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SUMMARY.
Amrons

The rate of energy transfer between parallel flat plates is evaluated
when the (stagnent) ges between them is polystomic with one inert internal
mode, Deviaticns of the thermal conductivity fxrom the complete equilibrium
(BEucken) value are expressed in terms of the inert mode relaxation time
and the effectiveness of the walls in exciting ox de-exciting this mode,
The regults are obtained via a linear theory consistent with small
terperature differences between the plates,

It is found that the Bucken~value of conductivity could be exceeded
if the relaxation times arc non-zero and the plates very effective in
exciting the inert mode., When relaxation times ave wvery short the effect
of the wells on the energy transfer rate is small, but the walls moke
their presence felt by distorting the temperature prcfiles in "boundary
loyerst adjacent to the walls which are of order VD7  din thickness
(D = diffusion coefficient, 7 = relaxation time), This result is
analogous to Hirschfelder!s (1956) for the case of chemdical reactions,

For experimental measurement of conductivity in a hot wire cell type
of apparatus it is showm that extrepolation of measured reciprocal
conductivities to zero reciprocal pressure should lead to the full Fucken
value, It is also shown that the slope of reciprocal apparent (measured)
conductivity versus reciprocal pressure curves is a function of relaxation
time as well as of the accommodation coefficients., It is quite possible
that the relaxation effect here is comparsble with the temperature jurp
effects, even for rotation in diatomic molecules,



24
3.
Lo
5.
&,

CONTENTS

Summery

Notation

Introduction

The Equations

The Linearised Problem

Special Cases

Vibrational Relaxation in Nitrogen

Conductivity Measurcments and Accomnodation
Coefficients

15
26

27
30



NOTATION

Specific heat of active internal modes

Specific heat of inert internal mode

Specific heat of translational mode

Diffusion coefficient

Mean internal energy wper molecule

Internal energy of a molecule in J- th quantum state
Vean internal energy per molecule in active modes

Mean internal energy per molecule in inert modes

Bnthalpy per molecule in j- th state
Boltazmonn's Constant
Lewis nurber based on c(a) (Bq, 11)

Lewls number based on c( 1) (Bq. 22)

Mean free path

Mass of a molecule

Number of molecules per unit volume

Nurber of molecules in J- th state per uwmit volume
Number of collisions to excite incrt modes
Pressure

Energy flux

Tnert mode accommodation coefficient

Translational temperature accommodation coefficient



Notation (Continued)

T Translational temperature

Inert mode temperature

AT Translational temperafure Jump

U‘,j Diffusion velocity of molecules in ,j;- th state
y o Co—ordinate perpendicular to plates

a Defined in Eq. 29)

8 Plate separation distonce

A Mionatomic" thermal conductivity

?\(a) M corrected to account for active modes
T Reloxation time for inert mode

Q Mean molecular velocity

W Valve at y = O

3 Value at y = 6

o) Mean value in gas layer



1. Imtroduction

Heat conduction through polyatomic goses is commlicated by the
interchanges of energy which teke place between the internal and trens-
lational modes of motion of the gas molecules, So far, the crosse
sections for these inelastic collisions have not been estimated for real-
istic molecular models (Hirschfelder, Curtiss and Bird, 1954), so that
although the formal kinetic theory for polyatomic molecules exists
(Wang Chang and Uhlenbeck, 1951) no practical use can yet be mede of it,

In the event that excitation of the internal modes is very easy,
implying a very short time lag for adjustment of the mode to a full
equilibrium state, it is reasonable to assume, at least in a first
approximation, that equilibrium prevails throughout, This is the basis
of the Fucken correction to thermal conductivity to accoumt for the
participation of the internal modes (see Hirschfelder et al, loc. cit,).
However, not all internal modes of motion have velaxation times short
enough to be treated in this way and it is of interest to enquire how
somcelled "inert" internal modes will affect rates of heat conduction.

We consider the simple problem of the evaluation of heat transfer
rate between two horizontal, parallel flaot plates, the upper being
the hotter of the two, when the intervening space between them is filled
with a purc gas whose molecules have one incrt inbernal mode., For example,
the gas may be nitrogen at a temperature such that both rotations and
vibrations of the molecules are excited but no dissociation or electronic
excitation is present, In that case we would assume that the rotations
were in equilibrium with the translational modes and count vibration as
the inert mode, (Rotations in nitrogen are excited in a few collisions
whilst vibrations may require several thousand collisions), For such a
set up one may reasonably ncgleet changes of hydrostatic pressure across
the gas layer and, with the hot plate uppermost, natural convection is
absent, (The system is cntirely the scme as the one used by Hirschfclder
(1956) to study heat conduction in chemically reocting gas mixtures),
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2. The Bguationsg

Once a steady state has been established, the energy equation
yields the simple solubion

- & = constant = -vc'é_W s ‘ (1)

where § is the encrgy flux vector (with but one ocomponent, in the
y=direction, in the present instance) and - <‘:§W is the energy transfer

rate into the lower wall., In a pure gas all molecules are of the same
mass, m, and consequently there is no thermal diffusion present. However,
each molecule will not be in the same internal quantum state and we can
uze the get of guantum numbers which define an internal state to
distinguish one molecule from another, That is, we mey regard the mixture
as made up of a number of different "chemical species", In that event
kinetic theory relates the energy flux vector to the temperature gradients
and the appropriate diffusion velocities as follows ,

. %ar
- = == s Yh.n,U. 2
d dy FRE RS (2)

In Bq.2 T refers to the temperature of the translational modes and M
is a coefficient of thermal conductivity evaluated on the assumption
that the molecules behave as monatomic particles (i.e. their inbternal
degrees of freedom play no part in its evaluation), The sumation term
represents the energy flux arising from interdiffusion of the different

1,

"species”, ﬂj is the average enthalpy per molecule in the J~th guantum
state, na. the relevant number density and uj the diffusion velocity of

this particuler "species",
hs cen be mritten as

.. D.XT (int)
.hj 5 + ey (3)

, int
where eé

e’

represents the energy of the internsl modes in quantum
state j, per molecule, (k is Boltzmann's Constant)., It follows that

.
h.n.u. = Ze‘ﬁm@ n. u, (1)

J 3 °?

[N
Cte

Cae

ey, M

since all particles have the same mass m, and 2 m n uj = 0 by definition

of the diffusion velocities,



The forece field surrounding a molecule is, strictly, dependent on
its internal quantum state, so that a different diffusion coefficient will
arise for each of the different "species" in the mixture, However, the
differences are usually very small and in the prosent treatment we will
assume that diffusion of all moleccules is adequately described in terms
of the appropriate "monatomic" self-diffusion coefficient D, since we
are dealing with a pure gas here, Following Hirschfelder et al (1954) we
can then write

d (n./m)
-n, U, = n D=
"5 3 77 (5)
: ] B s (int)
n being the total number of molecules per unit volume, Since the e'j
guantities are constants it follows from eqs, 4 and 5 that
: A QT _ gelint) | ‘
-§ = —é—; + n D@ s (6)
where
e(:.n‘b) - n~1 . e(fl.l’l’b) (7)
3 94

is the mean internal energy per molecule. This quantity is now separated
into parts which arise from the active and inert degrces of freedom »

(i) | (a) L (D) (8)

+ \

respectively, For simplicity the number of inert modes is restricted
to one: no such restriction need be placed on the active degrees of
freedom although in thinking of, say, diatomic,mplecules, only one such
mode will arise, (2] can be vritten as L e4®) (n '/n) and it will be

3 Y
assumed that the distribution numbers nj correspond to a Bolbzmarnn arrangee-
ment of energics among the allowed levels which is specified by the
translational tempecrature T, Consequently we can write

Qg(a)__ defa) & _ (a) & (%)
dy - &T © dy - dy ® . -~

c( ) (which equals Ze(j ) a(n j/n)/cSiT) is the specific heat of the
J

active modes, and it follows at once that eqg, 6 can be re~expressed

as follows, ‘

(10)

(1)
-§ = A1 %Le(a))vé; +nD%§



where - (&> | -
. (e . nbs (11)
A
iz a Lewiz number based on the aetive mode's intermal specific heat,
Then
! A
m(a) = (1 + Le(a)) (12)

is the Buckene—corrected value of conductivity to account for the
ingtantaneous excitation of the active internal degrees of freedom,

Each "specics" in the gas has its owm continuity equation which,
in the present simple casc, has the form
& (nyu) = v AR CF)
dy 73 ’

w;j is the volume rate of production of molecules in the J=-th state as a

result of purely gas phase encounters between molccules, With egs. 5 and
7 it follows, on multiplication of eqg., 13 by estG and summation over

all quanﬁm states J, that

B, (int) .
-% nD% = 3 e%lﬂt) oy (12)
i

The term on the right hand side of eg, 14 represents the net rate
at which energy entors the internal states per unit volume, and it will
be a function of the population of all the states J, the transition
probabilities betwoen them and the rate at which mclecules collide.,

In writing eq, 9 we hove clready dealt with the active modes, albeit
approximately, so that eq, 14 must be reduced to an equation involving
nly excitation of the remaining, inert mode. Thus we write

el ( Dde(i>) R(i) (15)
e dy 1 C?L:V' =

vhere R i) represents the rate of production of energy in the inert mode
per unit volume. It should be noted that the treatient of intermal energy
from the assumption of eq, 8 onwards implies no cross~coupling between
the active and incrt internal motions, In gencral, if such coupling

did exist, a part of the energy in the active mode would be a function of
the population of the incrt states. Insofar as we arc assuming that

the inert modes are not instantencously excited, then at least a part

off c( ) could not be represented as being in equilibrium with the trans-
lational temperature T, This requirement of no crogg, coupling is not
necessary for eq., 15 as it stands, however, since R\1/) could well

include such effects,



The treatment of R( 1) in terms of the approprlate transition
probabilities, etc, would in general be very camlicated, since transitions
between any permitted levels for the mode are possible., Instead we shall
assume that

1) _;;;(e(i) _ ei? y . (16)

That is to say, we assume that excitation of the incrt mode is directly
proportional to the difference between the actual mecan energy per molecule

1 . . . .
e and the mean energy which a molecule would possess if the inert

mode were in equilibrium with the actual local translational temperature,
namely e((;;). This latter is therefore a function of T only, 7T is a

sultable relaxation time, detcrmined by the transition pyobabilj 4_03/
values, etc, and the minus sign is necessary since, if e\1/ > eel,

the natural process is one of de-excitation, 7 1s essentially positive,
That results of the form 16 are valid approximations for small departures
from equilibrium has been demonstrated by Herzfeld (1955) for the case
of but two quantum states in the inert mode and also in the Lendau and
Teller case of the harmonic oscillator, In the latter event the mode is
a rulti-state one but trensitions only occur between immediately adjacent
levels, The validity of eqg. 16 as an approximation in more general kinds
of multi-state systems has recently been demonstrated by Shuler (1959).

Using the results 1, 10, 12, 15 and 16 the equations governing
energy trensfer rate between the two plates can now be written as

(1)

K(a) % + nD%% = "'EJW ’ (7
(1) . .
Lend ) =26 oy, (16)



3. [The Lincerised Problen

Egs. 17 and 18 are nonmlinesy; both ?‘»( ) and n D are functions of T
I

end T is a function of n and T, In gereral eg*" is a complicated function

of T, too, Tor example the simple harmonic oscillator has .

oéz) = k6 (exp(6 V/T) - 1)"4 » vhere 0 is the (constant) characteristio
vibration temperature, However, if the difference in temperature between
upper and lower plates is small we may reasonably take mpan values for

?\«( 2) s 1 D, n and 7 which are evaluated at, say, the arithmetic mean of TE;
and T . We note that, since p = n k T and pressure will be constant,

~n —— - P m
1 VAXIes InNVEISeLY a8 4,

Wle shall also assume that a temperature T( 1) can be defined which

cqm . . . i) .
will specify the encrgy content of the inert mode, Then if c( ) is the

specific heat of this particulor degree of freedom we can write
( O {B{ l) ( . .
i i) (1 .
e ! = / o ) cﬂ"( ) . (19)
o ,

)
e

. . i . .
In the lineax problem we may expect to find 2(3) but 1ittle different
from T a:ndC accordingly, it will be sufficiently accurate tc use a mean

will be given by a similar integral in which ’l‘( ) is replaced by T,

i
value of o )
of the system,

which is consistent with the general terperature level

Under the conditions stated, egs., 17 and 18 are now written in
approximate form, suffix o denoting constant mean value,

£ 2N

ey e ey & ’
o ay &y /" Y 2 (20)
(5) (+) '
A . 2 A1 n_c R
;\g“f relt) 2{% B e (4 -T) , - (21)
dy o)
J/Les 1) is a Lewls numbcr based on the choscn mean specific heat c(ol)
ond A ’ rxamély
o :
. N n D . .
el o oo 3 | (22)
;\\u o
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It should be cbserved that if c( ) is a constent, as it may well be if the
active internal mode is a rotational one, then tc a good degree of

a)
accuracy the group n D/ ?\<” is a constant without further assumptions,

Elimination of T( 1) betwoen egs., 20 and 21 gives an equation in T
only, noamely

e (23)"
dy
where (1) .
2 = <Le§i_,+ 1 Rl ey (21)
) ;»Tg) L';(Z )> 7o o Do
. (1)
;\Za‘? Le(i) | To 7\2&)(1 + Le(l))

{ .
It follows on elimination of T between egs. 20 and 21, that T 1)
satisfies an equation identical with eq. 23,

Eg. 23 has the solution

T = AV 4B W 4+ o - Ly/ &? (26)

and the constants A and B can be eliminated at once by noting that
= T" when y = 0 ond T = T when y = 5. (T’ and T’ arc not the

well 'terme raturcs, but the gas temperatures :anmdla‘bely adjacent to
the walls), Then

T = (’%’ -C+B5/ 2):ﬁ'}l”l—’l*~wq;Z + (0 - Smh'@a = ‘?Q“ C -By/ «*,

sinh W ginh CC

eeoee (27)

* Eq, 23 is a particularly simple form of singular perturbation
equation as Ty = 0. The behaviour of the solution for very small T

volues is discussed in Seetion 4 (iii) below,



Remembering that § and hence ) is still an wmknown quantit
£ QW d s

two more conditions are necessary to evaluate £ and C, These extra
conditions are related to the direct flux of inert mode energy into the
walls which would resuld from de~ezcitation of a porticls in the course

of a collision with the plates. The process may be described as follows.
The walls are being continually bonborded by gos meolecules as a result

of their thermal motions ond, of these, a certain fraction moy be adsorbed
by the wall and remain there for a sufficient time for all of their
degrees of freedom to come into complete equilibrium with the wal
temperature, Eventually these porticles will be re-emitted from the

well, having given up their excess inert mode energy.

Of course this type of process does not only apply to the inert
energy mode; if cnergy is to be transferred to a surface from a gas in
contact with 1t then the incident molecules must be dewcxcited to some
lower enecrgy state before they leave the surface again, and this will
apply to all the energy modes which the molecules possess., However, we
intend to separate the tronslotional and active modes from the dnert
mode in what follows,

Let us suppose thot, of the number of molccules incident on the

{2

. i

surface, a fraction r )

w
accommodated to a full equilibrium state at the surface temperature Tw'

have thelr inert mode energy completely

— . .. o i
In this state the mean energy per molecule is denoted by, S )., The mean
P (1)

encrgy of the incident molecules will be denoted by e + Then if S
is the rate at which molecuiru?s, strike unit area of the w;:ﬁf.l s the "»:.rall
godins wer@ at a_x}ate 8 e 1) and loses it at a rate ri:_v_l) - eirl)
+ (1 = r\gv}’ )S'W' e(l) « The nett rate of gain of inert mode cnergy is

S

therefore

SO

Of the layer of gas molccules immediately adjacent to the wall, on
the average, one half have Just arrived from some distance {of the order
of a mean free path) above the wall, WhiiLst the remoining half have Jjust
been re-emitted by the surface, Then e’ax:} v ? the avorage inert mode

s i
energy in the leyer adjacent to the wall, must be given by

£ ‘ Ry 3 . . =\ . RV
e;‘riw = % L, % rgvg G_&T ) 4 (1 - rirl))a(ﬁ =(1 = rE;‘)/z}e(l)
* % r\gr:w egvi) ¢
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It follows that e,(l) in the expression above can be replaced in terms
(1)
av,w
per unit time arising from de~excitation of the inert mode can be
written as

of e and egvl) , Whence the nett gain of energy per unit area of wall

(1)
2r + .
W
2‘ (1) * % (eg;f,W“ ew(:vl> ) .

~ Ty

The guantity rgvl) can be called the inert mode accommodation
coefficient at the wall y = O,
Now the flux of inert mode energy into the surface can be expressed

in terms of the diffusion velocities also, It is clear that this
expression for the lower wall, y = O, is

(1) (1) a act )

-3 ey LU, = ey == (N, = D ==

P 5% °3 nﬁdy(na/n) BT

where e(.:L) is the inert mode energy in a moleculs in the Jj-th internal

J
quantum state. The minus sign is nccessary because, with positive uj
values, e(a.l) is diffusing away Lfrom the wall, Rquating this expression

to the one involving ré{l) gives the bowndary condition at y = 0, namely

(1) 2 (1) N,
n D <-§-‘§ >.. = i (e(l) - e,gvl)) . (28)

=\ S
& /yeo o . rw(zv 1) WV, W

Now if the mean free path, £, and the mean molecular speed, Q,
are defined by

. o 4
-(Z,zi("/én’ﬂ‘()‘z) Q = (BkT/m'IT)E‘, (29)

o8

the rate of borbardment S, is given by

- 1
Sy T 30y Qw (50)



and the exact kinetic theory for rigid sphere molecules gives

n = 2% 4 0 (31)

i% w w

&b

W

(see Hirschfelder, Curtiss and Bird, 1954): ¢ is the molecular

% .
diemeter ., It follows from eqgs. 28, 30 and 31 that

(1) o3) N s
@ty A B (o) )
<d.‘f )y=0 - o Y:;gi) 3o ¢ ( av,w w ) . (32)

(5 _ W
- e

oy .
Since the ener i e
; & JUIP Covw W

will be small, cvertainly in

the linearised problem, eq. 32 can be written as

[ i))

& S A GO (33)

=0 w w
where TW is the actual temperature of the wall, and we have written
/ r*Svi) : 8
I = T Tor (3L)
W w

Clearly a similar result must hold at the upver wall and we must
have

(1) :
T 3
%3:, > = - (Tg*) ~Ts ) . (35)
Y /y=6 (o)
(The minus sign arises because the energy diffusion rate into the upper
wall is + 2 e\ n., u. , etc.).
. J Jd J

d

*  The molecular diameter ¢ implied in the value of J‘D'_f in eq, 31 can be
A "
taken as the exact kinetic theory value at the bemperature Tv*’ o
v

is introduced here simply for convenience; any numerical values for
transport coefficients etc. will be taken to be those appropriate to
a Lermard-Jones 6-12 potential for the intermolecular forces, 0 in
equation 29 is unambiguously defined and, if necessery, £ can be
evaluated via egs, 29 and 30 using the proper value for D,
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BEgs. 20 and 21 show that

() &7 _ %o cil) (1) o
R T R (36)
’ dy o

whence, remembering that T here refers to the gas translational
temperature, egs. 33 and 35 cen be expressed in terms of conditions
on T, The values of T at y = 0 and y = O have been written (sce eq, 27)

as T"(v and. Té respectively, They differ from the actual wall temperature
by an amount equal to the appropriate temperature jumps, say ATV and

ATy , as follows

1)
- om A : a
To= T = AT, - (378)
- /
T& = Tp o+ A5 o (370)
Then elimination of T( 1) between eq.s 33, 35 and 36 leads to the boundary
conditions
( ar & ' &
\ = - T K === =T - T K = + AT ) (38)
dy o] ay® W o dyz w
y=0 y=0 =0
3 2
Q_E wr wfE&E =1 (7 o« (&L + AT . (39)
dy o dyz 3) o) ay* &
y=0 y=0 y=0b
where £ = " ) /n c( 1) .
o o ©

We will define an accommodation coefficient, r, for the translational

*
and active degrees of freedom in such a way that

e, - e’
n = B (40)
Oy~ € '

where e is the sum of the mean translational emergy (3 k T/2) and mean

active internal mode energy (e< a)) . The suffixes, etc, have the following
meenings, € 1s the mean energy of the molecules emitted by the walls,

* See the comments on Page 22,
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e, is the energy e at the well temperature value TW and e is the

energy of the molecules incident on the wall, Then o, =T & +{(1 - rw)ef s

and, since one half of the molecules in the layew adjscent to the wall
have Just been re-emitted by the wall and the other half have Just arrived
from some distonce above the wall comparable with a mean free path £,
the average value of e in this layer, e__, must be given by

= (e)
(1/2)¢ + (Ji/z)em. Since we cen write ¢ —e . =l (de/dy) it follows

that the energy jump, e__ - ew, is given by

av

. -2 ) (g (1)
av ~ %% % 71 &/ ° N
NE=

e
vy

e = [T (Ov—l; +c(a))c'>"£

where ¢, is the trenslational specific heat, 3k/2.

In the event that c( a) is a constant, or does not very appreciably
over the range T to T 2 it follows that eq, 41 is the same as

W
pr = 2Ty gle) /am>
w e

“w ayyso

. (12)

To find 6(8) we note that the wall gains energy at a rate

s (g = = - G = ( - o the ati
g v< ) s rw_(e‘ ew) 2 s (¢ eav) from the translational
and actlve modes, and that this can be equated to the appropriate part

[

of - §_ in eg. 10, (for example); i.e. we write

AL (1 Le(a>) <%>y: =25 (=0, ) =28 & ”;Q')(c + c(a))<dy2’y0

easvoo0 (“34'5)
But in terms of the rigid sphere values defined above
2har
= Ry vl ’6’ i
Ny e * P w OW vt (432)



In fact, the cross section wo® implicd here is slightly different
from the value used in defining D above, and we should decrease '/\
by & factor 1.1 approxima ueT*fs for Lennerd-Tones type molecules,

(sce Hirschfelder et al, 1954), With the corrected value for 7\W it
follows from eq. 43 'bha‘c

EHN
éve), _ 2577‘ < v‘b ?) ) o (1)

(This shows that *3( e) is 2,23 v when c( ) = 0, decreasing to 1,81 ffW
when c< a); k, the vulue for a c’!la’comc molecule with fully excited

rotation),

An alternative form of the ratio '65_1_9) / @W can be fowmd via egs. 11,
30, 31 and L3 and gives

el )

3 @(_e) (=) 1 + Le
Lo Jo8 . (L)
3 gl ZW LG( EJ.) cV‘t -+ C( a) :

The temperaturc Jump can now be written as

ar
AT = a & <«> (L5)
w w ow \dy 7=0
where (a\
E L ed
Y /cv_b+0.328c .i,.:’-f
W 5.2 & Oy ¥ c(?D v
_a &Y aand® - (46)
R ON ()"
c_,+¢C w
vt

A s:vm lar result will hold for the temperature Jump at the upper
wall, ‘“'Lé o Finally then, the required boundary conditions can be

expressed in the form

dT -131\ 2
(1 T <m> - T K(mm = =T 7 « <‘—‘—“‘> (47)
v) % /o o) 3y )y::o w oo dy® /=0
.y [ar & a21
610 () -ror (@) - (o) "
=& dy”/ y=8 , dy? =8



where YR . S
e =Tty 5Ty =T % . (49)

Putting in the appropriate values for the derivatives from egq. 27
enables the constants £ and C to be found, and hence the values of energy
transfer rate end temperature distribution in the gas., The algebra
involved is rather heavy, but eventually J,’c cann be shown that

~

"8 5{7 R COM IR CRL L S (R RO I €O

E;HT_EE o Le(i) ) { ;85 ~ Q/sinh 8u ( sinh yo)
T ) Gy + coth ba~ 1/sinh 6o \'sinh 6o/
Tgm I Baw Lo’ g L / \ /
B~ Q/sinhda
* Ty -‘gotlﬁa - 1/sinh oa <1 - Slzhi‘%iao};‘@} + '“Lm(w)
w /o Sa + Le
(51)
It can also be shown that (T(i> - Tifi))/(Téi) (l)) is given

by an expression similar to eg. 51 T’:L‘th the denominator Oa+ Le( )Q‘
replaced by Oa~ @ and the factor Le (1) multiplying the curly bracket texrm

replaced by -~ 1, It can be shown in addition that

mi 1 i ] ~ 1) e =l
(Aé ) Tfﬂ., )y (1 - q/80)™ = (7 -1 ) (1 + relPa/sa Y1, (52)
The quantities appearing in eqs. 50 to b2 are defined as follows :—

J(cothda = 1/sinhda) + B_ Gy +

7 B - BsC
Q = = -£ (53)
(cothda + Cw)(coth§ct + GS) - 1/sinh®8a
B 1~ 11n v
R - 5
n i Le(ﬂ-{j‘? s n w ooy 2 (54)
n
T U + Le(l)) v
c, = = . (ca, €))7 ,n=wor (55)



It should be noted from eqs, 3k, 46 and L9 that the I‘n quantities can
be written as ’

3
c(a) 1+ Le(a> 2 =T rél; X
R - R VI (1) © 5o sm=word (36)
Let™ e, +cC 2 wmr

(Of the remeining quantities in the above equations, o is defined in
eqgs. 24, & in egs, 46 and J&n in egs., 29).

4. Special Cases

The results just derived axe quite complicated, despite the
simplifications introduced by linearization of the problem, and it is
therefore worthwhile to investigate some special situations in some detail,

(i) "‘<l> = 0,

n

. i . . .
When cg ) = 0, the inert mode can be assumed to have no communicable

energy., The addition of a constant to the rightehand side of eq. 19
does not affect the subsequent analysis, so that the encrgy stored in the
inert mode nced not necessarily be zero in these circumstances,

i . . i) . . -
cg ) = 0 implies that Le( ) is zero, whence it follows directly from
egs. 5O to 56 that

- 4,5 = ?\ga) (Té "T;v) ’ ‘ (57)
Tom (% TR ) . (52)

In order to find qw in terms of the actual wall temperatures
; .

Tc") and TW, the temperature Jumps must be evaluated, as follows,

— ,(;'L’;‘ — = 7 1 p— o (a')
&TW = %y 6'\’? <5y>y=0 T Tw (bv/ 6)(Té - Txlv ) = aw('@v/ 6)<~qw 6)/7\0 4

with a similar result for ATé. Consequently we have

. C']w6 11 ¥ ‘(&W b % 66)/6;‘ = )'(oa) (Tﬁ B TW) * (59)



Since the &, and «'&n quentities are essentially positive, it follows

that the temperature jump at the walls reduces the energy flux, a well
kmown result, The theory presented here is only valid for (£ /8) << 1

so that, to a first approximation, the reduction is a lincar function
of (f,n/é) . The mean free path can be expressed in terms of p and T

rather then n, namely,

£ = k:T/\/»é.VTCfa Py (60)

so that the energy flux is slightly pressure dependent for given values
of T, , T_, ete. ‘

Otherwise, in the present case, the flux only depends on the value
of conductivity corrected to account for the part played by the active
internal modes.

(ii) T0 » 0O

BEq. 24 shows that as T, + ©®3 80 & - 0., Wolting that the

C, vary as M , it follows on teking the proper limit as o .0 that

- EEW5 {1 + Le(i) Q’} z(T’S - T ) ?\gg‘) 1+ Le(i)) . (61)

where

Br % 25 O

Q’ = - (62)

C ! ! . ! I s
G‘W + Gy + CW Cg
/ (1)

| (1 +Let™)s
c, = n=wor?d (63)

] ]
1+ el
n

(note T is defined in eq. 34). It also follows from eq. 51 and the

remexrks about T + that

T o(%)_ g{3)

= S 6
e 2 () (1)

w &

1
ool
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Bxamination of the wvarious quantities involved here shows that the
energy trensfer rate into the wall 1§ a stropg function of the inert

mode accommodation coefficients, rs "/ and z i , and also the ratio of

these coefficients to the active enexrgy a‘cco;mnoaation coefficients Ty and
s i i
r_. This is because I is prooort:a.orzal to r< /(2 - é )) end T to

the ratio l(Z - )/(2 )) ](I'( )/3:‘ .

Thus, if both r(,, 1) and I'< 1) are zero, both C:,- , and C(’S are zero and
B,=Bg=1, It f’ollows that @ =1 in these circumstonces, and q is

glven by precisely the same O.(CPI'CSS'OH as eq, b7. This is not ourprising

. . , i . .
since putting T, =« and rs‘v_ ) ( ) = 0 is another way of saying that

the inert mode carries no cormmmmwole energy, DBubt it should be noted
that a result like 57 also holds when T_v = and only onc of the

(:L)

B—W =1, It follows that ¢/ =1 and q,y is aga.'_n given by eq. 57. The

reason for this is clear, If only one wall can excite or de-excite the
inert mode and no excitation or de-~excitation cen arxige in the homogeneous
state (To =), there is no mechanism whereby incrt mode ecnergy cen

4,

terms is zero, Thus, suppose we put r( 1) = 0 ; then %v = 0 and

be transferred from one wall to the other ,

(1)

than one, We notice, in this case, “bna‘t nci“bher st nor By are unity,

nor r( ) ore zero, § must be less

@

On the cother hand, if neither r

(since I‘n # 0), and that it seems quite possible to find values of the I‘n
(see Q. 56) which may meke the B € 0, Whether this con be so or not
depends on the relative magnitude‘s of c( 2) s Le( 2) s T and r&i) s, ete, but
does not seem to depend on the dimensions of the gystem, T;lis latter
consideration enters via the C’ quantities which, from the definition of
' in eq. 3k, ore proportional to (8/¢ o) e This dependence of the C’

on the ratio (&/% ) implies thet they will be large quentitics, oertamly

(1)

greater thfm unity, unless the appropriate Ty

(1)

ig very small, If both
and n:'6 are very near to unity then, 11: would seem rcasoneble to

se“b Q in eq. 62 almost equal o zero (by reason of the eppearance of the

* It is worth noting tha‘b uu tranglational temperature Jurp is the
seme whether both r<-~ nd r me zero or only one of them,
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rroduct C';r Cé in the denominator of Q’)., This being s0, eq. 61 gives

y
ST ié‘él‘g (*:fe(’}, (65)
Noticing that
(2) (i)y _ (a) . (4)
7»0 (1 + Le*™) ~7»O+nODO(CO + Cy ) s (66)

from the definition of Le(l) in eq., 22, it con be secon that the value
of conductivity appropriate to this particular case is the corrected

. Lt B
"T"l""’ which accounts for full “D&Tﬁlclyaﬁlun b_j "11 internal .ULU\.LDD in the

energy transfer processcs, It is interesting to 0 notc that this result is
achicved solely by the efficient transfer of inert mode energy to the
wells, The translational temperature jump at both upper and lower walls
gives rise to a term cxactly similar to that in square brackets on the
left hand side of eq, 59, .In fact the x'efu t in the 'r“%"esoht case is
similar to eq. 59 with koa) replaced by N*/ (1 + o3y,

The significance of the ratio 5/«6 which appears in C‘ can be explained
as follows, Let us keep T4 § and T{v cons‘can’c (so that A and nD are constant),
Now if & is fixed, ¢ can be decreased by increasing p (see eg. 60)

and hence n (because p = n k ), Reference to cq., 30 shows that the
rate of bombardment of the walls by the molecules increases, and hence
inert mode energy can be transferred at a greater rote,

The reason for the behaviour of the result as & increases is not
quite so simple. It follows from eq. 52 that

(1) (49) 1 - 0! ,
T =T ey (1§ -7 ). (67)
8 K 1+ Le' Mg’

Then an increase in 0, rl“cn corresponding &ecfease in @} means that
TESJJ (1) increases, Hence the inert temperature gradient, decreases
rather less quickly than the active or translational temperature gradient
and the apparent conductivity, which is - @W 6/('.Dé - wav ) for present

purposes, increases a little,
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Let us return to the consideration of the B guentitics, which may

be <0 if the I ere >1, If the B are indeed <O, then ¢ < O and

it would appear that an effective conductivity greater than the fully
corrected value 7\( (1 + Le(i)) could arise., To simplify the discussion,
let us assume tha'b ¥ = O, so thet the only internal mede remaining is

the inert one, In this event, cne finds from eq, 56 that

= (/aDo )2 -k )r(l)/(z A ),

Noticing from the analogy between eqs. 32 and 41, that the quantity
3ud /8 defines a mean fiwe path for diffusion, it is clear from the

definitions of M and D ete, ( that N/n D o expresses the ratio of the
free path for conduction (U s Sce eq_, J.]J.g.) to this free path for diffusion.
Thus the I‘n are intimately comnected with the temeraturc jumms at the
walls for the translational end inert modes, In other wo:ré‘@ they must

(1)

approach the actual wall tenperature values Ty and Tv " Confirmation of

rnd

indicate in a relative sense how close _L andl ZL" and TW and il

this can be obtained from eq. 67 cbove, which shows that as the B

(1)

decrease, so that § decrcases also (sce eq, 62 - T more
’ 0 1 (g .

nearly approaches Té - Tf\v and finally exceeds this valuc when the B

are negative, ¥We note for fubure reference that eq. 52 shows this
statement to be true for any velue of To and not Just as To “ 3,

Remenbering that translational energy is transferred by conduction and
internal energy by diffusion the F therefore express the balance between

he effectiveness of these mecharn.s ns coupled with the appropriate
efficiencies of the xmlls in exciting or de-exciting thesc energy states,
Since (A/n D GV‘{:) = 1,9 for the values of M and D quoted in egs. L3a

and 31 it must be concluded that the combination of diffusion and inerd
energy accommodation can be more effective than that of conduction and
accommodation in sone circumstonces, For example, il the r, =1 we

(1) ()

require the T 2 3 roughly, in order to make this so when c

Iz

2/3 is reguired, as
a
( )}.é’o

a part of the encrgy being transferrcd according bo the temperature
gradient dT/dy (i.e. looscly, by Yeonduction®) is in fact being

When c* (2) £ 0 o larger value of the r(l} than

can be seen from cq. 56 for the I‘ﬂ, This is because, vhen ¢

. R . e a) .
transported by diffusion, (No%;c- 611 decrecses as & :morea.ses) .
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Since the rz(llj

must be quite lorge to meke the B, < 0 it follows
that the G , which are proportional to 8/2 , will be lorge quentities.

The -nr\c-eﬂ'h'!a cading over and ahove the +aw1']~r rnmﬂn-/r\n-;"rarq w‘winlr:a?x condhuetivi ‘r1r
&=

are ‘tm,rm ore likely to be small, »ltlwagn they should increase with
decreasing pressure (i,e, as w/«& and hence the C 11 decrense) ,

To conclude this section we note that it is really the dimensionless
2 . . . .
group T D O/ 6% which governs the situation analysed under the heading
N e, (Refer to the gereral results in ogs, 50 and 51 where the

product O« appears, @ is proporitional to (7 o) 2 s see eq. 24).

Now T_ is frequently quoted as a "number of colligions to excite
the interndl mode™, and siz nce the time between collisions is 4/0 we

shall write

where N is the "number of collisions?®,
Whence, apart from a mumerical factor of order wnity 7 D o/ ~ (€ J&)ao

Teking a & of 1 cm, and molecular diemeter o of about L;. x “lO Cll, o

it followsthat 7_ is "lerge" if N >> (&8/¢ )2 ~1019 2t N.T,P., This is an

unlikely state of affairs, but if the pressure ful.ns to say 1/1000th of

an atmosphere N must only be much greater than '}O ¥ roughl;yu Witheout going
into details Si‘ﬂue these must uopovm on the temperature, type of gas ete.,
it secems reacsoncble to suppose that the ppx‘o*maa“t:x.om of the present
section could apply in the low pressure regions, Some confirmstion of

this will be given in thc case of nitrogen vibration, to be excmined below,
(4ii) 7. -+ O,
o

We now turn to the other extreme case, for which the inert mode
relaxation time becomes smnll cnough to be negligible., From the previocus
discussion, this would seem to be a likely staie of affairs at moderately
high pressurcs for internal modes which are excited in a fow collisions,
(0Ff course 7, never actually eguals zZero, as can be appreciated from eq. 68).

* A continuum theory based on the Navier-Stokes cquations, such as is

used here, would still be valid at these pressures since (4 o/ §) ~ Tona

for p = 1/1000th atm,



e e i
In the limditing case, the C  +tend to zero (regardless of the r( )
s n & _ n
valves) and Q@ = B+ B., because when 7 » 0, = e, It follows &t
W W &9 n ’

once from eqg, B0 thoat for vanishingly swall 7 values
q 2Ly 5

-8, 8 e (7§ -7/) %éa) (1 + Le(i)).. (69)

!
v

The appropriate conductivity value is therefore the fully corrected one,
accounting for the complete participation by all the intcrmal modes in

the energy transfer processes, Just as ome might expect, It is interesting
to note that the value of q'w is dinsensitive to the velues of

::'(i and (i)
W g ?
which contains them is proportional to ((Sa)"1 . (The expression for §_

W

a marked contrast to the previous case, since the term

correct to O(écc)“1 is written out in eq, 75 below),

This result is a little surprising, particularly if one cxamines
eg, 21 in the light of the condition a -+ «, OClearly in these

. . . . i
circumstances it must be an excellent approximaticn to sct T< ) = T,

the translational temperature, and indeed this is Just what is implied
in the Eucken—correction to thermal conductivities, Then the left hand

. .

s\
. i . o :
side of e?, 28 becomes n. DW ci / (ar/dy) , with a similar value at y = O,
i .
nd the e and e 2lucs are determined by T/
and & avyw v, 8 v ) neda Py T’W‘
depend only on the transletional temperetures and the Ty volues, But

and T% , which

‘the r;:L) mey toke on any value between O and 1, depending on, for example,
the wall m“boriéls, and this does not seem consistent with the result

T 1) = T, The port played by the inert mode accomodation coefficient cen
be appreciated on examination of the troenslational temperature distribvution

(eq. 51) for large values of « (more strictly, of ad).

Vhen y » 0, a reasonable approximation to T is given by

|

- sy a0 . o ..z
] ( 8o+ Le(J’) Q) 1 E'YC{ +‘Le<l>BW(1 + OW) 1(1 - cy)} (70)

o B, (1+Cy +Bg1 + Gw) (71);3
o had »
(1 + CW)(1 + Cg)

* The C  terms must be retained here because eq, 66 shows that they are
1
roughly of order N= ,



and when y » & we can write

. , ‘j‘r o (65: + Leﬁi'} Q7 )"1 SL ya o+ Le{‘i}"ﬁ&(i >M1 - o—:y/‘
Ty = T
& Tw + Le(“)BW(‘l + OW)—1 } (72)

The correct limiting values are obtained when y = O and y = &, but it

can be scen hat rapid cn“co@es in the varistion of T with y occur in

regions which are of‘ O(a ) in thickness adjacent to each plate,

Furthermore, egs, 70 and 72 show that the mag;rumme of these chianges is
B o "'i-.‘A -~ T e Al B

" -1 5
‘LJJ. \JLJU.L U_LU.L.LCL_L co wne VLS U-L JJ’(‘” a’c tae LASWE L
V¥

vemmes e T ey A A e D a4l

'~ e e al
DLAT0E A B0 ‘Ui a< uu.C UppeT,

..‘
g.«

and these quentities are explicit functions of the ‘vatio of the active
and inert mode accommodation coefficients (see ed, 56) Comparing
egs, 33 and 42, it can be seen that the I‘ quan*lu.‘e.;, are equal to the

ratio of the translational temperature glmp per wnit translational
temperature gradient to the inert mode temperature Jump per unit inert
mode temperature gradient., When these are exactly equal the B are Zero

and it follows from eqs, 70 and 72 that the trenmslational ‘tems;erature

varies linearly with y and does not undergo the rapid changes indicated
by the exponential terms there, In these circumstances eq, 28 is clearly

(q'

consistent with the approximetion T\+/ = T, since it is then identical
with eq. 42,
One w2y conclude ’cum“ that for very small values of Ty it is reasoneble

to set T ”’“ = T everywhere in the gas layer except for "boundary layers®

. - . -1y . . . iy
adjacent to the walls which are of O(¢™ ) in thickness, Inside these
leyers the inert mode accommodation coefficient exerts a strong influence,
distorting both the T and T( ) profiles in such a way as to satisfy the

naps i

appropriate boundary conditions. Only when the rn ) and x, arc related
. . i

in such a way as to make the Bn zero is ( ) o = T a good approximation

.4 - 4 3, -
right through the lafe

* This sitvation is entively analogous to the one found by Hirschfelder
(1956) for heat tremsfer through a chemically reacting gas mixture,

=1 ‘ it - .
Note that o =~ «6 VI, so the "boundary layers" are several mean
free paths in u&;lcxxlcssc The temperature changes across them are not so
viclent as to invelidate a continuum type of theory. This "bhoundary
layer® behaviour as v = 0 ig characteristic of singular perturbation

(o]

problems, of which eg, 23 is a simple example,
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Egs, 70 and 72 show that the deviations of the translational temperature
profile (due to the excitation of the inert mode at the walls) from the
linear form which would be predicted following o a prior assumption that
T(:L) = T are very small, being in fact of O( 6(?.)’3I . This is not so of the
translational temperature gredients as y » O or & and these are
readily found to be given by

\ i ; |

<% 0 ) ,,ﬁ,,gcj_f 1+ Le(l) B’W> 4 (73)
y:

dﬁi‘\\ Té - T’ (1) ‘

(W/ 5 B m@""“y (1 + 1™ By , (74)
=

in the limit as o » », Consequently the translational temperature Jumps
are affected by the accommodation of the inert mode, as one would expect
in this case,

This fact points to a defect in the theory so far, for allowing S
to approach zero puts the internal mode that wo have been describing
as inert, into the class of internal modes described as active, Clearly
then, we should adopt a treatment analogous to that accorded to the inert
mode for all the intermal modes, even though they be of the active class,
Only in this way cen we take proper account of the full details of the
energy transfer processes, However, in the light of the results Jjust
discussed it does not scem unreasonsble to employ a theory of the present
kind for the problem of encrgy transfer through a gas with one intermal
mode whose relaxation time is long compeared to the remaining internal
modes, The temperature profiles will be incorrect in boundery leyers
near the walls whose thicknesses are proportional to the square root of
the relaxation times of the active modes, but by hynothesis, these are
very much thimmer than the inert mode layers, The energy transfer
rates cannot be much alfected by the active mode accormodation cocfficients.
The translational accommodation cocfficients r will be functions of the
accommodation cocfficients for the true translBtional energy and Tor the
active modes individually., To this extent, the T values must be

regerded as some sultebly weighted mean wvalues,

If the gas molecules have only one internal mode with a communicsble
energy then the present theory is exact (within the framework of the

linearising assumptions) provided e'™/ is put cqual to zero, Such may
be the case for dilatomic molecules at room temperaturcs (where only
rotation is excited), and we shall discuss some of the implications of
the theory in thesc circumstences in the last section,
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)4

A slightly better approximation to 4, for large values of O«

can be found from eq. 50 and is

—ta

]

o

¢
o~

(Oa) (1 «+ Le(l))

e«qvé {T’ ~TY A

w

-
e
L %
where Q ” is defined in eg, 71, It can be seen from this expression that

here is a possibility, as in the other extreme case of To™® s that

the effective conductivity could be greater than the Lucken, fully
corrected, value., The reason is the same, namely that the B, terr

s
(2nd hence Q") could be negative, The extent of the Dossi"b :anuease
is seen to increase with increasing v , and the explanation is as follows,

=

or any value of TS not actvally equal to zero, the inert mode temperature
m

s alweays different from the translational temperature T, In the lower

serts of the layer T<1) will be greater than T (due to the lag in the

+

tremsfer of energy between the inert and translational modes), and
the larger s the larger will be this difference, {’L’“s can bs co:nfix’med

via egs., 20, 21 and 703 dz"“(l>/dy is proportional to - 512""/63' and.

1-5 e

. , . . ‘e i
eq., 70 shows that this latter guantity is positive., Thenm 1 ’“ ) - T >0
and proportional to To from eq, 21). This implies that as T increases

more of the inert mode energy is available for direct conversion by the
lover wall, via the processes of Giffusion end de-czcitation on the plate,
We have already seen that th %u\ mechenism may be more effective than
conduction, so thet if the Y 1) values are high enough » ‘the maximm

g

henefit can be derived from 'tl«o Tinertness” of the inert mode,

Clearly the possible gains do not increase without limit as 0a-0,
since eq. 75 ceases to be a valid approximation long before then. The
proper approximation for 6a -+ O has been discussed above,

The results (eqs. 50 to 56) show that

)
-§ & =(0f ~T/) AT 1o ))

exactly, if both B and By are zero, and it follows also that
s k7

5

- TN — (VU I A
(T Lo 8 = (T5 TW ).f »

» . I'é . 'Y
in this case, no matter what the value oi“’r {or o) may be, This at first

gight rather surprising result can be U.ndcws tood in the light of the
previous arguments about the Bﬁ quantities, particularly when it is



i . . .
obsexrved that T( ) does not only change because of the gas-phase excitation

. R i

of the inert mode., Variations of T( ) throughout the layer also occur
as a result of the inert mode's accommodation to the avpropriate wall
temperatures, T5 or TW,

To complete the present section, the translational femperature
Jumps are evaluated so that 5-"-9 _can be expressed in terms of the temperatures
; ¥
Tg and T, for the case 0o >> 1, It readily follows from eq. 57 that

appropriate values of the temperoture gradients are given by

(@) o ny) 0- e o [ )]

y= -

ar (1) Ay [ (1) -
(= = (24 - T/ ) (1 = Le " (84 1+ Lo /Bg(1 + Cg

&), === ¢ o (597 | {1+ 0|

The first two terms on the right hand sides of these eguations can be
eliminated in terms of c”gw from eq. 75, and if products like

£./6 (Le(i Q"/bc) are ignored relative to unity, it follows that
‘ #

- &'W 5{1 + ('@6/6)&6 1+ Le(i>B6(1 + Cé)-'i*l +(6v/5)a.w !:1 . Le(i>BW(1 N OW)""!JJ

CAE S AR SO SORNLE (76)

It can be seen that temperature Jjump reduces the heat trensfer rote, as
would be expected, and that the megnitude of the Jjusp depends on the

rz(ll) terms via Bn and Cna The terms in square brackets on the left-

hand side of eq., 7L are never < 0 in practice,
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5. Vibrational Relaxation in Nitrogen

rt

results derived sbove some valuu of effectiv
b g

the s
given for nitrogen. assudng that vibratio s the,
A Y
and 3:‘(63-)

node, It is as»mﬁd +h t the accomodation coefficients
that

1
+ ‘_!

3

i

=3

5]

a

A

i1

2)

m

O D

, ot

i
w
are both zero and it follows from the results in egs, 50 to b

Poxy \vwg.:.

-

. QWS i.'l + 2 Le(i)/éa(cothécx + ’I/sinhécz)}x ('.12’6 - Tv:r )Rga) (1 + Lo(l))
soeee (77)

41y

It is noted that both D, and T are inversely proportional to the

pressure, so that denoting “me valusu eppropriate to a pressure of one

atmosphere by D o and TO-: respectively,

B { (1 + reld ))/D T r (p8). (78)

0t 01 |

The product (pd) is measured in atmosphere-centinmetres,

The values of Doy s Le(‘ and Le( 2) can be evaluated from the
results given gbove and in Hirschfclder, Curtiss and Bird (1954) .
lalves of 7 have been estimated from the work of Blackmen (1956),
L@( a) is given by O 528.«( )/ C 4 to a sufficient order of accuracy and since
the active mode is rotation in the present case, O(a) /e S 2/3, the
rotational mode being fully excited at the temperatures of intercst for
vibrational relexation, It follows that

(1) 0,35 ( Ogi)/k)

4 o N
H N

T

AN

=
0t

The inert mode specific heat c ) is evaluated from the results for a

Q-
S

. . X . . P . (o}
simple harmonic vibrator with characteristic temperature equal to 3,3L0°K,

Bgs 77 shows that the term

!

. 3 1
§ 1+ 2 Le<*)/5a(oot116a+ 1/sinh 8a)
.

gives a meagure of the deviation of conductivity from the full Eucken-
corrected value as a result of vibrational relaxation, Writing it as
1=(Error), the Error quontity has been LV&.LUL&JGC;i and is plotted against
temperature in Fig. 1 for three velues of pd, (The square bracket
term in eq, 78 is a function of temperature only). The meximm possible
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Error occurs when da = 0 and is given by 1 -~ (1 + Le(l))“1 . The value

for pé = 0,01 atm,cm, in Fig, 1 corresponds almost exactly with this
moximum Error, being at most 1% less at the higher tenmeratures, When
pd =1 atm. cm, the Error is always less them 1%, but incrcases as pd
falls,

Below 5OOOK nitrogen vibration is insufficlently excited to be of
any importance and above about 1,5007K dissociation would arise to
complicate the picture, At a temperature of 1300°K, corresponding to the
meximum Error for pé = 0,1 atm, om, of about 7%, the relaxation time
T, = 3 milliseconds, The value of (@O/ QO) can be foumd via egs. 31 and

29 in terms of DO ete,, thereby eliminating the need to know the molecular
dieameter explicitly, It then turns out that TS = 3 nilliseconds corresponds

to an N of about 20,000 (see cq. 66), The shape,of +the Error curves
reflects the opposing effects of increase in c 1) and decreage in T o Do

. . . 2
with increasing T3 /

(g

terperature, (DO veries roughly as
as e:qv(Oonst./T1/j)) .

and To roughly

We reiterate that the accommodation coefficicnts for vibrational
excitation at the walls are zero for the results in Fig, 1. Tor any
values greater then zero the Error term will alwoys be less at any given pd s
and may becormc negative,

6, Conductivity Measurcments and Accommodation Coefs

The conductivity of gases is offten measured in a hot wire eell
type of apparatus, recent examples being the work of Taylor and Johnston
(19:6) and Johnston and Grilly (1946), The firast of these papers describes
in detail the apparatus used and gives some conductivity values for air,
whilst the second reports conductivity measurements in the same apparatus
for nine different, pure, gases,

In its essentials the hot wire cell consists of a wire (e.g. bright
platinum), surrounded by a concentric hollow cylinder which is immersed
in a thexmostat, With the wire hotter than the cylinder encrgy is trans-
ferred between them primorily by "eonduction" through the gas, and it is
possible to make extremely accurate corrections to account for end
conduction, radiation transfer, cte, It is a feature of the measurements
that they must be carried out at comparatively low vnressures (those
in the papers cited varied from about 1 to 20 cm, Hg) in order to
minimise the effects of natural convection, As a consequence of this it
becomes important to take account of the temperatuvre Jurmp phenomenons
it is in fact found that the observed conductivitics vary with the
pressure, but we shall say more about this shortly.,



The hot wire cell problem is concerned with the radial flow of heat
so that the present theory is not directly compwrg.ole with the cxpurmn’cul
results. However, quallta‘tlvcly the processges ocouring in the cell and

Lon lam Al mmeen bl an T e 1 4—-«-‘21—”\;‘% Ty wnqc«-i« he = -v-«n-:'lc--m andd some interesting
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observations can be made,

We confine the discussion to gascs with but one inlernel mode, so
that the foregoing theory is exact suu,joct to the linearisati ons) when

SLa) 4

(i.e, 100% = 300%K) only rotation would be excited in the diatomic

molecules and this class of internal motion generally has a small relaxation

time, Then it is appropriate to use an equation like eq, 76 with which to
i

- s I 5 Y o
examine the situ

is set equal to zero, At the Tempera ‘turﬂs used in the neasurenents

1 (ol £ - - / y 3 P
icn, Since the mean free paths £, and £ are proporticons

et W ML Al e

S T Ty =
-1 . o N
to p~° (p is constant between the upper and lower walls), and Ou varies as

ks

P, we shall re-write eq, 74 as ‘
. ’ a i
-8, 501 4 1) = (7 -7 K1+ 11w pi/8) (79)
(The definitions of b and b’ are obvious on comparison of egs. 76 and 79).

T 2 &
In meking measurements one knows a, s o and Té - 'l‘ (flw would have

been corrected for all the apparatus effccts cxcept uzr,eru*uru Jump)
and an apparcnt conductivity K op can be defined so that
!

Ll & & l"_ Eand \
& © =Ty~-T5) ‘Aap“ (80)
Then egs, 79 and 80 show that
) (44 neld)y o
0 e = ] g 2R (81)
A&bb D s /

to a good degree of accuracy, since both b/p and b!'/p are small quentities,

The experimental technique involves taking a number of values of

A at different pressures end then plotting A~ =1 gainst 9"1 It is
app ano

some confirmation of the nresent theory that Toylor and Johnston found
this pleot to be an excellent Sb"‘&lcﬂ’t line, The values of conductivity
which they quotc were obtained by extx apo;a""mff this plot to *ﬁ"‘ﬁ =0

and it is intcresting to observe from eq. 81 that these s’wo&c’l be egual to
- i ; co e s
the full Bucken value 7*»( a) 1+ Le( )) That this is indeed the case to

an accepteble degrec of accuracy is shown by Hirschfelder Curtiss and Bird
(1954), X'l 10 compa:m the TaylopeS onn,otono-crfllly values with thu Bucken=

corrected kincbic theory estinotes



These latter authors do not mention the effects of reloxation in
the rotational modes of the diatomic molecules used in their measurements
and eq, 81 shows that these are not of importonce vhere conductivity is
the only quantity to be measured, If it is inbtended to use the slope
of the experimental plot to find accommodation cocfficients hovever,
eq. 81 shows that the relexation ciffects mey intervene., By how much
depends on the relative magnitude of b and b’

From eqs. 76 and 79 it is clear that

/=
I . e Mgy e
b T o : i -1 N (1), -1
(£5/5)es 1+ Le(l)BS(*; + Cg)7] + (£ /0) &WL . ~.e&l/}.—zwﬁ +C¢ )7 |

seees  (82)

from which it can be scen that the ratio is independent of the plate
separation 8 in the present problem, If the rn quantities arc both such
as to make the Br zero, the ratio is zero and relaxation has no effect:

& -
. Py 13 ., i
ctherwise it has, If we consider the other extreme where the rn
are zero then
; i
b IJG< )
od = . ‘o S ({-}3)
(i\ 2 -
al a(1 + Le*™)
o)

2

if we write € = 68:‘-"6 and let r = rg =TI 80 that
w ° w

6 =a. = &7  2-r
W= T P T ()

(see eq, b.6) r 1s the true translational cnergy accormodation coefficient
here, and is probably close to unity for both walls, so eq. 8L is

perhaps not a bad approximetion, If we use the walucs of Do and 'i‘O

from egs., 31 and 68 and note that Lo< 1) = 0,35 when cg‘;‘) = k it follows
from eg, 83 that '

l .
2~ 0,077 ¥

(85)

2 -

o'

Since r ~1 we infer that b’ is an appreciable fraction of b even if only

a few collisions (say ten) avc required to exc:.‘bo the internal mode,

More collisions would be required to meke b’ corpoyrable with b if excitation
of the internal mode occurs &1&1:«1{) co.ullclon with the wvalls, bubt it seeu
reascnable to suggest that cven a mode as casily oxcited as robation could

strongly influence any attempt Jso cvalm’oe r from the slope of a ?\a*np

versus p  plot.
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