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The model has linear restraints and a functionel, to be meximised,
consisting of linear first-order interactions of variables, General
applications of the model are stated, It is shown that a direct solution
is not generally possible, but iterative procedures, analogous to the
'Trensportationt technique are developed both for integer and non~integer
non~negative variables., A Tableau procedure is given, with sultable
checks, to enable a solution to be systematically obtained, and finally
a pnumerical exarple is treated.
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1. The Model

The model considered in this paper is

Solve:
1§ e = Aoa A
@y (&= 1,2, cousy M) \
M B N <
b aa T o
a = 1 (a=1,2, ooy M) (1)
Z A = & A
& oa u ao
g0 ag to maximise
N N -1 ‘
¢ = 5 % Z Vg Fan g
a ,8 =2 & = 1 ﬂ aa, ba.
(e« <B), (WCE@>O) (2)
subject to:
£, > 0 (3)
wheres
x is the amount tronsported from source or origin @ to

a

destination a.

Ac'o and Aoa are the amounts available and required at @
and a respectively,

WP is the weilght associated with transporting Xon and. Xﬁa

to destination a,

There are NM routes but, unlike a Linear Programse Trensportation model,
the contribution to the functional ¢ from trensporting an amount along one
is not independent of the other amounts having the same destination, The
contribution from transporting all the amounts that have desination a dis

N N -1
b z W0 X, Kp_
=2 Q=4 W e “Pe (o <pB) (%)



. N ] ) ,
This has 62 terms and as a result the functional has Msz terms, The

welghts however have been made independent of the destinations so that

N ; . , .
there are only CZ values of these, The relaxetion of his assumption would
lengthen the procedure of solution without changing the fundamental nature
of the approach, In view of this the briefer model only iz considered here,

Unlike a Lincar Programme model the one considered here operates with
ircreasing returns o scale, that is, the higher the level of opcration
the greater the moarginal rete of return, The weights should not therefore
be independent of the unit of time employed in an application of the model
to a continuous systemn,

2. Avnplications

As a pure transportation model, provided it is sufficiently realistic,
~the functional could be in wnits of revenue or profit or whatever is
required to be maximised,

Transportation models can be epplied as has been generally recognised,
in situations which are not purely transportation ones, The model of this
péper could be used for the purpose of allocating service channels to different
locations where it is required to minimise the amount of movement of
‘customers! betwcen locations., The assunptions of such an application are :

(1) There arc Aﬂo service chennels of type o . (a = 1,2, oo.N)
(2) There are A, places availeble for channels in location a.,
(D. = 1323@900,]{{{)

(3) A chamnel serves one 'custorer! at a time and 'ousbomers! require
service from two or more different fypes of chammel,

(4) A demsnd for the service of & channel of type ¢ vill be equally likely
to be met by any one of A o
o
(5) The weight V.5 1s proportionel to the number of movements between a

charmel of type « and one of %ype £,

. Requirements of an Optimum Solution

An optimum solution should first of all satisfy requirements (1) arda
(3) s0 as to be feasible., In order to satisfy the requirement (2) it is
necessary that an interchange or tronsfer of any amount betvween routes
should not decrease the value of the functional,



Let [:,6’ v a b] represent the operation:

Deduct an increment & from each of xﬁ& and xy'b and add

L

to each of x,, and x
b va
We would have from any solution satisfying (1) a further sclution that
satisfies ivT,
Asguning that w,, = 0 for all Geand wyp =Wp, for all B <a,
we have that the increase in tne contribution of destinaticon a to the
functional as a wesult of LB Yy a "b] is :

i <Wycz - Wﬁcc> Koo A -p® W By (5)

and simultaneously the increase in the contribution of destination b is 3

(6)

N x o - o X %
ECJ, (Wﬁca Wyc:> Xy, B 6 g,

Summing these we have that the total increase in the value of the functional
os a result of y abl is s

P
™

- - 0 -0 A2
{ b (“Vya - ”[J‘a) (xca }‘cc’b) § A 28 Wﬁy (72)
¢ J
This will be stated more briefly as :
. ) s -
Lﬁyaoja—- Zwﬁyﬁ (70)

The function (7) indicates that the value 2 wgy , which will e termed
'the factor?, is independent of the destinations invelved in a trensfer
and also of the direction of the transfer itself,

The reverse transfer itself, i1.e. [y £ a b'j vields an increase to

the functional of :v

...{‘@yabjg» QWﬁy L2 A (8)
D
and indicates that the calculation of {/ﬁ va b JSLI‘V‘@&; for evaluating

the two trensfers [y ab] and [y F abd 1 two that differ only in the

direction of the transfer,



We have, too, that :

2
and that

{63/&‘0} [ﬁyac}-—[ﬁ’ybc] - (10)

; ) , .
Thus, though there are 2 “C,. 02 tronsfer patterns for any solution,
P

given A , the evaluatign of “cdem is dependent on only (30-1)(1~1)

I

%:a‘ya'b} -{6,6’&'&)}’ €9)

1t

independent values of By ab j for veriations in B, y, a and b,

An optimum solution requires generally that

g {ﬁyab} < 2wﬁyﬁ | (11)

If we let 4 , O then we could obtain a direct solution from any

(11-1)(3%-1) independent series of the general equations i

j’ .
{ﬁyabj = 0 ' (12)

and the further M + N - 1 independent equation that would be provided by
€! ). However such a solution would not generally satisfy (3) and might
require, in addition, integer values for the variables, A direct algebraic
solution is not accordingly a general possibility and an iterative procedure
has to be employed,

L.  Step-by-gstep Procedure

The sclution of the problem by this means requires one %o start with
a feasible solution and by simgc.: to improve upon :1.“b Lach step requires
the general calculation of {8 y a biand this encbles one to modify a
solution and at the same tz.:zzo oom:m an improved value of the functional,

Since the functional is convex the solution will not generally be
at an extreme point of the solutions space as in a Linear Prograrme model,
This implies thot more than M + N = 1 of the varisbles could be non-zerc,
Further, In view of the intersaction of the variables in the functional, it is
necessary to evaluate for a transfer routes in use as well as those not in
use to determine whether a particular feasible solution is optirmm or not,

However, a routz not in use cennot have an amowmnt transferred from
it if the result is to be feasible, Thus, if at any stage, x ﬁa = 0, then



positive values of "By ab: or ~yfFbai nced no’c be consn_derea,

and, in like menner negative values of -y S ab’' or' ﬁ Y ba

‘

’ Ty for
vayiations in vy and b ., Thus there is the possmn.l:rby ma’c a nunber of

calculations need not be considered even if they were positive or negative,
They will not therefore require to be undertuken. Others might indicate
vwrithout completion that they would have a sign which would prevent them
being considered, One needs however to consider the foct that only
(11-4)(31~1) full calculations need to be undertaken the remaining ones
being derived simply from these, -

5. Integer Sciution

Here we require a feasible soT ation that generally satisfies

N

{Byabj <2w}éy' (13)

Having o feasible solution the test (13) can be applicd to discover if an
improvement can be made, If any evaluation docs not satisfy (13) then an

unit transfer cen be mde provided it is feasible, the direction depending

on the sign of - /3 yab: ., lore then one interchange can be rade sinmltaneously
if they do not :mvolve common destinations,

Further, if it is feasible, it may be beneficial to cerry out more
then a wmit transfer in a QFJ?‘thUluZ‘ situation, If A units are tronsferred
'tlen the flmctn.onal will be increased by

-

7 T
ﬁyawlk - 2N wpy, (14)
J By
{
fOf* the parti ul"xr values of B4 v, 2 and b, This has a meximm with respect
to N ad:

A = S( gy a»b}‘ /2 (2 wgy) (15)

and yields an increase in -the valuc of the functional of :

2 . :
[B )’abj /A.(Zwvﬁy) o (16)

Since howsver M has to be an integer value it may be necessaxy to choose

A =7\ s Or M4 1, the nearest integer values respectively less 'bhun or
Q'I‘C&uGI‘ than ‘t‘he *falue obtained by (15) according as @

l{ﬁyabj —-2Wﬁy (1 +2 7\1) $ 0 o | (17

|
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If this is so, then (14) and not (16) w:Lll give the increase in the value
of the functional,

6, Non-Integer Solution

Here we require a feasible solution that generelly satisfies

"’\‘l
{,@yabj < ZWﬁy A, (A <t) (18)

Two procedures can be adopted here

i) Revnlace A x nd b Al A1 1 1 ot sy 3 e
(i) Repla on? Puor Fyp 20d ¢ by AL, Al L, x ond ¢! vespectively
where ¢

1 1
A o [_ = ’\x A

oa o / * “ao “ao /

1 - A 1 = ¢ 2

*aa Foa / r 9 ¢ /8

and solve as an integer problem, It is assumed that A1 and A1 are

integer values, The variables and the functional of tm, uolat,x.o:n can «hen be
transformed to satisfy the original problem, Such a procedure assumes
generally that the unit losd is divisible into a number of parts given by

he denominator of the fractional value 4,

(4i) The amounts transferred are reduced at each gter wtll a solution
is reached where a further step would involve an incremental transfer less
than +the value of A,

: =~

A non~-zero velue of any - fya b of a feasible solution implies
that a transfer, provided it is itegelf 1easi'ble, can be beneficially made,
There may be a number of thesc and one would choose the largest of the
values 3

A = g‘ﬁyab
w

|\

} /2 (2 vfpy) , (19)

At the next stage, when this transfer has been completed the value of that
particular /B y a biwould be zero, The increase in the velue of the
functional as a result would be

™2
ﬁy.abj’ /Mz iay) - (20)

[

Starting with an integer solution, the optimum solution would require
generally that the unit lead is divisible into a nunber of '“fmtf* given by



the L,C,M, of the denominators of the actual velues of 4, employed,

At each stage of the second procedure it may be possible to carry
out more than one transfer simultonecusly. Provided they are feasible and
do not involve common destinations this will be in order, This could give
rise to more then one value of A at a particular step, However it is still
~the largest valuve that determined the stage of adjustoent that has been
reached but the gssumed divigibility of the wnit load will generally be
increased.

. 0y

In fact, the second method could begin with any non-integer solution
that was feasible and this could itself prove to be opfirmm., It is the
differcnce bebween the variebles that the second method is concerned with
rather then the divieibility of the verisble unit so that a number of different
- optimum solutions are possible by it,

It will be obscrved that in using the second method the value of 51
need not be less than unity at the commencement, The final value of A
erployed could be determined by such as the rate of improvement of the
functional, It is not therefore neccssary to stipulate the value of 4
at the start,

-

/. Tcchnique of Solution

The procedure of solution is indicated in the Tables A to B, pages 1%, 12,

*

The values of w op Ore contained in Teble A and the remaining original

- Anformation represented by Ac*o and Aow is contained in Table C, Table B is
'

derived from Table A and Table D is dorived from the feoasible solution
gantodned din Toble C, Table E is derived from Tables B and D.

Tables A and B remadin wnaltered for each feasible solubion but Tables
C, D and E will be subject to alteration though this will not necessarily
be so for each particular cell value, '

Since only .(I\T-‘IXI\.I—’}) indcyjen@cﬁt values of g yab are required

in the first place we can conveniently keep fand a at one particular
value and we shall use f=a = 4, The independent values of 1 y1 by
for variations in y and'b are contained in the top left hand corner of E
within the broken lines, The remaining values of Teble & are derdved by
employing relationships (9) end (10). The factor values 2 wpy are placed

et the top of each columm of Table I for the purposes of comparison according
to formula (13) or (18). :

The Tables are labelled at the head of the rows and colunms with the
appropriate subscript values. This is to assist correet procedure, Checks
however can be made on the calculations themselves, The check on the values
of Table C is obvious if a solution is: to be feasible, In foet, we have

checks for the colums and rows in this case, There is an overall check on
the values of Teble B making use of Table A, We have :



~8~

, I N1 N N
c21 yoe Ty T =2 < e o T ol W«fa’)
ceee  (21)
As a check on Table D we make use of Table C :
N
ae R (22)

We have in fact a check on each colurm of D involwving the sums of the
values of each colum, They are included at the base of Table D ,
Though Table D changes the check values remain constant,

For Table B we have that the bottom right hand comer can be obtained
either from the rows of the bottom left hand corner or from the colunms of
the top right hand corner. This will not ensure that the independent
values have been correctly obtained and if this is required then it could
be accomplished by extending Table D to include variations in a,

8. A Numerical Exammle

Consider the following quantitative values for the model

A, = Lo, 36, 36, 12 s a =1, 2, 3, L respectively
Ay = 8, 28, 88 s a =1,42,3 respectively
Teble A : \\ g

a "\\ 2 3 L

1] 10 7 1

2 3 L

Fromn Teble A we obtain Table B

\ ?
a N

a8

2 3 L
I
o lao 1 4 | 6
3 -k =7 -1
I 3 5 -




.»9...

Using (21) as a means of checking Table B, we have :
Total of Table B = 2 (3 + 4 +6) =m(10+ 7+ 1) ==10

The ensuing procedure is shown in the Tableaux on page 13,
Table C of Tableau 1 containg a feasible integer solution which hag a
functional with a valve of 20208, From this Teble we obtain Table D and
then using Table B we obtain Table I, Because certain routes of the solution
are cmpty the only calculation of the general fuact.x.on? £ yab  that need
have been attempted are : T ‘

j ) { ) { f {. ‘
1313} ez, (ems| (23] (e
1 32 5, / 2323’; {3&235}

and Oﬂqu 344 23 can be considered if it is T“)O“l‘tl‘Vt,o It oceurs that only
‘bn:Ls one is in fact positive and employing (15) we have that

= (24/2 (12)) = 1. Thus an unit trensfer would be beneficial in this
case snd by (16) it would increase the value of the functional by 12,

The improved integer solution is shown in Tebleau IT and on testing
it proves to be the optimum integer solution,

Suppose we wish to ]grhu:c,d te a non~integer solution, Tableau IT
indiecates that oﬂy 423J is both feasible and uerwefJ.c:Lp.l The value of &
is given by (19) and we have L= (8/2(14)) = 2/7. Using (20) we have that

his fransfer would increase t’ne value of the functional by 1 Y2 . The new
solution 1s given in Tebleau ITI, An improvement to this would be given by
o,oly L 3412, one that hu.S featured brev:x.cuslv, and the wvalug of, :
24/7()7)(2 ¥(12)) =%, . The increased in “bhe value of the functional
as a rc,sult of this ftransfer is 12 /1.9 The new solution bas not however

been recorded in a new Tableau,

It vill be observed that 'Aoco and Aoa have an H.C.F, of L, If these

values were accordingly reduced to one quarter of their original values we

would have values of 4 = 1 , 1  and 1 for the subsequent steps of the
L1428
iterative procedure, Tableau IT would then be c,omc a non~integer solution

(the values reduced +o 25% of those in Teble C) according to proccdure (1}
and with A =4,
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