling the noise variances to be expressed as functions of time [96]. However, optimal
performance in such a situation is only assured if precise knowledge of the noise
characteristics, and how they evolve over time, is known a priori. Exact knowledge of the
process noise covariance matrix, Q, and the measurement noise covariance matrix, R,
is of fundamental importance in Kalman filtering as it is these quantities that determine
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the relative weighting that should be assigned to the previous knowledge of the state
and the new measurements in each time step (i.e. if Q is large compared to R, then
more confidence will be placed in the new measurements of the system than the
propagated previous knowledge of the state, and vice versa). If Q and R are precisely
known in every time step, then the previous knowledge of the state and the
measurement data can be combined optimally to give a state estimate that is more
accurate than through the use of each source of information about the state separately.
However, in the majority of real-life situations this knowledge is often very difficult or
even impossible to obtain [97], causing the noise covariance matrices to be relegated to
tuning parameters that in many cases are assumed to be time-invariant [98] and that
must be found through an arduous manual process of trial-and-error. Such a tuning
process provides no guarantee that optimal tuning parameters will be found [99], and the
time invariant assumption may not be suitably valid in certain situations, leading to
sub-optimal performance or potential divergence. The EH∞F, UKF, and SR-UKF go a
long way towards minimising the effects of errors and instability that may result as a
consequence of the linearisation step of the EKF or the possibility of non-Gaussian
noise, but, as with the KF and EKF, they still contain this fundamental assumption that
the process and measurement noise statistics are known in advance for all time steps.
Therefore, even with these more sophisticated filtering methods, the Q and R matrices
are still often treated as time invariant manual tuning parameters. In our case it is
unlikely that the noise statistics can be assumed to be constant since part of the descent
trajectory may occur under a parachute and as such may be susceptible to periods of
turbulence interspersed within periods relatively smooth motion, and another part of the
trajectory may involve a rocket powered descent that is subject to large vibrations and
sudden disturbing impulses. Therefore, a suitable method of circumventing this difficulty
is likely to be required.

The requirement of precisely known Gaussian measurement and process noise has
been a widely known problem in the application of Kalman filtering techniques since the
very beginning. Consequently, a large number of methods have been proposed tackle
this problem, most of which have made use of the realisation that the measurements
used in the correction step of the Kalman filter will not only contain information about
the state of the system but also information on the noise statistics [96]. These types of
approaches are known as adaptive filtering techniques, which attempt to estimate the
unknown noise statistics simultaneously with estimation of the state.

5.5.1 Early Approaches

A survey paper written by Mehra [100] in 1972, summarised a number of techniques
relating to on-line estimation of the unknown process and measurement noise covariance
matrices. At this point the different approaches could be classified into four categories:
Bayesian, Maximum Likelihood, Correlation, and Covariance Matching [100]. To discuss
these approaches to adaptive filtering it is helpful to layout the problem that they are
attempting to solve in more formal terms.
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Consider a discrete-time, linear, dynamic system of the form

xk = F k−1xk−1 + wk−1 (5.8)
yk = Hkxk + vk (5.9)

where xk is the n × 1 state vector, F k is the n × n state transition matrix, wk is a
q × 1 process noise vector, vk is a r × 1 measurement noise vector, and Hk is the r × n
measurement model matrix. The process and measurement noise vectors, wk and vk
are assumed to be uncorrelated, zero-mean, Gaussian white-noise sequences, thus

E[wk] = 0

E[vk] = 0

E[wk,i,w
T
k,j ] = Qkδij

E[vk,i,v
T
k,j ] = Rkδij

E[wk,i,v
T
k,j ] = 0 ∀ i, j

where Qk and Rk are non-negative definite covariance matrices for the process and
measurement noise, respectively, and δij is the Kronecker delta function
(δij = 1 if i = j, and δij = 0 if i 6= j). Now, if x̂k|l represents an estimate of xk given the
set of observations Y l = {y1, · · · , yl}, and

P k|l = E[(xk − x̂k|l)(xk − x̂k|l)
T]

is the state error covariance matrix at time step k, given the set of measurements up to
and including time step l, then the optimal solution to this problem, when Qk and Rk are
exactly known, is given by the standard linear Kalman filter [100]:

Time Update:

x̂k|k−1 = F k−1x̂k−1|k−1 (5.10)

P k|k−1 = F k−1P k−1|k−1F
T
k−1 + Qk−1 (5.11)

Measurement Update:

Kk = P k|k−1H
T
k(HkP k|k−1H

T
k + Rk)

−1 (5.12)

x̂k|k = x̂k|k−1 + Kk(yk − Hkx̂k|k−1) (5.13)

P k|k = (I − KkHk)P k|k−1 (5.14)

where Kk is the Kalman gain, which determines how much importance is placed in the
measurements vs. the predicted state. When Qk and Rk are inexactly known, the
Kalman filter is sub-optimal and performance degradation occurs, potentially leading to
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divergence. If Qk and Rk are entirely unknown, which is common in practice, then the
Kalman filter can no longer be applied. The goal of adaptive Kalman filtering is therefore
to obtain simultaneous on-line estimates of xk and the unknown noise covariance
matrices Qk and Rk, such that the Kalman filter operates as close to optimality as
possible, by adapting the filter to the observation data.

In the Bayesian methods, the approach is to obtain recursive equations for the a
posteriori joint probability density of xk and a parameter vector, α, that represents the
unknown parameters [100]. Using the multiplication rule of joint probabilities, this a
posteriori density can be expressed as

p(xk,α|Y k) = p(xk|α, Y k)p(α|Y k) (5.15)

where p(xk,α|Y k) is Gaussian with mean x̂k|k(α) and covariance P k|k(α), which are
given by the Kalman filter equations for a particular α [100]. Note that p(α|Y k) is the
conditional probability density function describing the probability that a particular set of
parameters, α, is true, given the measurements up to and including the current time step
k. An equation for p(α|Y k) can be obtained by first expressing it as

p(α|Y k) = p(α|yk, Y k−1) (5.16)

and then applying Bayes theorem to give

p(α|yk, Y k−1) =
p(yk|α, Y k−1)p(α|Y k−1)

p(yk|Y k−1)
(5.17)

where the denominator, p(yk|Y k−1) can be viewed as the marginal conditional probability
density function of yk obtained from the joint density function by marginalising over all
possible α’s, i.e.

p(α|yk, Y k−1) =
p(yk|α, Y k−1)p(α|Y k−1)∫

A
p(yk|α, Y k−1)p(α|Y k−1)dα

, (5.18)

where A is the set of all possible α’s [100]. Notice that p(yk|α, Y k−1) is Gaussian
and represents the a priori conditional probability density function describing the
probability of obtaining the measurement yk at time step k given the measurements up
to but not including time step k, with a particular set of parameters α. Thus, it is the
conditional probability density function with mean Hkx̂k|k−1(α) and covariance
(HkP k|k−1(α)HT

k + Rk) [100], which are, respectively, the predicted measurement and
predicted measurement innovation covariance given by the Kalman filter equations for a
particular α.

In the conventional Kalman filter, or any other estimation problem where the statistics
of the random processes are known, the optimal estimate is given by the conditional
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mean, i.e.

x̂k|k =

∫
X

xkp(xk|Y k) dxk (5.19)

where X is the space of all possible xk, and p(xk|Y k) is the conditional probability
density function of xk given the data up to and including time step k. Notice that this is
the average over all possible xk, weighted by the conditional probability density function
describing the probability that a particular value of xk is true given the data.

In the case that the statistics of the random processes are unknown, we must consider
the joint conditional probability density function of xk andα given the data. By recognising
that the conditional density of xk can be obtained from the joint conditional density of xk
and α by integration over the set, A, of all possible α, Equation (5.19) can be expressed
as [101,102]

x̂k|k =

∫
X

xk

∫
A

p(xk,α|Y k) dα dxk, (5.20)

which, as in Equation (5.15) can be re-written as

x̂k|k =

∫
X

xk

∫
A

p(xk|α, Y k)p(α|Y k) dα dxk. (5.21)

By recognising that the integral of xkp(xk|α, Y k) over all possible values of xk, given a
parameter vector α, represents the optimal estimate of xk(α), i.e.

x̂k(α) =

∫
X

xk p(xk|α, Y k) dxk, (5.22)

the final form of the optimal estimator is given by

x̂k =

∫
A

x̂k(α) p(α|Y k) dα. (5.23)

Therefore the optimal estimate is formed by taking the complete set of conditional
estimates weighted by the conditional probabilities that the corresponding parameter
vector is true (calculated using Equation (5.18)), and integrating over all possible
parameter vectors [101]. More specifically, if we had an infinite number of Kalman filters
each estimating x̂k(α) for their own unique value of the parameter vector, α, from an
infinite set of possible parameter vectors, each of which being weighted by the
conditional probability of that α being true given the measurements, then the optimal
estimate is given by the integral over all possible parameter vectors. Or, in other words,
the scheme converges asymptotically to that of the optimum estimating scheme
operating with full knowledge of the previously unknown noise statistics [97].

While this approach seems very appealing from a theoretical point of view it should be
noted that, due to the integrals over potentially high dimensional states, it is only feasible
in cases where these integrals can be evaluated explicitly, which is only the case under a
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number of restrictive assumptions, or if α is known to, or can be assumed to come from
a finite set of possible values, in which case the integrals can be replaced by summations
over this finite set [100]. However, even if α can be assumed to belong to finite set, the
calculation of x̂k|k for every possible value of α requires many individual Kalman filters to
be implemented, which may be very computationally demanding if the set is large. It is
also necessary to know the values of all the possible α’s in advance [101, 102], as well
as the a priori marginal probability density of α in order to begin the recursive calculation
of p(α|yk, Y k−1) in Equation (5.18) [100]. These limitations make this approach difficult
or impossible in all but a few specialised cases.

The maximum-likelihood approaches begin with an expression such as that in
Equation (5.15), and from this a log-likelihood expression is derived. The
maximum-likelihood estimate of the unknown state and parameters is calculated by
computing the partial derivatives of the log-likelihood equation with respect to the
unknown variables, setting these equal to zero and solving for the unknowns. The
optimal estimate of the state is then calculated from the Kalman filter using the
maximum-likelihood solution of the parameter vector, α̂, i.e. x̂k|k = x̂k|k(α̂).
Unfortunately, the equation that must be solved to calculate α̂ is non-linear in α, and
therefore it must be solved iteratively, which becomes prohibitively expensive as the
dimensions of the parameter vector increase, since the number of equations to be
solved in each iteration increases rapidly with the dimension of α [100]. It is therefore
necessary to simplify the equations, which can be done by making a number of
potentially restrictive assumptions, such as assuming time invariant systems and that
the filter has reached a steady state, for example (see [96, 100] for details on these and
additional assumptions), which may limit its usefulness in certain situations and
ultimately results in a suboptimal solution.

The correlation-based adaptive estimation methods described in [100] attempt to
derive a set of equations relating the system parameters to either the autocorrelation
function of the system output yk or the autocorrelation function of the measurement
innovations ν = yk − Hkx̂k|k−1. Both of these methods require that the system is
completely controllable and observable, and in general are only applicable to constant
coefficient systems. In particular the output-based correlation approach is also only
applicable to cases in which the output signal is stationary or the state transition matrix
is stable, whereas the innovation-based method can be applied to systems in which the
state transition matrix is unstable [100]. It has also been found that the innovation-based
method is more efficient than the output-based method due to νk being less correlated
than yk, which can be understood by the fact that for an optimal filter the innovation
sequence is a zero-mean, Gaussian white noise sequence, thus even though the
adaptive filtering problem most likely starts in a suboptimal state and hence has an
initially correlated innovation sequence, it becomes less correlated over time as it
approaches optimality, whereas if the output is correlated it will remain correlated at all
times. Both of these methods allow for the calculation of the Q (however, a unique
solution of Q may not always be possible) and R matrices or even the direct calculation
of the Kalman gain matrix K, and due to their relative simplicity, especially in
comparison to the Bayesian or maximum likelihood methods, they can be used on-line in
real-time. Both methods are also capable of producing asymptotically normal, unbiased
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and consistent estimates of Q,R, and K [100, 103, 104]. It should be noted that the
innovation approach in [103] requires initial estimates of Q and R, which are then
improved if the filter is found to be suboptimal, whereas the output based method does
not require these a priori estimates [104]. However, it was suggested in [100] that the
output-based method could be used at first to obtain the a priori estimates, following
which the approach could be changed to that of the innovation-based method to take
advantage of its increased efficiency.

A typical approach in covariance matching based techniques is to attempt to make
the actual measurement innovation covariance consistent with its theoretical covariance.
The actual measurement innovation covariance can be approximated by its sample
covariance, sampled over the previous N time steps, given by

Ck =
1

N

N∑
i=1

νiν
T
i . (5.24)

The theoretical measurement innovation covariance is that computed by the Kalman
filter, i.e.

Ĉk = HkP k|k−1H
T
k + Rk. (5.25)

By setting Equations (5.24) and (5.25) equal to each other and solving for Rk, a
value for Rk can be calculated that would make the actual and theoretical measurement
innovation covariances consistent. Similarly, by substituting Equation (5.11) into
Equation (5.25) and solving for Qk−1, an value for Qk−1 can be obtained that makes the
theoretical and actual covariances consistent. However, in this case a unique solution
can only be obtained if Hk is of rank less than n. An important point to note in this
method is that it is only approximate since if Q and R are unknown, then
P k−1|k−1 and P k|k−1 do not represent the actual state error covariance, and also the
calculated actual covariance is only approximate. Therefore the convergence of this
method is doubtful [100]. It has also been reported that the covariance matching method
often produces biased estimates of the noise covariance matrices [105].

From the discussion above it would seem that the Bayesian and maximum-likelihood
approaches are too restrictive and computationally demanding to apply successfully in
all but a few specialised cases. Despite the scepticism over the performance of the
covariance matching method in [100], a number of significant advances have been made
since the publication of Mehra’s paper that appear to have come a long way towards
overcoming the original limitations of the method, including some interesting applications
to non-linear filtering problems. For this reason the following subsection will examine
some of these advances in more detail.

5.5.2 Covariance Matching and Related Methods

Many of the above mentioned classical techniques require the unknown noise statistics
to be restricted to a set of constant values, or are too restrictive to be applied to non-linear
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applications. To counter this, Myers and Tapley [98] developed a covariance matching-
type technique that allows for the adaptive estimation of the unknown noise statistics in
the case that they may be independent, non-stationary Gaussian white noise sequences
that may also have a non-zero mean, and that can also be applied in non-linear state
estimation. More formally this technique assumes the following noise statistics:

E[wk] = qk E[(wk,i − qk,i)(wk,j − qk,j)
T] = Qkδij

E[vk] = rk E[(vk,i − rk,i)(vk,j − rk,j)
T] = Rkδij

(5.26)

where qk and rk are the true means andQk and Rk are the true covariance matrices
of the process and measurement noise sequences, respectively, at time-step k. The
adaptive algorithm is initially derived by treating the problem in batch form over a range
of N time steps under the assumption that the unknown parameters qk, rk,Qk, and Rk

are constant over the N steps. By rearranging Equation (5.8) to obtain an expression for
wk and rearranging Equation (5.9) to give an expression for vk, the resulting equations
can be regarded as providing a sample of the process noise and measurement noise
statistics, respectively, i.e. at time tj a process noise sample qj and an observation noise
sample rj can be calculated, respectively, from

qj ≡ wj−1 = x̂j|j − F j−1x̂j−1|j−1 (5.27)

rj ≡ vj = yj −Hjx̂j|j−1. (5.28)

Using these samples over the N steps of data, unbiased estimates of
qk, rk,Qk, and Rk can be obtained from the following equations:

q̂k =
1

N

N∑
j=1

qj (5.29)

r̂k =
1

N

N∑
j=1

rj (5.30)

Q̂k =
1

N − 1

N∑
j=1

{
(qj − q̂k)(qj − q̂k)

T −
(
N − 1

N

)
(F j−1P j−1|j−1F j−1 − P j|j)

}
(5.31)

R̂k =
1

N − 1

N∑
j=1

{
(rj − r̂k)(rj − r̂k)

T −
(
N − 1

N

)
(HjP j|j−1Hj−)

}
. (5.32)

These equations were then reformulated into recursive expressions to enable
time-varying statistics to be estimated. Each estimate of the unknown parameters at
time tk is based on the last lr and lq noise samples

102



5.5. ADAPTIVE FILTERING

rj (j = k − lr + 1, · · · , k) and qj (j = k − lq + 1, · · · , k), respectively. Thus we have the
following recursive equations for the estimated mean values, r̂k and q̂k:

r̂k = r̂k−1 +
1

lr
(rk − rk−lr) (5.33)

q̂k = q̂k−1 +
1

lq
(qk − qk−lr) (5.34)

where the term in parenthesis in each of these expressions represents the
incorporation of a new noise sample at time step k and the discarding of the oldest
sample, each of which must be scaled by dividing by the total number of samples under
consideration in accordance with the definition of the sample mean. For the noise
covariances we have the following expressions:

R̂k = R̂k−1 +
1

lr − 1
{(rk − r̂k)(rk − r̂k)

T − (rk−lr − r̂k)(rk−lr − r̂k)
T

+
1

lr
(rk − rk−lr)(rk − rk−lr)

T +

(
lr − 1

lr

)
[ρk−lr − ρk]}

(5.35)

Q̂k = Q̂k−1 +
1

lq − 1
{(qk − q̂k)(qk − q̂k)

T − (qk−lq − q̂k)(qk−lq − q̂k)
T

+
1

lq
(qk − qk−lq)(qk − qk−lq)

T +

(
lq − 1

lq

)
[Ωk−lq −Ωk]}

(5.36)

where

ρk = HkP k|k−1H
T
k (5.37)

Ωk = F k−1P k−1|k−1F
T
k−1 − P k|k. (5.38)

A couple of implementation considerations were highlighted in [98] to improve
numerical stability of the algorithm. Firstly, it is possible that the covariance estimators
may become negative definite, especially when a small amount of data has been
processed, thus the diagonal components of Q̂k and R̂k are always reset to the
absolute values of the estimates. Secondly, during filter initialisation, the noise samples
rj and qj are poor indicators of the local noise environment. To counter this a fading
memory approach is adopted in which successive noise samples are multiplied by a
growing weight factor given by

ωk = (k − 1)(k − 2) · · · (k − β)/kβ, (5.39)

which has the property limk→∞ ωk = 1, and the use of invalid noise samples is
delayed for the first β time-steps.
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The use of a limited memory filter, provided by the moving window within which the
noise is sampled, along with the additional fading memory mechanism applied to the
noise samples to reduce the impact of the early samples while the filter is in the initial
transient stage, has a number of practical advantages. The fading memory mechanism
reduces the impact of the, most likely erroneous, a priori noise statistics that must be
provided during filter initialisation, while the limited memory mechanism can become
especially important in non-linear estimation problems. State estimation of non-linear
systems often makes use of the extended Kalman filter (EKF), in which the system is
linearised about the current state estimate in each time step. This may introduce
significant linearisation errors in some cases. Couple this with the possibility of
modelling errors, computation errors, etc., then the use of the EKF over long time
intervals can result in a situation where the state error covariance matrix becomes
unrealistically small and optimistic. Therefore, the filter gain becomes unacceptably
small such that subsequent measurements are effectively ignored, thus the model errors
may drive the estimate far away from the values predicted by theory. An example of
where this often occurs is in the determination of space vehicle trajectories. Moving
window filters are capable of rectifying this problem by discarding past data that is
beyond the accuracy or predictability range of the model [106].

Kirlin and Moghaddamjoo [107], drawing on inspiration from [108,109], presented an
extension to the method in [98] that offered increased robustness for non-linear systems
with non-Gaussian noise by replacing the estimators of mean and covariance with
estimators of location and spread based on the median (instead of mean) and the
bi-weight measure of [109] (instead of covariance). Moghaddamjoo and Kirlin [110]
proposed a further improvement over that of [98] and their previous work [107], by
recognising that there is an inherent instability in the formulation of the Myers and
Tapley [98] method. This instability arises from the fact that the estimates of the
unknown parameters are directly related to the estimates of the state vector, which itself
is a function of the unknown parameters. This establishes a positive feedback loop such
that any abrupt change in the input forcing function or the noise environment will cause a
rapid degradation of the state estimates from their optimum values, which in turn causes
a rapid increase in the estimates of the noise covariances, which then causes a further
degradation in the state estimates. The existence of this closed loop severely limits the
applicability of the algorithm, especially in situations that involve long time runs [110].
The robust version of this algorithm presented in [107] offers some improvement,
allowing the algorithm to be run for longer periods of time, but nevertheless still
ultimately suffers from the same source of instability. To overcome this limitation, a
limited memory curve fitting algorithm was developed in [110] that is robust to
measurement error outliers and provides optimum (in the weighted least-square error
sense) estimates of the input forcing functions and measurement noise covariances,
under the assumption that the mathematical model of the system is correct. This
provides an estimation of the unknown parameters that are independent of the state
estimates, therefore bypassing the source of instability. They also apply a stochastic
approximation method to adjust the process noise covariance matrix in such a way that
the statistics of the filter’s residuals approaches that of the optimum Kalman filter, thus
introducing a stabilizing negative feedback in the statistics of the residual
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sequence [110].
By applying the principles of maximum likelihood estimation to the innovation

sequence over a moving window, Mohamed and Schwartz [111] derived equations for
adaptively estimating the process and measurement noise covariance matrices that are
remarkably similar to those used in covariance matching methods. In the case of the
measurement noise covariance matrix the expression obtained is identical to that of the
classical approach presented in [100]. This equation is repeated here for convenience,
along with that obtained for estimating the process noise covariance matrix. The
equation for adaptively estimating Rk is

R̂k = Ĉνk −HkP k|k−1H
T
k (5.40)

where, as before

Ĉνk =
1

N

k∑
j=j0

νjν
T
j (5.41)

where j0 = k − N + 1 is the oldest epoch within the estimation window, and k is the
time step for which we are estimating the measurement noise covariance. By applying
the same method to the filter residual sequence instead of the innovation sequence an
alternative equation for R̂k was also derived, giving

R̂k = Ĉνk +HkP k|kH
T
k (5.42)

where Ĉνk is again given by Equation (5.41), but in this case

νk = yk −Hkx̂k|k (5.43)

instead of

νk = yk −Hkx̂k|k−1 (5.44)

as in the previous case. This form of the adaptive estimator forR offers greater numerical
stability since it guarantees R̂k to be at least positive semi-definite, which is a requirement
for covariance matrices, whereas the previous equation could result in a negative definite
estimate of R̂k. The equation for adapting Qk is given by

Q̂k =
1

N

k∑
j=j0

∆xj∆xT
j + P k|k − F k−1P k−1|k−1F

T
k−1 (5.45)

where ∆x is the difference between the predicted state vector and the state vector after
the measurement update, i.e.

∆xk = x̂k|k − x̂k|k−1. (5.46)

Under steady state conditions, i.e. the state error covariance matrix is constant, the
second and third terms in Equation (5.45) can be neglected, therefore Q̂k can be
approximated by
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Q̂k = KkĈνkK
T
k . (5.47)

In formulating this method a number of assumptions were made, which are stated
in [111] as follows:

1. The filter states x are independent of the adaptive parameters α, i.e. ∂x/∂α = 0.

2. The state transition matrix F and the measurement model matrix H are time
invariant and independent of α.

3. The innovation sequence is a white and ergodic sequence within the estimation
window.

4. The covariance matrix Cν (through ν) is the key to adaptation and hence is the
α-dependent parameter.

Providing the state vector has not been augmented with some parameter or parameters
that depend on the unknown noise statistics, then assumption 2 is likely to be valid in
many cases. Assumption 3 may be approximately valid providing the moving window is
not too small. However, while the true state values will not be a function of the unknown
parameters, providing the state is not augmented with parameters dependent uponα, the
estimated state vector will be dependent on α, by virtue of the Kalman filter equations.
Therefore it is likely that this method will suffer from the same instability as that in [98]
and [107], as pointed out in [110]. It should also be noted that, as with all the covariance
matching methods, the equation for R̂k was derived by assuming that Q̂k is already
fully known, and vice-versa. Therefore simultaneously estimating both Q and R may
not always be feasible [112]. Nevertheless, the method developed by Mohamed and
Schwartz has been implemented by a number of authors [113–115] that have reported
significant improvements over the conventional Kalman filter.

Ding et al [116] applied the principles of least squares estimation to arrive at the
same covariance matching equations derived in [111]. In their work they noted that the
estimation converges to the true value as the window size becomes larger, providing the
assumption of an ergodic and stationary stochastic process is valid, which is equivalent
to some of the assumptions made in [111]. However it was pointed out that a large
window size and the fulfilment of the stationary condition can be contradictory
requirements to the goals of adaptive state estimation in many scenarios — i.e. it is
often because of a non-stationary external environment that we wish to apply adaptive
estimation. Therefore, an additional aspect of the work presented in [116] was to focus
on the trade off between estimation stability and estimation accuracy when selecting an
appropriate window size. For the INS/GPS data fusion strategy used in [116] it was
found that a window size covering around 500 epochs gave the closest to optimal
performance, and window sizes smaller than around 250 epochs resulted in unstable
estimation. The issue of stability due to simultaneous estimation of of both Q and R was
also raised due to the estimation of one requiring knowledge of the other. This lead on to
some further work, presented in [117, 118], in which a simple process noise covariance
scaling algorithm was developed that was said to be more robust to covariance
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estimation bias due to fewer parameters being involved in the adaptive tuning. The
concept behind this technique is to adaptively adjust the overall magnitude of Q̂k by
calculating a single scalar multiplicative value from the innovation sequence that is then
applied directly to the process noise covariance matrix. This adjusts the relative
importance of the measurements compared to the state predictions via its influence on
the calculation of the filter gain. The results of a comparison between the conventional
extended Kalman filter, an EKF with covariance matching, and an EKF with the
proposed covariance scaling method were presented in [117, 118], where the authors
claimed a significant improvement in the filtering performance, however it must be said
that, in this author’s opinion, none of the filtering methods appeared to show entirely
convincing performance in this application, even though the method is theoretically
sound. A somewhat similar covariance scaling method was presented in [114, 115],
where in this case a performance increase over the covariance matching technique was
observed more convincingly. Further investigations were carried out in [119] into the
relative performance of the process noise covariance scaling method proposed
in [117, 118], the two covariance matching adaptive filter approaches for estimating the
measurement noise covariance matrix (one based on the innovation sequence
(Equation (5.40)) and one using the residual sequence (Equation (5.42))), and the
conventional Kalman filter. The performance of these methods was analysed by
examining the RMS values of the state error covariance matrix P over the course of the
estimation process. All the adaptive methods were shown to outperform the
conventional Kalman filter, the covariance scaling method appeared to be more stable
but did not provide the level of accuracy achieved with the two covariance matching
approaches. The two covariance matching methods gave similar performance in terms
of the final estimation accuracy once the filter had converged, with one case of the
residual-based method outperforming the innovation-based method. However, the
residual approach offered much more stability during the initial transient phase and
appeared to converge more rapidly than the innovation-based method, therefore it was
considered that the residual-based method was the best performing approach. An
investigation into the window size was also shown to have minimal impact providing the
dynamics environment is not changing too rapidly [119].

The Myers and Tapley method [98] has been revised and successfully applied to
extended Kalman filtering by a number of additional authors, e.g. [120] where it was
applied in estimating power system frequency deviations and its rate of change in the
presence of significant transients and high frequency noise that occurs during sudden
power system overloads, [121] in which it was applied to the localisation of a mobile
robot using measurements from sonar sensors, but perhaps most significantly for the
problem investigated in this current work, in [122] and [123] it was successfully applied
in an image feature tracking computer vision algorithm for visual servoing. The approach
in [123] included additional modifications to tailor the adaptive algorithm specifically for
the visual motion estimation problem by separating the measurement noise statistics
into separate components for the two principal directions in the image plane, therefore
allowing different noise covariances to be estimated for the x and y locations of the
tracked feature points. This slightly reformulated algorithm was tested alongside the
conventional EKF in the estimation of position and orientation of imaged objects in the

107



LUKE FEETHAM PhD THESIS CHAPTER 5. INCREASING ROBUSTNESS

scene with known true position and orientation to provide a ground truth. It was
observed that the adaptive EKF provided slight improvements in the estimation of
position and significant improvement in the estimation of orientation compared to the
non-adaptive EKF. Li et al [124] also applied the Myers and Tapley method to a
non-linear filtering problem, but in this case they applied it to the unscented Kalman filter
(UKF) and found that it offered an improvement in the estimation accuracy compared to
the non-adaptive UKF, which in turn was better than the standard EKF. It was also
stated, but not shown, that the adaptive UKF outperforms the adaptive EKF.

An approach known as the adaptive fading Kalman filter (AFKF) or adaptive 2-stage
Kalman filter, that is similar to the covariance scaling method described in [117,118], was
developed by Kim et al in [125] and later analysed for its stability in [126]. Following on
from this the same technique was further developed and applied to the extended Kalman
filter in [127, 128] to give an approach known as the adaptive fading EKF (AFEKF) or
adaptive 2-stage EKF. A stability analysis of this AFEKF was also carried out in [129].
In these approaches a forgetting factor, λk, is applied in the calculation of the predicted
state error covariance matrix:

P k|k−1 = λk

[
F k−1P k−1|k−1F

T
k−1 + Qk−1

]
, (5.48)

which is similar to the method in [117,118], except that it is applied to the entire equation
for P k|k−1 instead of just to Qk−1. In addition to this, a scalar parameter, αk, is
computed based on the degree to which the theoretical innovation covariance matches
the approximated actual innovation covariance according to the following expression:

αk = max
{

1, trace(ĈkC
−1
k )
}

(5.49)

or

αk = max

{
1,
trace(Ĉk)

trace(Ck)

}
. (5.50)

where

Ĉk =
1

N

k∑
j=j0

νjν
T
j (5.51)

and

Ck = E
[
νkν

T
k

]
= HkP k|k−1H

T
k + Rk (5.52)

This is then applied, along with λk, in the calculation of the Kalman gain:

Kk =
λk
αk
P k|k−1H

T
k

[
HkP k|k−1H

T
k + Rk

]−1
. (5.53)

It was stated in [128] that it can either be assumed that λk is almost equal to αk, therefore
the state error covariance is scaled by αk (which is similar to [117, 118]), or λk can be
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set equal to 1, in which case the state error covariance is unscaled and the Kalman
gain is decreased by 1/αk. Using this adaptive fading approach significant improvements
were observed compared to the conventional KF or EKF and a number of conditions
were established for which the AFKF and AFEKF provides stable estimation (see [126]
and [129], respectively, for details).

The adaptive fading method developed by Kim et al [125–129] was applied by
Fathabadi et al [130] to the EKF and UKF and the relative performance of these two
methods were compared with each other and with the conventional, non-adaptive
versions of the EKF and UKF, in the non-linear estimation of the relevant parameters of
a continuous stirred tank reactor. In all cases it was found that the two adaptive
techniques significantly outperformed the two non-adaptive filters, where out of the
non-adaptive methods the UKF gave better performance than the EKF, and out of the
adaptive methods the AFUKF gave better performance for all the estimated parameters
than the AFEKF.

Zhou et al [131] proposed an adaptive unscented Kalman filter (AUKF) based on the
residual-sequence form of the adaptive algorithm proposed by Mohamed and
Schwarz [111] (Equation (5.42)) and then extended this AUKF by adding a particle
filter-based refinement stage to improve the accuracy of the a posteriori estimates from
the AUKF. The resultant algorithm was named the adaptive unscented particle filter
(AUPF). In order to apply the Mohamed and Schwarz method to the UKF, a slight
modification of Equation (5.42) (which is repeated here for clarity) was required.
Equation (5.42),

R̂k = Ĉνk +HkP k|kH
T
k , (5.54)

contains the a posteriori information about the state at time step k, via the a posteriori
state error covariance matrix and the approximated a posteriori true innovation
covariance matrix given by

Ĉνk =
1

N

k∑
j=j0

νjν
T
j (5.55)

where

νk = yk −Hkx̂k|k (5.56)

for a linear measurement model, or for a non-linear measurement model hk
(
xk|k

)
νk = yk − hk

(
x̂k|k

)
, (5.57)

where in this case the Hk in Equation (5.54) would represent the measurement model
Jacobian matrix. The second term on the right-hand-side of Equation (5.54) represents
the a posteriori measurement innovation covariance, which we shall denote as P+

ykyk
.

Hence, Equation (5.54) becomes

R̂k = Ĉνk + P+
ykyk

(5.58)
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By examining the UKF equations (see Section 5.6) it can be seen that P+
ykyk

can be
calculated by

P+
ykyk

=
2n∑
i=0

W c
i

[
hk
(
x̂k|k,i

)
− ŷk|k

] [
hk
(
x̂k|k,i

)
− ŷk|k

]T (5.59)

where

ŷk|k =
2n∑
i=0

Wm
i hk

(
x̂k|k,i

)
, (5.60)

and where the x̂k|k,i represent the sigma points drawn from the UKF a posteriori
estimates, i.e. [131]

x̂k|k,0 = x̂k|k (5.61)

x̂k|k,i = x̂k|k −
(√

(n+ λ)P k|k

)
(5.62)

x̂k|k,i+n = x̂k|k +
(√

(n+ λ)P k|k

)
(5.63)

i = 1, · · · , n.

Using this extension of the Mohamed and Schwarz [111] method to the UKF, the
performance of the AUKF and AUPF, as well as the AEKF, were compared in an
INS/GPS data fusion algorithm in [131]. The results showed that the AUKF
outperformed the AEKF and that the AUPF consistently outperformed both.

5.6 Master-Slave Square Root Unscented Kalman Filtering

In this section we present a different type of adaptive filtering algorithm compared to
those discussed in Section 5.5. Instead of using specific recursive equations to estimate
the unknown statistics from the innovation sequence, we instead elect to use a second
filter running in parallel to the main structure from motion filter. This type of filtering
arrangement is known as a master-slave configuration, where the master filter is
responsible for estimating the structure parameters and the slave filter operates on the
innovation sequence of the master filter to recursively estimate the unknown noise
statistics. The backbone filtering method used in this master-slave algorithm is that of
the square-root unscented Kalman filter, due to the numerical benefits discussed
previously. Note that from now on, we are only estimating the structure parameters and
are no longer estimating the motion parameters. That is, for the remainder of this thesis
we are assuming motion is fully known. This approach was adopted under the
advisement of ESA, that stated that it could be reasonable to assume that some other
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spacecraft subsystem would be providing estimates of the landing craft’s motion during
descent. In the absence of knowledge about the uncertainties present in the supplied
motion information, we have made a simplifying assumption that the motion is known
without error so as to focus solely on developing our algorithms specifically for structure
estimation without concern for simultaneous accurate estimation of motion.

5.6.1 Master-Slave SR-UKF Formulation

In the structure from motion algorithm presented in Chapter 4, it was stated that because
the structure parameters are stationary in the world frame, since we are observing a rigid
scene, there is no process model or process noise for these parameters. Therefore, we
have complete knowledge of the process noise statistics, i.e. Qx

k = 0, ∀ k. Therefore, in
this section we describe an adaptive algorithm that makes use of a second filter running
alongside the main SFM filter, that takes the SFM measurement innovation sequence
as its measurement signal and recursively estimates the measurement noise covariance
matrixRx

k for the main filter. This type of filtering arrangement is known as a master-slave
configuration and was first developed based on the UKF by Song et al [132] and further
investigated in [133,134]. The purpose of this particular algorithm is not only to estimate
the unknown noise statistics but also to allow for adaptation in the event of time varying
statistics. This method was tested on a mobile robot platform for the separate estimation
of Qk and Rk [132], for estimating the model error for an autonomous helicopter [133],
and for estimation of aerodynamic parameters from real flight data [134]. In all cases
the performance of this adaptive UKF algorithm was found to give superior performance
to that of the standard UKF in terms of convergence speed and estimation accuracy.
The work in [132–134] is based around the UKF, however in this work we present a
master-slave filtering framework based on the SR-UKF, referred to as MS-SRUKF, to
take advantage of the improved numerical properties discussed previously. In this case,
the slave filter adaptively tunes

√
Rx
k instead of Rx

k.
The master filter can be derived by considering the general discrete-time non-linear

system

xk = fx (xk−1) + wx,k−1 (5.64)
yk = hx (xk) + vx,k (5.65)

where xk ∈ Rn is the state vector containing the structure parameters, yk ∈ Rm is the
measurement vector, and wx,k and vx,k are the process and measurement noise vectors,
respectively. Since the state vector consists of only the structure parameters, and they
have no process, Equation (5.64) could actually be replaced by the linear state equation

xk = F x,k−1xk−1 + wx,k−1 (5.66)

where in this case F x,k = I, ∀ k, where I is the identity matrix, and wx,k = 0, ∀ k.
The measurement equation is non-linear in this application due to the non-linear camera
model equation, therefore Equation (5.65) is as expressed above. Nevertheless, we
shall proceed with the general case of non-linear equations for both the state and
measurement equations in what follows.
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If we assume that the measurement noise, vx,k , is Gaussian white, then the master
filter measurement noise covariance matrix, Rx

kx, will be a diagonal matrix, therefore
the slave filter need only estimate the diagonal elements, which greatly simplifies the
problem. If the diagonal elements of

√
Rx
k are denoted by the vector θk ∈ Rm , and the

measurement vector for the slave filter is denoted by φk ∈ Rm, then the system dynamics
for the slave filter can be represented by

θk = fθ (θk−1) + wθ,k−1 (5.67)
φk = g (θk) + vθ,k (5.68)

where wθ,k and vθ,k are the process and measurement noise vectors for the slave filter,
respectively. Equation (5.67) describes how the measurement noise variance changes
with time as a consequence of a potentially changing external environment (i.e. due to
transition from descent under a parachute to the jettisoning of the parachute and the
transition from unpowered to powered descent, or atmospheric turbulence, varying
thrust in powered descent, etc.). Although control signals (e.g. applied thrust) could be
used to indicate that the noise environment has changed, precise modelling of the noise
environment as a function of thrust and the characteristics of the rocket motor and
spacecraft structure assembly would be required in order to handle these changes
successfully. How exactly this would affect the feature tracking performance, through
induced image blur, would be extremely difficult to model, and it would not cover the
other types of disturbance, such as turbulence (the timing of which could not be
predicted at all). Therefore, as far as the slave filter is concerned these changes can
happen suddenly and without warning, so there is no suitable straightforward process
model that can be defined to describe how the noise environment will change. We are
therefore left with little option other than to assume that the process model is
represented by the identity matrix multiplied by the previous state estimate, i.e. the state
equation is the linear equation

θk = F θ,k−1θk−1 + wθ,k−1 (5.69)

where F θ,k = I, ∀ k. However, as before, in what follows, the SR-UKF equations will
be formulated as if the state equation is non-linear to maintain generality. In contrast to
the master filter however, the process noise for the slave filter is not zero. Due to the
inability to specify a suitable process model, any changes in the master filter
measurement noise will have to be covered by a suitable addition of slave filter process
noise. Unfortunately, the correct amount of process noise to be applied cannot be
predicted and so an adaptive method, such as the ones described in Chapter 5 is
adopted. Inspired by the success of the Mohamed and Schwarz method [111] applied to
the UKF for the adaptive estimation of the measurement noise in [131], we choose to
adopt this approach for the estimation of the process noise for the slave filter, where,
obviously, instead of using Equation (5.54), we base our adaptive algorithm on the
equation for adapting Qθ

k:

Q̂
θ
k = Kθ,kĈν

θ,k
KT

θ,k. (5.70)
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Figure 5.8: Schematic diagram of master-slave SR-UKF algorithm

The measurement model for the slave filter is derived from the predicted square-root
measurement innovation covariance, ζk, of the master filter, and the measurement is
given by

φk = diag
{√

νθ,kν
T
θ,k

}
. (5.71)

A schematic illustrating the operation of the master-slave SR-UKF algorithm is
presented in Figure 5.8. It is important to note that, even though this figure would seem
to imply that the two filters operate in parallel to each other, the slave filter relies on the
measurement innovation sequence of the master filter, therefore the slave filter cannot
begin to process its measurements for the current time step until the master filter has
completed its measurement updates. This means that very little, if any, increase in
computational throughput can be realised by implementing parallel programming
techniques on a global level. However, many of the component parts of this algorithm
can be parallelised, such as computation of the sigma points, which can be
computationally expensive when the number of tracked feature points is large.

The equations for each step in the Master-Slave Square-Root Unscented Kalman
Filter algorithm are listed as follows:

MASTER FILTER

Initialisation

x̂0|0 = E [x0] (5.72)
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Sx0|0 = chol
{[(

x0 − x̂0|0
) (

x0 − x̂0|0
)T]} (5.73)

Sigma Point Calculation

χ∗
k−1|k−1 =

[
x̂
k−1|k−1 x̂

k−1|k−1 + η x Sxk−1|k−1 x̂
k−1|k−1 − η

x Sxk−1|k−1

]
(5.74)

Time Update

χ∗
k|k−1 = f

x
(χ∗

k−1|k−1) (5.75)

x̂
k|k−1 =

2N∑
i=0

Wm
x,i
χ∗
i,k|k−1 (5.76)

S x−
k|k−1 = qr

{[√
W c
x,1

(
χ∗
1:2N,k|k−1

− x̂
k|k−1

) √
Q̂
x
k−1|k−1

]}
(5.77)

S x
k|k−1 = cholupdate

{
S x−
k|k−1 ,

(
χ∗
0,k|k−1 − x̂

k|k−1

)
, W c

x,0

}
(5.78)

Recalculate Sigma Points

χ
k|k−1

=
[
x̂
k|k−1 x̂

k|k−1 + η x S x
k|k−1 x̂

k|k−1 − η
x S x

k|k−1

]
(5.79)

Measurement Prediction

γ
k|k−1 = h

x
(χ

k|k−1) (5.80)

ŷ
k|k−1 =

2N∑
i=0

Wm
x,i
γ
i,k|k−1 (5.81)

Measurement Update

S−y
k

= qr
{[√

W c
x,1

(
γ
1:2N,k|k−1 − ŷ

k|k−1

) √
R̂
x
k−1|k−1

]}
(5.82)

Sy
k

= cholupdate
{
S−y

k
,
(
γ
0,k|k−1 − ŷ

k|k−1

)
, W c

x,0

}
(5.83)
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P x
k
y
k

=

2N∑
i=0

W c
x,i

(
χ
i,k|k−1 − x̂

k|k−1

)(
γ
i,k|−1 − ŷ

k|k−1

)T
(5.84)

K x
k

=
(
P x

k
y
k
/ST

y
k

)
/Sy

k
(5.85)

x̂
k|k = x̂

k|k−1 +K x
k

(
y
k
− ŷ

k|k−1

)
(5.86)

S x
k|k = cholupdate

{
S x
k|k−1 , K

x
k
Sy

k
, −1

}
(5.87)

where

Wm
x,0

=
λ
x

N + λ
x

W c
x,0

=
λ
x

N + λ
x

+
(

1− α2
x

+ β
x

)

Wm
x,i

= W c
x,i

=
1

2(N + λ
x
)

λ
x

= α2
x

(
N + κ

x

)
−N

η x =
√
N + λ

x

N = number of states in master filter

0.0001 ≤ α
x
≤ 1

β
x

= 2 (optimal for Gaussian distribution)

κ
x

= 0 (usual for state estimation)

SLAVE FILTER

Initialisation
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θ̂
0|0 = E

[
θ
0

]
(5.88)

Sθ0|0 = chol

{
E

[(
θ
0
− θ̂

0|0

)(
θ
0
− θ̂

0|0

)T]}
(5.89)

Sigma Point Calculation

ϑ
k−1|k−1 =

[
θ̂
k−1|k−1 θ̂

k−1|k−1 + η θS
k−1|k−1 θ̂

k−1|k−1 − η
θS

k−1|k−1

]
(5.90)

Time Update

ϑ∗
k|k−1 = f

θ
(ϑ

k−1|k−1) (5.91)

θ̂
k|k−1 =

2M∑
i=0

Wm
θ,i
ϑ∗
i,k|k−1 (5.92)

S θ−
k|k−1

= qr
{[√

W c
θ,1

(
ϑ∗
1:2M,k|k−1 − θ̂k|k−1

) √
Qθk−1|k−1

]}
(5.93)

S θ
k|k−1 = cholupdate

{
S θ−
k|k−1

,
(
ϑ∗
0,k|k−1 − θ̂k|k−1

)
, W c

θ,0

}
(5.94)

Recalculate Sigma Points

ϑ
k|k−1 =

[
θ̂
k|k−1 θ̂

k|k−1 + η θS θ
k|k−1 θ̂

k|k−1 − η
θS θ

k|k−1

]
(5.95)

Measurement Prediction

ς
k|k−1 = h

θ
(ϑ

k|k−1) (5.96)

ŝ
k|k−1 =

2M∑
i=0

Wm
θ,i
ς
k|k−1 (5.97)
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Measurement Update

S −s
k

= qr
{[√

W c
θ,1

(
ς
1:2M,k|k−1 − ŝ

k|k−1

) √
R θ
k−1|k−1

]}
(5.98)

Ss
k

= cholupdate
{
S −s

k
,
(
ς
0,k|k−1 − ŝ

k|k−1

)
, W c

θ,0

}
(5.99)

P
θ
k
s
k

=
2M∑
i=0

W c
θ,i

(
ϑ
i,k|k−1 − θ̂k|k−1

)(
ς
i,k|k−1 − ŝ

k|k−1

)T
(5.100)

Kθ
k

=

(
P
θ
k
s
k
/ST

s
k

)
/S

s
k

(5.101)

θ̂
k|k = θ̂

k|k−1 + Kθ
k

(
s
k
− ŝ

k|k−1

)
(5.102)

S θ
k|k = cholupdate

{
S θ
k|k−1 , K

θ
k
S
s
k
, −1

}
(5.103)

where

Wm
θ,0

=
λ
θ

M + λ
θ

W c
θ,0

=
λ
θ

M + λ
θ

+
(

1− α2
θ

+ β
θ

)

Wm
θ,i

= W c
θ,i

=
1

2(M + λ
θ
)

λ
θ

= α2
θ

(
M + κ

θ

)
−M

η θ =
√
M + λ

θ

M = number of states in slave filter

0.0001 ≤ α
θ
≤ 1

β
θ

= 2 (optimal for Gaussian distribution)

κ
θ

= 0 (usual for state estimation)
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where the measurement model equations for the slave filter are derived from the
measurement innovation equations of the master filter (Equations (5.82) & (5.83)), i.e.

ς −
k|k−1

= h
θ
(ϑ

k|k−1)
− = qr

{[√
W c
x,1

(
γ
1:2N,k|k−1 − ŷ

k|k−1

) √
R̂
x
k|k−1

]}
(5.104)

ς
k|k−1 = h

θ
(ϑ

k|k−1) = cholupdate
{
ς −
k|k−1

,
(
γ
0,k|k−1 − ŷ

k|k−1

)
, W c

x,0

}
(5.105)

Some proof of concept results using this master-slave configuration on a similar
dataset to those used in Chapter 4 will be presented in Section 5.8. However, before we
can do this, it is important to note that, although the master filter can be adaptively tuned
by the slave filter, the slave filter itself needs to be adequately tuned to ensure that it
does not corrupt the performance of the master filter. Thus, aside from the ability for the
master filter to adapt to a potentially changing external noise environment, in terms of
actually tuning the filter, all that has been achieved is an offsetting of the tuning to the
slave filter instead of the master filter itself, as would be the case in a conventional
filtering framework. A traditional manual tuning could be carried out using a trial and
error approach, however the drawback of this is that it is impossible to be certain that the
most optimal set of tuning parameters has been found, even if the filter can be seen to
be performing adequately by comparison to a ground truth. A more sophisticated
approach to this can, and should be implemented using a mathematical optimality
criterion. This is the subject of the following section, which makes use of a particle
swarm optimisation technique that aims to optimally initialise the two filters by finding the
most suitable set of initial tuning parameters. Once these initial parameters have been
identified, the slave filter can then further refine the tuning parameters of the master filter
(if necessary) and make any required adaptations to any changes in the external noise
environment.

5.7 Particle Swarm Optimisation Filter Initialisation

In order for the adaptive techniques described in Section 5.5 to work effectively, a good
initial guess of the tuning parameters is required. This is due to the fact that none of the
adaptive algorithms discussed in Section 5.5 are able to completely remove the need for
a priori stochastic information, thus the filters still require initial values for the
measurement and process noise covariance and the state error covariance [115].
Furthermore, these initial estimates still need to be reasonable due to the delay in
adaptation as a consequence of having to accumulate N noise samples before the first
adaptive calculation can be carried out. While this argument applies more directly to the
slave filter due to the particular adaptive mechanism employed in that filter, the master
filter must also be performing reasonably during this time in order for the slave filter to
adapt appropriately to the incoming measurements. This chapter presents a method by
which a reasonable initial set of tuning parameters may be obtained by using the
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measurement information through a technique known as particle swarm optimisation.
The additional adaptive mechanisms incorporated into the filter design may then further
refine these initial parameters in order to increase robustness to a potentially varying
noise environment and improve the overall accuracy of the estimated scene structure.

5.7.1 Particle Swarm Optimisation

Particle swarm optimisation (PSO) was originally devised by Kennedy and
Eberhart [135, 136] as a computational method for the optimisation of continuous
non-linear functions. The technique was discovered via simulations of the simplified
social behaviour involved in the motion patterns of bird flocking, fish schooling and
swarming insects. This motion is typically characterised by synchronised and seemingly
choreographed sudden changes of direction, scattering and regrouping, as well as the
non-existence of collisions. In addition to the highly synchronised motion, it has been
theorised that individual members of the group can profit from the discoveries and
previous experience of all other members during the search for food [135], which
enables the flock or swarm to converge on rich sources of food. Clearly, it would seem
that some form of intercommunication is involved in order to enable such group
behaviour. By modelling this intercommunication and motion characteristics Kennedy
and Eberhart were able to devise a technique that is capable of converging on the
optimum solution of a non-linear equation.

In PSO the location of each particle inside a search space of possible solutions is
regarded as a candidate solution of the problem. To simulate the social behaviour, each
particle maintains a record of its previous best location, as well as having access to the
global best location found by the entire swarm, both of which are found by evaluating a
cost function for the particular non-liner equation that is being solved. The motion of each
particle is iteratively updated according to the combined influence of a random parameter
and the two measures of “best” location, which over time has the effect of driving the
swarm closer to the optimum solution. The algorithm is stopped once convergence has
occurred or after a predefined maximum number of iterations. More formally, the particle
position is updated according to the following equation:

xi (t+ 1) = xi (t) + vi (t+ 1) (5.106)

where

vi (t+ 1) = wvi (t) + c1r1 [pi − xi(t)] + c2r2 [pg − xi(t)] (5.107)

is the ith particle velocity at time t, pi is the personal best location of the ith particle, pg is
the global best location found by the swarm, w is an inertia weight governing the
influence of velocity from the previous iteration, c1 and c2 are known as acceleration
coefficients, which weight the influence of the terms involving the current best known
locations, and r1 and r2 are uniformly distributed random numbers between 0 and
1 [137]. One choice for the value of the inertia weight, w is to compute it as a linearly
decreasing value between upper and lower bounds so that in the beginning the
emphasis is more on searching the solution space, whereas near the end the focus is on
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convergence since the relative importance of the influence of pi and pg is increased.
This approach was adopted in [138], where the inertia weight was calculated in each
iteration by

w = wmax −
t (wmax − wmin)

tmax
(5.108)

where t is the current iteration, tmax is the maximum allowed number of iterations, wmax
is the maximum inertia weight and is usually set to 0.9, and wmin is the minimum inertia
weigh and is usually set to 0.4. Appropriate values for the acceleration coefficients,
c1 and c2 are 2 as used in [135], or 2.05 as used in [137].

5.7.2 Application to Filter Initialisation

Particle swarm optimisation was first incorporated to assist in adaptive tuning of Kalman
filter-based algorithms by Jwo and Chang [139], and shortly after, and seemingly
independently, in a number of papers by Jatoth et al [137, 140–143]. Applying PSO to
adaptive Kalman filter tuning is relatively straightforward, the only difficulty is in
determining an appropriate cost/fitness function once the parameters that need to be
identified have been established.

Jwo and Chang [139] took inspiration from covariance matching and process noise
covariance scaling in order to derive a cost function of the form

J =
trace

{
Ĉνk

}
trace

{
Hk

(
F k−1P k−1|k−1F

T
k−1 + λkQk−1

)
HT

k + Rk

} (5.109)

where λk is a scale factor to be determined that increases or decreases the influence of
the previous process noise covariance, Qk−1, in the calculation of the Kalman gain (via
P k|k−1) for the current time step, Kk, based on the measurement innovation sequence.
Note that Ĉνk is calculated as before (see Equation (5.41)). The goal is to use PSO to
find a solution for how the previous process noise covariance matrix should be scaled
to make the predicted measurement innovation covariance (denominator) consistent with
the actual covariance (numerator). Thus the goal is to obtain J ≈ 1. After convergence
the scale factor can be determined and the process noise covariance matrix to be used
in the next time step is given by

Qk = λkQk−1. (5.110)

The PSO algorithm can be computationally demanding especially when the dimension
of the search space is large. Therefore to avoid unnecessary computation, the PSO
adaptation was only executed in [139] when the cost function, using λk = 1, deviates
significantly from 1. Significant improvements in the estimation results in a GPS
navigation application were observed in [139] using this technique, compared to
standard Kalman filtering.

Ramakoti et al [140] apply the PSO algorithm to tune a Kalman filter that is used to
track a moving ball in a sequence of images, with their results showing improved
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tracking performance over the conventional Kalman filter. In [141] the PSO tuning
algorithm is applied to an extended Kalman filtering problem for tracking a manoeuvring
target, where again improved performance was obtained using a simulated moving
target. References [137, 142] apply the PSO tuning algorithm to an unscented Kalman
filter for tracking aircraft from bearings-only radar measurements, showing that improved
tracking results can also be obtained compared to the standard UKF. Finally, in [143] the
PSO assisted UKF was applied to tracking objects undergoing a ballistic atmospheric
re-entry. Once again improved results were obtained from the PSO-UKF compared to
the UKF. In all of these works, which we refer to collectively as Jatoth et al, the PSO
algorithm used a fitness function based on an approximate deterministic function for
relating the tuning parameters to a mean-square error criterion of optimisation. However,
no details were given as to the specific form of fitness function that was used.

Panigrahi et al [144] applied an adaptive UKF for the estimation of voltage flicker and
harmonics in power networks. In addition to the adaptive mechanism, a PSO algorithm,
with inertia weights adaptively determined using fuzzy logic, was used to obtain
approximately optimal initial values for the UKF tuning parameters. Any subsequent
changes in the noise environment were handled by the adaptive mechanism in the UKF.
A fitness function was specified for the PSO in terms of an objective function, however
no details about the form of the objective function were given.

In our work, we adopt an approach inspired by Panigrahi et al [144], in that we are
employing PSO as a means of obtaining a suitable set of initial values for the tuning
parameters. Since we have two filters to initialise, we must apply PSO to both the
master filter and the slave filter. For the master filter the parameters of interest are the
initial state vector x̂0|0, the initial measurement noise covariance Rx

0 , the initial state
error covariance P x

0|0, and the SR-UKF parameters αx and βx. For the slave filter the
parameters of interest are the process noise covariance Qθ

0, the initial state error
covariance P θ

0|0, and the SR-UKF parameters αθ and βθ. Under the assumption of
Gaussian white noise, the covariance matrices will be diagonal, therefore we need only
concern ourselves with the search for suitable diagonal elements for these matrices,
which reduces the dimension of the search-space considerably. The location of the ith

particle within the search space at iteration t is therefore specified by the following
vector:

xi(t) =



αxi,t
βxi,t
αθi,t
βθi,t

x̂0|0,i,t

diag
{
P x

0|0,i,t

}
diag

{
Rx

0,i,t

}
diag

{
P θ

0|0,i,t

}
diag

{
Qθ

0,i,t

}



. (5.111)
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Since the goal of this initialisation is to estimate suitable initial tuning parameters to
be used until sufficient noise samples have been accumulated for the slave filter
adaptive mechanism to begin adaptively tuning Qθ

k, the adaptive mechanism for the
slave filter will be inactive during PSO initialisation. However, we will be allowing the
slave filter to update the measurement noise covariance of the master filter during the
PSO initialisation, which will be carried out over the first N image frames in order to
ensure that the tuning parameters will be valid for a reasonable length of time — if only
the first pair of images was used it could be possible to obtain a set of parameters that
are only valid for that pair of images.

For each particle, a fitness function will be evaluated in each filter after the a posteriori
state estimates have been calculated for the N th image. The fitness function that will be
used in the master filter is derived based on the adaptive technique used by Zhou et
al [131] for their adaptive UKF. In [131], the equation for adapting the measurement noise
covariance matrix was given as

R̂k = Ĉ
+
νk

+ P+
ykyk

(5.112)

where

P+
ykyk

=
2n∑
i=0

W c
i

[
hk
(
x̂k|k,i

)
− ŷk|k

] [
hk
(
x̂k|k,i

)
− ŷk|k

]T (5.113)

where the x̂k|k,i represent the sigma points drawn from the UKF a posteriori estimates,
i.e.

x̂k|k,0 = x̂k|k (5.114)

x̂k|k,i = x̂k|k +
(√

(n+ λ)P k|k

)
(5.115)

x̂k|k,i+n = x̂k|k +
(√

(n+ λ)P k|k

)
(5.116)

i = 1, · · · , n.

and where

Ĉ
+
νk

=
1

N

N∑
j=1

νjν
T
j (5.117)

where

νk = yk − hk
(
x̂k|k

)
. (5.118)

Equation (5.112) is derived by recognising that the a posteriori theoretical
measurement innovation covariance, C+

νk
, is given by

C+
νk

= Rk − P+
ykyk

(5.119)
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and then applying the covariance matching principle of setting this equation equal to
Equation (5.117). Note that since covariance matrices are at least positive semi-definite
by definition, Equation (5.112) implies that Rk ≥ P+

ykyk
, therefore Cνk will always be at

least positive semi-definite when calculated using Equation (5.119), despite the
subtraction operation. Taking inspiration from [139], we therefore formulate the following
cost function to be used in the master filter:

Jx = abs

1−
trace

{
Ĉ

+
νk

}
trace

{
R̂k − P+

ykyk

}
 , (5.120)

which equals zero when the two measurement innovation covariances match.
This cost function cannot be used in the slave filter, because for the slave filter we have

made the assumption that the measurement noise covariance is zero, which according
to Equation (5.112), implies C+

νk
and P+

ykyk
must also be zero due to the requirement for

covariance matrices to be at least positive semi-definite. To derive a cost function for
the slave filter we must consider the equation for the measurement innovation covariance
using a priori information, which from [111], is given by

C−νk = HkP k|k−1H
T
k + Rk (5.121)

By making a similar substitution to that made by Zhou et al [131], we can re-write this
equation for the UKF:

C−νk = P−ykyk + Rk (5.122)

where

P−ykyk =

2n∑
i=0

W c
i

[
hk
(
x̂k|k−1,i

)
− ŷk|k−1

] [
hk
(
x̂k|k−1,i

)
− ŷk|k−1

]T
+ Rk (5.123)

where

ŷk|k−1 =

2n∑
i=0

Wm
i hk

(
x̂k|k−1,i

)
, (5.124)

where the x̂k|k−1,i represent the sigma points drawn from the UKF a priori estimates, i.e.

x̂k|k−1,0 = x̂k|k−1 (5.125)

x̂k|k−1,i = x̂k|k−1 +
(√

(n+ λ)P k|k−1

)
(5.126)

x̂k|k−1,i+n = x̂k|k−1 +
(√

(n+ λ)P k|k−1

)
(5.127)

i = 1, · · · , n.
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and where P k|k−1 is given by

P k|k−1 =
2n∑
i=0

W c
i

[
fk

(
x̂∗k|k−1,i

)
− x̂k|k−1

] [
fk

(
x̂∗k|k−1,i

)
− x̂k|k−1

]T
+ Qk−1, (5.128)

which explicitly establishes the connection to Qk. In this case the x̂∗k|k−1,i represent the
sigma points drawn from the UKF a posteriori estimates from the previous time step, i.e.

x̂∗k|k−1,0 = x̂k−1|k−1 (5.129)

x̂∗k|k−1,i = x̂k−1|k−1 +
(√

(n+ λ)P k−1|k−1

)
(5.130)

x̂∗k|k−1,i+n = x̂k−1|k−1 +
(√

(n+ λ)P k−1|k−1

)
(5.131)

i = 1, · · · , n.

Therefore, the cost function for the slave filter is given by

Jθ = abs

1−
trace

{
Ĉ
−
νk

}
trace

{
P−ykyk

}
 (5.132)

where Ĉ
−
νk

is given by

Ĉ
−
νk

=
1

N

N∑
j=1

νjν
T
j (5.133)

where

νk = yk − hk
(
x̂k|k−1

)
. (5.134)

Finally, we must take into account the particle fitness due to the combined effect of the
two filters to ensure a set of tuning parameters are found for each filter that are consistent
with each other. This is easily accomplished by adding the two individual costs:

Jtot = Jx + Jθ. (5.135)

The goal of the PSO algorithm is therefore to minimise Equation (5.135).

5.8 Proof of Concept Results

To assess the performance of the proposed approach a simple test scenario was used
based on artificial images produced using the Planet and Asteroid Natural scene
Generation Utility (PANGU), which is a software package that allows the creation of
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Figure 5.9: Example PANGU image used in PSO initialised SR-UKF, at an altitude of 2000m, with
a nadir viewing direction.

Figure 5.10: Dense ground truth DEM of the terrain visible in the first image (from 2000m altitude)
of the sequence used in the PSO initialised SR-UKF.

realistic 3D models of planetary surfaces, as was used in Chapter 4. An example image
is shown in Figure 5.9. Therefore the image sequence represents a physically realistic
portion of a descent towards the surface. The image sequence begins at an altitude of
2000m and consists of 100 images at 20 frames per second, with the spacecraft
descending in the nadir direction at a constant speed of 100m/s. Each image consists of
512x512 pixels covering a 30x30 degree field of view, with the bore-sight direction
corresponding to the view direction of the centre pixel (256.5, 256.5). With a focal length
of 30mm, at 2000m altitude, each pixel in the image corresponds to approximately 2m on
the surface. A ground truth for the shape of the terrain was obtained using the PANGU
LIDAR tool to provide a dense 3D digital elevation model, which is shown in Figure 5.10.
Since the tracked feature points will be sparse in comparison to the full ground truth
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Figure 5.11: PSO initialised SR-UKF structure estimation results: Sparse ground truth DEM (left),
Estimated DEM (right).

DEM, to provide a straight forward means of comparison between the estimated
structure and the ground truth, we will artificially reduce the density of the ground truth
DEM by selecting points that correspond to the tracked feature points. Both the sparse
ground truth points and the estimated structure points will then be used to construct a
DEM by fitting a dense mesh-grid and using linear interpolation between the points.
Before this can be done, it must be noted that the SFM algorithm estimates the distance
of the feature points from the point of view of the world frame, therefore we must
subtract these values from a ground reference plane so that the height of the points with
respect to this plane can be plotted. For this we use a reference depth corresponding to
the initial altitude of the spacecraft, i.e. 2000m. The resulting DEMs are presented in
Figure 5.11, which shows the sparse ground truth on the left and the estimated DEM on
the right.

From Figure 5.11 it can be seen that the estimated DEM is in approximate agreement
with the sparse ground truth DEM in that the terrain can be seen to increase in elevation
from around -20m on the right to around +20m on the left. This can be seen most clearly at
the topmost part of the figure where the best case error is very small, perhaps in the order
of around 1m or better. The accuracy decreases slightly, but overall remains promising
down to around the +100m line in the Y direction. In the bottom 200–300m of the coloured
region this agreement breaks down to an extent since some anomalies in the estimated
results can clearly be seen. In the extreme bottom-right corner of the coloured region
the terrain height is in error by around 35m, and just above this is what appears to be an
anomalous green triangle, but in fact this is a region of relatively low error for the most
part, compared to the surrounding area. The worst case error can be seen in the extreme
bottom-left corner of the coloured region where the error magnitude is approximately 50m.
However, despite these obvious anomalies, we can consider the results to be promising
considering that this simple test case in fact represents a particularly challenging scenario
due to the high altitude of the spacecraft. Improvements in the structure estimates should
occur naturally as the distance between the surface and the spacecraft decreases.
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It should also be noted that the resulting DEM is quite small in area and very sparse.
The white region surrounding the coloured area represents the part of the terrain for which
no data is available. This is because the tracked feature points were clustered around this
central part of the image since it is the most textured region. This is largely coincidental
since the terrain is generated randomly in PANGU. The sparsity of the estimated DEM
on the other hand is wholly due to a large number of feature points being lost during the
tracking process. This was observed to be due to divergence in the iterative minimisation
step in the KLT tracking algorithm. If the tracking solution for a particular feature does not
converge after a certain number of iterations divergence is assumed and that feature is
rejected.

5.8.1 Conclusions

An adaptive, self tuning, filtering framework has been developed using a parallel master-
slave configuration based on the square-root unscented Kalman filter to estimate the
structure of the terrain surrounding a potential landing site from a short sequence of
images representing a portion of a descent. This technique has the capability of adapting
to changing noise statistics, which can be expected to occur during the descent phase
of planetary landing. Some promising initial results have been obtained that suggests
that, with further development, this method may have the potential to supply the required
accuracy for hazard detection in support of a pin-point landing for future planetary surface
exploration missions. This is by far the most significant contribution in this thesis and it
represents a great deal of the development effort in this work. As such it will be more
extensively tested in the remaining chapters.

While overall the results showed promising performance, some anomalies were
observed in the estimated terrain structure. There are a number of possible reasons for
this. Firstly, the feature tracking method used in the production of these results
(conventional KLT) may not be capable of tracking the features to a high enough
accuracy. KLT type methods are known to drift from the true feature point over time, thus
potentially introducing significant errors in the structure estimation, as mentioned
previously. In the remaining chapters the algorithm will be tested in conjunction with the
more robust TR-KLT feature tracker in an attempt to reduce the accumulation of errors in
the feature measurements. Secondly, although the slave filter is responsible for
adaptively tuning the master filter, the slave filter (in these results) still requires manual
tuning. The process of manually tuning filters consists of a long iterative process of trial
and error and, as such, it is very unlikely that an optimal set of tuning parameters will be
obtained. Incorrect tuning parameters can seriously degrade the performance of filtering
algorithms. In the remaining chapters, the algorithm is tested with additional adaptive
mechanisms applied to the slave filter (covariance matching) thus completing the fully
adaptive system.
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6 VISILAB DATASET ACQUISITION

This chapter describes the set-up and utilisation of a computer vision test bench, located
at ESA-ESTEC in The Netherlands, in order to generate a set of realistic descent
trajectories, using real camera hardware in conjunction with a scaled mock-up of a
portion of the Lunar south pole region. The chapter begins with an overview of the
VISILAB equipment, which includes a discussion of the decisions that were made during
the design of the test bench, the details of the camera system, how the surface mock-up
was manufactured, details of the design of the computer controlled camera mounting
system, important coordinate reference frames, and a description of the illumination
system. Following this, a brief discussion of the changes that had to be made in order
for the VISILAB test bench to be used in this project is given, including details of the
different configuration options that were identified. The next section briefly discusses
camera calibration and presents a procedure for the calibration of the VISILAB camera
system along with a presentation of the calibration results obtained using this procedure.
The final section then describes the details behind the calculation/modelling of a
representative descent trajectory for a Lunar type planetary landing mission, a method
of scaling this trajectory to the VISILAB test bench is then described using the previously
obtained calibration parameters, and finally the details of the various recorded datasets
is given. In addition to the collection of representative datasets, the primary contribution
of this chapter is the testing of the fully adaptive MS-SRUKF algorithm on real camera
images, thus achieving a technology readiness level of 3-4. The results demonstrate
that reasonably good levels of accuracy can be achieved using the developed SFM
algorithm and filtering framework.

6.1 VISILAB Overview

VISILAB is a computer vision-based navigation test bench at ESA-ESTEC in The
Netherlands. It consists of a scaled mock-up of a portion of the Lunar south polar
region, an illumination system, and a camera mounted on a motorised 2-axis linear
table. The purpose of this equipment is to enable the testing of vision-based navigation
and hazard detection algorithms, with camera hardware-in-the-loop, using
representative terrain images and precisely controlled trajectories under a simulated
entry, descent and landing scenario.

VISILAB was originally designed during the course of a previous PhD project. This
previous project focussed on the development and testing of an absolute visual navigation
system known as LION (Landing Inertial and Optical Navigation) that aimed to provide
absolute position and motion estimation, using digital images during a lunar descent,
with sufficient accuracy to enable a pin-point landing operation to be carried out. The
specific descent scenario investigated for this project was that of a Lunar sample return
mission at the lunar south pole. Thus VISILAB was very much designed with this in
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mind, to the point where the terrain surface was chosen to be a scaled mock-up of a
portion of the Lunar south polar region, based on altimetry data obtained from the NASA
Lunar Reconnaissance Orbiter. Although the VISILAB test bench was designed during
the course of this project, with that project’s specific requirements in mind, it was also
designed to be general enough to provide a suitable test bench for future, related projects.
The general design objectives for VISILAB are presented in the following subsection.

6.1.1 VISILAB Design Objectives

VISILAB was designed to fulfil the following objectives [145], [146]:

• Primary Objective: To test the LION vision-based absolute navigation algorithm
with camera hardware in-the-loop, placed over a lunar-like terrain.

• Secondary Objective: To provide ESA with an internal test facility for optical
landing sensors, e.g. visible cameras or LIDAR systems, to enable the following
activities to be carried out:

– To allow for a comprehensive understanding of end-to-end error contributors
to vision-based navigation systems, including offline and online processes, for
pinpoint and soft landing applications.

– Hardware-in-the-loop prototyping and testing of vision-based navigation and
hazard detection systems, allowing the achievement of technology readiness
level 3 according to Figure 6.1.

– The characterisation of vision-based camera sensors and the impact of
different detector technologies (e.g. rolling or global shutter) on image
processing performance.

This current project was the first project to make use of VISILAB since its original
inception and use in the LION project. Thus it is the first project to make direct use of the
secondary design objective. However, due to a recent lab move, resulting in the loss of
one of the two optical tables that VISILAB was originally installed upon, some changes
had to be made to the configuration of the equipment before it could be used in this
project. These changes (which will be detailed in Section 6.2) were made with the view
to ensure continued fulfilment of the secondary objective.

6.1.2 Hardware Requirements

A set of hardware requirements were drawn up as part of the work carried out during the
LION project in order to fulfil the design objectives presented in the previous subsection.
These requirements are summarised in Table 6.1. For further details on the justification
of the requirements see [145]. These requirements were used to select appropriate
hardware for the VISILAB system.
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Figure 6.1: Technology readiness levels for vision-based navigation systems

Hardware Requirements
Camera 1024x1024 pixel sensor

70 degree field-of-view
Inertial Measurement Unit Software simulated
Planetary Surface Model Lunar DEM from NASA LRO mission

Real data only
Motion Capability 4 degrees of freedom: 3 translations + pitch

rotation
Illumination White light, parallel rays, uniform flux

Table 6.1: VISILAB hardware requirements.

6.1.3 Camera System

The camera system that was selected for VISILAB is a uEye USB camera manufactured
by IDS Imaging, which was chosen to representative of the current industrial baseline
for the ESA lunar lander camera [145]. It offers a USB 2.0 interface, a global-shutter
mode, a 1280x1024 monochrome CMOS sensor, and is compatible with C-mount lenses.
This camera was used with a 3.5mm lens, made by GOYO Optical Inc., for the LION
experiment, although a number of other lenses are also available (however, the GOYO
lens was also used in this project, so this is the only lens that will be discussed (see [145]
for details on these other lenses)). The main parameters for the uEye camera with the
GOYO lens are summarised in Table 6.2. The uEye camera, fitted with the GOYO lens is
shown in Figure 6.2.
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Figure 6.2: uEye camera fitted with GOYO lens

6.1.4 Planetary Surface Mock-Up

Since the LION project focussed on a descent navigation scenario for a pin-point landing
on the Moon, the chosen terrain mock-up was that of a scaled portion of the Lunar south
pole. The surface mock-up was produced for ESA by a specialised company, via the
German Aerospace Center (DLR), that has developed techniques for milling precise
surface mock-ups from real Digital Elevation Model (DEM) data. The DEM used to
construct the VISILAB surface mock-up was created from altimetry data collected by the
NASA Lunar Reconnaissance Orbiter mission (LRO) LOLA instrument. This DEM is
shown in Figure 6.3, where the red box approximately indicates the region covered by

Camera Model IDS UI-1240SE-M
Interface USB 2.0
Resolution 1280x1024
Resolution Depth 8 bits
Sensor Size 6.784x5.427mm
Field of View 78.4x75.6
Minimum Distance of Focus 6cm

Table 6.2: Main camera parameters for uEye camera with GOYO lens
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Exact Mock-Up Dimensions 980x1960mm
Milling Line Step 0.5mm
Maximum Height Range 50mm
DEM Resolution 1960x3920 pixels
DEM Resolution Depth 16 bits
Lunar Dimensions 960x1920km
DEM Lunar Pixel Footprint 490m

Table 6.3: Exact mock-up, DEM, and Lunar surface characteristics

the VISILAB mock-up surface, shown in Figure 6.4.
The mock-up surface consists of two 1m2 tiles of reinforced resin. As can be seen

by comparing Figures 6.3 and 6.4, the Lunar south pole is located in the left tile of the
mock-up — in fact during the design process it was constrained to be exactly in the centre
of the left tile. Each tile is milled with a milling strip resolution of 0.5mm and a depth range
of 50mm. The footprint of the mock-up surface on the Lunar surface represents an area
of 960x1920km. Scaling the raw DEM data down to a size of 1x2m resulted in a vertical
height range of only 1.5cm. Thus, to take advantage of the full height range offered by the
milling process, the DEM data was exaggerated by a vertical scaling factor to give the full
5cm range on the mock-up. The exaggerated DEM used to manufacture the mock-up is
provided as a TIFF image (see Figure 6.5), where the grey value of each pixel represents
the relative height of the terrain. This can be used to create a 3D terrain model using
PANGU which may be useful in producing ground truth surface shape measurements for
algorithms that aim to re-construct the surface shape from descent imagery.

The exact characteristics of the VISILAB terrain mock-up, DEM, and the Lunar surface
region upon which it is based are summarised in Table 6.3.

6.1.5 Motorised Linear Table and Camera Mounting

The camera is mounted on a tripod head, which is in turn mounted onto a vertical support
on top of the linear table as shown in Figure 6.6. The whole mock-up and linear table
arrangement is mounted on an optical table, which allows for accurate measurements of
the set-up of the equipment to be made.

The tripod head allows for adjustment of the pitch angle, as indicated by the green
arrow in Figure 6.6. Adjustment of the roll or yaw is also possible by using the handle
on the tripod head to adjust the tilt of the camera (depending on the orientation of the
tripod head with respect to the vertical support – in Figure 6.6 the handle would adjust
the yaw angle, as indicated by the red arrow) However, adjustment of these angles is
difficult to achieve with any reliable precision or accuracy, especially if many continuous
small adjustments need to be made during the course of the trajectory. To do this, one
would need to make the adjustment by aligning the camera manually to the required
angle by eye, using a protractor, which would lead to significant uncertainty in the angle
measurement. It is possible to set an initial angle, and use images of the calibration
pattern (set in a known location on the optical table) to calculate the initial orientation of
the camera with respect to the terrain (see Subsection 6.4.3 for details). However, during
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Figure 6.3: LRO LOLA DEM of Lunar south pole — red box indicates VISILAB mock-up terrain

the recording of the trajectory, the calibration pattern must either be removed so that it
does not obscure the view of the terrain, or if this is not an issue (i.e. the calibration
pattern is in its normal location, attached to the side of the mock-up), then the movement
of the camera will quickly result in the calibration pattern being outside of the field-of-
view of the camera. Therefore, regular and repeated calculation of the orientation of
the camera during the course of the trajectory would be an extremely tedious and time
consuming process (requiring movement of the calibration pattern to inside the field-of-
view each time the camera orientation is changed, recording a number of images of the
pattern, calculating the orientation, followed by removal of the pattern again in order to
proceed with the trajectory), to the point where it becomes impractical.

In terms of translational motion, there are a further 3 degrees of freedom. The camera
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Figure 6.4: VISILAB surface mock-up – The terrain mock-up actually consists of two separate
1m2 tiles, tightly fastened side-by-side

Figure 6.5: TIFF image that can be used to construct a ground truth DEM of the VISILAB terrain.
NOTE: This is rotated by 180 degrees with respect to the physical mock-up.
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height can be adjusted to provide cross range motion – adjustments can be measured
using the tape measure that is fixed along the vertical support. The 2-axis linear table
provides the remaining two degrees of freedom through the use of two motorised lead
screws. These are arranged perpendicular to each other to provide translational motion
in the x- and y-directions, as indicated in Figure 6.6, which correspond to downrange
motion and altitude, respectively. Tape measures have also been attached to the runners
for these two directions to enable measurements to be recorded, however measurements
are also provided by the motor control software.

6.1.6 Reference Frames

There are four reference frames to consider when working with VISILAB, each of which
is described in this subsection and shown in Figure 6.7 and 6.8.

Figure 6.6: Linear table and camera mounting structure. The way in which the pitch and yaw
angles can be adjusted, and the x, y, and z directions of motion of the camera are also indicated.
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Figure 6.7: VISILAB reference frames – mock-up frame {R}m, calibration pattern frame {R}p,
camera frame {R}c – Inset: The mock-up frame coordinate system origin is actually located on
the back of the tile

Mock-Up Frame {R}m

• Origin: Bottom right corner of the mock-up when facing it, on the back side.

• X-direction: Vertical upwards.

• Y-direction: Horizontal leftwards.

• Z-direction: Horizontal towards front of mock-up.

This coordinate system was defined during the construction of the terrain surface.
The purpose of this frame is to enable the camera pose to be expressed relative to the
terrain surface (see [147]). The reason why the origin is on the back side of the tile is
because this provides a flat surface from which to take measurements. However, since a
different method will be described in this report to record the camera pose, the mock-up
frame’s significance is now somewhat lessened. Its main purpose now is in its relation to
the coordinate frame used in the TIFF image DEM. The reference frame of the TIFF
DEM is shown in Figure 6.9 and the differences between this and the mock-up frame are
summarised in Figure 6.10 (see [147] for further details).
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Figure 6.8: VISILAB reference frames – linear table frame {R}l

Figure 6.9: TIFF DEM Reference frame
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Figure 6.10: Comparison of TIFF DEM and physical mock-up reference frames
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The parameters in Figure 6.10 are as follows:

• The width of a pixel, s, in the DEM represents 0.500mm on the physical mock-up.

• The height range, r, in the DEM corresponds to a physical range of 44.730mm on
the mock-up.

• The x and y offsets, dx and dy, of the centre of the (0, 0)th pixel is 0.247mm and
0.232mm, respectively. This offset is composed of the data bounding box with
respect to the physical reference frame and half a pixel width, in each direction.

• The z offset, dz, between the lowest point in the TIFF DEM and the backplane of
the physical mock-up is 54.938mm.

The light grey square in Figure 6.10 represents the data bounding box (i.e. the whole
TIFF image) in physical reference coordinates and the dark grey square represents the
(0, 0)th pixel in the image (with its projection onto the xPhy, yPhy plane, to better illustrate
the relationship between the two reference frames and the components that describe the
differences).

This relationship between the two coordinate systems results in the following
equations for calculating the physical 3D coordinates of a point on the mock-up from its
corresponding point in the TIFF image [147]:

xPhy = dx + si

yPhy = dy + sj

zPhy = dz + r
I(i, j)

216

(6.1)

where i and j denote the (i, j)th pixel and I(i, j) is the grey value of the (i, j)th pixel in
the TIFF image.

Calibration Pattern Frame {R}p

VISILAB has a built-in calibration pattern for calibrating the camera. The calibration
pattern is adhered to an aluminium plate, which is in turn mounted on the terrain support
structure to the left of the terrain (when facing the mock-up). This reference frame is
positioned and oriented as shown in Figure 6.7, i.e.:

• Origin: 1 square in from the top left corner of the calibration pattern (although this
depends on the first corner clicked during camera calibration — see Section 6.3).

• X-direction: Vertical downwards.

• Y-direction: Horizontal rightwards.

• Z-direction: Horizontal towards the front of the mock-up.

The calibration pattern frame is an important reference frame in the use of VISILAB
as it is used in the determination of the initial position of the camera with-respect-to the
mock-up surface. This is discussed further in Subsection 6.4.3.
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Camera Frame {R}c

The camera reference frame is extremely important in the use of VISILAB, as it is in all
computer vision related tasks. In general, all low-level measurements of the scene via
the use of images (e.g. tracked feature points) are computed in the image coordinate
system (similar to the reference frame for the TIFF DEM shown in Figure 6.9) by
computer vision algorithms. The image coordinate system is related to the camera
frame via the intrinsic parameters of the camera system. It is generally much more
useful to express the measured quantities in the coordinates of the camera reference
frame since this reference frame exists in normal 3D space, whereas the image
coordinate frame exists in image space. The camera reference frame in VISILAB has
the following properties:

• Origin: Optical centre of the camera.

• X-direction: Defined by the light sensing array of the camera. Approximately to the
right when the camera is set up as shown in Figure 6.7.

• Y-direction: Also defined by the light sensing array of the camera — ideally this will
be perpendicular to the X-direction. Approximately vertically downwards in
Figure 6.7.

• Z-direction: Along the optical axis, towards the observed scene.

Linear Table Reference Frame {R}l

This is the reference frame used in commanding the motion of the camera through the
motor controller software. Due to the fact that all of the equipment is mounted on an
optical table, it is assumed that the x-axis of the linear table is perfectly parallel but
opposite to the y-axis of the mock-up frame, the y-axis of the linear table is perfectly
parallel but opposite to the z-axis of the mock-up, and the z-axis of the linear table is
perfectly parallel to the x-axis of the mock-up. Therefore the motion of the camera in the
linear table frame is trivially related to the motion in the mock-up frame (due to this
assumption, in the current project the mock-up frame is not used as a base for
describing the motion of the camera — only the linear table frame is used). The
properties of the linear table frame are summarised as follows:

• Origin: Located at the home position of the linear table — i.e. when the camera is
at its leftmost position and furthest away from the mock-up surface.

• X-direction: Horizontal to the right.

• Y-direction: Horizontal towards the mock-up.

• Z-direction: Vertically upwards.
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6.1.7 Illumination System

The light source selected for VISILAB is a simple overhead projector. A number of other
possibilities were considered in order to satisfy the requirement for parallel rays of white
light with uniform flux, but these were ruled out due to impracticalities and cost
constraints. The closest one can get to fulfilling the requirement when taking into
account cost and space constraints is to make use of a cinema/theatre spot lamp, which
makes use of a halogen lamp placed behind a Fresnel lens in order to achieve low
divergence. This is the same principle used in overhead projectors, and since one was
already available at ESTEC, this was the chosen solution.

It was found that using an overhead projector allowed for fairly realistic images to be
recorded, such as those in Figure 6.11. However, a slight problem does arise with respect
to flux variation across the surface, particularly when the light source is positioned such
that the incidence angle is large (i.e. when the projector is over to one side of the mock-up
in order to lengthen shadows). This phenomenon is easily explained when one considers
the light source as a point source close to the surface. In this case, the illumination
flux decreases as an inverse quadratic function of the distance. Another problem arises
due to the proximity of the light source to the surface that is necessitated by the space
constraints in the lab. Although the effects of non-parallel rays were reported not to
be visible to the naked eye [145], the effects of this may manifest itself in algorithms that
depend on the illumination direction. Because of the non-parallel nature of the rays arising
from the point light source at a close distance, the illumination angle will vary across the
surface. Both of these phenomena are not representative of the true lunar conditions
and are thus a source of difficulty, especially in algorithms that depend strongly on the
illumination conditions, such as shape-from-shading algorithms.

The light source is shown in operation in Figure 6.12.

Figure 6.11: Example images of the same area in VISILAB with different illumination directions
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Figure 6.12: VISILAB with light source in operation

6.2 Reconfiguring VISILAB

Upon arrival at ESTEC, the VISILAB equipment had recently been moved from a previous
location in another lab. In order to move the equipment it had to be partially disassembled,
and by February 2014 it had not yet been reassembled in its new location. In its previous
location, the apparatus was set-up spanning two optical tables, whereas in the new lab
only one optical table was available. This chapter describes the configuration changes
and decisions that had to be made in order for the equipment to be accommodated in its
new location, whilst still fulfilling the design objectives as best as possible.

6.2.1 VISILAB Configuration Options

The VISILAB apparatus was originally set up on two optical tables, but due to a resent
lab move it had been partially disassembled and moved to a location where only one
optical table was available. Therefore, a new configuration was required to make best
use of the space available. A number of CAD models were created to illustrate the
potential set up options and how these configurations would impact on the space
available in the lab with respect to other nearby objects. Figure 6.13 shows three views
of the first configuration option. The left view shows the configuration from a top down
perspective and illustrates the location of the VISILAB equipment with respect to the
available free space in the lab (indicated by the 4 walls and a nearby computer cabinet
(bottom right of the view)). This configuration provides the most flexibility in terms of the
positioning of the illumination source (not shown) as it would allow for a large variation in
illumination angle without having to place the light source too close to the terrain. It also
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Figure 6.13: VISILAB configuration option 1.

provides a great deal of flexibility in the positioning of the linear table, since it leaves a
large area of the optical table free of other equipment, therefore the camera can be
positioned at a significant “height above” the terrain. However, this configuration requires
that a significant portion of the terrain support structure overhangs the edge of the
optical table. While this would most likely be acceptable in terms of the rigidity of the
structure, it creates a relatively small gap between the edge of the terrain and the nearby
computer cabinet (~0.93m), which may cause issues with accessibility to the storage
area behind the equipment (the entrance to this storage area is illustrated by the gap in
the wall). Having said this, the gap between the optical table and the entrance to the
storage area is only ~0.88m, therefore this configuration does not impede access any
further than the optical table does by itself. However, having such a large overhang of
the terrain structure may be objectionable on health and safety grounds, since numerous
objects are stored in boxes on the floor underneath the optical table (different camera
lenses, VISILAB spare parts, and tools, etc.), which would frequently create the need for
a person to temporarily position themselves underneath the overhang. Additionally,
having the terrain overhanging the optical table, the risk of damage to the quite fragile,
and precision engineered terrain surface is also unacceptably high.

Figure 6.14 shows another potential arrangement of the equipment. In this case the

Figure 6.14: VISILAB configuration option 2.
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Figure 6.15: VISILAB configuration option 3.

terrain support structure is placed at the opposite end of the optical table. While this
eliminates the issues with accessibility to the storage area, this configuration has the
least amount of flexibility in terms of positioning the light source due to the proximity of
the computer cabinet and storage area. Another issue with this configuration and the
previous one is that it requires permanent modification of the support structure, which is
undesirable. The potential health and safety issue of the previous configuration is also
present in this configuration. The risk of damage to the terrain surface, while reduced
due to it no longer obstructing a thoroughfare, is also present in this configuration.

Figure 6.15 shows the third identified configuration. Whilst the flexibility of the
positioning of the motorised linear table (illustrated by the box in front of the terrain) is
greatly reduced, leading to a potentially restrictive limit on the available “height” range of
the camera, this arrangement, unlike the other configurations, requires no permanent
modifications to the terrain support structure. It also still allows for a large degree of
flexibility in the light source position. Primarily due no significant changes being required
to the terrain support structure, this option was chosen for the new configuration of the
VISILAB test bench.

6.3 Camera Calibration

In almost all computer vision problems, the camera must be pre-calibrated in order to
obtain metric measurements of objects in the scene. This is an extremely important
part of tackling the problem, since the accuracy of the calibration affects the accuracy of
the results. Camera calibration is usually the first practical step in tackling a computer
vision problem. Based on the theory and reasoning behind camera calibration presented
in Chapter 2, this section outlines the procedure for calibrating the camera in VISILAB
using a software tool known as the “Camera Calibration Toolbox for Matlab”, followed by
the results of the calibration.

The purpose of camera calibration is primarily to estimate the intrinsics matrix. This
is achieved by taking multiple images of a calibration pattern, such as those shown in
Figure 6.16, which consist of a black and white chequerboard pattern with known square
size. Since the square size is known, these images can be used to solve for the intrinsics

145



LUKE FEETHAM PhD THESIS CHAPTER 6. VISILAB DATASET ACQUISITION

Figure 6.16: Example calibration images — also shows presence of image distortion

matrix. Due to the way in which the problem of camera calibrations is formulated, the
extrinsic parameters of are also computed for each image, though these are usually not
important in most cases. Additionally, if significant lens distortion is present in the images
(as is the case in Figure 6.16), the calibration method may also be used to simultaneously
solve for the lens distortion coefficients. This would then allow for the images to be
undistorted, as shown in Figure 6.17, which then effectively allows the pin-hole camera
model to be applied in any subsequent computer vision algorithms.

6.3.1 VISILAB Camera Calibration Procedure

As discussed previously, the VISILAB apparatus includes a camera calibration pattern to
the left of the mock-up. This consists of a chequerboard pattern of 12x24 (usable) black
and white squares of size 15x15mm. The calibration process involves recording multiple
images (e.g. 30) of the calibration pattern from various distances and angles, which can
be achieved by removing the camera from the translation table apparatus and positioning
it somewhat randomly by hand for each image. It is important that the calibration pattern
is entirely within the field-of-view of the camera for each image and that a wide range of
angles and distances are used so that over the calibration image sequence as a whole
the calibration pattern has been viewed in positions covering the whole field of view of
the camera. The procedure for acquiring calibration images is summarised as follows:
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Figure 6.17: Example calibration images after undistortion — Note: The images have been
cropped slightly to remove the borders that arise from the rectification process

Calibration Image Acquisition Procedure

1. Remove camera from vertical support of translation table apparatus

2. Hold camera at a certain position and orientation such that calibration pattern is
entirely within the field-of-view

3. Record image using uEye software.

4. Repeat steps 2 and 3 until sufficient images have been recorded, ensuring that over
the whole sequence the calibration pattern will be viewed from positions and angles
with roughly equal coverage of the entire field-of-view and of the entire working
distance range.

5. Replace the camera back on the vertical support in the starting position and
orientation required for trajectory data capture and record several more images
(e.g. 10) of the calibration pattern (providing it is entirely within the field-of-view of
the camera) with the camera in this initial position – The importance of these
images will be discussed in the following Chapter. These images may be used in
calculating the camera calibration parameters or they may be kept separate and
used only for their intended purpose.

The image processing and computation of the intrinsic and extrinsic camera
parameters from the calibration images can be carried out using the Camera Calibration
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Figure 6.18: Corner re-projection errors

Toolbox for Matlab developed by Jean-Yves Bouguet. Full details on how to use this
toolbox, and especially for details on the additional steps required when dealing with
highly distorted images, can be found at the Camera Calibration Toolbox website
(http://www.vision.caltech.edu/bouguetj/calib_doc) in the calibration
examples section (first calibration example), thus these steps will not be repeated here.

The calibration procedure described on the Camera Calibration Toolbox website
provides a number of tips for refining the camera calibration results after the initial
calibration. These extra steps should be repeated a number of times until a satisfactory
pixel error is obtained, and the number of outliers are seen to be very few when
observed using the ‘Analyse Errors’ visualisation tool provided in the toolbox and shown
in Figure 6.18.

The results obtained from the calibration procedure with an acceptable level of
accuracy (although improvements may still be possible) are shown in Table 6.4. By
examining the errors in the calibration results Table 6.4 shows that a very reasonable
calibration accuracy has been achieved. This can be further seen in Figure 6.18, which
presents the re-projection errors obtained by using the calibration parameters to
re-project the corner points of the calibration pattern onto the each of the images. The
re-projection errors in Figure 6.18 can be seen to be very densely clustered between
±0.5 pixels and centred on zero, in both the x- and y-axes, with a roughly circular
distribution, indicating that the errors are approximately zero mean and uncorrelated, i.e.
the errors can be approximately characterised by a standard Gaussian distribution. A
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Camera Parameters Estimated Value with 3σ Errors
(units = pixels)

Focal Length
[
691.30506 691.53036

]
±
[
0.45377 0.45117

]
Principal Point

[
619.21494 532.83860

]
±
[
0.44702 0.42917

]
Skew (units = degrees)

[
−0.00031

]
±
[
0.00011

]
=⇒ angle of pixel axes =

90.01804± 0.00629°
Distortion

[
−0.34448 0.14584 −0.00052 −0.00017 −0.03189

]
±[

0.00074 0.00113 0.00008 0.00008 0.00050
]

Pixel Error
[
0.17526 0.16527

]
Table 6.4: Calibration results

small number of outliers can be seen surrounding the main cluster with a maximum error
of approximately 2 pixels. This plot helps to visualise the pixel error given in Table 6.4,
which is the 3σ error on the x- and y-axes, therefore 99.7% of all the calibration pattern
corners were re-projected within (0.17526, 0.16527) of the mean, which is approximately
(0, 0). This again confirms that an accurate calibration has been achieved.

One final point that is worth mentioning relates to how the origin of the calibration
pattern coordinate frame is set during the calibration process. One of the first steps in
processing the calibration images involves selecting the outermost corners of the
calibration pattern. The first corner clicked is used as the origin of the calibration pattern
coordinate system. In this project the first corner clicked was the top left corner, which
can be seen in Figure 6.7. You are free to choose any of the other 3 corners, however
you should be consistent across all images. This was especially important in this work
because the calibration pattern frame is used as the origin for the entire mock-up
instead of using the previously mentioned mock-up frame.

6.4 Trajectory Computation

The purpose of VISILAB is to enable the development and testing of computer vision
algorithms to aid in navigation and hazard detection during entry, descent and landing
operations. Therefore, to correctly test the potential of such algorithms, the motion of the
camera must be representative of a realistic descent trajectory in order to replicate as
closely as possible the expected motion characteristics of the spacecraft in its intended
working environment. This section discusses how the representative trajectories were
computed, and then describes how this can be applied to VISILAB in order to obtain an
image dataset.

6.4.1 Trajectory Design Considerations

Although the VISILAB mock-up surface is based on real altimetry data collected over the
south pole of the moon and constructed at a specific scale, the use of VISILAB need not
be restricted to Lunar south pole descent and landing scenarios. The terrain mock-up
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may instead be viewed as any generic representative planetary surface, with a different
selection of scale factor based on the specific requirements of the mission scenario that
is being modelled. The overriding goal in the design of VISILAB was to provide a
representative planetary surface, which, coupled with the light source, enables realistic
images to be recorded using actual camera hardware. Therefore, the most important
thing to consider when using VISILAB is the determination of the scale factor, since this
affects all aspects of the motion and position of the camera when tracing out the
calculated trajectory. Another aspect that needs to be considered is the camera frame
rate - i.e. the number of images per second. The exact position of the camera relative to
the terrain needs to be known at the point that each image is acquired. Not only should
the camera frame rate be representative of what can be realistically achieved given the
amount of image processing that is required by the algorithm, but also, the camera
frame rate, coupled with the scale factor, determines the magnitude of the inter-frame
displacement of the camera. If the frame rate is too high the inter-frame motion will be
small and there is a limit to the level of precision that can be achieved in positioning the
camera using the linear table motor controller software.

6.4.2 Trajectory Calculation

This subsection describes the calculation of a representative trajectory for subsequent
application to the VISILAB test bench. To begin with, this trajectory is computed at full
scale and then afterwards it will be scaled down to the VISILAB dimensions. Although
VISILAB may be used to simulate a landing on any planetary body, as mentioned above,
in this particular case we will in fact be considering a Lunar landing, but not necessarily
at the Lunar south pole. Thus, we will be treating the terrain mock-up as a generic
representative portion of the Lunar surface and setting our own scale factor according to
the unique characteristics of the considered scenario. The trajectory described in this
subsection was based upon the type of trajectory being considered in the ALHAT
project [9, 10, 148, 149], which itself shares many similarities with the Apollo Moon
landings. Therefore, the spacecraft upon which the calculations are based is the Apollo
Lunar Module, which was chosen due to readily available data.

Figure 6.19 illustrates the key features of the trajectory, by outlining the different
stages of the descent. The entire trajectory is one continuous powered descent, that has
been split into five separate stages based on the pitch program of the spacecraft during
certain periods of time. The first stage is a gravity turn manoeuvre starting from a
circular parking orbit and continuing until a certain point above an altitude of 2000m. This
is followed by a constant rate pitch-up manoeuvre lasting approximately 10 seconds
such that the pitch angle is 100 degrees at 2000m altitude. This pitch angle provides a 35
degree look angle (see Figure 6.20), ensuring that the landing site is within the
field-of-view of the camera and/or providing direct line-of-sight to the landing site for any
crew on-board. It is at this point that hazard detection begins. Following this pitch-up
manoeuvre, the spacecraft maintains this pitch angle until it reaches an altitude slightly
above 50m, at which point another pitch-up manoeuvre begins to reduce the pitch angle
to 90 degrees. At the conclusion of this second pitch-up manoeuvre, the spacecraft will
have come to rest at an altitude of 50m, directly above the pre-specified landing site.
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Figure 6.19: Lunar descent trajectory scenario
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Figure 6.20: Look angle after first pitch-up manoeuvre

This is the point at which hazard detection must be complete in order to allow for the
possibility of any required hazard avoidance manoeuvres to be carried out, as illustrated
in Figure 6.21. Following this, the spacecraft will descend at a constant rate of 1m/s to a
safe touchdown as close as possible to the pre-selected landing site. The part of the
trajectory that was important in this project is the point from 2000m altitude down to the
beginning of the vertical descent phase, since this is where hazard detection occurs.
However, all phases of the trajectory are important and need to be calculated since this
enables the motion during the hazard detection phase to be correctly characterised.

The trajectory is calculated by numerically integrating the following equations and
applying constraints to either the pitch or altitude or both as the spacecraft transitions
between the different phases of the descent:
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Figure 6.21: Hazard avoidance strategy

dr

dt
= V sin γ (6.2)

dθ

dt
=
V

r
cos γ (6.3)

dV

dt
=
T

m
cosα− g sin γ (6.4)

dγ

dt
=

T

mV
sinα− g

V
cos γ (6.5)

where r is the radial distance of the spacecraft from the centre of the Moon, V is the
magnitude of the velocity of the spacecraft, γ is the flight-path angle, θ is the angle
between the current radius vector and the radius vector at the start of powered descent,
T is the magnitude of the thrust vector, α is the angle of attack, g is the magnitude of the
gravitational acceleration, which is a function of r, and m is the current mass of the
spacecraft. Figure 6.22 illustrates how the angles are defined, including the pitch angle
β. Note that these equations describe the motion of the spacecraft in a vertical plane,
i.e. there is no cross-range (out of plane) motion.
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Figure 6.22: Diagram showing how the angles α, β, and γ are defined. Note: Angles are positive
anti-clockwise.

Figures 6.23, 6.24 and 6.25 show the most pertinent parameters of the calculated
trajectory, where Figure 6.23 shows the spacecraft altitude vs. ground distance,
Figure 6.24 shows the altitude vs. time, and Figure 6.25 shows the pitch profile, which is
the parameter that distinguishes each phase of the descent. The most important of
these graphs is the altitude vs. ground distance plot, since the data used to produce this
graph is the data that will be used to command the position of the camera for the capture
of each image in the data set acquired from VISILAB.

6.4.3 Calculating the Scale Factor

Before the calculated trajectory can be applied to VISILAB it must be scaled down to a
level appropriate for the dimensions of the VISILAB mock-up. Calculation of the scale
factor can be achieved by using the calibration pattern to determine the perpendicular
distance of the camera from the calibration pattern when the camera is in its initial
position. This is the reason why a number of additional calibration images were
acquired, with the camera in its starting position, during the calibration process
described earlier.

Calculating Camera Position

The Matlab Camera Calibration Toolbox provides a function for calculating the extrinsic
parameters of the camera using an image of a calibration pattern. Thus it provides an
estimate of R and t. Table 6.5 presents an example of the information returned by the
extrinsics calculation. Even though a number of identical images have been captured
with the camera in the starting position for a particular trajectory, the extrinsics
calculation function can return quite variable results, which is likely to be due to image
noise. Therefore, it is prudent to obtain an average of the extrinsic parameters over the
set of all additional calibration images at the starting location. A weighted average can
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Figure 6.23: Altitude vs. ground distance plot

Figure 6.24: Altitude vs. time plot

Figure 6.25: Pitch angle vs time plot

154



6.4. TRAJECTORY COMPUTATION

O

X

Y

Z

Figure 6.26: Reminder of different orientation of camera reference frame and calibration pattern
frame. Left: Section of an additional calibration image (with camera in starting position) showing
the calibration pattern and the corner extraction results from executing the extrinsics computation
function. Right: Image showing the different orientations of the camera and calibration pattern
coordinate frames — NOTE: the camera is not in the starting position in this image.

be computed by using the inverse magnitude of the error vector as the weight factor,
thus giving more weight to the results that the extrinsic calculation function reports as
being more accurate.

It is important to realise that the extrinsic parameters describe the position and
orientation of the calibration pattern reference frame relative to the camera reference
frame, in camera frame coordinates. However, since we will be using the origin of the
calibration pattern reference frame as the origin of our world frame, we would actually
like to describe the location and orientation of the camera reference frame with respect
to the calibration pattern frame, in calibration pattern coordinates.

By closely examining the values in Table 6.5 and comparing the differences between

Extrinsic Parameters Estimated Values
Translation Vector (mm)

[
−345.718013 −179.144593 878.356814

]
Rotation Matrix

−0.010425 0.999368 −0.033972
0.999065 0.011836 0.041586
0.041962 −0.033506 −0.998557


Error

[
0.20094 0.10965

]
Table 6.5: Example of data returned by the extrinsics calculation function
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the camera reference frame and the calibration pattern reference frame shown in
Figure 6.26, and since when looking at the set-up from the front of the mock-up the
camera is to the right and downwards of the calibration pattern coordinate frame, it is
clear that the translation vector points from the origin of the camera reference frame to
the origin of the calibration pattern frame. Similarly, it can be seen that the rotation
matrix describes a rotation of the calibration pattern frame into the orientation of the
camera frame, or alternatively pre-multiplying a vector expressed in calibration pattern
coordinates by the rotation matrix would result in that same vector expressed in camera
frame coordinates. Therefore, the translation vector describing the translation of the
camera from the calibration pattern frame in calibration frame coordinates is given by:

tp = −Rcp
T tc (6.6)

where the minus sign is required to reverse the direction of the translation vector so that
it points from the origin of the calibration pattern frame to the origin of the camera frame,
and the rotation matrix is transposed so that it describes the transformation of a vector
expressed in camera frame coordinates into the same vector expressed in calibration
pattern coordinates. If we now go one step further and pre-multiply tp by the rotation
matrix

Rwp =

 0 1 0
−1 0 0
0 0 1

 (6.7)

i.e.

tw = Rwp tp (6.8)

we end up with the position vector, tw, of the camera with respect to a world frame
coordinate system oriented as shown in Figure 6.27. Therefore the position of the camera
is now described in a coordinate system in which the x-y plane is co-planar with the mock-
up surface, the z-x plane is co-planar with the x-y plane of the linear table, and the x axis
also points in the same direction as that of the linear table. The motion of the camera in
this new coordinate system is now trivially related to the motion in the linear table frame.

Scale Factor

Now that the position of the camera relative to the calibration pattern has been
determined, the scale factor can be calculated by considering the perpendicular
distance (z-coordinate) from the calibration pattern reference frame origin. This is
achieved by dividing the perpendicular distance in mm, obtained from the extrinsic
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Figure 6.27: World frame coordinate system

parameters, by the initial altitude in m, computed from the trajectory calculation, to give
the scale factor in mm/m:

s =
zmm
hm

. (6.9)

The computed trajectory can now be scaled down to the dimensions of the VISILAB mock
up by multiplying the altitude and ground distance, in m, for every image in the sequence,
to give the altitude and ground distance in mm. The image dataset can now be collected
by using these values in the linear table control software to set the position of the camera
for each required image.

6.4.4 Collected Datasets

Using the approach described above, the following trajectories were calculated and image
datasets were obtained, some of which are merely simplifications of the full lunar descent
trajectory created by considering only vertical motion.

1. Full Lunar Descent A: This trajectory is based on the full lunar descent trajectory
calculation described above. The calculated motion in the vertical and horizontal
directions is fully simulated. However, the pitch angle is ignored and the camera
points in the nadir direction at all times.
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2. Full Lunar Descent B: Same as Full Lunar Descent A, except that in this case a
constant look angle of 35 degrees (as defined above) is maintained throughout the
descent.

3. Vertical Descent Trajectory A: Using the calculated altitude from the full lunar
trajectory, the motion of the camera is purely in the vertical direction, i.e. we ignore
the calculated horizontal motion. In this trajectory the camera maintains a nadir
viewing direction.

4. Vertical Descent Trajectory B: Same as Vertical Descent Trajectory A, except
that in this case a constant look angle of 35 degress is maintained during the
descent.

5. Vertical Descent Trajectory C: The camera descends vertically with a constant
speed of 100m/s, with a nadir viewing direction.

6.5 Tests on VISILAB Datasets

We now proceed to carry out some tests on these datasets collected from VISILAB.
Before we do that, however, there are some issues that need to be addressed. Firstly,
the VISILAB images, particularly those at the beginning of each sequence, contain a
significant proportion of background objects within the field of view. This will result in the
presence of extra feature points that do not fall upon the terrain surface mock-up (see
Figure 6.28) and so their structure parameters should not be estimated, as these would
not make sense in the context of this application. These features should be removed
from the images, which could be achieved by applying a threshold to the x and y image
coordinates, or, since we are not adding new features in any frames other than the first
one, a simple case of choosing an appropriately large number of images of the
sequence for which we want to track the feature points, such that at the end of the
sequence these external features have left the field of view, will effectively eliminate
these unwanted features. This second option, of course, requires that the features can
be tracked for long enough to reach a point where all the unwanted features are
excluded, but either way the end result is the same and both approaches are simple
enough. The second option was used in the tests in this section (see Figure 6.28).

The next issue is somewhat more challenging. The tracked feature points will not
have the same (x, y) image coordinates as their corresponding points in the ground
truth DEM, therefore we must find a way of mapping the tracked feature points onto their
corresponding points within the ground truth DEM in order to be able to make a
comparison with the ground truth data and fully assess the performance of the SFM
algorithm. In the interest of simplicity, and hopefully not at the expense of too much
accuracy, we make use of a straightforward manual image registration tool that is
available in Matlab in order to derive a transformation between the two image coordinate
systems. This transformation can then be applied to the image coordinates of the
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Figure 6.28: TR-KLT image features for the first image and last image for VISILAB Vertical
Descent Trajectory A - In this case 23 features were remaining by image 160 of the sequence,
which was the first point at which there were no background features present. These 23 features
were then kept in all previous images and the rest were discarded in order to give a set of feature
points lying entirely on the terrain surface. This method is used for all the VISILAB datasets used
in the tests in this section.

feature points in the first image of the sequence in order to calculate the corresponding
image coordinates of within the ground truth DEM. The procedure for determining the
transformation function is now described.

The built-in Matlab tool that is employed for obtaining the mapping between the two
image coordinate systems is called via the cpselect() Matlab function, using the first
VISILAB image and the ground truth DEM image as input parameters. This presents the
user with the interface shown in Figure 6.29, where the two images are shown
side-by-side, with the full images shown at the bottom and zoomed views shown above.
The user then examines each image to select a set of corresponding points. A set of
around 65 matching points is shown in Figure 6.29 for the undistorted first image of
Vertical Descent Trajectory C (each image data set will require this procedure to be
repeated). These points can then be exported to the workspace and used to compute a
projective transformation function that allows a different set of points (i.e. the tracked
feature points) to be transformed from the VISILAB image to the DEM image.
Figure 6.30 shows the results of this transformation applied to the original input points
selected in the VISILAB image in order to provide a verification of the accuracy
achieved. The top plot shows the full set of input points and the bottom plot shows a
subset of these points after transformation into the ground truth DEM, alongside the
manually determined corresponding points in the ground truth DEM. The view is zoomed
to highlight the slight discrepancies in some of the points, but on the whole the result
may be considered to be satisfactory. This will, however, be a source of errors in the
sparse ground truth DEMs that will be generated to assess the performance of the SFM
algorithm, and the errors may be slightly worse than those indicated in Figure 6.30
because here the transformation has been applied to those points that were used to
calculate the transformation, whereas the tracked feature points will likely be an entirely
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Figure 6.29: Matlab cpselect() tool user interface

different set of points, and so the transformation will be slightly less applicable, but
hopefully still acceptable.

To assist in this manual determination of corresponding points, some processing of
the supplied VISILAB ground truth DEM image file was required. The ground truth DEM,
provided by the manufacturer of the VISILAB terrain, is provided in a 16-bit TIFF image,
which is shown in Figure 6.31 (now in the correct orientation), which requires some
preprocessing so that the image intensities actually represent physical elevation (instead
of normalised elevation) with respect to the lowest point of the terrain surface (which
would be a black pixel). The full height range of the surface is 44.730mm, thus a point
that is 44.730mm above the lowest point would be represented by a white pixel. In order
to achieve this scaling of the pixel grey levels the following transformation has to be
applied:

IGT (x, y) =
44.73

216
TGT (x, y). (6.10)

where TGT (x, y) is the original TIFF image intensity at point (x, y). The result of this
transformation is presented in Figure 6.32, with an appropriate colour map to represent
surface elevation. Unfortunately, if a grayscale colour map is applied to the transformed
DEM, the resulting image, like the original TIFF image, does not have sufficient contrast to
enable accurate and reliable manual point matching between the DEM and the VISILAB
descent images. To combat this, we compute a Lambertian rendering of the transformed
DEM image to produce an image that has a more physically realistic appearance with
sufficient contrast to identify corresponding points. This rendered image is presented
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Figure 6.30: Verification of the transformation between VISILAB image (top) and ground truth
DEM (bottom)

in Figure 6.33, and it is this image that was used to manually select matching points
between the VISILAB descent image and the DEM in Figure 6.29.

An additional complication in using the VISILAB images derives from the subtle
difference in how the camera motion is described and commanded with respect to the
VISILAB apparatus and how the camera motion is described in the SFM algorithm. In
VISILAB the motion of the camera was commanded with respect to the VISILAB world
reference frame (see Figure 6.27), i.e. vertical camera motion is in the negative Zw
direction and horizontal motion is in the positive Xw direction. However, even when a
nadir view was used in the VISILAB trajectories, the camera was positioned and
oriented on the camera mount by hand so the orientation would only be approximately
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Figure 6.31: VISILAB ground truth DEM supplied in TIFF format (now in the correct orientation).

Figure 6.32: VISILAB full ground truth DEM

nadir, therefore the camera coordinate system and the VISILAB world frame are not
necessarily in perfect alignment (parallel X-axes, and anti-parallel Z axes). This
situation is illustrated in Figure 6.34, in which the misalignment is somewhat
exaggerated. Figure 6.34 also indicates the component directions of motion of the
camera during the capture of an image sequence, which are in the negative Zw direction
and (optionally) in the positive Xw direction of the VISILAB world reference coordinate
system. The relationship between the calibration pattern reference frame and the
camera frame is also shown in Figure 6.34, where it can be seen that the rotation
matrix Rcp, returned by the camera calibration toolbox during an extrinsics parameter
estimation, describes a rotation of the calibration pattern coordinate frame,
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More Realistically Rendered VISILAB Full Ground Truth DEM
(Allows for more accurate manual point matching)

Figure 6.33: Lambertian rendering of VISILAB ground truth DEM, from which it is much easier to
find corresponding points between the DEM and the VISILAB descent images

(Op, Xp, Yp, Zp), into the orientation of the camera coordinate system, (Oc, Xc, Yc, Zc),
and the translation vector, Tc, describes the displacement of the coordinate system
(Op, Xp, Yp, Zp) from the origin of the camera coordinate system, in camera frame
coordinates. Therefore, considering a point Pp in the calibration pattern coordinate
system (denoted P1 in Figure 6.34), where the coordinates of this point are denoted by
Pp = [Xp, Yp, Zp]

T , this same point in the camera reference frame, Pc = [Xc, Yc, Zc]
T

can be computed via the following transformation:Xc

Yc
Zc

 = Rcp

Xp

Yp
Zp

+ Tc. (6.11)

The relationship between the calibration pattern frame and the VISILAB world frame is
given by the rotation matrix, Rwp, which describes a rotation of the calibration pattern
coordinate frame into the orientation of the VISILAB world frame, and is given by

Rwp =

 0 1 0
−1 0 0
0 0 1

 . (6.12)

Using Equations (6.11) and (6.12), the following transformation equation can be derived
for converting points, such as P2 in Figure 6.34, in the camera frame, to the VISILAB
world reference frame: Xw

Yw
Zw

 = RwpR
T
cp

Xc

Yc
Zc

−
TXcTYc
TZc

 (6.13)
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Figure 6.34: Relationship between VISILAB coordinate systems and the camera frame
coordinate system. Also indicated are the component directions of motion of the camera, as
commanded by the VISILAB software, which are in the negative Zw direction and positive Xw

direction.

Given that the calibration pattern coordinate system and the VISILAB world frame,
have their origins in the same plane as the back plane of the VISILAB terrain surface, and
that the lowest point on the terrain surface is 54.938mm above the back plane, applying
Equation (6.13) and then subtracting [0, 0, 54.938]T from the resulting vector, enables the
elevation of the feature points to be computed relative to a ground plane coincident with
the lowest point of the terrain surface (and parallel to the backplane). This equation is
used in constructing the DEMs estimated from the VISILAB image datasets, in which
we are only interested in the Z components – the X and Y components produced by
this equation unfortunately cannot be used because they do not correspond to anything
meaningful in the ground truth DEM so they are discarded and instead we determine the
x and y image coordinates of the tracked points within the ground truth DEM using the

164



6.5. TESTS ON VISILAB DATASETS

manual mapping method described above.
To complete this analysis and describe the camera motion due to commanded motion

with respect to the VISILAB world frame, we first rearrange Equation (6.13) so that it
describes the transformation of a point from the VISILAB world frame to the camera
frame: Xc

Yc
Zc

 = RcpR
T
wp

Xw

Yw
Zw

+

TXcTYc
TZc

 . (6.14)

Now consider the point [Xc0 , Yc0 , Zc0 ]T = [0, 0, 0]T moving to a point
[Xck , Yck , Zck ]T = [∆Xc, ∆Yc, ∆Zc]

T , e.g. the origin of the camera frame coordinate
axes at the time, t0, of capture of the first image moving to some other point at time
t = t0 + k within the coordinate system of the original camera frame, due to the
commanded motion [Xw0 , Yw0 , Zw0 ]T → [Xwk , Ywk , Zwk ]T from t0 → t0 + k. Inputting
these values into Equation (6.14) for times t0 and t0 + k and subtracting the two
expressions givesXck

Yck
Zck

−
Xc0

Yc0
Zc0

 = RcpR
T
wp

Xwk

Ywk
Zwk

−
Xw0

Yw0

Zw0

+

TXckTYck
TZck

−
TXc0TYc0
TZc0

 .

In the SFM algorithm, all motion (and structure) is described with respect to the
coordinate system defined by the position and orientation of the camera reference frame
at the time that the first image was captured, therefore if [Xc0 , Yc0 , Zc0 ]T = [0, 0, 0]T is
the origin of the camera reference frame at the time of the first image, then the point
[Xck , Yck , Zck ] is the origin at t0 + k, but expressed in the camera reference frame at t0.
The translation vectors are also both in this same reference coordinate system and are
in fact the same, so they cancel out. Therefore, the position of the origin of the camera
frame at time t0 + k in the coordinate system of the original image camera frame is given
by the following expression:Xck

Yck
Zck

 = RcpR
T
wp

Xwk

Ywk
Zwk

−
Xw0

Yw0

Zw0

 = RcpR
T
wp

+|∆Xwk |
0

−|∆Zwk |

 , (6.15)

where we have emphasised the signs of the ∆Xw and ∆Zw components to indicate the
directions of motion as commanded by the VISILAB software. Note also that ∆Yw is
always zero because this direction of motion is not easily controlled using the current
configuration of VISILAB, therefore it was kept constant at all times.

A final point that needs to be highlighted is that all images for each dataset need to
be undistorted prior to their use in the feature tracking algorithm, which in the tests that
follow is the TR-KLT algorithm that was described in Chapter 3.

6.5.1 Test on VISILAB Vertical Descent Trajectory C

We begin by testing the performance of the PSO initialised MS-SRUKF algorithm, with
TR-KLT feature tracking, on the VISILAB Vertical Descent Trajectory C, in which the
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Figure 6.35: Top: TR-KLT feature point distribution in first image of VISILAB Vertical Descent
Trajectory C - 25 feature points were tracked over 280 images; Bottom: Corresponding first image
feature point locations in the VISILAB ground truth DEM

spacecraft begins at a 2000m altitude and undergoes a pure vertical descent at a
constant velocity of 100m/s, with a nadir view. This trajectory is the most similar to the
previous tests using PANGU images, and so a comparison between these results and
the previous results can be more readily made.

For this test, and all other tests on the VISILAB data sets, we only select features in
the first image of the sequence and then attempt to track these features over all
subsequent images using the TR-KLT feature tracker. To ensure that only features that
lie on the VISILAB terrain surface are used in the SFM algorithm, we track the features
up to a point where all background features have either left the field of view or become
lost by some other means, as discussed above. For this particular test, 25 terrain
features were tracked over a 280 image sequence. The distribution of these feature
points in the first image of the sequence is presented in Figure 6.35, which therefore
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Figure 6.36: SFM Results for VISILAB Vertical Descent Trajectory C – Top: Sparse ground truth
DEM (left) corresponding to the estimated DEM (right) with interpolation between the tracked
feature points; Bottom: DEM elevation errors (left) and feature point elevation errors (right)

also indicates the density of the estimated DEM. The fact that these 25 features could be
tracked for 280 images is evidence that the TR-KLT feature tracker performs much better
on real images than on the synthetic PANGU image sequences in which similar numbers
of features could only be tracked for around 100–120 images.

Figure 6.36 presents the results obtained from the MS-SRUKF algorithm using the
280 images from the VISILAB Vertical Descent Trajectory C image dataset, over which
25 features were tracked from the first image, without any feature renewal. The top part
of Figure 6.36 presents the estimated DEM (right) alongside a sparse ground truth DEM
(left) constructed by sampling the full resolution VISILAB ground truth DEM at the
locations of the tracked feature points in the first image of the sequence. From this it can
be seen that, for the most part, at this level of sparsity, the surface has been estimated
to a reasonably high level of accuracy. This is especially the case in the lower ∼ 2/3 of
the DEM, where, from the DEM surface error plot on the bottom left, it can be seen that
the errors are very close to zero in this region. The top 1/3 of the estimated DEM, on the
other hand, contains significant error. From the error DEM it can be seen that the
estimated DEM is approximately 10–20mm lower in elevation than the sparse ground
truth. The bar chart on the bottom right of Figure 6.36 shows more clearly the errors for
each individual feature point, from which it can be seen that the majority of the feature
points (52%) are below 6mm, and the peak error is approximately 20mm. With further
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Figure 6.37: Top: TR-KLT feature point distribution in first image of VISILAB Vertical Descent
Trajectory A - 23 feature points were tracked over 160 images; Bottom: Corresponding first image
feature point locations in the VISILAB ground truth DEM

analysis, the MS-SRUKF algorithm for this dataset, resulted in 12% of the feature points
being estimated to within ±1mm, 20% of the features were estimated to within ±3mm,
and 44% of the features were estimated to within ±4mm, and resulted in an overall RMS
error of approximately 9mm. Unfortunately, since the entire VISILAB terrain has a total
elevation range of around 45mm, the maximum error of 20mm is very significant, so it is
clear that further work is required to achieve a greater accuracy.

6.5.2 Test on VISILAB Vertical Descent Trajectory A

In this case we test the performance of the MS-SRUKF algorithm on VISILAB Vertical
Descent Trajectory A, in which the camera descends vertically towards the VISILAB
terrain surface with a nadir view and where the camera motion is produced from use of
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Figure 6.38: SFM Results for VISILAB Vertical Descent Trajectory A – Top: Sparse ground truth
DEM (left) corresponding to the estimated DEM (right) with interpolation between the tracked
feature points; Bottom: DEM elevation errors (left) and feature point elevation errors (right)

only the vertical component of motion from the Full Lunar Descent Trajectory. In this way,
this test form the next logical step towards a full Lunar descent trajectory from the simple
constant velocity vertical descent trajectories of the previous test and the PANGU tests.

Figure 6.37 shows the distribution of the TR-KLT feature points extracted from the
first image that were able to be tracked in every image up until all the features produced
from background objects had left the field of view or had been lost by other means. Here
there were 23 features tracked for 160 images, and in this case they are more spread out
over the surface, which means that the density of the DEM is slightly lower than before.
The top plot of Figure 6.37 shows the distribution of the 23 feature points in the first
image of the sequence for VISILAB Vertical Descent Trajectory A, and the bottom plot
show their corresponding locations in the VISILAB ground truth DEM image as
determined by applying the calculated projective transformation from the manual point
mapping procedure.

The results obtained from using these feature points in the MS-SRUKF SFM
algorithm are presented, along with error analysis, in Figure 6.38. The sparse ground
truth DEM (top-left) is presented alongside the estimated DEM (top-right), from which it
can be seen that reasonable performance has been obtained from the SFM algorithm
for the lower approximately 4/5 of the estimated region of the VISILAB surface, although
the small high elevation region at the bottom right corner is somewhat under estimated
by around 10mm. This is reflected in the plot of DEM elevation errors in the bottom-left
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of Figure 6.38, which indeed shows around a 10mm error for this small region. For the
rest of the lower 4/5 region of the DEM the errors appear to be very close to zero on the
whole, however there are a few points that appear to have an elevation slightly below
that of the ground truth. This is further confirmed by analysing the bar chart plot of the
errors for each individual tracked point, in which it can be seen that there are a number
of points that are close to zero error. However, there are 3 points that have very high
errors of around 40–45mm, which is particularly significant given that the full range of
elevation over the entire VISILAB surface is 44.73mm. Overall the results from this test
are not as good as the results obtained for Vertical Descent Trajectory C, which can be
seen from the fact that the RMS error here is 16.65mm whereas for Trajectory C it was
9.03mm. The reason for this is likely due to it being heavily skewed due to those points
that are estimated extremely poorly, because if we reject these points the RMS error
falls to 7.97mm, which is in fact an improvement over the results obtained in Trajectory C.
This therefore suggests that the SFM algorithm could be improved by incorporating
some sort of outlier rejection strategy, such as RANSAC applied to the feature detector,
which would lead to the rejection of any points that exhibit image motion characteristics
that are too dissimilar from the other features. Whether this would be sufficient to
remove all those features that would result in a poor structure estimate would need to be
rigorously examined in any future work. Alternatively, it may be possible to directly apply
a related method upon the actual structure estimates themselves in order to detect and
reject any features that have radically different structure estimates from the other feature
points. Deriving such an outlier rejection scheme is left to future work as this would likely
require an extensive search of the available literature to identify a suitable approach.
Without rejecting these extreme structure estimates, the majority of the feature points
(61%) are now estimated to within ±7mm, which is again a reflection of the reduced
performance in this test since previously over 50% of the features were within ±5mm,
however the influence of the three extremely erroneous feature points is significant in
this result.

6.5.3 Test on VISILAB Full Lunar Descent Trajectory A

We now carry out a test of the MS-SRUKF SFM algorithm on the full VISILAB Lunar
Descent Trajectory A, which consists of both vertical and horizontal camera motion based
on a powered Lunar descent trajectory scaled down to the dimension of the VISILAB
equipment, as described earlier. For this trajectory, the camera maintains a constant
nadir viewing angle.

Figure 6.39 shows the distribution of the tracked feature points in the first image of
the sequence (top) and the corresponding locations of these feature points within the
VISILAB ground truth DEM image (bottom). In this case 30 features were remaining after
220 images, which was the point at which all background features had disappeared.

Figure 6.40 presents the SFM results and error analysis obtained from this dataset
using this set of feature points. Along the top of the figure are the sparse ground truth
DEM (left) and the corresponding estimated DEM (right). Here we can see that large
portions of the DEM appear to have been estimated to a close agreement with the ground
truth, suggesting that any of the feature points have been estimated to high accuracy.
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Figure 6.39: Top: TR-KLT feature point distribution in first image of VISILAB Full Lunar Descent
Trajectory A - 30 feature points were tracked over 220 images; Bottom: Corresponding first image
feature point locations in the VISILAB ground truth DEM

However, some discrepancies are clearly visible in both the upper-middle region, where a
very low elevation has been estimated, and to the middle-right/lower right region, where
a relatively high elevation has been estimated. In the sparse ground truth DEM there
is a region stretching from the mid-right to the bottom-right that has a reasonably high
elevation, and is therefore coloured red, that appears to form an arrow-like shape. The
left half of this arrow-like shape is clearly visible in the estimated DEM, thus in terms
of shape this is a positive result even though the elevation underestimated by around
10mm, however the right half of this arrow-like shape is not very apparent in the estimated
DEM as it is obscured by an erroneous neighbouring region that has been estimated to
have a similar elevation to the arrow-like region. There is also a very small region in the
bottom left that erroneously has extremely low elevation, when in fact it should have a
high elevation. These observations are reflected in the DEM error surface plot, which
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Figure 6.40: SFM Results for VISILAB Full Lunar Descent Trajectory A – Top: Sparse ground
truth DEM (left) corresponding to the estimated DEM (right) with interpolation between the tracked
feature points; Bottom: DEM elevation errors (left) and feature point elevation errors (right)

appears to show that most of the surface has small errors, apart from in the regions
noted above. Since this error plot is computed by subtracting the estimated (interpolated)
DEM from the sparse (interpolated) ground truth DEM, when the true surface has a high
elevation but the estimated surface has a low elevation, the error is positive, and when the
true surface has a low elevation but the estimated surface has a high elevation, then the
error is negative. Therefore, the small region of extreme error in the bottom-right shows
a high positive error since the estimated surface has a very low elevation here when in
fact it should be a high elevation. We can also see a region of negative error in a strip
along the right edge of the surface (right of the arrow-shaped region), which is where a
mid-to-high elevation was estimated when it actually should have been a lower elevation.
On the upper-left there is a region of approximately +15mm error, resulting from the
small deep-blue region that resulted in an elevation about 20mm lower than it should
have been. These observations are supported by the bar plot (bottom-right) of errors for
each individual feature point. Of particular concern is the extremely large positive error
of nearly 70mm, corresponding to the small highly erroneous region in the bottom-right of
the estimated DEM, which is very significant given that the entire surface only has a full
elevation range of 44.73mm. This strongly skews the RMS error to 14.64mm, whereas if
this feature point could have been rejected by an outlier removal scheme then the RMS
error would be reduced to 7.62mm. Additional analysis of the errors shows that exactly
50% of the surface is estimated to within ±5mm, and so a similar level of accuracy is

172



6.5. TESTS ON VISILAB DATASETS

achieved in this test to that of Vertical Descent Trajectory C.

6.5.4 Conclusions from VISILAB Tests

In this section, three tests have been carried out using the collected VISILAB datasets.
On the whole the results have been positive, with many of the features estimated to high
accuracy. However, a number of discrepancies have been observed in which a handful of
the tracked feature points resulted in highly inaccurate structure estimates. These outliers
resulted in an overall reduction in accuracy than was observed in previous tests using
PANGU images. It is clear that improvements could be made with the incorporation of a
strategy for detecting and removing outliers so that these extreme feature points could be
culled from the set of tracked features, and therefore improving the overall accuracy of the
estimated terrain surface. Precisely what form this outlier rejection scheme would take
is not known at this stage and so further research is needed. One possibility, however,
could be the use of a RANSAC algorithm acting only on the observed image motion of the
features during the feature tracking stage, wherein any features that exhibit a dissimilar
motion behaviour to the rest of the features will be identified and removed. Whether this
would be an effective means of removing those features that would go on to produce the
highly erroneous structure estimates in the SFM algorithm would need to be the subject
of an extensive investigation. The problem may also be down to a suboptimal set of tuning
parameters, since for the tests carried out in this chapter the PSO filter initialisation did not
result in satisfactory SFM results, despite achieving a very low cost, and consequently
a significant amount of manual refinement of the PSO derived tuning parameters was
required. This may indicate a problem with the derivation of the cost function and thus
indicate that a slightly different formulation may be required since a simple matching of
covariances did not appear to be sufficient. However, the PSO initialisation appeared to
work much better for the synthetic PANGU image sequences, and so in those cases the
cost function seemed to be capable of producing satisfactory tuning parameters. This
may actually also indicate that the difficulty in PSO tuning on these real image data sets
could be due to the presence of outliers that were not present in the PANGU tests. An
increase in difficulty, to some extent, would be expected when using real imagery as
opposed to synthetic imagery where things are much more straightforward and controlled,
for example, with synthetic images, the complexity of dealing with image distortions is not
present, which can introduce a significant source of errors when undistorting images if the
camera calibration is not entirely accurate. It is therefore clear that additional mechanisms
may need to be incorporated to increase the robustness of the entire feature tracking and
SFM algorithm.

We should also point out that only those image datasets in which the camera had a
nadir viewing angle were used in the above tests. Unfortunately, when the camera had a
35 degree look angle, the calibration pattern was not fully visible when the camera was
in its starting position. In this case, it was deemed reasonable to assume that the same
scaling could be applied to the trajectory motion parameters and so it was not considered
vital to be able to see the calibration pattern in order to obtain the extrinsic parameters.
However, while it was reasonable to assume the scaling would not change, due to time
restrictions during the collecting of the datasets, the full importance of being able to obtain
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the extrinsics parameters, for determining the orientation of the camera frame so that
the motion could be converted to the camera frame in order to predict the feature point
measurements in the filter, was overlooked. This could be overcome by removing the
calibration pattern from its default position and temporarily placing it in front of the terrain
so that it is within the field of view of the camera. The extrinsics parameters could then
be estimated with respect to this location, and then due to the precision placement of
objects that is provided by the optical table, the resulting extrinsics parameters could be
transformed back into the original calibration pattern frame and the analysis could then
proceed as normal. Obtaining results from the two remaining datasets is therefore left as
further work.
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7 SHAPE FROM SHADING

In this chapter we investigate some techniques for estimating the shape of a surface
using the shading information that is present in the images captured from the on-board
descent camera. Specifically we look at an approach known simply as shape from
shading (SFS), which uses a single image to estimate the shape of the terrain; a
technique known as photometric stereo, which works on the same principle but uses
three images taken with different light source directions in order to bypass some of the
assumptions and approximations that must be made to estimate the surface shape
when using only a single image. Additionally an extremely simple method of directly
estimating slope from shading information is investigated, which bypasses many of the
assumptions inherent in SFS, and sets of hazard maps are produced to indicate areas
that would be too dangerous on which to land. While somewhat promising, this simple
method unfortunately misses a number of unsafe regions in comparison to ground truth
data, and so finally a much more capable method is investigated and analysed. This
final method is a very modern and sophisticated shape from shading technique that
uses prior knowledge of natural image statistics in order to recover dense shape as well
as variable surface albedo from shading information and also allows low resolution initial
shape estimates to be incorporated. Consequently, this sophisticated method could be
used in combining the previously obtained sparse SFM structure estimates with a shape
from shading method, in order to provide fully scaled and dense DEMs of the landing
site region. These SFS techniques are focussed solely on the production of DEMs of the
landing site and the ultimate aim is to develop a technique that would supplement,
incorporate and improve the DEMS generated from the structure from motion
approaches in the previous chapters.

7.1 Background and Motivation

The goal of shape from shading algorithms is to derive a 3D scene description from one or
more 2D images. There are numerous ways in which this description can be expressed,
such as depth Z(x, y), surface normal (nx, ny, nz), surface gradient (p, q), and surface
slant, φ, and tilt, θ [150]. Shape from shading deals with the recovery of such a description
of the surface using the gradual variation of shading in an image, by considering the
way in which light falls upon and is reflected by the surface. The most common way of
describing the image formation process is through the use of the Lambertian reflectance
model, in which the observed gray level at a pixel in the image depends on the light
source direction and the surface normal [150]. It must be noted, however, that the use of
the Lambertian model is often too simplistic because real images do not always contain
features that can be completely described by Lambertian reflectance; there are often
other features present such as shadows, and specular reflectance, for example. Even
if Lambertian reflectance can be used to adequately describe the entire surface visible
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in an image, the SFS problem is still difficult to solve. The reason for this is that, for
example, if we wish to describe the surface in terms of the surface normal, we have one
linear equation with three unknowns, or if we are using surface gradient then there is
one non-linear equation with two unknowns. Therefore, in order to proceed, a number of
additional constraints must be applied that enable a unique solution [150].

The above mentioned issues that are encountered in shape from shading problems
have lead to a number of different methods and algorithms being proposed in the
literature, each of which has differing strengths and weaknesses in differing situations.
There are four main categories of shape from shading approaches: minimisation
methods, propagation methods, local methods, and linear methods. Minimisation
methods work by constructing an energy function that contains some constraints to
overcome the ambiguities that arise from having an under constrained system (e.g. a
brightness constraint that ensures the reconstructed shape produces the same
brightness as the input image, and a smoothness constraint to ensure a smooth surface
reconstruction see [151]), and then minimising this energy function to obtain the shape
solution [150]. Propagation approaches work by constructing a set of initial surface
curves around the neighbourhood of some special points in the image (e.g. singular
points) using an initial assumption such as a local sphericity and then propagating the
solution outwards using the direction of intensity gradients. The first shape from shading
algorithm, developed by Horn [152], was a propagation approach that used the method
of characteristics to propagate the solution along lines known as characteristic strips. A
characteristic strip is a line in the image along which the surface depth and orientation
can be computed if these quantities are known at the starting point of the line [150]. The
starting points of the line are the initial surface curves around the singular points as
mentioned above, therefore the starting points come from an assumption about the
surface which may not necessarily hold. An overview of this first method is presented in
Figure 7.1 to provide an example of how shape from shading is computed. This
particular algorithm was chosen as an example because it was the foundation that
inspired all the subsequent SFS techniques, even though the more recent algorithms
can be quite different to this original approach. Local approaches derive shape based
on assumptions about surface shape [150]. An example of a local approach is the work
of Pentland [153], which recovered shape information from the intensity, and its first and
second derivatives, by assuming that the surface is locally spherical at each point [150].
Finally, linear methods compute the shape solution based on the linearisation of the
reflectance function in order to obtain either a closed form solution for the depth at each
point [154], or to obtain an expression that can be solved iteratively for the shape [155].

In Section 7.2 we present an example of a linear shape from shading algorithm,
specifically that of Tsai and Shah [155], for which code is readily available, as a first
investigation into the abilities of a general SFS method. We also look at another, closely
related technique known as photometric stereo, which is essentially the same technique
as SFS in that it uses a simple reflectance model to compute shape from shading
information present in an image, but instead of using a single image it uses a minimum
of two or three images taken under different light source directions in order to provide
the three necessary equations to solve for the three unknowns when attempting to
estimate the surface normals, or two equations for the two unknowns when solving for
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Figure 7.1: Algorithm flow diagram for the original SFS algorithm proposed by Horn [152]

surface gradient. This eliminates the need for additional constraints and assumptions
that are imposed on the shape estimates when using only a single image. Again, the
method that has been implemented is a general photometric stereo technique, based on
the work of Woodham [156], and is mainly used as an examination of the potential of
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this type of technique, at this stage. Figure 7.2 presents an overview of the method
employed to construct the surface shape using this algorithm. For further details,
see [156]. The code for the two algorithms investigated is freely available on the
internet, therefore we will not present further details of the algorithms here, if further
information is required, please see [155, 156]. In this work these two simple algorithms
were tested using PANGU images that are representative of the type of images that may
be recorded by the camera during descent, in order to evaluate the applicability of the
SFS techniques to the problem investigated in this project.

The ultimate aim would be to combine a shape from shading technique with the
structure from motion techniques discussed in the previous chapters. SFS has the
potential for constructing a dense DEM of the entire landing site, but is unable to provide
absolute depths, therefore combining it with the previous methods should prove
complimentary since SFS could fill in the gaps in the DEM from SFM and the SFM
algorithm could provide absolute depth information, which would enable a much richer
description of the surface structure than either technique alone.

7.2 Preliminary Results

Figure 7.3 presents the results from the Tsai and Shah [155] linear SFS method. Here we
have used a single PANGU image from a height of 1000m above the landing site, in which
the light source direction is 55° azimuth and 25° elevation. The input image is shown in
Figure 7.4.

It can be seen from Figure 7.3 that the results are extremely erratic, and completely
inadequate for the intended application. However, this particular method is designed for
use on smoothly varying, simple surfaces, with no changes in albedo due to surface
blemishes, shadows etc, such as would be present in real images of a planetary surface
due to boulders, craters, differing surface material types/rock types. Therefore, it is not
surprising that the performance is poor from such a simple algorithm. The purpose of
using this particular technique was mainly to get a feel for how SFS algorithms work in
general and so it was not a genuine attempt at producing realistic and useful results at
this stage. Clearly a much more modern and sophisticated algorithm is required before a
true assessment of the capability and applicability of SFS can be carried out.

Figure 7.5 presents the results from the photometric stereo algorithm. In this case we
use three images, of the same synthetic planetary surface shown in Figure 7.4, but with
three different light source directions: 55° azimuth and 25° elevation, 115° azimuth and
25° elevation, and 270° azimuth and 25° elevation.

Here we can see that the reconstructed surface is less affected by noise than it was
for the previous method, which is most likely due to fewer assumptions and constraints
being imposed in order to obtain a solution, and due to having more shading information
available because of the use of three different images. However, the surface does not
appear to vary in height significantly over the entire surface so it appears that the
reconstructed surface (although not transformed to absolute height) is too inaccurate to
be of use. There are also still a number of spurious depth discontinuities caused by the
presence of craters and the shadows cast by rocks on the surface. This is not surprising,
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Figure 7.2: Algorithm flow diagram for the original photometric stereo method proposed by
Woodham REF HERE!

because it is at these locations where the simple reflectance model will not apply. It
should also be said that photometric stereo is unsuited to the application considered in
this project as it requires 3 images with the same viewpoint but with different light source
directions which could not be obtained during the short period of time of descent for
which the spacecraft has significant velocity and control of the light source (the sun)
direction is impossible. However, it provides an illustrative example of how improvements
can be made when the number of restrictive assumptions can be reduced.

7.3 Conclusions from Simple SFS Approaches

The results presented above would be inadequate for use in the application intended
for this project. However, this was to be expected since it was known that the simple
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Figure 7.3: Left: Results from Tsai and Shah SFS method (x and y axes are in pixels, z axis
represents relative height); Right: Ground truth DEM (x and y axes are in pixels, z axis represents
absolute elevation in metres).

Figure 7.4: Input image for SFS algorithm

methods would not be capable of dealing with complex surfaces such as the terrain on
a planetary surface. The purpose was mainly to gain an appreciation of the capabilities
of the basic methods and gain an appreciation of how much extra sophistication would
be required to apply this class of techniques to the case of planetary descent above a
complex surface that does not necessarily vary smoothly in shape and may also have a
non uniform albedo and/or the presence of shadows. The quite extremely poor results
obtained by no means rule out the use of these types of technique, especially since
it was expected that the simple techniques would be insufficient at the start, but it is
now abundantly clear that a much more in depth investigation into methods with a much
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Figure 7.5: Left – Results from photometric stereo algorithm; Right – Ground truth DEM.

greater degree of sophistication is required before they can be applied reliably to the
intended application area.

7.4 Slope from Shading

Before moving on to more sophisticated methods of recovering shape from shading
information, it was decided to investigate whether there still may be some use for the
simple methods if the goal is not the recovery of overall shape, but instead to simply
estimate the slope of the terrain directly and determine whether the terrain is too steep.
After all, the primary aim for producing DEMs of the landing site is identify the presence
of steep slopes that may be too hazardous for the spacecraft to land on. Here, we
develop a simple method of estimating the slope of the terrain and mark out whether the
terrain is safe or not by comparing the results against a threshold value. Safe areas will
be determined on a pixel-by-pixel basis and marked out in green, whereas unsafe areas
will be marked out in red.

In order to achieve this, the following assumptions are made:

• Lambertian reflectance model: the surface scatters incident light isotropically.
Then, grey levels do not depend on the position of the observer (no privileged
direction), but depend only on the angle of incidence, θ;

• Constant albedo on the ground (homogeneous surface, including boulders) – may
be too simplistic for real world applications but should be sufficient for PANGU;

• The Sun is a punctual source located at infinity (i.e. light rays are parallel);

• The Sun elevation is known.

181



LUKE FEETHAM PhD THESIS CHAPTER 7. SHAPE FROM SHADING

Figure 7.6: Slope from shading geometry

Let θ be the angle between the light source direction and the local surface normal, as
shown in Figure 7.6. Under the Lambertian assumption, the reflected luminance in any
direction is given by

I = aL cos(θ) (7.1)

where a is the albedo of the surface and L is the illumination received by the surface.
Then if we know the relationship between the received luminance and the grey level, G,
in the image, we can retrieve cos(θ) directly from the grey level.

Assuming that the camera is calibrated, such that when a light ray hits the surface
parallel to the surface normal vector, the gray level equals 255, and also assuming that
the relationship between the luminance and the grey level is linear (these assumptions
are true for PANGU images). Then the relation between the grey level and θ is simply

G = 255 cos(θ) (7.2)

Therefore, the solution (θ) does not depend directly on any parameters that relate to
the surface properties, i.e. albedo. Thus, it may be more reliable than the previous
approaches when used on complex surfaces.

It is important to note that the angle θ does not uniquely define the surface normal
vector. It is only possible to know a range of values within which the surface normal
vector lies, i.e. for a given θ and light source elevation angle ρ , the surface normal vector
belongs to a cone, as shown in Figure 7.6.

The slope angle S (angle from the normal of the horizontal plane and the normal
to the surface) then belongs to the interval [Smin, Smax] where Smin = π/2 − ρ − θ and
Smax = π/2 − ρ + θ. It was found through trial and error that the angle Smin more
accurately represents the surface slope in comparison to the ground truth. The results of
this technique are presented in the following section.
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Figure 7.7: Result from the slope from shading algorithm for 4 different test altitudes: 100m (top
row), 500m (2nd row), 1000m (3rd row), 2000m (bottom row).

7.5 Slope from Shading Results

Figure 7.7 shows the results obtained from this simple slope from shading method for four
different heights ranging from 100m to 2000m above the landing site. Row one of the figure
shows the results for the 100m altitude case, with the input image on the left (for which the
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light source direction is 55° azimuth and 25° elevation), the estimated hazard map is in the
centre and the ground truth hazard map on the right. There appears to be a very close
agreement between the two hazard maps, with most of the hazardous areas captured by
the algorithm. There are a few anomalies, where the algorithm appears to have failed
to identify hazardous slopes, such as the top left corner, as well as a few points that
have been falsely identified as hazards. However, on the whole the performance is quite
promising at this altitude. As we go on to higher altitudes it appears that the performance
decreases, although there are still areas that are in close agreement with the ground truth.
However, the number of missed hazardous areas increases, as does the number of false
positives. This can be attributed to there being more complex terrain features visible in
the higher altitude images, such as craters with shadowed areas, etc. In particular, the
algorithm appears to perform well on the shadowed areas, but on the other hand it fails
to identify steep slopes on the opposite side of the craters (the unshadowed side). This
type of problem can be seen quite clearly on the bottom row of the figure for the 2000m
altitude case, which also shows many other areas that the algorithm has failed to identify.
Craters aside, the algorithm in general appears to perform better on the darker regions
that it does the lighter regions. Overall, however, there appears to be some promise to
this approach and so it may benefit from further development.

7.6 Slope from Shading Conclusions

A simple slope from shading algorithm has been developed as a means of trying to
avoid the problems that plagued the direct shape from shading algorithms when they
were used with the complex surfaces that are necessary in this work. The aim was to
directly estimate the slope of the terrain using a simple technique, instead of using
shading information to produce a DEM of the landing site that could then be used to
identify hazardous slopes. This approach appeared to yield more reliable results since it
does not directly depend on parameters relating to the properties of the surface. Overall
the results were promising, but a number of regions were misidentified, especially at
higher altitudes. This simple technique shows a reasonable amount of promise, however
it is doubtful that it would be reliable enough to guarantee a safe landing, as it can quite
easily miss hazardous areas. For this reason it was decided to move on to investigating
more sophisticated, modern shape from shading techniques in an attempt to obtain a
solid foundation upon which we could incorporate the SFM results to produce a
combined approach that should lead to improved accuracy and a full scale DEM.

7.7 Modern Shape From Shading Approaches

The SFS survey paper by Zhang et al [150], presents a detailed review of a large
number of techniques that have been applied to the problem of recovering shape from
shading information, and even includes a comparison of six different methods in an
attempt to determine their relative performance and suitability to specific types of
applications. These methods can, however, be regarded as classical methods since they
are primarily applied to the recovery of simple, smoothly varying objects and were
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predominantly applied to synthetic, monochrome images or very simple real images. No
attempt was made to apply the discussed methods to complex shapes such as
planetary surfaces that may contain shape discontinuities, shadows and widely varying
depths. A more up to date survey of the field of shape from shading was presented by
Derou et al [157], in which a slightly different classification of the SFS methods was
given – instead of the four classes of technique given in [150], the authors of [157]
classified the techniques in to 3 categories: methods based on partial differential
equations, methods using optimisation, and methods approximating the image
irradiance equation. Three techniques, one from each class, were implemented and a
thorough comparison was made between the 3 approaches in order to determine the
efficiency and accuracy of the methods when applied to synthetic and real images.
Unfortunately, these methods were again only tested on images of very simple,
smoothly varying shapes, so it is difficult to conclude their applicability to a more
complex problem such as that tackled in this project.

The primary problem in the reviewed shape from shading techniques that make them
difficult to apply to natural images and more complex surfaces, aside from the problem
being under-determined, which is inescapable, is that albedo is assumed to be uniform
across the entire surface and almost always is assumed to be known a priori. Therefore,
rather than potentially endlessly experimenting with the various techniques reported in
the literature that have been tested on images of comparatively simple objects, we chose
to look for methods that have been specifically designed to cope with scenarios that are
similar to our own and fortunately there are a few examples.

One of the first examples of using shape from shading in a related scenario to that of
ours (other than in the somewhat related field of photoclinometry) can be found in the
work of Thompson [158], which describes a technique for determining surface
topography from orbital images by combining shape from shading and stereo vision.
However, this method requires two images from different locations (sufficient to give a
suitably large baseline separation) and with different lighting conditions, therefore this
approach would not be suitable for use in planetary descent where the lighting
conditions would be expected to remain constant over the descent image sequence.
Along a similar line as the work of Thompson is the work of Heipke et al [159–163],
which is a method of combining image matching, between (at least) two separated views
of the scene, and shape from shading. This method was named multi-image shape from
shading and claims to fully combine a global least-squares based image matching
algorithm with a simple shape from shading formulation. A consequence of this is that
the two methods compliment each other, with the image matching method being able to
determine the full-scale depths of highly textured regions in the image and the SFS part
being able to fill in the gaps in low textured regions, and overall the combined method is
able to produce more accurate results than either of the two methods applied in
isolation [159]. Originally, this method required a constant albedo across the entire
surface but later it was extended to enable the albedo to vary over the surface in a
piecewise manner. The algorithm was tested using synthetic images [159, 160], real
aerial images [161], and, most importantly for this work, with real images of the surface
of the Moon recorded by the NASA Clementine spacecraft [162, 163], and was found to
produce accurate results in comparison with ground truth DEMs produced using
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photogrammetric stereo techniques.
Another method that focussed on 3D surface reconstruction of part of the Lunar

surface is that of Wohler [164], which presented two slightly different methods of
reconstructing the surface. The first technique was based on a single image shape from
shading scheme, but used two further images of the scene that contained shadowed
regions, which were used to initialise the main shape from shading algorithm. The
second method tackled the reconstruction problem by the use of a quotient based
intensity error function formed from the intensity values of two separate images of the
same scene under different lighting conditions. The first technique, as with the majority
of shape from shading schemes, requires an assumption of uniform albedo over the
surface, where as the second method can handle cases in which the albedo is variable.
Both methods, however, require a minimum of 3 or 2 (respectively) images with exact
pixel-to-pixel correspondence and each image is required to have different light source
orientations, therefore both methods can be regarded as photometric stereo methods
rather than strict shape from shading algorithms, and therefore would not be of much
use in our work. Another interesting method involving Wohler is presented in Herbort et
al [165], in which a method of combining shape from shading and active range scanning
is described. The motivation for this method was stated as a complimentary combination
of SFS, which yields dense surface detail on small scales, and active range scanning,
which can be noisy at fine scales but reliable on large scales. The same can be said for
our aim of merging a feature based SFM method and shape from shading.
Unfortunately, the method presented in [165] is of limited use in our case since we
cannot assume the presence of an active scanning range sensor such as laser
altimeters/LIDAR as was used in the testing of their method.

O’Hara and Barnes [166] presented an optimisation based SFS algorithm that was
tested on images captured by the Mars Express HRSC instrument and was found to
provide improved fine surface detail over that derived from stereo methods. This
algorithm was based on a different way of representing depth compared to other SFS
methods. Instead of a discrete height grid, where each discrete point of the grid
represents a height, a depth grid is used where each point represents a depth along unit
viewing directions, thus the resulting depth map is related to a range image for the
perspective camera model (i.e. where the range is the hypotenuse of the triangle formed
from the origin of the camera frame, the Z axis and the point (X, Y, Z)). Note that unit
vectors are used, however, because the scale is unknown from a single image. The
method allows for different types of camera models to be used, such as orthographic (as
is typically employed in SFS), perspective, and push-broom, and was implemented
using two different types of reflectance model: the standard Lambertian model, and the
Oren-Nayar diffuse reflectance model. However, the method requires known and
uniform albedo, which is an often needed requirement in SFS, and needs to be used
with images that have been pre-calibrated so that image intensity is proportional to
image irradiance, which is also not uncommon in SFS.

Finally, a sophisticated SFM method that was applied to images of the Lunar surface
captured during the Apollo missions was developed by Barron and Malik and presented
in [167]. This method stands out as it is possibly one of the only methods that truly
allows for variable unknown albedo. The algorithm is based on an optimisation approach
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to SFM, in which the optimisation is carried out in a coarse-to-fine iterative refinement
scheme using Gaussian and Laplacian pyramids, which, respectively, represent the
albedo and depth estimates that together describe the most likely albedo and shape that
explains a single image. Thus, in this algorithm both shape and albedo are estimated
simultaneously. The pyramid representation of scene depth naturally lends itself to the
(optional) incorporation of an initial, low-frequency depth estimate (used as the top-most
(coarsest) level of the pyramid), such as that which may have been derived from texture
based stereo vision measurements of the depth of the scene, or in our case from the
sparse DEMs produced using feature based SFM. Therefore this method is able to
optimally combine the strengths of stereo or SFM methods, which are most suited to
coarse scale depth measurements from high textured image regions, with SFS, which is
best suited to low textured image regions and the estimation of depth changes at fine
scales. This method was later further developed to also enable simultaneous estimation
of the illumination direction along with albedo and shape in a technique now known as
Shape Illumination and Reflectance From Shading (SIRFS) [168]. The flexibility of this
method, particularly in that almost no prior knowledge about the surface properties
(albedo) and light source are required, and that it very easily allows for the incorporation
of external depth information from SFM, are the reasons why this method was chosen
for further investigation for our application. Further details about this method will now be
presented in Section 7.8.

7.8 Shape, Illumination, and Reflectance From Shading

A long-time problem in shape from shading algorithms, that limits their applicability to
real-world imagery, especially those that can be regarded as images of natural scenes,
is that albedo is generally assumed to be both uniform and fully known. Uniform albedo
will generally only be true for simple man-made objects and possessing full albedo
knowledge will rarely occur in practice when the objects in the scene are not easily
accessible or if it is impractical to perform a detailed examination of the reflective
properties of the materials of all the objects that are to be imaged. These difficulties are
particularly pronounced when dealing with the type of natural scenes produced by the
terrain of planetary surfaces that have not previously been visited and therefore it is
unknown exactly what will be encountered. The Shape and Albedo From Shading
algorithm (SAFS) developed by Barron and Malik [167] (later extended to Shape,
Illumination and Reflectance From Shading (SIRFS) [168]) is, to this authors knowledge,
the first SFS algorithm to truly relax these assumptions and allow for direct estimation of
unknown albedo that is variable across the surface of the imaged object. This is
achieved by imposing “naturalness” priors over the albedo and shape in order to
simultaneously recover the most likely albedo and shape that explain a single
image [167]. These naturalness priors are applied over multiple scales via a Laplacian
image pyramid that represents a coarse-to-fine iterative refinement estimation strategy
for recovering the most likely albedo map of the scene, and similarly over a Gaussian
pyramid representing coarse-to-fine depth estimation in the scene. The use of image
pyramids was reported in [167] to dramatically improve performance and has an extra
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benefit of quite elegantly enabling a coarse initial estimate of depth to be incorporated,
such as that obtained from a stereo vision or SFM algorithm, by scaling it down and
using it as the top-most (coarsest) level of the Gaussian depth pyramid. The SAFS
algorithm then refines this initial estimate by effectively filling in the gaps between the
high textured regions using the relative differences in shading in the low textured areas
to produce a much finer scale DEM of the scene.

The method for recovering shape from shading in [167] produces a full depth map, Ẑ,
and albedo map, ρ̂, from an input image, I, the light direction, L, and an optional coarse
depth, Z0, via the minimisation of the following composite cost function:

f safs (ZL) = fρ
(
G
(
ρ
(
L−1 (ZL)

)))
+ fZ (ZL) (7.3)

where fρ(·) is the contribution to the cost due to albedo estimation, fZ(·) is the
contribution to the cost due to depth estimation, G(·) represents an operation that
constructs a Gaussian pyramid from an image (an albedo image in this case), L(·) is an
operation that constructs a Laplacian pyramid from an image (a depth image in this
case), and therefore L−1 reconstructs the image from a Laplacian pyramid, ρ(Z) is the
albedo image, which is a function of the depth-map Z, and ZL is the Laplacian pyramid
representation of the depth-map of the scene. The output of the algorithm is obtained
via a non-linear conjugate gradient descent algorithm to minimise Equation (7.3) and
produce the most likely estimate of Z:

Ẑ = L−1
(

arg minZLf
safs (ZL)

)
, ρ̂ = ρ(Ẑ) =

Ix,y

Sx,y(Ẑ)
(7.4)

where Ix,y is the input image and Sx,y(Ẑ) is a Lambertian rendering based on the
estimated depth Ẑ under light source L.

The Lambertian rendering of the estimated depth is carried out by assuming
Lambertian reflectance and orthographic projection, which was stated in [167] to
improve performance compared to other projection and reflectance models. Specifically,
each pixel (x, y) is considered to be bounded by four points whose depths are
calculated using bilinear interpolation, and then rendered based upon an average of the
inner-products of the light source direction vector and the two unit normal vectors of the
two triangles formed by the 4 points. The unit normals are calculated from the following
expressions:

n+
x,y(Ẑ) ∝

Ẑ(x− 1/2, y − 1/2)− Ẑ(x+ 1/2, y − 1/2)

Ẑ(x− 1/2, y − 1/2)− Ẑ(x− 1/2, y + 1/2)

1



n−x,y(Ẑ) ∝

Ẑ(x− 1/2, y + 1/2)− Ẑ(x+ 1/2, y + 1/2)

Ẑ(x+ 1/2, y − 1/2)− Ẑ(x+ 1/2, y + 1/2)

1


, (7.5)
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then Sx,y(Ẑ) is computed as follows using the Lambertian reflectance model:

Sx,y(Ẑ) =
1

2

(
max

(
0, L · n+

x,y(Ẑ)
)

+ max
(

0, L · n−x,y(Ẑ)
))

. (7.6)

The strategy for estimating albedo involves convolving each level of the estimated
Gaussian albedo image pyramid with a set of 4 oriented edge and bar filters of the form
shown in Figure 7.8 (a). The responses to these filters are very different on pure albedo
images than they are with natural images (i.e. shading × albedo), which can be seen in
Figure 7.8 (b) in which the log-histograms of the responses to the filter bank are
presented and where it can be seen that the responses of albedo images are much
more kurtotic in comparison with natural images. It is this difference that enables the
albedo of the surface to be separated from the shading due to depth in natural images.
To make use of this distinguishing property of albedo images and derive the cost
function for albedo, fρ, a “Field of Experts” (FoE) type model is utilised and applied to
the albedo Gaussian pyramid. The FoE model was developed by Roth and Black [169]
as a method of learning generic global image priors that accurately capture the statistics
of natural images through a combination of the Products of Experts (PoE) framework (for
modeling the complex statistics of small image patches by taking the product of several
simpler expert distributions) and Markov Random Field (MRF) models (which
establishes a non-causal statistical relationship between a pixel and its immediate
neighbours). The FoE method was applied to image denoising and image inpainting
in [169], and to optical flow in [170], and it was found to outperform certain specialised
techniques even when trained on generic image datasets and not tuned towards a
specific application [169].

Traditionally, MRF methods utilise a simple neighbourhood system, such as a first
order, 4-neighbour system, or a second order, 8 neighbour system, as shown in
Figure 7.9 (a), and where the statistical dependence between pixels is assumed to
extend only to the most immediate neighbouring pixels. That is, given a 2D, N × M
rectangular image lattice Ω = {(i, j) | 0 ≤ i ≤ N − 1, 0 ≤ j ≤M − 1}, where each pixel
s ∈ Ω is associated with a random variable Xs representing the set of possible intensity
values (or some other label in image segmentation, for example), a neighbourhood
system η consisting of a set of neighbourhoods ηs ⊂ Ω, where s /∈ ηs (i.e. the pixel s is
not part of its own neighbourhood) and s ∈ ηt → t ∈ ηs (i.e. s is a part of some other
pixel, t’s neighbourhood, where t is a neighbour of s). Then, the statistical dependence
between a pixel, s and its neighbours is determined by defining a clique potential Vc(x)
on each clique c, taking the exponential of the sum of the clique potentials of all cliques
C in Ω, and dividing the exponential by a normalising constant Z, i.e.

P (x) =
1

Z
exp

{∑
c∈C

Vc(x)

}
, (7.7)

to form a Gibbs Random Field (GRF), which by the Hammersley-Clifford Theorem is
equivalent to the MRF. As an example, for an 8-neighbour system, the types of cliques are
shown in Figure 7.9 (b), where a clique is a set of pixels (including a single pixel), such
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Figure 7.8: (a) Filter bank, and (b) log-histogram filter responses, used in estimation of albedo
over a Gaussian pyramid of albedo images. Note that in (b) the responses to the filter bank are
much more kurtotic for albedo images (blue) than they are for natural images (red). The black
curve is a Gaussian Scale Mixture model for albedo learnt from a set of training images. (Image
source [167])

s

2nd-order neighbourhood

(8 neighbours)

Types of nearest neighbour cliques

for 2nd-order neighbourhood system

s

1st-order neighbourhood

(4 neighbours)

(a) (b)

Figure 7.9: (a) Two examples of neighbourhood systems - 1st order and 2nd order
neighbourhoods; (b) Nearest neighbour cliques for the 2nd-order neighbourhood system.

that any two elements in the clique are neighbours of each other. The neighbourhood
system employed in [167] is the 2nd-order neighbourhood system, but as in the FoE
model [169,170], a higher order MRF is used in order to extend the statistical dependency
between pixels beyond simple nearest neighbour pairs to a 3x3 maximal clique system,
i.e. all pixels in a 3x3 pixel grid are considered to neighbours of each other. This 3x3
clique system is shown in Figure 7.10 in which the links (graph edges) between the pixels
are represented by the various coloured lines.

As in the FoE model used in [171], the clique potentials are modelled on Gaussian
Scale Mixtures (GSM) and applied only to the maximal 3x3 cliques. The GSM potentials
for each of the for filters are learned from a training set of albedo images using expectation
maximisation [167]. However, unlike other FoE models, the model in [167] is applied to a
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Figure 7.10: 3x3 maximal clique used in FoE type models

Gaussian pyramid rather than a single image, which is equivalent to utilising a multi-scale
filter. The reason for using a pyramid representation of the FoE model is because errors
in the depth map at low frequencies (higher/coarser levels of the pyramid) can corrupt the
implied albedo map at low frequency scales, whereas in the usual FoE models applied to
such tasks as image de-noising, the image is only corrupted at the finest scale [167]. The
cost function for fρ is obtained by applying the negative log-likelihood to the multi-scale
FoE model, which results in the following expression:

fρ(ρG) = −
K∑
k=1

λρk

∑
c∈Cρk

4∑
i=1

log

 M∑
j=1

αi,j,k · N
(
JTi x(c); µi,k, σ

2
i,j,k

) (7.8)

where ρG = G(ρ(L−1(ZL))) is the Gaussian pyramid representation of albedo implied by
ZL, K is the number of levels of the Gaussian pyramid, Cρk is the set of all 3x3 maximal
cliques in Ω for the kth level of ρG , x(c) is the 3x3 patch in ρG corresponding to clique c,
Ji is the ith filter, of which there are 4 (see Figure 7.8), αi,j,k are the mixing weights of
Gaussian ik of the GSM’s, of which there are M = 50, and each of which has variance
σ2i,j,k and all of which have mean µi,k, and finally λρk are the hyperparameters that weight
each scale of the prior, which are tuned to maximise SAFS performance on the training
set [167].

For the Laplacian pyramid representation of depth, there are 2 goals stated in [167]
that assist the construction of priors: (1) the residual low-pass level of the pyramid should
remain close to the initial low-pass observation Z0, and (2) ZL should be regularised
using a statistical model learned from example depth maps. The first goal is satisfied by
assuming that Z0 is a noisy observation of ZL[K] for which it is assumed that the noise
is Gaussian and independent and identically distributed, and the second goal is achieved
by maximising the log-likelihood of ZL under a 4-connected multi-scale MRF, in which the
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clique potential is a bivariate GSM. Thus, using the negative log-likelihood of these priors
as the cost function fZ(ZL), the following expression is obtained:

fZ(ZL) = λZK
∥∥ZL[K] = Z0

∥∥2
2
−
K−1∑
k=1

λZk
∑
c∈Ck

log

 M∑
j=1

αj,k · N
(
x(c); µk, sj,k · Σk

) .

(7.9)

This is similar to Equation (7.8), except that we have K − 1 bivariate GSMs (each with
a single covariance matrix Σk), i.e. one single bivariate GSM (for each level) is applied
to each maximal clique (in this case given by the nodes connected by the red cross in
Figure 7.10), instead of filter banks, and a squared error term against Z0 at level K. λZk
are the hyperparameters for each level that are tuned to provide maximum performance
on the training set.

The algorithm just described was extended upon in [168] to include an extra term in
the cost function that represents a prior over illumination. This prior is simply a fit of a
multivariate Gaussian to a spherical harmonic representation of the illumination direction:

fL(L) = λL (L− µL)T Σ−1L (L− µL) (7.10)

where µL and ΣL are the parameters of the Gaussian that is to be learnt from the input
data, and λL is the multiplier on this prior, which is learned from the training data.

The SIRFS algorithm is what we apply to the descent images used in this project,
mostly due to the availability of source code. However, the discussion above focussed
more explicitly on the SAFS algorithm (which is basically SIRFS without the illumination
estimation) because this algorithm was applied to imagery that closely related to that
used in this project and is therefore of high relevance.

7.9 Application of SIRFS to Descent Images

In this section we present the results of some initial tests of the SIRFS algorithm on
a synthetic image generated from PANGU. This image is the first image in a PANGU
sequence starting from 2000m altitude and descending to the surface at a constant pure
vertical velocity of 100m/s and with a constant anticlockwise rotation about the Zw axis
of 1rpm. We use this image dataset because we are now moving towards a method of
combining the two techniques of SFM and SFS and this is a simple test case that has
been used previously in SFM.

Figure 7.11 presents the PANGU image used in the following tests of the SIRFS
algorithm along with its ground truth DEM with exact pixel-to-pixel correspondence
between the DEM and the input image, viewed from a top-down perspective.

Before proceeding to more challenging tests, we first examine the performance of
SIRFS when the actual ground truth DEM is used as the input depth map Z0, since this
should produce the most accurate results, and therefore it gives a baseline performance
assessment of the accuracy capabilities of the algorithm. The results of this test are
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Figure 7.11: PANGU image, at 2000m altitude, used for testing SIRFS (left), and ground truth
DEM with exact pixel-to-pixel correspondence with input image (right)

Figure 7.12: SIRFS test using full ground truth DEM as input depth map Z0

presented in Figure 7.12, from which it can be seen that, in general, the DEM is
reproduced in very close agreement to the input ground truth DEM. However, there do
appear to be some discrepancies, which are most readily seen in the distorted shapes
of the large depression centred around the point with approximate coordinates
(xw, yw) = (450, 250), and the elevated region shown in red in the bottom right corner
region. In general, it appears that the re-produced DEM shows higher-frequency surface
elevation variations than the input DEM, which might be an indication of over fitting, that
could perhaps be rectified by a different choice of input tuning parameters (see the
instructions in the README.txt file in the code download available
from https://people.eecs.berkeley.edu/~barron for details on these parameters),
however, a more satisfactory set of tuning parameters could not be found in this
investigation that provided better results, although the search was by no means
exhaustive. The discrepancies between the ground truth DEM can be seen more clearly
in the error DEM shown in Figure 7.13, which verifies that over much of the DEM the
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Figure 7.13: Errors in SIRFS results from test using full ground truth DEM

errors are close to zero: approximately 22% of the SIRFS DEM has errors in the range of
±1m, 40% of the DEM has errors in the range of ±2m, and for 55% of the DEM the
errors are within ±3m; but there are large discrepancies in the areas mentioned in which
the errors can be seen to be as large as ±30m, and a few other small areas in which the
errors are approximately within the range of ±10 to ± 20m. These areas of high error
are responsible for driving up the overall RMS error to around 6m.

Since the DEMs produced from SFM are very sparse, an assessment of the
performance of SIRFS with differing quantities and quality of input information is carried
out below. The SFM DEMs are not only sparse, but they also do not cover the entirety of
the terrain area within the field of view of the first image, and so an analysis of how
SIRFS behaves with missing information is also required. However, we first investigate
the sparsity issue separately by artificially downgrading the density of the ground truth
DEM. This is achieved by scaling down the ground truth DEM by constructing an image
pyramid and then resizing each resulting DEM and interpolating using bilinear
interpolation in order to obtain DEMs of equal size to the original ground truth DEM, but
with successively reduced detail. The results for each pyramid level, representing a
reduction in detail from 1/2 down to 1/32, will now be presented.

Figure 7.14 presents the results obtained from the SIRFS algorithm when the input
depth map is derived from the ground truth DEM after it has been reduced in size by a
factor of 2 and then resized back to the original DEM size using bilinear interpolation. The
difference in quality of the input DEM from the full ground truth DEM is barely noticeable
and therefore it is no surprise that the resulting SIRFS estimated DEM appears to be
extremely close to the results obtained using the full ground truth as the input depth map.
The similarity in outputs from this test and the previous test can be seen in Figure 7.15,
which not only shows the DEM errors with respect to the ground truth (left), but also shows
the difference between the results of this test and the previous test (right). The error plot
on the left of Figure 7.15 is very similar to that presented in Figure 7.13, which is backed

194



7.9. APPLICATION OF SIRFS TO DESCENT IMAGES

Figure 7.14: SIRFS test using ground truth DEM reduced in detail by 1/2: Left – input DEM from
pyramid level 1 representing a reduction in detail by a factor of 1/2; Right – SIRFS output DEM

Figure 7.15: Errors in SIRFS results from test using ground truth DEM reduced in quality by 1/2
(left), and comparison between the SIRFS output from this test and the test on the full ground
truth DEM

up by the visualisation of the difference between the output of the SIRFS algorithm for this
test and that of the test using the full ground truth DEM as the input depth map, in which
the errors are close to zero almost everywhere (fluctuating about zero by around ±2m),
except for a few regions close to the image boundaries where some larger discrepancies
of around ±5m are observed. More specifically, approximately 24% of the SIRFS DEM
is in error with respect to the ground truth DEM by ±1m, 43% of the DEM is in error by
±2m, 58% of the DEM is in error by ±3m, and the overall RMS error is approximately
5.4m, which is actually better than the results obtained using the full quality ground truth
depth map as the input Z0, which is a surprising result, but is most likely due to the tuning
parameters being closer to optimal values in this case than they were for the previous
test. Alternatively, this may point to over-fitting in the full quality ground truth case, which
now does not occur due to the reduction in quality of the initial input DEM.

In the next test we use an input DEM derived from the ground truth DEM with a
reduction in detail by a factor of 4. The results of this test are shown in Figure 7.16 and
again it can seen that the SIRFS output is very similar to that obtained in the previous
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Figure 7.16: SIRFS test using ground truth DEM reduced in detail by 1/4: Left – input DEM from
pyramid level 3 representing a reduction in detail by a factor of 1/4; Right – SIRFS output DEM

Figure 7.17: Errors in SIRFS results from test using ground truth DEM reduced in quality by 1/4
(left), and comparison between the SIRFS output from this test and the test on the full ground
truth DEM

two tests. This is further validated by the plots presented in Figure 7.17, which shows
the errors between the ground truth DEM and the SIRFS output when the input DEM is
reduced in quality by 1/4 (left) and the difference between the SIRFS outputs of test 1
(full GT DEM) and this test (right). In fact, it can be seen from the plot of the difference
between this test and the first test (right plot in Figure 7.17), that the output of the SIRFS
algorithm on the 1/4 reduced quality input DEM appears to actually be much better than
the difference between the output of the first test and the second test, since the difference
plot is almost uniformly very close to zero over the entire surface. There are still a few
discrepancies near the image borders, but even these are much less pronounced than in
the second test. This may be a consequence of a much more optimal set of input tuning
parameters, which were arrived at through trial and error, which by no means guarantees
that optimal parameters will be found, but in this case optimality may actually be close
to being achieved. However, from examining the errors much more closely, the SIRFS
DEM for this test can be seen to have approximately 23% of its surface in error by ±1m,
42% in error by ±2m, and 56% in error by ±3m, which is closer to (actually slightly better
than) the results obtained with the full quality ground truth depth map, which may further
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Figure 7.18: SIRFS test using ground truth DEM reduced in detail by 1/8: Left – input DEM from
pyramid level 4 representing a reduction in detail by a factor of 1/8; Right – SIRFS output DEM

suggest a reduction in over-fitting; and in terms of RMS error this is now slightly worse
than that of test 1: 6.06m for test 1 compared to 6.08m for this test, which is a reflection
of the extreme errors being slightly greater and/or being slightly larger in terms of region
area when compared to the ground truth results.

Figure 7.18 presents the SIRFS results for an input depth map derived from the
ground truth DEM with a reduction in quality by a factor of 8. On the left of the figure is
the input DEM, which now shows a reasonably clear reduction in quality compared to
the original ground truth, and on the right is the DEM produced from the output of the
SIRFS algorithm. These results again appear to be highly consistent with the previous
results in that they seem to closely match those produced from the test on the full
ground truth DEM, However, from the plots of the errors and difference in SIRFS output
between this test and the first test on the full ground truth, shown in Figure 7.19, it can
be seen that the accuracy is now somewhat reduced from the previous tests. The error
plot on the left of the figure still shows a significant proportion of the surface is recovered
very accurately, approximately 10%, 20% and 54% of the surface is recovered to within
±1m, ±2m and ±6m, respectively. However, there are a number of regions that have
errors beyond ±20m and even 2 small regions where the errors are around +40m. This
is reflected in the plot on the right, which shows the difference between the SIRFS
results from that using the full ground truth as input and the SIRFS results from this
current test. Now we can see that there are regions where the difference is significant,
as much as ±30m in certain places, and these areas are very similar in shape and size
to the high error regions in the error plot on the left.

Figure 7.20 shows the input DEM (left) produced from the full ground truth DEM by
reducing it in size by a factor of 16 and then up-scaling back to the original size using
bilinear interpolation, along with the SIRFS results (right) using this DEM as the initial
estimate of the terrain shape. From the results on the right, we can still see that on a
large scale the shape is roughly correct even if it is somewhat distorted, but there are
now many small areas with significant error. The input DEM, which is now clearly of very
low quality compared to the original ground truth DEM, must now be close to the limit of
the capability of the SIRFS algorithm, however it may still be possible of improving these
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Figure 7.19: Errors in SIRFS results from test using ground truth DEM reduced in quality by 1/8
(left), and comparison between the SIRFS output from this test and the test on the full ground
truth DEM

Figure 7.20: SIRFS test using ground truth DEM reduced in detail by 1/16: Left – input DEM from
pyramid level 5 representing a reduction in detail by a factor of 1/16; Right – SIRFS output DEM

results by additional effort put into finding better values for the tuning parameters as it
cannot be guaranteed that those that were used were optimal, despite a fair amount of
experimentation with these parameters having been carried out. The results presented
here are the best that were obtained from the experimentation carried out on the values
of the tuning parameters, but it is still possible that better results could be obtained. The
error plots in Figure 7.21 present the actual errors between the SIRFS result and the
ground truth (left) and the difference between the SIRFS output that used the full ground
truth as the input surface shape and the SIRFS output of this current test (right). From the
error plot on the left we can see that there are still a significant number of areas that are
estimated to high accuracy: approximately 10%, 19% and 50% of the surface is recovered
to within ±1m, ±2m and ±6m, respectively, which is a slight reduction in accuracy from
the results of the previous test. The rms error for this test is 11.75m, which is again slightly
worse than the previous test, and is a reflection of the regions of high error being visibly
larger in both the error plot and the difference plot.
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Figure 7.21: Errors in SIRFS results from test using ground truth DEM reduced in quality by 1/16
(left), and comparison between the SIRFS output from this test and the test on the full ground
truth DEM

Figure 7.22: SIRFS test using ground truth DEM reduced in detail by 1/32: Left – input DEM from
pyramid level 6 representing a reduction in detail by a factor of 1/32; Right – SIRFS output DEM

In Figure 7.22, we present the results for a test of the SIRFS algorithm using an input
depth-map derived from the ground truth DEM after reducing it in size by a factor of 32 and
then up-scaling it back to the original size. The input DEM (left) is now of extremely low
resolution, and is even visibly much lower than in the previous test. The SIRFS results on
the right, on the whole are still reasonably similar to those of the previous test, however
there are some clear differences from the results of the previous test in the region of the
lower right quarter of the DEM, particularly in the range of around (xw, yw) = (200, 400)
to (400, 500). The error plots shown in Figure 7.23 a clear growth in size of the regions
of high error compared to those in the previous test, which is reflected in the rms error
being 13.76m, however, there are still a number of reasonably large regions of very low
error, for example 7% of the DEM is within ±1m of the ground truth, 14% is in error by
±2m, and 52% of the surface is within ±8m of the ground truth.

For completeness, a plot of the rms errors for each of these tests is presented in
Figure 7.24, which further illuminates an important result that was briefly mentioned
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Figure 7.23: Errors in SIRFS results from test using ground truth DEM reduced in quality by 1/32
(left), and comparison between the SIRFS output from this test and the test on the full ground
truth DEM

above– test 2, which was for the input depth map derived from the full ground truth DEM
scaled down in size by a factor of 2 and then up-scaled back to full size using bilinear
interpolation, actually resulted in a lower RMS error than the input depth map derived
directly from the full ground truth DEM (test 1). Therefore it would appear that some
degradation in the quality of the input depth map actually leads to better performance,
but this may simply be due to a less optimal set of input tuning parameters for test 1
compared to those used in test 2, so perhaps this is not as significant as it may appear.
This may lend further support to the remark made above about the SIRFS results
possibly exhibiting over-fitting for test 1, which was assumed to be a result of suboptimal
tuning parameters. The difference between the SIRFS output for test 1 and test 3
(shown in Figure 7.17) is also better explained from the plot of RMS errors – it actually
has a very similar RMS error to that of test 1. Therefore, the test with the best results is
actually test 2, and not test 3, unlike what the previous figures seemed to indicate. In
tests 4-6, the rms errors are significantly higher than those of tests 1-3, and show an
increase in error with each subsequent test, which is in line with expectation and in
agreement with what the previous figures indicated.

Finally, as a preliminary to the work presented in the next chapter, we now move on
to assess the performance of the SIRFS algorithm when a sparse input depth map that
does not cover the entire field of view of the input image is used as the initial input Z0 – i.e.
we use the interpolated (but not extrapolated) SFM estimated DEM to produce the input
depth map (with NaNs inserted in place of any missing pixels) and use this along with the
image presented in Figure 7.11. The results from this test are presented in Figure 7.25,
from which it can be seen that the SIRFS algorithm performs extremely poorly when
there is missing initial input data within the field of view of the image. It is therefore clear
the solution to combining the results of SFM and SIRFS is not as straight forward as
simply inserting the SFM DEM derived depth map as the initial structure estimate Z0 in
the SIRFS algorithm. Chapter 8 presents the strategy that is used to combine the two
techniques to achieve more satisfactory performance.

200



7.10. CONCLUSIONS FROM SIRFS

Figure 7.24: RMS errors for each SIRFS test

Figure 7.25: SIRFS test using a sparse PSO-MS-SRUKF SFM estimated DEM (left) to derive the
input depth map for the SIRFS algorithm, alongside the resulting SIRFS estimated DEM (right)

7.10 Conclusions From SIRFS

A detailed analysis of the performance of the SIRFS algorithm, proposed by Barron and
Malik [167, 168], has been carried out using a synthetic PANGU image at an altitude of
2000m and various quality input depth maps derived from the ground truth DEM of the
terrain within the field of view of the PANGU input image. From the tests performed on
this algorithm it is clear that it shows great potential in producing highly accurate dense
DEMs even when the quality of the input DEM is reasonably low. However, it did not
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produce satisfactory results when supplied with an input depth map of the sparse type
estimated by SFM, which means that a combined approach may require an initial low
resolution input DEM that covers the entire field of view of the first descent image. It is
possible that such a DEM may be available from orbital surveys from previous or even
the current mission, since it is reasonably common practice to record measurements that
are suitable for generating such DEMs from an orbiting platform in order to provide the
necessary information required to identify scientifically interesting landing sites, and since
it is assumed in this work that it is most likely that the descending spacecraft is aiming
for a predetermined location, this requirement may not be too restrictive. It is expected
that the DEMs produced from a successful combined approach should be of sufficient
accuracy to meet the requirements of this project.

202
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This chapter focusses on the development of a strategy for combining the SIRFS SFS
algorithm presented in the preceding chapter with the previously described PSO
initialised master-slave square-root unscented Kalman filter based SFM algorithm. From
the results obtained in Chapter 7 it is clear that the small and sparse SFM DEMs
obtained so far cannot be used straightforwardly to derive input depth maps for the
SIRFS algorithm because it seemingly does not handle missing information very well at
all. Therefore, in this chapter we assume a low resolution input DEM, obtained from an
orbital platform, is available to be used as the input depth map to SIRFS, so that there is
no missing data, and from then onwards the goal is to recursively incorporate results
from SFM and periodically perform additional SIRFS estimates of the structure of the
terrain in order to eventually produce a DEM of sufficient accuracy and density to
achieve the goals of this project.

8.1 Strategy for Combining SFS and SFM

Assuming that a low resolution input DEM is available, most likely from an orbital survey
that was used to identify potential landing site locations, either from a previous mission or
from an earlier stage of the current mission before the landing craft was detached from an
orbiting platform to begin its descent. This DEM should be produced so that it completely
covers the field of view of the first descent image recorded at an altitude of around 2000m.
With this in place we can then run the SIRFS algorithm to refine the initial low resolution
DEM and then use the results from this to initialise the SFM algorithm. The SFM results
can then be used to further refine the DEM, and after this the SIRFS algorithm can be
used again, but this time on a later (closer) image, which should allow for greater surface
detail to be discerned. The overlapping region between the initial image (and DEM) and
the later image could then be updated and the resulting DEM used again to initialise
another stage of SFM estimation. This whole process can be repeated over the entire
trajectory so that both methods are used effectively in refining the initial DEM to a level
of accuracy and resolution that would be sufficient for achieving the hazard detection
requirements of this project, i.e. slopes greater than 5 degrees and surface objects such
as rocks that are larger than 30cm.

To further clarify this procedure, we now break it down and present it as a series of
steps.

8.1.1 Combination Procedure

1. Produce a depth map at the initial altitude and orientation (i.e. in the world frame)
from elevation data supplied in the initial DEM.
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2. Run SIRFS algorithm using this depth map and the first image of the descent
sequence to produce a refined DEM with greater surface detail.

3. Initialise SFM algorithm using depth information derived from the SIRFS-modified
DEM.

4. Update DEM with SFM results.

5. Determine correspondence between the surface region covered by the camera
FOV, for the final image used in the SFM algorithm, and the original DEM.

6. Re-run SIRFS algorithm on the final SFM image and corresponding region of DEM.

7. Update corresponding region of DEM with SIRFS output.

8. Repeat from step 4, until the end of the image sequence.

8.2 Results

We now present a set of results for the first 4 steps of the above procedure. This serves
as an illustration of what can be achieved by using this combined procedure with only
the first short segment of the descent trajectory. Unfortunately due to time constraints
and the complexity of determining the correspondence between the initial DEM and the
images/DEMs produced from lower altitudes, the remaining steps have not yet been
implemented, and so we leave this for further work. The input descent image and
chosen initial DEM are presented in Figure 8.1, where the input image (left) is recorded
at at altitude of 2000m above the synthetic PANGU surface and the input DEM (right) is
that derived from the full ground truth DEM scaled down by a factor of 8, which was
chosen because this was the first of the images that were a challenge to the SIRFS
algorithm in Chapter 7. Although it was concluded that the SIRFS algorithm performed
well in the previous chapter using the degraded ground truth truth DEMs, those tests

Figure 8.1: Input image (left) and DEM (right) used in first initial test of SFS-SFM combination
procedure
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Figure 8.2: Top: Refined DEM obtained directly from SIRFS DEM based on the low-resolution
input DEM; Bottom: Refined DEM obtained from thresholding the SIRFS DEM based on the low-
resolution input DEM

were carried out only to gain an appreciation of the capabilities of the SIRFS algorithm.
At that stage it was not envisaged that in a combined approach we would be assuming
the availability of an initial low-resolution DEM that covered the entire area of the initial
image. However, since we now are assuming the availability of such a low-resolution
DEM, we can use this initial depth information to apply some constraints to the SIRFS
algorithm to improve the performance. At this point, this is achieved by applying a simple
threshold, in which we only accept the result from the SIRFS algorithm for an individual
pixel if the absolute difference between the original input DEM and the SIRFS DEM for
that pixel is less than a threshold value (4m was used as the threshold value in the
results shown below). By using this thresholding method, the large errors seen in some
regions of the SIRFS DEM (which caused visible shape distortions in extremum regions
and spurious errors in other small regions) are eliminated and a much better result is
achieved overall. Figure 8.2 presents the results from the SIRFS algorithm using the
input image and the initial low resolution DEM shown in Figure 8.1, along with the
surface errors with respect to the full ground truth DEM, both with (bottom) and without
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Figure 8.3: Top: Original input DEM initialised SFM Results – Left: Sparse ground truth DEM;
Right: SFM estimated DEM. Bottom: SIRFS DEM initialised SFM Results – Left: Sparse ground
truth DEM; Right: SFM estimated DEM

(top) this thresholding operation. Here it can very clearly be seen that the thresholded
SIRFS results are in much closer agreement with the full resolution ground truth DEM. In
the thresholded DEM all the extreme error regions (either red or dark blue) have
vanished, and in fact the maximum error is only around 10.6m, whereas in the
non-thresholded DEM the maximum error is around 40.7m. Additionally, for the
thresholded DEM approximately 41% of the surface has an absolute error below 1m and
over 98% of the surface has an absolute error of below 5m, whereas for the
non-thresholded DEM it is 21% and 41%, respectively. Finally, we observe an overall
RMS error of around 6.49m for the non-thresholded DEM and only 1.98m for the
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Figure 8.4: Distribution of tracked feature points in the 1st image of SFS-SFM combination tests

thresholded DEM. Therefore the improvements offered by applying this threshold are
very significant.

Figure 8.3 presents the results obtained from the PSO-initialised (excluding feature
point depths) MS-SRUKF SFM algorithm when both the original low-resolution input DEM
was used to initialise the feature point depths (top), and when the thresholded SIRFS
DEM was used to initialise the feature point depths (bottom). In both these cases, 14
feature points were tracked over 120 images using the TR-KLT feature tracker. The sparse
ground truth DEM is shown in the left column of Figure 8.3 and the SFM estimated results
are shown in the right column, and where in all cases the DEM is interpolated in order
to fill in the gaps between the tracked feature points, the distribution of which is shown
in Figure 8.4 in order to give an indication of the sparsity of the DEMs. These results
clearly indicate that the SIRFS initialised SFM results are considerably better than those
that were initialised off of the original input DEM, and this is reflected in Figure 8.5, where
it can be seen that the errors for the SIRFS initialised SFM DEM are closer to zero over
much more of the interpolated surface and has much less variation. This improvement
is also seen in the RMS errors, which are 2.1m and 6.3m for the SIRFS initialised SFM
and original DEM initialised SFM, respectively. The peak errors are also reduced, with
the SIRFS initialised SFM resulting in a maximum error of around 4.7m and the original
DEM initialised SFM having a maximum error of 12.4m.

Finally, in Figure 8.6 we present the full DEM resulting from the incorporation of the
thresholded SIRFS initialised SFM results into the thresholded SIRFS DEM, alongside
the original thresholded SIRFS DEM. While it is not possible to actually see the difference
from this figure, nor would it be from a full difference plot between the two DEMs, we can
report that the RMS error between the full ground truth DEM and the SFM updated,
thresholded SIRFS DEM is 1.97726m and that for the thresholded SIRFS DEM before the
incorporation of the SFM results was 1.97735m. Therefore there is a slight improvement.
However, while this difference is very small, it is at least an indication that there is merit
to combining the two techniques, and if the combination procedure was repeated for the
remainder of the trajectory, it is possible that the improvement could become significant
to the point where it is clear that a combined solution provides much better performance
than, for example, using SIRFS on its own.

207



LUKE FEETHAM PhD THESIS CHAPTER 8. COMBINING SFS AND SFM

Figure 8.5: DEM Errors for original DEM (left) and SIRFS DEM (right) initialised SFM

Figure 8.6: Comparison between thresholded SIRFS DEM (left) and thresholded SIRFS DEM
with incorporated SFM Results (right)

8.3 Conclusions on Combining SFS and SFM

This chapter has presented a strategy for combining the SIRFS SFS algorithm with the
PSO initialised MS-SRUKF SFM algorithm. Unfortunately, direct incorporation of the
small sparse SFM DEMs, that were obtained in the preceding chapters without any prior
knowledge of the terrain shape, could not be directly incorporated. Therefore an
assumption had to be made that an initial low resolution DEM covering the entire field of
view of the first descent image is available from some previous orbital observations,
which is not an unrealistic requirement for many space missions. Using this initial low
resolution DEM, a slight improvement was observed in combining SIRFS with SFM, over
the use of SIRFS alone. While the test presented in this chapter only represents part of
the overall combination procedure, which could not be fully tested due to complexity and
time constraints during the final stages of the project, it provides confidence that multiple
iterations of the procedure could enable the accuracy and density of the DEM to be
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reasonably significantly improved. Therefore it is expected that the proposed procedure
could potentially provide the required level of resolution and accuracy to reliably
construct a sophisticated hazard detection system for next generation space landers to
detect rocks and slopes that are too steep for a safe landing.
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9 CONCLUSIONS AND FURTHER WORK

9.1 Conclusions

This thesis has explored a number of techniques aimed at 3D scene recovery from
sequences of monocular images that represent descent imagery recorded during the
short period of time under which a spacecraft is descending towards a planetary
surface. The focus has been on identifying suitable methods and increasing estimation
robustness in order to provide the accuracy that would be required in a hazard detection
system that is capable of supporting pin-point landing operations on next generation
robotic landing craft. The most significant contribution in this thesis was the development
of a self initialising, fully adaptive feature based structure from motion algorithm that was
demonstrated to provide highly accurate structure estimates from high, and therefore
challenging, altitudes. Although the algorithm was capable of autonomously adapting to
a potentially changing noise environment, which may be reasonably expected under the
application of planetary descent where varying or perhaps even intermittent rocket thrust
or sudden atmospheric turbulence may occur during the descent leading to varying
degrees of vibration of the platform and thus varying amounts of image motion blur
affecting the accuracy of feature tracking, this capability was not fully tested in this thesis
and is therefore left as possible future work. An additional contribution in this thesis was
the design of a strategy for combining the SFM structure estimates with that of a very
capable shape from shading algorithm, however, due to time constraints at the end of
the project this could also not be fully tested.

In Chapter 3 an investigation into feature tracking methods was carried out in order
to identify a suitably robust method to use in the SFM algorithm. An investigation into the
popular and highly praised SIFT feature tracking method was conducted, which was
found to be capable of identifying and reliably tracking an enormous amount of features
for long periods of time, which could be extremely beneficial for producing the dense
DEMs required by this project. However, it was determined that SIFT could not be
employed successfully in this work due to possible feature localisation accuracy issues
that result from its foundation as a blob detection method, which unfortunately are not
the best types of features to use in 3D reconstruction tasks, especially when strict
requirements are placed on the reconstruction accuracy as is the case in this project.
Following this, an investigation into the KLT detector was carried out, which is a feature
tracking method that tracks more corner-like features that have a very well defined
location in the images, and are therefore very suitable for reconstruction tasks. It was
determined that the standard KLT algorithm can suffer from significant error growth over
long image sequences, which then lead to the development of a more robust version of
the KLT algorithm which includes a constraint known as time-reversibility which ensures
that the same feature point positions would be found if one was to run the tracker
backwards in time as those that are found when the tracker is run forwards in time. This
was shown to offer much greater feature tracking stability, allowing the features to be
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tracked for far longer than the standard approach, and to have better accuracy. It was
therefore decided that this TR-KLT algorithm would be employed in the SFM algorithms.

Chapter 4 carried out a preliminary investigation into SFM methods, and resulted in
the development of a robust formulation of a feature-based SFM method that was built
upon a filtering framework. The enhanced robustness offered by this approach came
mostly from the use of an alternative camera model, which allows for an effective means
of decoupling the focal length from the depth and results in only a single structure
parameter needing to be estimated for each tracked feature point instead of 3 for other
types of methods. It also allows for the focal length to be simultaneously estimated,
which means that the algorithm can be applied to (partially) uncalibrated cameras. On
top of this, an additional data fusion filter was included that fuses the SFM estimates
with measurements from an inertial measurement unit, which then enables the direct
estimation of a scale factor that can be used to provide an effective means of
overcoming the scale ambiguity problem in monocular SFM, when camera motion is
also simultaneously estimated. This method was found to produce highly accurate
estimates of both the motion and structure parameters. However, following this
preliminary investigation, under the advice of ESA it was assumed that motion would be
provided by some other spacecraft subsystem and so there was no need to continue
simultaneously estimating the motion parameters, and therefore in the remaining
chapters it was assumed that the motion was fully known, which eliminates the need to
determine image scale because the scale ambiguity problem disappears when motion is
fully known. The filtering framework used in this chapter was based on the well known
extended Kalman filter, in order to reduce complexity during the development of the SFM
algorithm, but was still able to produce very accurate results.

In an effort to improve robustness and achieve greater accuracy, a number of
alternative filtering methods were investigated in Chapter 5, that are reportedly more
robust than the EKF. Following on from the results of the previous chapter, a H∞ filtering
framework was investigated that also simultaneously estimated the motion parameters.
This was found to offer an improvement in some (but not all) of the motion parameter
estimates, but did not improve upon the structure estimates compared to the EKF. Here
we also investigated a different method of KLT feature tracking that utilised
measurements from an inertial measurement unit to update the initial guess
displacement for each feature point prior to the iterative KLT localisation stage of the
tracking. While this did allow for greater numbers of features to be tracked for longer
than standard KLT, it did nothing to prevent the accumulation of errors, which could now
possibly be even worse due to the influence of errors in IMU measurements, and it was
ultimately determined to be too inaccurate to be used in its present form for the task of
reliable structure estimation. Following this, the development of a PSO initialised, fully
adaptive SFM algorithm was undertaken, which was built upon a master-slave
square-root unscented Kalman filtering framework, where the master filter is responsible
for estimating the structure parameters (now under fully known motion) and the slave
filter is responsible for adaptively adjusting the tuning parameters in the event of a
change in the noise environment. The slave filter also had additional adaptive
mechanisms included (based on covariance matching techniques) so that its tuning
parameters could be adaptively adjusted if necessary. The whole algorithm was
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initialised using a particle swarm optimisation method in order to try and find an optimal
set of initial tuning parameters. The development of this algorithm forms the major
contribution of this thesis and is the main source of innovation in this work. It was
demonstrated that this algorithm could reliably produce accurate estimates of the
structure parameters in the tests presented in this chapter and those included in other
chapters. However, due to the complexity of the algorithm, which required a hugely
significant development effort, the advanced adaptive capabilities of the algorithm were
not fully tested in this work due to time constraints, and so we leave this to future work,
but should be noted that these capabilities could prove extremely useful in this
application since it is likely that changes of the noise environment will occur, therefore
the developed algorithm has the potential to be extremely capable of operating in a wide
variety of situations.

Chapter 6 described the acquisition of a number of real image datasets during a 5
month visit to ESA-ESTEC in The Netherlands. These datasets were captured from a test
bench set-up consisting of a scaled model of a portion of the real Lunar surface along with
a motorised camera platform that enables the camera to be moved very precisely in order
to capture highly representative descent images under realistic lighting conditions. These
image datasets were used to further test the PSO-MS-SRUKF SFM algorithm, which was
found to produce results of a similar accuracy to those obtained from synthetic PANGU
image sequences. It was also observed that the feature tracking algorithm performed
much better on these real images, which allowed for the features to be reliably tracked
for many more images compared to the PANGU images, which would potentially allow
for better convergence of the structure parameters. However, difficulty was encountered
in mapping the estimated structure parameters to the correct locations within the ground
truth DEM, and so this was a source of errors that unfairly degraded the quality of the
results. It was therefore decided to continue with the sole use of synthetic PANGU images
in the remaining chapters of this thesis.

Chapter 7 investigates a selection of shape from shading techniques, beginning with
simple classical methods and later moving on to more sophisticated methods. It was
found that the simple classical techniques performed extremely poorly on the complex
scenes present in the representative descent imagery, due to the very restrictive
assumptions made in these early methods: simple smooth shapes with uniform and fully
known albedo are generally assumed in these approaches. Therefore the classical
methods were of no use under the application area of this thesis. A very simple slope
from shading method was also developed that seemed to show promise and allowed for
the direct production of hazard maps. However, in an attempt to achieve greater
accuracy, a sophisticated, modern method of shape from shading was investigated that
was designed specifically for use on the types of natural images produced from
planetary surfaces and so it was directly applicable to descent imagery. It also provides
for an elegant means of incorporating prior low resolution depth information such as that
produced by SFM algorithms and so this method is very attractive for the application
domain of this thesis. This algorithm, known as shape, illumination and reflectance from
shading (SIRFS) also simultaneously estimates the light source direction and is quite
probably the first technique that truly allows for variable and unknown albedo amongst
the SFS algorithms found in the literature. The SIRFS algorithm was extensively tested
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using many varying quality input depth maps derived from a ground truth DEM, and was
found to produce very accurate results even with a significant reduction in resolution of
the input depth maps. However, it was found to be incapable of dealing with missing
structure information, therefore it could not be straightforwardly used with the small,
sparse DEMs produced from the SFM algorithm. Therefore, Chapter 8 focussed on the
development of a strategy for combining the results of SFM and the SIRFS algorithm to
produce accurate and dense DEMs of potentially sufficient resolution to meet the
requirements of this project. Unfortunately this strategy could not be fully tested due to
time constraints at the end of the project, however, it was demonstrated that the
combined approach did offer a slight improvement in the resulting DEM for the first
estimation step in the descent trajectory.

9.2 Further Work

As has been summarised in the previous section, a large amount of development work
has been carried out to devise a suitable approach to tackling the problem of hazard
detection during planetary descent. This resulted in the development of an incredibly
complex adaptive SFM algorithm, which represents the vast majority of the work
undertaken in this thesis. While it has the potential to be extremely capable in handling
variations in the noise environment experienced during descent, these advanced
capabilities were not fully tested and so their true effectiveness could not be determined.
This is an obvious area for future development in other projects. The PSO algorithm
used to initialise the MS-SRUKF was also incredibly slow, and although it was able to
find a set of tuning parameters that resulted in an extremely low cost, it did not actually
achieve full convergence but was instead stopped when one of the particles achieved a
satisfactorily low cost, which often required an enormous number of iterations. Therefore
the PSO algorithm could benefit from a focussed effort to increase the execution speed,
most likely through implementation on dedicated parallel computing hardware, such as a
GPU. This could potentially lead to a very significant speed increase since the PSO
algorithm is highly parallelisable. With a suitable speed-up, the PSO algorithm may be
allowed to run to full convergence in a reasonable amount of time, which may lead to
improved accuracy in the results. Alternatively, a different method of initialising the
MS-SRUKF could be developed, such as an approach based on neural networks, for
example. In its current form, the MS-SRUKF with PSO initialisation could not be used in
a real time system, because the PSO can actually take days to complete, which is
clearly unacceptable for a planetary descent that may only take 10–15 minutes.
However, the PSO part of the overall algorithm would not necessarily be required in a
final working system – it could simply be used as a means of finding an optimal set of
initial tuning parameters, on the ground prior to mission launch, from representative
imagery (instead of manually tuning the filter, which is extremely difficult when dealing
with the weakly observable structure parameters), and then the adaptive mechanisms
can make any required adjustments to better suit the situation encountered. These
adaptive mechanisms along with the actual structure estimation do execute sufficiently
quickly to potentially be used in real-time. However, further work would obviously be
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required to actually implement a real-time capable system.
Due to time constraints and the complexity of determining correspondence between

DEMs and images at different scales, the combined SFM and SFS could only be tested
for one run of SFS and SFM (i.e. steps 1-4 of the procedure). Although an improvement
from the combination of the two techniques was observed this was only very slight. It is
expected that the improvements from applying the procedure over the entire trajectory
would accumulate to something significant but much more work is required to firmly
establish how the two techniques will perform together over the remainder of the
descent trajectory. The influence of the SFM in this procedure is also potentially
hindered due to the low numbers of feature points that could be tracked for long enough
to produce accurate structure estimates. Even though an improved feature tracker (with
respect to the standard KLT tracker) was investigated and improvements were
demonstrated, the numbers of features were still very low compared to what other
feature trackers can achieve (e.g. SIFT – but this could not be successfully used). It is
therefore clear that further investigation is required into increasing the density of the
SFM DEMs by experimenting with and perhaps improving upon other available feature
trackers. As mentioned, a means of tracking large quantities of features was
investigated in the form of the SIFT algorithm, but it was ultimately determined that
these could not be reliably used in the SFM algorithm. A detailed investigation into why
this seems to be the case is needed, and then perhaps a means of modifying the SIFT
algorithm could be devised so that it only tracks the specific types of features that are
best suited for 3D reconstruction. Whether this would actually result in more features
remains to be seen, but it is possible due to the sheer number of features tracked in its
current form. Alternatively, the SFM algorithm could be modified to behave more like a
SLAM algorithm by allowing new features to be added at any point during the image
sequence, which would also re-find those features that are lost along the way as well as
introducing many additional features and consequently producing a much higher density
DEM. How this would affect the stability of the filter would be a major focus of this
additional work since there would now likely be a significant number of features that are
only tracked for a few frames, which would not be sufficient for convergence.
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