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ABSTRACT   

 

ABSTRACT 

 

Phenolic and antioxidant contents of wines are very important in terms of both flavour attributes 

and health benefits. Changes occur during ageing of wine in containers (e.g. wooden barrels) in 

relation to their antioxidant activity and phenolic content. Vilana, Dafni, Kotsifali and Mandilari 

single variety Cretan wines, were vinificated to determine their antioxidant activity and phenolic 

content Wines were aged in different containers after two vinifications. Changes in the above 

characteristics were determined every three months for a twelve month period. Stainless steel 

with and without oenosticks containers, American oak, French oak, Acacia and Chestnut barrels 

were used for wine ageing. 

As far as phenolic and antioxidant contents are concerned, ageing of wine in chestnut barrels, 

Kotsifali and Mandilari (red wines) and in Acacia barrels for Vilana and Dafni (white wines), 

gave the best results, achieving the highest phenolic content and antioxidant activity after 12 

months of ageing.  

The phenolic fingerprints of Vilana, Dafni, Kotsifali and Mandilari wines were determined for 

the first time. The phenolic fingerprint of wines has been recently used for the authentication 

and discrimination of red wines. In this study, attempt has also been made to use the phenolic 

fingerprint of white wines, for authentication. Differences were observed in Kotsifali and 

Mandilari (red wines) and in Vilana and Dafni (white wines) directly after vinification, allowing 

their discrimination. Also the changes in their phenolic fingerprints were monitored during 

ageing in different containers for a 12 month period.  

The effect of hydroxytyrosol and oleuropein on wine spoilage induced by acetic acid bacteria 

was also determined. Hydroxytyrosol was better than oleuropein in controlling the increase of 

volatile acidity, causing wine spoilage. Wines treated with 0.5mg/l hydroxytyrosol showed 

control of volatile acid production, and may be a promising alternative to sulphites in wine 

production in the future.  

Finally, extracts obtained from olive oil mills and winery by-products were used in Vilana 

vinification instead of sulphites and antioxidant activity and phenolic content of the wines 

determined.  
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1.1 General introduction 

  

 

The main ingredients of wine are water and alcohol. However, their flavour, astringency, 

bitterness, aroma and character is  mainly attributed to a large group of compounds with 

phenolic structure (Rivero-Pérez et al., 2008). Phenolic substances in wine attribute a great deal 

to their character. Phenolic content and type varies considerably between different wines, and is 

one of the biggest factors in discriminating between wines. Grape and as a consequence wine 

phenolics vary a great deal amongst varieties.  

Some natural products, foods and beverages are known for their antioxidant properties and their 

consumption, are thus constantly increasing. Natural phenolic substances are known for the 

antioxidant properties and the benefits they can give to human health (Sun et al., 2002). 

Phenolic compounds in wine, possess great antioxidant properties and it is widely known that 

consumption of wine in moderation, is beneficial to human health due to the large amounts of 

antioxidants contained them - which are especially found in red wines and are mainly of 

phenolic structure (Roussis et al., 2008). For example, people in France generally show a lower 

mortality rate due to coronary heart disease in comparison to other European countries, although 

consumption of saturated fat is similar in both France and other countries (mortality from heart 

disease has been related to high consumption of high-saturated acids). This effect, known as 

‘the French paradox’, has been attributed to the consumption of red wine.  

Oxidation of wines by acetic acid bacteria is a factor contributing to wine spoilage due to the 

amount of the produced acetic acid, spoiling its taste and characteristics. Special care has to be 

taken during vinification and storage of wine to prevent their growth in the medium and the 

resulting spoilage.  

Furthermore, during vinification, and in order to prevent wine spoilage during ageing and 

storage, sulphur dioxide is used and added to wines. It is proven and widely recognized that it 

prevents oxidation and microbial spoilage in wines. There have been great efforts to minimize 

or substitute the amount of the added sulphur dioxide in wines with natural substances, with 

little progress being made throughout the years. As costumers’ interest in more healthy food and 

in diet in general, is increasing, so does for the need of the replacement of the artificial 

substances in them with natural ones. 

Another factor influencing the characteristics of wine is the type of barrel used in wine ageing.  
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The barrel wood influences the wines’ flavour and aroma as a great variety of compounds -

including phenolic substances - can be transferred from wood into wine. In this way phenolic 

content and composition in wine may be altered. The right type of barrel must be combined with 

the correct type of wine in order to improve its quality and not compromise it by changing the 

wines’ aromas in a negative way.  

 

The aim of this research was to study four Greek wines red and white, looking particularly at 

their phenolic content, antioxidant activity, barrel ageing, spoilage by acetic acid bacteria and 

alternatives to the use of sulphur dioxide as a preservative.     

 

Objectives of the study were: 

A. To characterize four Greek grape varieties in terms of their phenolic fingerprint, content 

and antioxidant capacity.  

B. To determine the influence of the barrel type used in wine ageing has on the phenolic 

fingerprint, on the phenolic content and antioxidant activity of the above four Greek 

wines. For this purpose, wines were stored in several different types of barrels and the 

changes in the above characteristics were monitored with time.  

C. To monitor the effect that two natural antioxidants substances, oleuropein and 

hydroxytyrosol, have on wine spoilage induced by acetic acid bacteria. 

D. To monitor the influence on phenolic content and antioxidant activity of substitution of 

sulphur dioxide in wines by two natural antioxidant extracts obtained from olive oil 

mills and wineries by-products.  

E. To evaluate the use of less common, than already used globally, varieties in 

winemaking, which could have improved wine characteristics by using different 

mediums for ageing and natural substances during their production.  
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1.2 Natural Antioxidants  

 

 

Antioxidants are a large group of highly reactive substances that have the capability of slowing 

or blocking oxidant processes so as to minimize the oxidation effects of free radicals.  

Free radicals are molecules with at least one unpaired electron, which is viable (can exist) in 

that form (Halliwell, 1989; Buenger et al., 2006). The unpaired electron of the radicals, seeks 

for electrons to pair, stealing them from the donor molecule, resulting in damaging it or in the 

formation of new free radicals. Free radicals have been related and are suggested to be involved 

in causing cancer, cardiac diseases, atherosclerosis – a disease of arteries characterized by 

thickening of artery walls, Alzheimer’s disease, ageing and other biological conditions (Li et al.; 

Halliwell, 1989; Frankel et al., 1999; Sun et al., 2002). Hence, oxidative stress plays a 

significant role in human health.  

Antioxidants are capable of stabilizing, or deactivating free radicals before the latter attack cells 

and biological targets. Moreover, they have the ability to interrupt the generation of free radicals 

by possessing properties such as scavenging activity and chelating metal ion activity and by 

being capable of reducing O2 concentrations. They are therefore crucial for conserving health 

and supporting well being (Atoui et al., 2005; Brewer, 2011).  

Many research groups are examining the chemical nature and activity of natural antioxidants in 

fruits, vegetables, grains, herbs, green tea leaves, grapes and wine.(Li et al.; Larson, 1988; 

Shahidi et al., 1992; Kanner et al., 1994; Shahidi, 2000; Atoui et al., 2005). Most of these 

antioxidants are polyphenols.  

Some of the most widely known and studied antioxidants are vitamins C and E and beta 

carotene, found in a great amounts in natural beverages and foods. Phenolic compounds such as 

flavonoids are becoming increasingly known for their antioxidant activity (Percival. 1998). 

Polyphenols possess ideal structure for free radical-scavenging activities, and have been shown 

to be more effective antioxidants in vitro than vitamins E and C on a molar basis (Rice-Evans et 

al., 1996; Rice-Evans et al., 1997). The free radical-scavenging activity of natural polyphenols 

depends on the number and location of free −OH groups on the flavonoid skeleton. Flavonoids 

with more than one hydroxyl group on their structure possess increased antioxidant activity 

compared to those with only one hydroxyl substitute (Lupea et al., 2008; Brewer, 2011). 
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Oxidative damage to DNA, proteins, and other molecules has been involved in the pathogenesis 

of a wide variety of diseases. If the amount of antioxidants consumed is not sufficient enough, 

antioxidant potential may be compromised and thus the overall oxidative stress increased 

(Percival 1998). 

Antioxidant activity has been strongly related to the phenolic content of a sample, in vitro. Red 

wines are proven to exhibit 5 to 10 times higher antioxidant activity than white wines. Even 

though they have less antioxidant activity, white wines are known to contain significant 

amounts of hydroxycinamic acids, tyrosol and hydroxytyrosol, all substances of phenolic origin, 

with high antioxidant activity (Fernández-Mar et al., 2012).  

 

 

1.3 Phenolic compounds 

 

1.3.1 Wine phenolics 

 

Chemically, phenols are cyclic benzene compounds (Figure1.1) that have one or more hydroxyl 

groups which are associated directly with the ring structure. Although they contain alcohol 

groups they do not behave as alcohols or have their chemical properties.  

 

Figure 1.1 Phenol structure (Ribéreau-Gayon et al., 2006) 

 

Wine phenols, are a large and complex group of compounds (Figure 1.2) that play a major role 

in winemaking and wine. They are very important to wines’ characteristics and quality. 

Phenolic substances are responsible for the differences between red and white wines (especially 

the colour and flavour of red wine). They play an important role to the taste, mouth-feel, aroma, 

appearance and antimicrobial properties of wines. The phenols that are contained in wine may 

come from various parts of grapes such as the fruit and vine stems, can be produced by yeast 

metabolism, or be extracted from wood cooperage. Their structure varies during wine ageing in 
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barrels and bottles, and is always dependent on the employed conditions. The phenolic content 

increases during the early stages of fermentation especially if the juice is in contact with the 

seeds and skins (Jackson, 2000). Phenolics have health properties and are thought to be 

responsible for the ‘French paradox’ (Kanner et al., 1994; Frankel et al., 1995; Meyer et al., 

1998; Sun et al., 2002). The ‘French paradox’ is based on the observation that,  despite the high 

fat intake of people in the country, coronary heart disease (CHD) mortality was quite low, an 

opposite situation of that expected due to the high fat intake. That has been partially attributed 

to a regular consumption of wine. It was suggested that wine consumption was acting against 

and reducing the effect of a diet high in fat, which could lead to coronary heart disease. The 

phenolic components in red wine were proven to exert antioxidant activity in inhibiting the 

oxidation of human low density lipoproteins in vitro (Kanner et al., 1994). The antioxidant 

properties of phenolic compounds in red wine in retarding atherogenesis were proposed as an 

explanation for the French Paradox.  The antioxidant and bactericidal properties of wine 

protected the consumers from cardiovascular diseases. 

In red and white wine, phenols that are derived from p-coumaric acid and ferulic acid are found 

and they can cause unpleasant aromas in wine that increase in intensity when combined 

affecting negatively wine quality. Very small quantities (a few μg/l) of coumarins are found in 

wood-aged wine. Despite these low levels, they still affect wine’s aroma and flavour 

characteristics. Another family of more complex polyphenols which are present in grapes, wine 

and oak wood are stilbenes. Resveratrol, a stilbene that has become popular in the recent years 

for its health related properties, is located in the skins of the grapes and is mainly extracted 

during the fermentation of red wines. 

 

1.3.2. Flavonoid and non-flavonoid compounds of wine 

 

Phenolic compounds of wine may be divided into two large groups: flavonoids and non-

flavonoids.  

Phenolic compounds are found in smaller quantities in white wines. In the majority, they are 

soluble non-flavonoids (hydroxycinnamates), such as caftaric acid and the related derivatives p-

coumaric acid and ferulic acid. In both red and white wine, phenols that are derived from p-

coumaric acid and ferulic acid give to wine unpleasant ‘animal’ aroma that increases in intensity 

when combined. Examples of phenolic compounds found in wines are shown in Table 1.1. 
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Table 1.1 Phenolic compounds in grape and wine (Jackson, 2008) 

Table 1.1 Phenolic compounds in grape and wine (Jackson, 2008)

 

 

Flavonols and other flavonoid phenols are extracted slowly. Therefore they are only found in 

significant quantities in grape juice macerated with the grape pomace (skin, seeds, stems and 

pulp that remains after pressuring grapes, during vinification). Those found are primarily 

catechins and catechin-gallate polymers. In white wines, the yellow colour is mostly attributed 

to the limited extraction during maceration and oxidation of flavonols (such as kaempferol and 

quercetin). Furthermore, as the extraction of phenols is affected by many factors, such as grape 

maturity and vinification conditions and procedures, their content in wine shows great variation, 

notably greater than that of any other wine compound. In addition, the quantitative and 

General type                                         General structure                   Examples                           Major source
a
 

a G: grape, O: oak, Y: yeast 
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qualitative changes in the concentration and structure of phenolics during ageing are very 

intense and greater than in any other wine constituent (Jackson, 2000). 

 

1.3.2.1 Flavonoid compounds of wine 

 

Flavonoids are a group of phenylpropanoids and are characterized as molecules consisting of 

two phenols joined by a pyran. They have a C6-C3-C6 skeleton, common in all flavonoids, 

consisting of the phenolic rings (A and B rings) linked together by a pyran ring (C ring). 

Flavonoids are hydroxylated on their C5 and C7 carbons on A ring and C4’ carbon on the B ring 

(Moreno-Arribas et al., 2008) (Figure 1.2). Classes of flavonoids differ in the level of saturation 

of the C ring (Brewer, 2011). 

 

                                                                       
Figure 1.2 Basic flavonoid structure (Ribéreau-Gayon et al., 2006) 

. 

Flavonoids have a varying yellow colour. The most common flavonoids in wines are flavonols, 

anthocyanins and catechines (flavanols). The most widespread are flavonols, which are 

pigments that are found in the skins of both red and white grapes. They are synthesized in the 

endoplasmic reticulum and afterwards, stored in the central vacuole of the cell (Jackson, 2000).  

Flavonoids can be found free or polymerized to sugars, flavonoids and non flavonoids or a 

combination of both. If they are combined with sugars and non flavonoids they are called 

glycosides and acyl derivatives. Examples of such esterified flavonoids found in red wine 

grapes are kaempferol, quercetin and myricetin. In white wine grapes only kaempferol and 

quercetin can be found (Ribéreau-Gayon, Glories et al. 2006). Despite the fact that they can be 

found in both red and white wines, flavonoids characterize red ones more than they do white. In 

red wines, they constitute more than 85% of the phenol content (1000 mg/l). In white wines, 

flavonoids constitute less than 20% of the total phenolic content (50 mg/l) (Jackson, 2000). The 
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polymerized flavonoid that is most frequently found in both grapes and wine is 

dihydroquercetin (known as taxifolin). 

Procyanidins occur primarily as monomers in grapes (Dumon et al., 1991). In wine, they tend to 

polymerize occurring as condensed tannins. 

Apart from grape variety and the amount of flavonoids that are present in the grape - which in 

turn depends on the climatic conditions and berry maturity, the amount and degree to which 

flavonoids are extracted during wine production, depends on many factors. Traditional 

fermentation due to longer maceration in contact with the seeds and skins, extracts more 

phenolic compounds than other types of vinification (wine production). Their extraction also 

depends on the pH, the content of sulphur dioxide and ethanol of the juice, as well as the 

temperature and duration of fermentation (Jackson, 2000). 

 

i)  Anthocyanins. 

Anthocyanins exist in grapes as glucosides. Anthocyanidins conjugate with glucose to form 

anthocyanins. This conjunction is responsible for the increase of the chemical stability and 

water solubility of the anthocyanidins. The colour of anthocyanins depends on conditions in the 

medium such as pH and sulphur dioxide content, as well as their molecular structure. They are 

found mostly in the skin cells of the grape berry, with a concentration gradient from the inside 

towards the outside of the grape.    

Five anthocyanin molecules have been identified in grapes and wines, with two or three 

substitutes (-OH and -OCH3). Therefore, grape anthocyanins are divided into five groups: 

Cyanins, malvins, delphinins, peonins, and petunins (Table 1.2). The proportion and amount of 

each class varies widely among cultivars. Growing conditions can also play a big role in the 

amount of each one of them. The proportion of the five molecules influences hue and colour 

stability of wine. Their chemical resistance to oxidation is affected by the presence of ortho-

diphenols on the B ring and the conjugation with sugar and other compounds (Jackson, 2008). 

 



CHAPTER ONE: General Introduction – Literature Review 10 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

 

Figure1.3 Basic structure of anthocyanidins (Jackson 2008) 

 

Table 1.2 Types of anthocyanidins in relation with the substitutes of anthocyanidin basic 

structure. 

Anthocyanidins Type of substitute 

 R3’  R5’ 

Cyanins -OH -H 

Malvins -OCH3 -OCH3 

Delphinins -OH -OH 

Peonins -OCH3 -H 

Petunins -OH -OCH3 

 

Among the five anthocyanins, malvidin is the one found in greater quantities in all grape 

varieties, varying from 90% in Grenache to just fewer than 50% in Sangiovese. Grape variety 

and ageing in barrels and bottles affects anthocyanin concentration. Ribéreau-Gayon, Glories et 

al. (2006) reported concentration of 100 mg/l (Pinot Noir) to 1500 mg/l (Syrah, Cabernet 

Sauvignon.) after fermentation, which can decrease in a few years of barrel and bottle ageing to 

0-50 mg/l. In fact, most anthocyanins conjugate and condense with tannins in wine, forming 

more complex compounds with markedly more stable colour. These combined anthocyanins 

although responsible for colour in wine, cannot be identified by standard analyses yet. A small 

fraction of anthocyanins can be lost, influenced by environmental conditions (temperature, light, 

oxygen, etc.) that can break them down or by their precipitation in a colloidal matter leading to 

loss of colour, negatively affecting wine quality (Ribéreau-Gayon et al., 2006).  

.  



CHAPTER ONE: General Introduction – Literature Review 11 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

ii) Tannins 

Tannins are substances that can combine with proteins, polysaccharides and other plant 

compounds, leading to the formation of stable molecules. They are produced by the 

polymerization of fundamental phenolic substancess. Therefore, they are characterized as high 

molecular weight compounds (Mr > 500) with many phenolic groups (Hagerman et al., 1998). 

The only legally authorised tannins that can be used as wine additives are the hydrolysable 

tannins despite the fact that they are not naturally found in grapes. The hydrolysable tannins, 

that are commonly found in oak wood barrels are gallotannins and ellagitannins (Ribéreau-

Gayon et al., 2006). As tannins’ structure displays a great variability, their analysis is quite 

complex. Because of their structural diversity their properties can be quite differentiated, and 

amongst various types of grape and wine they can attribute to flavours and wine aromas in 

several different ways. Apart from their content, their structure and colloidal status plays an 

important role on the final taste and flavour of wine.  

 

1.3.2.2 Non flavonoid compounds of wine 

 

The non flavonoid compounds of wine consist of phenolic acids, volatile phenols and stilbenes. 

Phenolic acids have no colour in alcoholic solutions or particular taste and flavour. In contrast 

to flavonoid compounds that have two C6 benzene rings in their structure, phenolic acids are 

simpler compounds and are characterized by the presence of only one C6 benzene ring in their 

structure. They are divided in two categories, the hydroxycinnamic acids and the 

hydroxybenzoic acids (Figure 1.4). Phenolic acids and their derivatives are the most common 

non flavonoid phenolics found in wines - except for wine aged in oak barrels (Ribéreau-Gayon 

et al., 2006). Hydroxycinnamic acids are phenylpropanoids, with a C6-C3 skeleton. They are 

found in wine mostly in their esterified form with sugars, alcohols and organic acids whereas 

only low amounts are found in the free form. They consist approximately 73% of the phenolic 

content of white wines, with concentration increasing during wine ageing (Moreno-Arribas and 

Polo 2008). Hydroxybenzoic acids are characterized by a C6-C1 chain. The phenolic compound 

that belongs in this group and is found in the largest quantities in wine is gallic acid (Figure 

1.5). In general, hydroxybezcoic acids are found in significant smaller quantities in wines in 

comparison to hydroxycinnamic acids (Moreno-Arribas et al., 2008). 

Stilbenes are phenolic compounds that are composed in grapes after microbial attack or UV 

radiation as a defence mechanism. Their concentration depends on factors such as grape variety, 
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climatic conditions and pathogenic attack. They do not appear to increase or decrease 

significantly in content during barrel ageing. They are famous because of their useful properties, 

the antioxidant properties and the ability to act against cancer and against possible mutations. 

Resveratrol, the most famous amongst the stilbenes, is formed when grapes are infected by 

Botrytis cinerea mainly in the skin of the grape berries (Moreno-Arribas et al., 2008).   

 

 

Figure 1.4 Chemical structures of (a) hydroxybenzoic and (b) hydroxycinnamic acids found in    

wines (Gonçalves et al., 2013) 

 

                                                                                                                                          

Figure 1.5 Gallic acid (3,4,5-trihydroxybenzoic acid) (Moreno-Arribas and Polo 2008) 

 

.  

1.3.3 Properties of wine polyphenols 

 

i) Antioxidant properties 

Phenols are generally known for their antioxidant properties. The phenolic compounds of wine 

act as antioxidants, contributing to lowering human low-density lipoprotein, to cardioprotection 

(protection against heart disease) and to the reduction of cancer (anticarginogenic action). The 
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antithrombotic ability they have – reducing thrombus formation in blood - is also due to their 

antioxidant properties. Consumption of wine for two weeks has been proven to reduce the 

susceptibility of plasma and low-density lipoprotein (LDL) – cholesterol (Rice-Evans et al., 

1996; Baydar et al., 2004). Also catechins (a fraction of phenolic compounds), according to 

Stanley et al. (1999), are absorbed by human blood and have been found to exhibit antioxidant 

properties in vitro.  

It has been reported that the by-products of phenolic oxidation in wine produce compounds that 

bind additional oxygen. As a consequence, oxygen is rapidly diminished and thus is unavailable 

to oxidize other wine components (Jackson, 2000). 

Antioxidant activity of phenolics depends on the conjunction with other molecules, the degree 

of polymerization, the number and arrangement of the phenolic substituents etc. Flavonoids 

with the most hydroxyl groups in their structure have higher antioxidant activity. Tannins, due 

to high polymerisation and many hydroxyl groups in their structure are also proven to have high 

antioxidant activity (Hagerman et al., 1998). 

 

ii) Antimicrobial properties  

Wine is known to have, by partially yet unexplained mechanisms, protective action against 

several gastrointestinal diseases. This action is mainly attributed to wine phenolic content. The 

precise mechanism by which wine and its phenols, exerts antimicrobial action is controversial. 

Not even the phenols that are involved are known. Generally, phenols have various abilities on 

binding to substances and moreover possess diverse effects on living systems. For example, 

when tannins bind with proteins, they alter their solubility and structure resulting in limitation of 

enzyme action (Jackson, 2000). Bacteria and fungi digest substances outside their cells. If 

enzymes they use in digestion are inactivated, the results are lethal to them. Binding of tannins 

to the phospholipids and proteins of their membranes interrupts proper function of membranes. 

Additionally, when phenols chelate with metals they restrict the accessibility of very useful 

elements like iron and zinc to the microorganisms.  

Stilbenes, have both antimicrobial and antioxidant properties and are mainly formed when 

grapes are attacked by pathogens (Stanley et al., 1999). Resveratrol, which has strong 

antioxidant effects, may be involved in the health benefits derived from moderate wine 

consumption (Jackson, 2000). 
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iii) Taste and flavour properties  

Phenolic substances play a great role in the organoleptic properties of wines. Their content and 

proportion affect wine aromas and flavour to a great extent, contributing to the final taste 

characteristics of wines. 

Flavonoid tannins influence taste and mouth-feel. Catechins and their polymers, the 

procyanidins and condensed tannins, constitute the predominant source of bitter and astringent 

taste in wine (Jackson 2000). The concentration of certain phenolic groups and molecules can 

greatly affect the final product. Exceeding certain levels – or even very small quantities - may 

give unpleasant taste and aroma characteristics to the wine. 

 

 

1.4. Sulphur dioxide 

 

Sulphur dioxide is very commonly used in foods and drinks processing and storage, 

winemaking and the pharmaceutical industry, mainly because of its antioxidant and 

antimicrobial properties and the ability to prevent the enzymatic and non-enzymatic browning 

of foods and wines that leads to loss of nutritional and sensory properties.  

 

1.4.1 Sulphur dioxide in must and wine  

 

Sulphur dioxide has been used in winemaking since the end of the 18
th
 century. It is the most 

common chemical that is used worldwide to prevent oxidative spoilage and browning of wine 

induced by oxidation of wine components (Li et al., 2008). 

Bottled wines are not sterile. Bottled wines may contain a considerable amount of viable, but 

dormant, microorganisms. Under most situations, they do not cause any stability or sensory 

problems to wines. However, when wines are about to be stored for a long period of time, 

especially in the case of sweet wines, an antimicrobial substance such as sulphur dioxide, must 

be added to wine to prevent any unwanted activity of wine microorganisms.  

Sulphur dioxide may be added at various times during wine production, but almost always after 

fermentation. Concentrations of 0.8-1.5 mg/l sulphur dioxide inhibit the growth of most yeasts 
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and bacteria. The total sulphur dioxide content required to maintain a desirable level depends on 

the pH of the wine and the concentration of sulphur-binding compounds.  

Sulphiting gained in popularity in winemaking by improving wine quality when used on rotten 

grapes. Its specific antimicrobial properties and its ability to prevent bacterial wine spoilage 

were later discovered. 

Wines can be produced without the addition of sulphites, nevertheless, the absence of sulphites 

in wines is rare as, even when sulphites are not added to wines, yeast produce small quantities 

during fermentation.In the majority of cases less than 10 mg/l, even though in a few cases about 

30mg/l have been reported.  

During storage, sulphur dioxide hinders the development of all types of microorganisms (yeasts, 

lactic bacteria, and, to a lesser extent, acetic bacteria), preventing yeast haze formation, 

secondary fermentation of sweet white wines, Brettanomyces contamination and the production 

of ethyl-phenols (Ribereau-Gayon, 2000). Excessive use of sulphites in wine can however result 

in compromising the wine quality and result in unpleasant flavour and aroma (Li et al., 2008). 

Due to its diverse properties, it is very difficult to replace it in winemaking with other 

compounds.    

 

1.4.2 Properties of sulphur dioxide 

 

i) Antioxidant properties:  

Sulphur dioxide protects wines from chemical oxidation, oxidation of its phenolic compounds 

and compounds responsible for its aroma. In the presence of catalysts, it reacts with dissolved 

oxygen and helps to establish a sufficiently low oxidation–reduction potential, in favour of wine 

aroma and taste development during ageing and storage. Sulphur dioxide needs several days to 

consume 8.0–8.6 mg/l of oxygen in a synthetic medium. Sulphites protect oxidizable yeast 

musts from oxidation. Sulphur dioxide, by combining with oxygen, makes oxygen no longer 

available for the oxidation of other components. In the absence of sulphites, the depletion of 

oxygen is very quick and in 4 to 20 minutes on average, it is completed. By sulphiting musts at 

any time, oxygen is no longer consumed and its concentration remains stable. 

 Moreover, sulphur dioxide acts against oxidasic enzymes. This act mainly involves wine 

storage but can also play a significant role during winemaking. During winemaking, sulphur 

dioxide protects against oxidation by destroying or blocking the activity of oxidases so that the 
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enzymatic oxidation is inhibited until the fermentation begins. It inhibits oxidation enzymes 

(tyrosinase, laccase) from becoming active and destroys them over time, protecting musts from 

oxidation before fermentation.  

 

ii) Antifungal properties 

Sulphur dioxide effectively destroys the existing population of microorganisms, in wine. 

Moderate sulphiting inhibits yeast growth without totally destroying it. If must is sulphited 

before fermentation, the yeast resistance to the added sulphur dioxide is increased. The 

combined sulphur dioxide has a direct action on bacteria, acting against them. When it is 

combined with ethanal (or pyruvic acid)  it possess an antibacterial activity 5–10 times weaker 

than that in the free form. However, it becomes 5–10 times more abundant, making it useful for 

the control of bacteria (Jackson, 2000).     

Sulphur dioxide is also active against acetic acid bacteria but additional studies on this subject 

are needed. These bacteria resist relatively high concentrations. In the winery, acetic acid 

bacteria are most effectively prevented by avoiding contact with oxygen in the air and 

controlling temperature in the winery. 

 

1.4.3 Sulphur dioxide concentration in wine 

 

Sulphur dioxide protects wine aromas by binding ethanal and other similar products, and makes 

the flat character of wine disappear. Excessive doses must be avoided not only for health 

reasons; high sulphur dioxide doses can neutralize aroma, or even produce unpleasant aromas 

and taste such as a smell of ‘wet wool’ and a burning sensation in the mouth. On the other hand, 

if the concentration used is not sufficient enough, the stability of the wine cannot be ensured.  

Browning of wine caused by phenol oxidation, leads to affecting the sensory properties of wine 

and loss of its nutritional value (Li et al., 2008). Sulphites prevent browning of wine through 

their antioxidant properties. 

Sulphite exists in many different forms in wine. Concentration or additions of it in wine are 

expressed in mg/l or ppm of sulphur dioxide regardless of the form used. Limits of sulphites in 

commercial wines are shown in Table 1.3.  
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Table 1.3 International Organization of Vine and Wine (OIV) - Maximum acceptable sulphite 

limits in commercial wines. 

Types of wines Sugar content  

=or <4 g/l 

Sugar content  

>4 g/l 

Red wines 

White and rose wines 

Sweet wines 

150 

200 

300 

300 

400 

 

1.4.4 Adverse physiological effects of wine sulphites 

 

Sulphites have been reported to cause many severe adverse reactions, including anaphylaxis, 

asthma, abdominal pain and diarrhoea, seizures and in a few extreme cases death (Yang et al., 

1985). Its use has always been regulated and new techniques have always been sought so as to 

lower the concentration used. 

Since the beginning of the century, the possible toxicity of sulphur dioxide has been the subject 

of much research. Acute toxicity has been studied in animals. The absorption of a single 

moderate dose of sulphites is ‘slightly’ toxic. Concerning its toxicity in humans, studies carried 

out indicate the appearance of symptoms such as nausea, vomiting and gastric irritation at 

significantly high absorbed concentrations (4g of sodium sulphite in a single concentration). No 

secondary effects were observed with a concentration of 400 mg of sulphur dioxide over 25 

days. Possible toxicity of sulphites in humans has often been attributed to the destruction of 

thiamine or vitamin B1. However, the distraction of them is very limited at a pH of around 2, 

which corresponds to stomach pH. Allergic reaction to sulphites is observed at very low 

ingested concentrations (around 1 mg) involving mostly asthmatic people. Symptoms to people 

with sulphite sensitivity are shown in a very small period of time after the consumption of 

sulphited wine (Vally et al., 2003). 

Sulphites have been involved in sulphur dioxide induced bronchial asthma. However, the 

mechanisms that are responsible have not yet been verified (Vally et al., 2003; Suh et al., 2007).  

Red and white wines are proven to vary in the impact they have on consumers as far as sulphur 

dioxide sensitivity is concerned. When sensitive asthmatics consumed sulphited white wine 

their tolerance was up to 150 ppm of sulphites. When red wine was consumed the symptoms 

caused by sulphites appeared at levels of 50-55 mg/l (Vally et al., 2003). 
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1.4.5 Advantages and disadvantages of sulphur dioxide in wines 

 

Sulphur dioxide is the only permitted wine additive that possesses such wide antimicrobial 

activity. When sulphur dioxide is not used in bottled wines, stabilization against microbial 

growth can be achieved only by physical means - such as pasteurization and filter sterilization 

(Jackson, 2000). Excessive sulphiting slows or completely inhibits malolactic fermentation of 

red wines, which, when it is desirable, is an important stage in the production of some red wines 

giving them interesting flavour characteristics.  

In conclusion, sulphur dioxide permits the extended barrel maturation, storage and bottle ageing 

of many types of wines that would be spoiled without its use. Nowadays, especially for health 

reasons, the possibility and ways of reducing the concentration of sulphites that are added to 

wines is under investigation. Due to the diverse effects of sulphur dioxide in wine, the use of 

alternative substance which have the same properties as sulphites, but lacking its disadvantages 

is a great challenge.  
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1.5 Acetic acid bacteria 

 

 

Acetic acid bacteria (AAB) are a group of quite common obligatorily aerobic microorganisms in 

the Acetobacteraceae family. They are well known for their ability to oxidize ethanol to acetic 

acid, which is a major component in vinegar, and adapt well to sugar-rich and alcohol rich 

environments (Du Toit et al., 2002; König et al., 2009). They are some of the most common 

wine spoilage microorganisms because of their effect on acetic acid production and, therefore 

they represent a great threat to wine quality and commercial value. They are found on grapes, in 

wine and must (Guillamón et al., 2011).  

As they are obligate aerobic microorganisms, their growth depends on the availability of 

molecular oxygen in the medium. Optimal pH for their growth ranges from 5 to 6, but they can 

still grow at pH level as low as 3-4 and temperatures between 25-30°C (Bartowsky et al., 2008; 

König et al., 2009). As mentioned above they oxidize ethanol (sometimes leading to high 

concentrations of acetic acid). However, at high alcohol concentrations their growth is limited 

(Du Toit et al., 2002). Acetic acid concentrations damage wine quality when they reach a level 

>  0.7-1.2 g/l and higher. Some strains can rapidly produce high concentrations of acetic acid. 

For example, it has been reported that some South African strains of acetic acid bacteria can 

lead to the production of about 4 g/l of acetic acid in five days in experiments performed in grape 

juice (Du Toit et al., 2002).   

Acetic acid bacterial growth depends on factors such as the phase in the winemaking process, 

the treatments that have been used and the control of wine storage. Their numbers reduce 

considerably under the essentially anaerobic conditions present during alcoholic fermentation. 

However, once alcoholic fermentation is complete, the processes associated with racking, 

filtration, and storage of wine can lead to oxygen enrichment, which activates the metabolism of 

acetic acid bacteria and increases their growth.  

They have been isolated from the top, middle and bottom of the tanks and barrels, suggesting 

that AAB can actually survive under the semi-anaerobic conditions occurring in wine containers 

(Du Toit et al., 2002). Inadequate storage conditions - either in barrels or in bottle -  can also 

stimulate the growth of these bacteria and increase volatile acidity. The number of bacteria 

usually decreases rapidly after bottling, because of the relatively anaerobic conditions present 
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within a bottle. Although they are obligate aerobes, acetic acid bacteria can survive under the 

almost completely anaerobic conditions during winemakingWhen oxygen is present in the 

medium, they are able to still grow (Guillamón et al., 2011). Their growth is increased by any 

process that involves aeration or oxygenation.  

 

 

1.6 Oleuropein and Hydroxytyrosol 

 

 

Oleuropein and hydroxytyrosol (Figure 1.6), are phenolic compounds contained in olive fruit, 

olive leaves and olive oil (Saija et al., 1998). Oleuropein consists of hydroxytyrosol (4-(2-

hydroxyethyl)benzene-1,2-diol) (HT), elenolic acid and one molecule of glucose.  

 

 

Figure1.6 Structural formulas of oleuropein and hydroxytyrosol molecules (Rietjens et al., 

2007) 

 

It has been found that oleuropein acts beneficially on human health and is proven to possess 

antioxidant, anticancer, anti-inflammatory, antimicrobial and antidiabetic properties (Hassen et 

al.; Gikas et al., 2007). 

The biological properties of oleuropein and hydroxytyrosol, may be related to a certain extent, 

to their antioxidant activity and their ability to scavenge free radicals (Saija et al., 1998). 

In the past, olive leaf infusion had been used against diseases such as malaria. Nevertheless, 

research in olive leaves properties begun only after the second half of the 20
th
 century, 

demonstrating that their properties and benefits in human health were driven by their phenolic 

content. Oleuropein, found in the largest amount than any other phenol in olive leaves has been 
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used in a great number of medical treatments. Oleuropein prevents cardiac diseases by 

protecting membrane lipid oxidation, improves lipid metabolism influencing in positive way 

obesity problems, has a protective effect against cancer and possesses antiviral properties. 

Derivatives of oleuropein such as hydroxytyrosol, are used against several diseases (Japσn-

Lujαn et al., 2006). Red and white wines have be found to contain some significant amounts of 

hydroxytyrosol varying from 1,72 - 1.92 mg/l in white wines and 3,6-4,2 mg/l in red wines (Di 

Tommaso et al., 1998).  

Elenolic acid, one of the structural subunits of oleuropein, has been demonstrated to exhibit 

strong antiviral properties. In addition, olive leaf extracts have a great impact on many viruses 

such as those causing herpes, influenza and encephalomyocarditis. They have been found to be 

susceptible to these extracts’. Moreover, oleuropein forms non-covalent complexes with the 

peptide that is known to be an etiologic factor of Alzheimer’s disease (Gikas et al., 2007). 

 

1.6.1 Oleuropein resources 

 

Oleuropein can be found in olive oil wastes, olive leaves and olive oil. Alperujo, is a semi – 

solid residue obtained in olive mills during the production of olive oil. Its high moisture content 

(65–70%) prevents its use in the olive-oil industry for a second extraction. The cost of the 

procedure is high and in not compensated by the quality of the produced oil. The semi-solid 

olive oil residues have a rich phenolic content. Their antibacterial and antioxidant activities are 

attributed mainly to their phenolic content making the olive oil residues cheap cost but a source 

of antioxidants. The olive oil mill residues are proven to be up to 100 times higher in phenolics 

than that in olive oils. Olive leaves are rich in oleuropein and have very powerful radical 

scavenging properties. The concentration of oleuropein in olive oil is strongly affected by the 

extraction conditions. 
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1.7 General principles of winemaking 

  

 

The first step of vinification, after removing all leaves and any other material from the berries, is 

the crushing of the fruit in order to release its juice. Maceration, the extraction of several 

components of the grape pulp, seeds and skin, is the first step of vinification, and is promoted 

by the action of several enzymes. 

As far as white wines are concerned, maceration is limited. Contact of grape juice with pomace 

lasts for a few hours. On the contrary, in red wines maceration lasts for a long period of time 

and it occurs at the same time as alcoholic fermentation. The alcohol produced increases the 

extraction of anthocyanins and tannins from the skin and seeds. Extraction of phenolic 

compounds takes place, which gives the wines their special characteristics (aroma, flavour, 

appearance, ageing ability). Most of the time, the must is introduced with a yeast strain with 

known characteristics that will enhance alcohol production, and help the development of the 

flavour and bouquet of wine (Jakson 2008). 

In some type of wines, malolactic fermentation follows alcoholic fermentation. During 

maturation, attention is being paid to avoid exposure with oxygen that leads to oxidation and 

microbial spoilage. After weeks or even months, wines are racked to separate wine from solids 

that have precipitated. At bottling, a small amount of sulphur dioxide is added to the wines to 

prevent microbial spoilage and oxidation. 

 

1.7.1 The role of barrels in wine making 

 

Ageing of wine is a technique commonly used in wineries to increase the stability of wine and 

achieve more complex aromas. It commonly takes place in wooden barrels. As a result of 

ageing, wine gains in quality, with its colour becoming more stable, aroma and flavour being 

enriched and clarity improved. (Ibern-Gómez et al., 2001; Fernández de Simón et al., 2003; 

Garde-Cerdán et al., 2006; De Rosso et al., 2009; Chira et al., 2014).  

Barrels that are used for this  purpose may be made from oak (American,  French or Spanish 

oak), chestnut wood and acacia wood, showing important differences in their chemical 
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characteristics (De Rosso et al., 2009; Ortega-Heras et al., 2010; Fernández de Simón et al., 

2014). These are the only two approved by International Organization of Vine and Wine (OIV) 

for wine ageing (Fernández de Simón et al., 2014). Wood from Castanea sativa (chestnut wood) 

was commonly used in construction of barrels in the Mediterranean region in the past due to its 

low cost and porosity (De Rosso et al., 2009). 

During ageing, oxygen can penetrate, due to woods’ porosity, through the wood into the barrel 

and wine, leading to the formation of stable anthocyanins and tannins. A result of this process is 

that the colour of wine becomes more stable and its astringency is decreased (del Álamo Sanza 

et al., 2004; De Rosso et al., 2009; Oberholster et al., 2015). It has been reported that in oak 

barrels, oxygen penetrates at a rate of 10-45 mg/l per year (De Rosso, Panighel et al. 2009). 

Nevares and Del Alamo (2008) estimated that the rate of oxygen penetration in new French oak 

barrels is between 1.66 ml/l per month
 
and 2.5 ml/l per month. 

Also, during wine ageing, many compounds, volatile and non-volatile, are extracted from the 

wood into the wine. Compounds such as polyphenols, coumarins, polysaccharides, terpenes and 

fatty acids are transferred from the wood into the wine. The hydrolysable tannins gallotannins 

and ellagitannins, are the major phenolic compounds that are extracted from wood during wine 

ageing. It has been reported that ellagitannins concentrations are lower than expected in wine 

aged in oak barrels (Fernández de Simón et al., 2003; De Rosso et al., 2009). Ageing of wine is 

depented on the phenolic composition of wine, which is also affected by contribution phenolics 

in the wooden barrels (Hernández et al., 2007). Wood of different species shows differences in 

their chemical properties and as a result the extractable components that can contribute to wine 

flavour are differentiated. As reported by De Rosso et al. (2009) acacia wood is characterized by 

significant contents of benzene aldehydes, chestnut wood by rich content in polyphenols and 

cherry wood by release of methoxyphenols, and oak by –methyl γ octalactones and polyphenols 

stable to oxidation. According to Fernández de Simón et al. (2003) the extractable compounds 

in oak wood varies with the oak wood characteristics and geographical origin of the wood, the 

oak species and on factors such as the seasoning and toasting (a hydrothermal procedure) during 

barrel manufacture. Of course the variety of grapes has a significant role in the extraction of any 

compounds from the barrel by the wine (Garde-Cerdán et al., 2006). 

Apart from the use of wood barrels ageing of wine may be done in tanks that contain small 

fragments of toasted oak (sticks, powder etc) (Hernández-Orte et al., 2014). This technique is 

becoming popular nowadays and apart from giving the wine taste, aroma and wooden character, 

as it is also cheaper than wooden barrels (Ortega-Heras et al., 2010; Hernández-Orte et al., 

2014; Tao et al., 2014). Using tanks with wood fragments, instead of wooden barrels, can 

http://www.sciencedirect.com/science/article/pii/S0308814614016057#b0080
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decrease the cost of wines by 10 times. This technique has been used in countries such as Chile, 

Argentina, South Africa, Australia and United States for several years (Hernández-Orte et al., 

2014).  

 

 

1.8 Determination of antioxidant activity, phenolic content and 

fingerprint of wines.  

 

 

1.8.1 Methods used for the determination of antioxidant activity in biological 

samples. 

 

Many analytical methods are used to measure the antioxidant activity of biological substances. 

(Fogliano et al., 1999; Re et al., 1999; Sanchez-Moreno, 2002; De Beer et al., 2003; Villaño et 

al., 2004; Buenger et al., 2006; Rivero-Pérez et al., 2008). Table 1.4 summarises the different 

methods used to determine total antioxidant activity. The two most widely used chromogen 

compounds to measure the antioxidant activity of biological material are the ABTS+ and the 

DPPH radicals (Arnao, 2000).  

However, all the different methodologies used in the evaluation of antioxidant activity have 

resulted in different results between laboratories that are difficult to compare. There is a need 

for a standardized and reliable method that can be used worldwide to evaluate the antioxidant 

activity of wines in such way that results between laboratories can be compared (De Beer et al., 

2003; Buenger et al., 2006) 
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Table 1.4: Some of the assays used to measure antioxidant activity of substances (Buenger et 

al., 2006) 

Method  / 

assay 

Name-giving molecule / 

abbreviation  
Measurement 

DMPD N,N-dimethyl-p-phenylenediamine Analyses the ability to reduce the radical cation 

DPPH 2,2-diphenyl-1-picryl-hydrazyl Analyses the ability to reduce the radical cation 

FRAP  Ferric reducing ability of plasma 
Uses metal ion to produce oxidation and analyses  the 

ability to reduce 

ORAC Oxygen radical absorbance capacity 
Measures the inhibition in the loss of fluorescence due 

to the oxidation by peroxylradicals 

TBA 2-Thiobarbituric acid 
An indirect fluorometric screening test of total 

oxidative stress 

TEAC 
Trolox equivalent antioxidant 

capacity assay 

Compares the ability of an antioxidant to scavenge the 

ABTS+ cation with that of Trolox 

TRAP  
radical-trapping antioxidant 

capacity 

Analyses the delay in oxidation Compares the ability 

of an antioxidant to scavenge the ABTS+ cation with 

that of Trolox. 

 

The TEAC assay evaluates the capacity of antioxidants (hydrogen donors) to scavenge the pre-

formed radical cation of 2,2Ά-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+)  

whereby concentration of the antioxidant as well as the duration of the reaction on the inhibition 

of the radical cation absorption, are taken into account (Re et al., 1999; Long et al., 2001; 

Villano et al., 2004; Buenger et al., 2006). Generation of the radical before the addition of the 

antioxidants prevents interference of compounds that would affect the radical formation. Thus 

the assay can prevent overestimation of antioxidant activity (Sanchez-Moreno, 2002).  

The DPPH assay reflects the ability of antioxidants to scavenge the stable radical 2,2-diphenyl-

1-picrylhydrazyl.  Reaction of DPPH with the antioxidants can be followed by monitoring the 

fall in absorbance at 517 nm of the DPPH-antioxidant mixture (Long et al., 2001).  

The TBA assay measures the inhibition of the formation of malondialdehyde, which is one of 

the degradation products of lipid peroxidation, by the antioxidant (Buenger et al., 2006). 
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Each assay has its own advantages and disadvantages that should be taken into account  when 

assessing the antioxidant potential of a substance or biological sample. ABTS and DPPH, the 

most widely used chromogens used in order to determine antioxidant activity of substances, 

have a number of quite important differences. According to Buenger, Ackermann et al. (2006), 

as far as interlaboratory reproducibility of each assay is concerned, the TEAC assay exhibited 

9–40% variation, followed by the DPPH assay (6–57% variation) and ABAP assay, which 

exhibited 10–67% variation. Based on the results of that study, TEAC and the DPPH assays are 

the most easy to perform and give the most reproducible results.  

ABTS+ is soluble in both aqueous and organic media and antioxidant activity of hydrophilic 

and lipophilic compounds can be measured (Arnao, 2000). DPPH can be dissolved only in 

alcoholic (thus organic) media. It presents a peak at 515 nm absorbance, whereas ABTS+ 

(produced by the reaction of ABTS with potassium persulfate) presents peaks at 414 nm, 645 

nm, 734 nm and 815 nm as shown in Figure 1.7 (Re et al., 1999; Arnao, 2000). Especially, as 

far as red wines are concerned, there can be a great interference in measuring antioxidant 

activity at low wavelengths, due to the colour of the containing pigments. The more colour in 

the sample - despite the small volumes used in the procedures - results in a decrease of 

absorbance and thus, leads to lower antioxidant activity quantification. Therefore, employing a 

wavelength such is 734nm, instead of 525nm (DPPH absorption peak) or 414nm (one of 

ABTS+ absorption peaks) is much more preferable, in order to minimize sample interferences 

(Re et al., 1999; Villano et al., 2004). 

Antioxidant activity measured by the TEAC method is based on the bleaching of the blue-green 

ABTS radical cation that can be monitored by the decrease in absorbance at 734 nm. The ABTS 

radical cation can be prepared by employing different oxidants such as MnO2, 2,2-azobis(2-

amidinopropane)hydrochloride (AAPH) and potassium peroxodisulfate (PDS) (Carola 

Henriquez, 2002). The oxidant that has been reported to have the best results is PDS (Carola 

Henriquez, 2002).   
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Figure 1.7 Absorption spectrum of ABTS+ (Re et al., 1999) 

 

1.8.2 Methods used for the determination of total phenolic content  

 

The most commonly used methods for the determination of total phenolic content in wines are 

the Folin-Ciocalteu (FC) method and the OD 280 value. The FC method has been adopted by 

OIV as the official method for the determination of wine phenolics (Waterhouse, 2001), by 

measuring indirectly total phenols. It is based on reaction (electron transfer) of the yellow 

coloured Folin-Ciocalteu reagent (a mixture of phosphotungstic acid and phosphomolybdic 

acid), with wine phenols, resulting in a blue coloured mixture with absorption maximum in the 

region of 765nm (Ribéreau-Gayon et al., 2006). Corrections of the obtained results must be 

made in case of high ascorbic acid content and for sweet wines, as sugars such as glucose and 

fructose can cause minor interferences. Additionally, interferences can be caused by wine 

sulfites, but only in white wines with low phenol content (< 250 mg/l) and high sulfite levels (> 

50 mg/l) (Waterhouse, 1999; Waterhouse, 2001; Lorrain et al., 2013). 

The OD 280 value is based on the benzene cycles absorption at 280nm. This procedure is very 

fast and easy, however, phenolics such as chalcones and cinnamic acids do not have an 

absorption maximum at this wavelength. Another disadvantage of this procedure is the 

interferences from non-phenolic compounds that also contain aromatic rings (Lorrain et al., 

2013). 
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1.8.3 Phenolic fingerprint 

 

 1.8.3.1 Infrared radiation and interaction with molecules 

 

The infrared region of the light spectrum ranges from 12800cm
-1

 to 10cm
-1

. The infrared 

spectrum is divided into near, far and mid-infrared radiation (Skoog et al., 1998). The mid-

infrared light spectrum ranges from 4000 to 400 cm
−1

. The margins of infrared region are not 

clearly defined, so differences can be found at the margins between references. The mid-

infrared spectrum (4000–400 cm
−1

) can be approximately divided into four regions: the X–H 

stretching region (4000–2500 cm
−1

), the triple-bond region (2500–2000 cm
−1

), the double-bond 

region (2000–1500 cm
−1

) and the fingerprint region (1500–600 cm
−1

) (Stuart, 2005; Schrader, 

2008). 

Almost any compound having covalent bonds, whether organic or inorganic, absorbs various 

frequencies of electromagnetic radiation in the infrared region of the spectrum. Molecules 

absorb only selected frequencies of infrared radiation. Every type of bond has a different 

frequency of vibration. Frequencies that might be absorbed by two same types of bonds in two 

different compounds  might be the same but the overall spectrum of the two compounds will be 

different (Pavia et al., 2008).   

When molecules absorb infrared light they vibrate. When organic molecules are exposed to 

infrared radiation their chemical bonds can vibrate or rotate, due to the energy absorption at 

specific wavelengths in the IR region. Chemical bonds can stretch, bend, twist or rotate. The 

infrared spectrum of a substance contains much information about both structure and 

concentration of chemical groups in a sample. Analyzing infrared spectra can tell what 

molecules are present in a sample and at what concentrations (Skoog et al., 1998).  

As mentioned above, vibrations can involve stretching which is a change in the length of the 

bond, or bending which is a change in the angle of the bond, as shown in Figure 1.8(a). Some 

bonds can stretch in-phase (symmetrical stretching) or out-of-phase (asymmetric stretching) as 

shown in figure 1.8 (b) (Stuart, 2005).   
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           Figure 1.8 (a) Stretching and bending vibrations, (b) symmetric and asymmetric stretching         

          vibrations (Stuart, 2005) 

 

 

                                    Figure1.9 Bending vibrations (Stuart 2005)  

 

         Bending vibrations are summarized in figure 1.9. The hydrogens can move in the same 

direction or in opposite directions in the plane, discriminating two types of bending: out of the 

plane and in plane bending (Figure 1.10). 

 

 

Figure 1.10 Out of plane and in plane bending vibrations (Stuart 2005) 

 

Comparison of the IR spectrum of an unknown material with that of known standards is a useful 

tool for indentifying the components of the unknown material. In the absence of standard 

spectra, the fact that many functional groups possess absorption bands that are characteristic of 

that moiety can be used for the identification of the unknown material (McKelvy, 2006).   

The peak positions in an infrared spectrum correlate with molecular structure, so samples can be 

identified by comparing the unknown spectrum to a reference spectrum observing how well the 

peak positions, heights, and widths in the two spectra match. 
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Infrared spectroscopy is a quick, comparatively inexpensive high sensitivity method, using a 

minimum amount of material in order to give a spectrum capable of giving information about 

the contained in the material under investigation, components. However, complex samples or 

mixtures may lead to complex spectra making difficult to determine what peaks are from what 

molecules. Purification of the mixture makes its spectrum simpler and much easier to interpret. 

Any of the purification techniques that chemists use can be applied to purify infrared samples. 

Furthermore, attention must be paid to water in samples. Water is a problem because it absorbs 

in the IR region; it has broad and intense peaks that can interfere with and cover the spectra of 

molecules dissolved in it (Smith, 2011).  

 

 

1.8.3.2 Fourier transform infrared spectroscopy (FTIR) – Attenuated Total Reflectance 

(ATR) technique 

 

There are several types of infrared spectrometry techniques used, but the most widely used one 

is FTIR (Smith 2011). FTIR is capable of extracting information from samples which is difficult 

or even impossible to obtain by techniques such as nuclear magnetic resonance and mass 

spectrometry. Nowadays, applications of FTIR spectrometry include simple, qualitative as well 

as quantitative analysis, identification of unknown compounds, and investigation of biological 

materials (Gremlich, 2008). For routine FTIR, microgram samples are used  (Smith, 2011). 

There are several sampling techniques for FTIR analyses which are divided into two families, 

the transmission and the reflectance modes.  In transmission modes, the infrared beam passes 

through a thin film of sample and impinges on a detector (Figure 1.11). This technique works on 

many different types of samples but can be very time consuming due to the preparation of 

sample that may be needed (dilution, grinding, pressing).   

 

 

 

 

 

 

 

Pi 
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Figure 1.11 Transmission sampling in FTIR analyses (Smith, 2011) 

 

In reflection mode the light is reflected from the surface of the sample. Specular reflectance, 

diffuse reflectance (DRIFTS) and attenuated total reflectance (ATR) are some of the different 

types of reflectance methods.  

Attenuated total reflectance (ATR) is based on internal reflectance (radiation is not transmitted 

through the sample). The sample is placed on a crystal (the sensing element or internal 

reflection element) and light is reflected several times. Several different types of sensing 

elements can be used in ATR, such as diamond, Geranium (Ge) and Zinc selenide (ZnSe) 

crystals (Table 1.5). A spectrum is obtained as a result of the contact between the element and 

the sample. The sample surface is studied to a depth of about 1μm (Smith, 2011). The wave that 

is created, interacts with the sample resulting in the absorption of radiation by the sample at 

each point of reflection (Gremlich, 2008). In many cases, samples can be measured in their 

natural state, by placing the sample on the crystal, followed by removing the sample and 

cleaning the crystal (Griffiths et al., 2006; Smith, 2011). It is a fast and easy to employ 

technique as it involves none or minor sample preparation and can be applied to a wide variety 

of samples, liquids, semi-liquids, solids, polymers and powders and is a non destructive method.  
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Table 1.5:  Types and properties of ATR crystals (Smith, 2011) 

Crystal material 
Wavenumber  

range (cm
-1

) 
pH range Comments 

Diamond 
30.000-2200,              

2000-400 
1-14 

Tough, durable, absorbs in mid-

infrared, expensive 

Thallium Bromo-

Iodide (KRS-5) 
20.000-250 5-8 Soft, highly toxic, rarely used 

Zinc selenide 

(ZnSe) 
15.000-600 5-9 

Attacked by strong acids and 

bases, once very common 

Silicon (Si) 8900-660 1-12  

Geranium (Ge) 5500-600 1-14 Durable, shallow DP 

 

 

1.8.3.3 Interpretation of phenol frequencies. 

 

The interpretation of the absorption spectrum of an unknown sample is critical to understand the 

structure and chemistry of the sample. Throughout the years, much information has been 

published, revealing the fundamental absorption frequencies of several chemical groups. Those 

frequencies have been used to reveal the relationship between the obtained spectrum and the 

structure of known molecules in the sample. Physical and chemical data from the sample must 

be taken into account. In order for someone to interpret successfully a sample, attention must be 

paid apart from locating particular bands within a spectrum, to noticing the absence of others as 

well (McKelvy, 2006).  

Phenols, either in the liquid or solid state, exhibit strong and characteristic bands in the IR 

region due to vibrations caused by O–H stretching and C–O stretching (Table 1.6). C–O 

stretching in phenols (as well as in alcohols) produces a strong band in the 1300–1000 cm
−1

 

region (Stuart, 2005). The O–H bending vibrations that phenols produce, in the fingerprint 

region (1500–600 cm
−1

) couple with other vibrations and result in complex band production 

(Stuart, 2005)
b
. 

Due to the hydrogen bonding of the OH groups, the bands caused by 0-H stretching vibrations 

are very broad regardless the sample state (liquid or solid, concentrated solutions or mixtures). 
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Along with O-H stretching bands, the position of the intense C-0 stretching band also allows for 

phenols to be detected in the samples (Gremlich, 2008).  

 

Table 1.6 Some characteristic frequencies of phenols and aromatic ring (Coates, 2006) 

origin Group frequency 

wavenumber (cm-1) 

Assignment 

O-H 3640-3530
a
 Phenols, OH stretch 

C=C-C 1615-1580 Aromatic ring stretch 

C=C-C 1510-1410 Aromatic ring stretch 

OH 1410-1310 Phenol OH bend 

C-O 1200
b
 Phenol, C-O stretch 

C-H 1225-950  Aromatic C-H in plane bend 

C-H 900-670 Aromatic C-H out of  plane 

bend 

 a 
Frequency is influenced by the nature and position of other ring substituents. 

b
 Approximate centre of range of the group frequency.  

 

 

1.8.3.4 Wine analysis 

 

Various techniques have been used to analyze wines and characterize several of their 

components, amongst them phenolic compounds, alcohol content, total acidity, pH and 

flavonoid content. ATR-IR spectroscopy (Edelmann et al., 2001; Patz et al., 2004; Bevin et al., 

2006; Schmidtke et al., 2012; Friedel et al., 2013; Silva et al., 2014), HPLC(Sen et al., 2014), 

HPLC-MS (Sagratini et al., 2012; Pati et al., 2014; Sen et al., 2014) and NIR (Cozzolino et al., 

2004; Urbano Cuadrado et al., 2005) are some of them.  

Solid-phase extraction of grape skin extracts or wines followed by reversed phase HPLC-

UV−vis methods has been used to analyze the phenolic fingerprint of wines. HPLC in 

combination with mass spectrometry is also used to determine the anthocyanin and flavonoid 

composition and content of wines (Etiévant et al., 1988; Berente et al., 2000; Sen et al., 2014). 
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Fourier transform infrared spectroscopy is widely used for the analysis of food and wine 

components (Silva et al., 2014). In order to determine wine authenticity, mid - infrared spectra 

has been used. (Patz et al., 2004; Bevin et al., 2006). The development in sampling accessories, 

such as ATR cells, has improved IR analysis. Handling of the sample is therefore simpler, the 

time needed for the analysis is shorter and measurement problems often found with transmission 

cells are avoided. Comparatively, recent studies  have shown that employing ATR-IR 

spectroscopy is an easy and fast way to determine the phenolic fingerprints of wines, to 

differentiate them, authenticate them and determine their phenolic content (Edelmann et al., 

2001; Tarantilis et al., 2008).............................................................................................................                                               
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2.1 Total phenolic content, fingerprints and antioxidant activity of 

Vilana, Dafni, Kotsifali and Mandilari wines.  

 

 

The white grape varieties Dafni and Vilana and the red grape varieties Kotsifali and Mandilari, 

all of them of Greek origin, were used for the production of single grape variety wines, in order 

to determine their phenolic fingerprint in the mid-ir region. Their total phenolic content and 

antioxidant activity were also determined immediately after vinification.   

After vinification, stainless steel and stainless steel with oenosticks containers and American 

oak, acacia, French oak and chestnut barrels were used for red wine ageing. The above types, 

chestnut barrels excluded, were also used for white wine ageing. Due to wine component 

transformations during ageing and the extraction of phenolic substances from the wood of the 

barrels into the wine, changes in phenolic composition occur. Therefore phenolic fingerprints, 

total phenolic content and antioxidant activity of wines were monitored to determine the 

changes, in relation to barrel type and time. 

For this study, wines were vinificated in September 2012 and September 2013 in Lirarakis 

GEA, AE. winery. 
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Table 2.1 Wine characteristics directly after vinification                                                                               

 Vilana Dafni Kotsifali Mandilari 

 1
st
 vinification 

Alcohol content % 12.4 13.1 12.15 13.3 

Sugar content (gr/l) 1.56 2.25 2.02 1.96 

Volatile acidity (acetic acid gr/l) 0.22 0.24 0.29 0.32 

Total acidity (tartaric acid gr/l) 6.07 4.5 5.65 6.45 

pH 3.45 3.73 3.6 3.45 

 2
nd

 vinification 

Alcohol content % 14.3 12.75 13.6 13.0 

Sugar content (gr/l) 2.14 1.05 1,53 1.56 

Volatile acidity (acetic acid gr/l) 0.39 0.30 0.41 0,28 

Total acidity (tartaric acid gr/l)  6.54 5.3 5.55 5.55 

pH 3.38 3.44 3.45 3.35 

 

2.1.1 Determination of total phenolic content of wines (Folin-Ciocalteau method)  

 

 In order to determine wine total phenolic content the Folin-Ciocalteu micro-method was 

employed (Waterhouse, 1999; Waterhouse, 2001; Staško et al., 2008). 

Materials that were used were Folin-Ciocalteu (2N) reagent, Gallic acid solution (stock solution 

500mg/l) and ΝaCO3 solution (5gr/l). Nanopure water was used throughout the experiments.  

Determination of total phenolics was made photometrically at 765 nm using a Hitachi U-2000 

spectrophotometer.  

PROCEDURE: 

 20 μl of sample were added to 1580 μl H2O. 

 100 μl of Folin-Ciocalteu reagent were added to the above mixture and mixed well, 

allowed to stand for 30 sec – 8min. 300 μl of sodium carbonate solution was add and 

mixed well. 



CHAPTER TWO: Materials and Methods  38 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

 After incubation for 30' at 40° C in order for the reaction to be completed, absorption of 

the final mixture was measured at 765nm. 

Red wines were diluted 5 times with EtOH 10% right before measurements. No dilution was 

performed in the case of white wines. Measurements were performed in triplicate. Gallic acid 

was used as standard substance. A gallic acid standard curve was prepared prior to each 

measurement.  

 

2.1.2 Determination of antioxidant activity of wines (Trolox Equivalent Antioxidant 

Capacity method). 

 

Antioxidant activity of wine is related to their phenolic content as they are the main antioxidant 

components. In order to determine antioxidant activity of wines the method described by Rice-

Evans (1997) and Re et al. (1999) was employed, with a minor modification as reported by 

Ozgen et al. (2006). The method was based on the decolorization of a preformed ABTS radial 

cation (ABTS
+
) by any antioxidant that may be present in the sample.   

Materials used in the experiments were Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid, a water soluble analogue of vitamin E), ABTS [2,2΄-(3-ethylbenzothiazoline-6-

sulfonic acid)] 99.8%, Ρotassium persulfate (PDS), Ethanol HPLC grade (99.9%) and nanopure 

water. 

 

1. ABTS radical cation was performed by preparing a dilution of 7mM ABTS in H2O and 

2.45 mM PDS (final concentration). 

The solution was incubated for 12-24 h, in the dark at room temperature in order for the 

ΑΒΤS
+ 

to be stabilized. 

2. ΑΒΤS
+
 was diluted in sodium acetate buffer (it increases the stability of the radical and 

is most appropriate for products that contain phenolics according to Ozgen et al. (2006), 

until the absorption was 0,7 ±0,02 at 734 nm. 

3. 50μl of wine sample were added (or standard solution) to 1ml of diluted ΑΒΤS
+
. After 

incubation of the sample at 37° C, the absorption at 734 nm is measured.  

4. Calculation of ΤΕΑC was made using the % inhibition of absorption induced by 

ΑΒΤS
+
, compared to that of Trolox, in Trolox equivalents (mg/l).  
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All wines were diluted before they were used with 10% (v/v) ethanol. The dilution was 50 times 

(50x) for red wines and 10 times (10x) for white wines. All measurements were made in 

triplicate. Before each measurement, a Trolox standard curve was prepared. 

 

Prior to each measurement, in order to determine total phenolic content of wines a standard 

curve of gallic acid was prepared (Figure 2.1.a).  TPC was calculated with the use of the 

standard curve, in gallic acid equivalents (mg/l). Similarly, a standard curve of Trolox was 

prepared before each measurement in order to determine TEAC. A typical Trolox standard 

curve is shown in Figure 2.1.b. Total antioxidant activity of the samples was calculated by 

relating the % inhibition in absorbance at 734nm to that of Trolox.  

 

 

                            Figure 2.1.a Gallic acid standard curve.  

 

  

                            Figure 2.1.b Trolox standard curve.  
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2.1.3 FTIR fingerprint 

 

Mid-infrared spectroscopy was used to differentiate and authenticate four Greek red and white 

wines of different origin directly after vinification, that were afterwards stored in different kinds 

of barrels, in order to determine the difference in phenolic composition during ageing due to 

type of barrel used in the procedure. Extracts of wine phenolic components were investigated by 

Fourier transform infrared (ATR-FTIR) spectroscopy (Edelmann et al., 2001).  

The wine extracts were obtained by solid-phase extraction with C-18 columns and elution with 

methanol. The spectral region 1800–900 cm
−1

 was used to ‘fingerprint’ wine on the basis of 

grape variety and type of barrel used. 

Each wine sample was filtered through a 0.45 μm Whatman filter. 3ml of each filtered sample 

was diluted with 15ml distilled water. The solutions (18 ml) were passed through a C18 solid 

phase extraction (SPE) cartridges under vacuum. Cartridges were preconditioned using 10 ml 

methanol and 10 ml distilled water for every syringe. Afterwards the solutions were p washed 

with 20 ml of distilled water. The extract was removed by a vacuum pump. At the end, the 

syringes were washed with 3 ml of acidified methanol (0.01% hydrochloric acid) and phenolic 

fractions collected (Figure 2.3). 

. 

                                                                                                                     

Figure 2.3 Isolation of phenolic substances of wines. 

 

 FT-IR spectra were obtained using a Shimadzu IRPrestige-21, Fourier transform infrared 

spectrophotometer (Figure 2.3). 150 μL of methanol extract was placed on the FTIR crystal 

(samples were air-dried prior to use) and spectra obtained. 
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Figure 2.3 Shimadzu IRPrestige-21 Fourier transform infrared spectrophotometer 

 

2.1.4 General characteristics of Mandilari, Kotsifali, Vilana and Dafni grape 

varieties used in the experiments. 

 

Mandilari, Kotsifali, Vilana and Dafni are grape varieties cultivated in Greece and more 

precisely in the island of Crete, very commonly used in the vinification of Greek wines. The 

general characteristics of each variety are listed below.  

 

a. Mandilari: 

One of the richest in colour, this Greek red grape variety has a vigorous vine growth. It reaches 

maturity late in August in the island areas and late September in northern Greece. It produced 

grapes with big berries whose weight reaches 2.8g. Mandilari produces wines very rich in 

colour, with medium acidity and low to medium alcoholic content. It is cultivated mainly in 

Crete and the Aegean area. Mandilari is produced alone or is blended with other grape varieties 

such as Kotsifali and Monemvasia to produce wines that are characterized as “VQPRD (‘Vin de 

Qualité Produit de Région Déterminée’, Quality Wine Produced in Determined Regions) 

(Stavrakas 2010). 

 

b. Kotsifali:  

A Greek grape variety mainly cultivated in the area of Crete. Kotsifali produces VQPRD wines 

‘Peza” and ‘Archanes’ when combined with grape variety Mandilari. Kotsifali is known for 

high sugar concentration and wine colour instability. The wines originating from Kotsifali, have 

a high alcohol content, intense and very interesting aromas, but unstable colour. The last 
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characteristic is one of the reasons for it being vinificated along with Mandilari, with the latter 

contributing a great deal to the final colour of the produced wine (Stavrakas 2010). 

 

c. Vilana:  

Vilana is a white Cretan grape variety. Grapes reach maturity in the middle of September. It has 

medium size round berries. Their weight reaches 2.4g. Wine produced by this variety, have a 

good acidity, medium flavour and medium to high alcoholic degree. The wine is susceptible to 

oxidation, therefore care must be taken and attention must be paid to avoid this phenomenon 

during vinification. Vinificated on its own produces VQPRD wine ‘Peza’ and in combination 

with grape variety Thapsathiri, VQPRD wine ‘Sitia’ (Stavrakas 2010). 

 

d. Dafni: 

 This is a white grape variety cultivated in the region of Crete. It is one of the most ancient and 

rare Cretan varieties that until recently was abandoned. The variety owes its name to Bay Laurel 

due to the resemblance to its aromas, which in this grape variety, are mainly distributed in the 

berry flesh. Dafni is a very vigourous variety, with medium productivity. It has large sized 

round berries, medium sweetness of the flesh and is very aromatic. The produced wine has low 

to medium alcohol content, medium acidity and interesting aromas resembling those of Laurus 

nobilis (Stavrakas 2010). Table 2.2 shows the general oenological characteristics of the wines 

made of the above grape varieties used in the experiments after 3, 6, 9 and twelve months of 

ageing. 
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Table 2.2 General characteristics of wines during ageing in containers. TA: titratable acidity, 

gr/l, VA: volatile acidity, gr/l, Vol%: % alcohol content 

container 

months 

of 

ageing 

TA pH 
SO2 
(free) 

SO2 

(total) 
VA Vol% 

sugars 

gr/lt  

VILANA 

SS 3 6.07 3.41 9 87 0.43 14.3 2.1 

 
6 5.85 3.52 7 82 0.44 14.25 2.1 

 
9 5.1 3.6 6.5 68 0.58 14.25 2.1 

 
12 4.8 3.58 6 57 0.56 14.25 2.1 

SO 3 6.07 3.47 7 92 0.46 14.3 2.1 

 
6 6.07 3.48 9.5 107 0.49 14.3 2.1 

 
9 5.7 3.52 9 102 0.49 14.3 2.1 

 
12 5.07 3.52 8.5 97 0.52 14.3 2.1 

AO 3 6.07 3.47 8 94 0.53 14.3 2.1 

 
6 6.03 3.47 7.7 86 0.52 14.3 2.1 

 
9 5.4 3.54 9 66 0.53 14.35 2.1 

 
12 5.05 3.54 8.2 68 0.56 14.35 2.1 

FO 3 6.03 3.48 10 86 0.54 14.35 2.1 

 
6 5.92 3.49 9 89 0.53 14.4 2.1 

 
9 5.45 3.54 8 80 0.52 14.45 2.1 

 
12 5.05 3.54 8 77 0.56 14.45 2.1 

Ac 3 6.07 3.43 7 85 0.52 14.4 2.1 

 
6 5.99 3.48 11 94 0.51 14.4 2.1 

 
9 5.7 3.5 9 87 0.51 14.5 2.1 

 
12 5.1 3.51 9 86 0.51 14.5 2.1 

DAFNI 

SS 3 5.25 3.35 13.5 107.5 0.4 12.75 1.05 

 
6 5.1 3.43 6.5 117 0.46 12.75 1.05 

 
9 4.8 3.45 6.5 117 0.45 12.75 1.05 

SO 3 4.57 3.44 11 89.5 0.31 12.7 1.05 

 
6 4.1 3.57 13.5 123 0.41 12.7 1.05 

 
9 4 3.57 14 192 0.58 12.65 1.05 

 
12 4 3.57 11 145 0.57 12.65 1.05 

AO 3 5.17 3.37 7.7 108 0.34 12.75 1.05 

 
6 4.32 3.53 9.6 112 0.53 12.75 1.05 

 
9 4.1 3.54 8.5 104 0.52 12.8 1.05 

 
12 4.1 3.54 7 96 0.52 12.8 1.05 

FO 3 4.95 3.37 11.5 110 0.31 12.75 1.05 

 
6 4.3 3.54 9.6 107.5 0.48 12.8 1.05 

 
9 4.1 3.55 7.5 102 0.47 12.85 1.05 

 
12 4.1 3.55 7 96.8 0.5 12.85 1.05 

Ac 3 5.1 3.33 13.5 115 0.32 12.75 1.05 
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container 

months 

of 

ageing 

TA pH 
SO2 
(free) 

SO2 
(total) 

VA Vol% 
sugars 

gr/lt  

 
6 5.25 3.38 9.6 106.8 0.49 12.8 1.05 

 
9 4.65 3.42 8.3 101 0.48 12.85 1.05 

 
12 4.55 3.43 6 95 0.48 12.8 1.05 

KOTSIFALI 

 
6 4.95 3.47 27 83 0.46 13.6 2.16 

 
9 4.95 3.45 35 93 0.47 13.6 2.16 

 
12 4.85 3.45 22 67 0.47 13.6 2.16 

SO 3 4.95 3.45 18 88 0.51 13.6 2.16 

 
6 4.8 3.5 28 93 0.55 13.55 2.16 

 
9 4.8 3.55 13 88 0.69 13.65 2.16 

 
12 4.87 3.55 

10.2

4 
80 0.68 13.65 2.16 

AO 3 4.95 3.46 32.5 89 0.52 13.6 2.16 

 
6 4.85 3.52 29 89 0.51 13.6 2.16 

 
9 4.75 3.56 14 72 0.51 13.65 2.16 

 
12 4.77 3.55 11 68 0.53 13.65 2.16 

FO 3 4.95 3.45 31.5 93.4 0.53 13.6 2.16 

 
6 4.90 3.49 27.5 82.5 0.55 13.6 2.16 

 
9 4.95 3.51 17 72 0.53 13.7 2.16 

 
12 5 3.51 11 67 0.53 13.7 2.16 

Ac 3 4.87 3.48 23 90 0.53 13.6 2.16 

 
6 4.85 3.53 18.5 90 0.53 13.6 2.16 

 
9 4.85 3.56 16.5 79 0.53 13.65 2.16 

 
12 4.95 3.56 11.5 74 0.64 13.65 2.16 

Ch 3 4.95 3.47 20 103 0.63 13.6 2.16 

 
6 4.95 3.5 18 92 0.58 13.55 2.16 

 
9 4.95 3.51 16 78 0.57 12.7 2.16 

 
12 5 3.51 12 77 0.59 12.7 2.16 

MANDILARI 

 
6 5.05 3.42 24 79 0.29 12.95 1.56 

 
9 5.05 3.45 19 69 0.32 12.95 1.56 

 
12 5 3.45 16 67 0.35 12.95 1.56 

SO 3 5.15 3.41 20 71 0.31 12.9 1.56 

 
6 5.05 3.43 23 76 0.3 12.95 1.56 

 
9 5 3.45 22 65 0.3 13 1.56 

 
12 5 3.45 19 63 0.32 13 1.56 

AO 3 5.20 3.38 22.5 73 0.3 12.9 1.56 

 
6 5.17 3.41 28 88 0.33 12.9 1.56 

 
9 5.15 3.44 23 72 0.33 13 1.56 

 
12 5.15 3.44 19 66 0.35 13 1.56 

FO 3 5.17 3.40 19.5 68 0.3 12.95 1.56 

 
6 5.1 3.42 26 76 0.33 13.05 1.56 
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container 

months 

of 

ageing 

TA pH 
SO2 
(free) 

SO2 

(total) 
VA Vol% 

sugars 

gr/lt  

 
9 5.15 3.44 17 63 0.33 13 1.56 

 
12 5.15 3.44 15 61 0.35 13.6 1.56 

Ac 3 5.15 3.41 19.67 67 0.3 12.95 1.56 

 
6 5.1 3.42 25 74 0.3 13 1.56 

 
9 5.1 3.44 14 59 0.31 13.1 1.56 

 
12 5.12 3.44 13.5 58 0.35 13.1 1.56 

Ch 3 5.17 3.41 21.75 73 0.3 12.95 1.56 

 
6 5.05 3.44 23 74 0.32 12.95 1.56 

 
9 5.1 3.45 18.5 74 0.34 12.95 1.56 

 
12 5.3 3.45 16.64 60 0.45 12.95 1.56 

 

 

2.2. Influence of the phenolic substances hydroxytyrosol and 

oleuropein on wine oxidation induced by acetic acid bacteria.  

 

The aim of the experiment was to test the effect that hydroxytyrosol and oleuropein, have 

against the oxidation of wine induced by acetic acid bacteria (AAB). Under the influence of 

acetic acid bacteria, acetic acid is produced increasing volatile acidity in wine. Oleuropein and 

its phenolic derivative, hydroxytyrol, possess bacteriostatic properties. For this reason, volatile 

acidity was determined. Total acidity of wines was monitored through time, mainly as an 

indicator of the possible wine spoilage (during the growth of acetic acid bacteria in wine volatile 

as well as total acidity, increases). 

As wines made in wineries almost always contain sulphur dioxide as an additive, red and white 

dry wines, as described in Table 2.3 were selected from local, amateur winemakers, with the 

aim of ensuring the absence of sulphites as additives in them, which are responsible for 

preventing wine oxidation. Commercial wines, produced in wineries, where not used, as sulphur 

dioxide is almost always used as additive during vinification procedures. 

Acetic acid bacteria (AAB) must was added in wines in order to ensure the oxidation of ethanol 

to acetic acid and therefore, to increase volatile acidity. The bacteria were added in the form of 

vinegar grape must, bought from the UACH (Union of Agricultural Cooparatives of Heraklion) 
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vinegar production factory. Prior to use, AAB must, was incubated for 48h at 30
o
 C, in a 

Rostfrei, Edelstahl, Memert waterbath, to activate the bacterial populations.  

 

Table 2.3 Wines used in the experiments. Code names B1, B2, B3, B4, B5 will be used to refer 

to each wine  

 

 

 

 

 

 

 

 

 

Experiments with each wine were carried out employing the treatments that are shown in Table 

2.4. 

All samples were stored in 250ml erlenmeyer flasks, in a chamber with constant temperature of 

30°C. Aeration of samples, to ensure contact of the aerobic bacteria with oxygen, was done by 

using agitation at 300 r.p.m. 

Wine treatments - as well as time of measurements - were differentiated. They were adjusted 

from one wine experiment to the other, according to the obtained results in order to determine 

the level of the tested substances that might have an effect on volatile acidity and thus on the 

production of acetic acid in wine by the acetic acid bacteria. Table 2.5 are shows the time points 

that volatile and titratable acidity of each wine were measured.  

 

 

 

 

 

 

Wine Grape varieties 
Type                     

of wine 

B1  
Kotsifali, Mandilari, 

Mourverde 
Red, dry wine 

B2     Kotsifali, Mandilari Red, dry wine 

B3  Vilana  White, dry wine 

B4  Vilana, Thrapsathiri White, dry wine 

B5 Vilana, Mosxato White wine 
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Table 2.4 Treatments and final concentration of additives in wines. A volume of 250ml of wine 

was used in each replication (three replications per wine sample). Wine B3 was not treated with 

AAB, only with the antibacterial substances.  

Wine abbreviation Wine treatment 

B1 C1 None (negative control) 

 AAB Acetic acid bacteria (positive control) 

 H0.5 Hydroxytyrol 0.5 mg/l + 0.4% AAB  

 H1 Hydroxytyrol 1 mg/l + 0.4% AAB  

 OL2 Oleuropein 2 mg/l + 0.4% AAB  

 OL200 Oleuropein 20 mg/l + 0.4% AAB  

B2  C2 None (negative control) 

 AAB Acetic acid bacteria 200ppm (positive control) 

 OL0.1 Oleuropein 0.1 mg/l + 200ppm AAB  

 OL0.4 Oleuropein 0.4 mg/l + 200ppm AAB  

B3 C3  None 

 E EtOH 10% 

 H1 Hydroxytyrol 1 mg/l  

 H2 Hydroxytyrol 2 mg/l  

 OL100 Oleuropein 100 mg/l  

 OL500 Oleuropein 500 mg/l  

B4  C4 None (negative control) 

 AAB Acetic acid bacteria (positive control) 

 H0.5 Hydroxytyrol 0.5 mg/l + 0.4% AAB  

 H1 Hydroxytyrol 1 mg/l + 0.4% AAB  

  OL50 Oleuropein 100 mg/l + 0.4% AAB  

 OL400 Oleuropein 100 mg/l + 0.4%  AAB  

 OL800 Oleuropein 100 mg/l + 0.4%  AAB  
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Wine abbreviation Wine treatment 

B5 AAB 1,2 % AAB 

 H1 Hydroxytyrol 1 mg/l + 1,2 % AAB 

 OL1 Oleuropein 1 mg/l + 1,2 % AAB 

 OL2 Oleuropein 2 mg/l + 1,2 % AAB 

 

 

Table 2.5 Time points of measurements of volatile and titratable acidity of wines 

Tested 

wine 

Titratable acidity Volatile acidity 

B1 0 days, 2 days, 5 days, 1 week, 10 days, 1 month 7 weeks 

B2 0 days, 1 week, 2 weeks, 3 weeks 7 weeks 

B3 - 0 months, 1 month, 2 months 

B4 0 days, 1 week, 2 weeks, 3 weeks 5 weeks 

B5 0 days, 1 week, 1 month 1 month 

  

Titratable (total) acidity was monitored through time before and after the addition of additives in 

wines. Titratable acidity was measured for indication of the possible increase of volatile acidity.  

Approximately one month later, volatile acidity was measured. For titratable acidity, 10 ml of 

wine samples were titrated with 0,1N NaOH. 10 drops of Bromothymol blue indicator were 

added to the 10ml wine samples prior to titration, for the determination of the endpoint of the 

reaction. Total (titratable) acidity (TA) was determined using the equation:   

TA= VNaOH/Vsample *7.5.                          .                                                                                                                                                                    

Volatile acidity analysis was made by steam distillation of 20 ml of wine, collecting 250 ml of 

distillate. Titration followed using 0.1N sodium hydroxide solution. Phenolophthalein was used 

as indicator (methodology according to OIV, Compendium of International Methods of 

Analyses). A DE-1626 J.P. Selecta steam distillator was used for that purpose. Volatile acidity 

(VA) was determined in gr/l of acetic acid, following the equation VA = VNaOH / Vsample*6.                        
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In B1wine, colour intensity (I) and hue (T) were measured, by absorption of 1ml of sample at 

WL420, WL520 and WL620nm using a Hitachi U-2000 spectrophotometer (I=Abs420 + 

Abs520 + Abs620, T= Abs 420/ Abs 520).  

 

2.3 Phenolic content and antioxidant activity of wine with natural 

phenolic additives.  

 

Olive oil mills waste water and grape pomace wineries residues are very rich in phenolic 

content and substances possessing antioxidant activities.  Extracts were obtained from olive oil 

mill and winery residues and were used in several concentrations at the end of vinification and 

before adding the wines to stainless steel tanks, in replacement for sulphites. Grape pomace 

(GP) of Mandilari cultivar, obtained by Miliarakis winery in Heraklion area, was previously 

used to obtain a semi solid extract reach in polyphenols. A semi - solid residue obtained from 

Olive oil mill waste water treated with resins was also used in the assay (OMW).  

Phenolic content and antioxidant activity of the obtained wines were determined. Vilana grapes 

were used for the production of wine in Miliarakis winery. The obtained wines and the extract 

concentration used are described in table 2.6.  

 

Table 2.6 Vilana wines produced with addition of natural polyphenolic extracts as a replacement 

for sulphites and the treatments performed. Vilana grapes were used for the vinification of each 

wine. GP: grape pomace extract, OMW: olive oil mill waste water residue. 

Wine Treatment 

C Control 

V1 GP 5gr/100l 

V2 GP, 7.5gr/100l 

O1 OMW 55%, 0.875gr/100l 

O2 OMW 55%, 2.67gr/100l 

O3 OMW 95%, 2.7gr/100l 
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Antioxidant activity of sulphites in the form of SO2, OMR and GP were determined using the 

TEAC method as previously described. Antioxidant activity of sulphites was determined. The 

amount of the natural extracts used in each treatment was determined based on the antioxidant 

activity of sulphites. Amounts of OMR and GP were added in wines, in levels that would lead to 

at least an equal antioxidant activity to sulphites. 

 

 

2.4 Statistical analysis 

 

For the statistical analysis of the results one-way analysis of variance (ANOVA) was used 

followed by Duncan’s multiple range tests (p = 0.05) in order to determine significant 

differences between the tested samples. The correlation of antioxidant activity and phenolic 

content of wines was determined by using Pearson product-moment correlation coefficient 

measure. The statistical analysis and handling of data was performed using SPSS (SPSS 

statistics, version 21) and PCA, PLS analysis were performed using JMP 11. The graphs were 

produced using Microsoft Excel 2007.  
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3.1 Total phenolic content, phenolic fingerprints and antioxidant 

activity of Vilana, Dafni, Kotsifali and Mandilari wines.  

  

The effect of type of barrel on Vilana, Dafni, Kotsifali and Mandilari wine total phenolic 

content and antioxidant activity was determined in order to monitor the changes occurring 

during ageing and to determine the effect of barrel type on the above characteristics. 

Phenolic concentration and total antioxidant activity of Vilana, Dafni, Kotsifali and Mandilari 

wines were determined after two different vinifications in 2012 and 2013. After each 

vinification, total phenolic content and total antioxidant activity were determined directly after 

vinification and after 3, 6, 9 and 12 month ageing in the different containers. 

Phenolic fingerprints of the tested wines were taken in the mid-ir region of the spectra. The 

observed changes in the spectra of each wine in different containers were monitored during 

ageing. 

  

3.1.1 Total phenolic content of Vilana, Dafni, Kotsifali and Mandilari wines during 

ageing in different containers 

 

3.1.1.1 Results of the first year of vinification (2012) 

 

A. Total phenolic content directly after vinification 

 

Total phenolic content (TPC) of single variety wines produced by Vilana, Dafni, Kotsifali and 

Mandilari grapes was determined directly after vinification. The total phenolic content of each 

wine is shown in Table 3.1. Phenolic content of red wines was approximately 3-7 times higher 

than phenolic content of white wines. 
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Table 3.1 Total phenolic content (TPC) of wines. Results are expressed in mg/l gallic acid. 

WINE TPC* 

Vilana 349.7 

Dafni 352.0 

Kotsifali 1115.5 

Mandilari 2383.6 

*mean values 

 

B. Total phenolic content of Vilana wines during ageing. 

 

Figure 3.1 shows total phenolic content of Vilana wine in each type of container directly after 

vinification and after 3, 6, 9 and 12 month period of ageing. Different letters within containers 

represent statistical differences in total phenolic content of wine within each container 

(Duncan’s multiple rang tests, p = 0.05). 

 

 

Figure 3.1 Changes in total phenolic content of Vilana wine ageing in SS, SO, AO, Ac and FO 

containers, through time. Measurements were taken directly after vinification and after 3, 6, 9 

and 12 months ageing period in the containers. Different letters in columns represent statistical 
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differences within each container. SS: stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

Minor changes were observed in stainless steel containers with and without oenosticks through 

ageing; phenolic content after a slight increase in the first months of ageing, remained almost 

stable. In contrast, wooden barrels showed a significant increase in the phenolic content. The 

observed differences within each wooden barrel type were statistically significant during ageing 

(ANOVA, p = 0.05).    

The differences in total phenolic content, comparing the different containers after three months 

of ageing was not statistically significant. However, after 6 and 9 and 12 months of ageing 

phenolic content showed a significant difference (ANOVA, p = 0.05).    

TPC increased in all containers after 12 month ageing, reaching in acacia barrels significantly 

higher TPC than that in any other container (Figure 3.2) (Duncan’s multiple range tests, p = 

0.05). Compared to the TPC directly after vinification wines wine in acacia barrel had the 

highest increase (72%), followed by French oak (43.9%) and American oak barrels (42.7%).  

 

 

Figure 3.2 Total phenolic content of Vilana wine ageing in SS, SO, AO, Ac and FO containers, 

after 12 months of ageing in different containers. Different letters represent statistical 

differences between containers. SS: Stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 
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C. Total phenolic content of Dafni wines during ageing 

 

In Figure 3.3 changes in total phenolic content during ageing of Dafni wine in different 

containers are displayed. Different letters within the containers represent statistical differences 

within containers (Duncan, p = 0.05). 

 

 

Figure 3.3 Changes in total phenolic content of Dafni wine ageing in SS, SO, AO, Ac and FO 

containers, through time. Measurements were taken directly after vinification and after 3, 6, 9 

and 12 months ageing period in the containers. Different letters in columns represent statistical 

differences within each container. SS: stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

Slight changes were observed within stainless steel with and without oenosticks containers 

through ageing. Total phenolic content increased constantly through time in American oak, 

acacia and French oak barrels. TPC in acacia barrel was significantly higher from any other 

container after 6 months of ageing. (Duncan, p = 0.05). 

After 12 months of ageing, total phenolic content had increased by 46.5% in acacia, by 30.7% 

in American oak, and by 30.3% in French oak barrels (Figure 3.4). Compared to wine in 

stainless steel containers, total phenolic content in acacia barrels, was 60.1% higher. 
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Figure 3.4 Total phenolic content of Dafni wine ageing in SS, SO, AO, Ac and FO containers, 

through after 12 months of ageing in different containers. Different letters represent statistical 

differences between containers (Duncan, p = 0.05). SS: Stainless steel container, SO: stainless 

steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

D. Total phenolic content of Kotsifali wines during ageing 

 

Changes in total phenolic content during ageing of Kotsifali in different containers are shown in 

Figure 3.5.  

Total phenolic content, during the first 6 months of ageing within each container, was 

significantly lower than that observed in the beginning of the experiment with the exception of 

wine in chestnut barrel. The lowest value was observed in stainless steel container at 6 months 

of ageing, being 31.9% lower than that in the beginning of the experiment. TPC increased 

during the last 6 months of ageing, in all the containers. 

Comparing the phenolic content between different containers at 3, 6 and 9 months of ageing, 

phenolic content in chestnut barrel, was constantly statistically significant different than in the 

rest of the containers.  

After 12 months of ageing, phenolic content, compared to the initial one was found to be 51.8% 

increased in chestnut barrel and 36.4% increased in acacia barrel. Results of Duncan’s multiple 

range tests (p = 0.05) between containers at 12 months of ageing are shown in Figure 3.6. 

Different letters in columns indicate statistical differences amongst the containers.  
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Figure 3.5 Changes in total phenolic content of Kotsifali wine ageing in SS, SO, AO, Ac, FO 

and Ch containers, through time. Measurements were taken directly after vinification and after 

3, 6, 9 and 12 months ageing period in the containers.  Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel. 

 

 

Figure 3.6 Total phenolic content (TPC) of Kotsifali wines in different containers at 12 months 

of ageing.  Different letters in columns represent statistical differences amongst the containers.  

SS: Stainless steel container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: 

acacia barrel, FO: French oak barrel, Ch: chestnut barrel. 
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E. Total phenolic content of Mandilari wines during ageing 

 

Changes in total phenolic content of Mandilari wine during ageing in different containers are 

shown in Figure 3.7.  

 

 

Figure 3.7 Changes in total phenolic content of Mandilari wine ageing in SS, SO, AO, Ac, FO 

and Ch containers, through time. Measurements were taken directly after vinification and after 

3, 6, 9 and 12 months ageing period in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel. 

 

With the exception of stainless steel container, phenolic content in each container increased 

through ageing; the highest increase in each container occurred during the first three months of 

ageing, varying from 5.9% in stainless steel container to 34.9% in French oak barrel. One-way 

analysis of variance (p = 0.05) revealed statistically significant differences in total phenolic 

content amongst the containers at 3, 6, 9 and 12 months of ageing in containers. It was observed 

that after the 3
rd

 month, phenolic content in chestnut barrel was constantly significant higher 

from the rest of the containers (Duncan, p = 0.05). 
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 Statistically significant differences between the containers after 12 months of ageing, are shown 

in Figure 3.8 (p = 0.05). Different letters in columns indicate differences amongst the 

containers. Total phenolic content in Mandilari was found increased in most of the containers 

after 12 months of ageing (compared to phenolic concentration directly after vinification. The 

highest total phenolic content was observed in wine ageing in chestnut barrel. The observed 

increase since the begging of the experiment in Chestnut, Acacia, French oak and American oak 

barrels and barrels and stainless steel with oenosticks container was 46.9%, 39.1%, 34.9%, 

30.7% and 29% respectively. In the case of stainless steel container a slight decrease (5.8%) was 

observed. 

 

 

Figure 3.8 Total phenolic content (TPC) of Mandilari wines in different containers at 12 months 

of ageing. Different letters represents statistical differences amongst the containers. SS: stainless 

steel container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, 

FO: French oak barrel, Ch: chestnut barrel. 

 

 

3.1.1.2 Results of the second year of vinification (2013) 

 

A. Phenolic content of wines directly after vinification 

 

Total phenolic content (TPC) of the tested wines was determined directly after vinification. The 

results are shown in Table 3.2. Phenolic content of red wines was approximately 2-9 times 

higher than that determined in white wines. 
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Table 3.2 Total phenolic content (TPC) of wines directly after vinification. Results are 

expressed in mg/l gallic acid. 

WINE TPC*  

Vilana 425.9 

Dafni 288.6 

Kotsifali 1022.7 

Mandilari 2786.4 

*Mean values 

 

 B. Total phenolic content of Vilana wines during ageing 

 

Figure 3.9 represents total phenolic content of Vilana wine in each container during ageing.  

The different letters within containers reveals significant differences amongst TPC of each 

measurement point (Duncan’s multiple range tests, p = 0.05).  

 

 

Figure 3.9 Changes in total phenolic content of Vilana wine ageing in SS, SO, AO, Ac and FO 

containers, through time. Measurements were taken directly after vinification and after 3, 6, 9 

and 12 months ageing period in the containers. Different letters in columns represent statistical 
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differences within each container. SS: stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

Phenolic content (TPC) increased in all the containers; the biggest differences were observed in 

wooden barrels – especially in acacia barrel. TPC of wine in American oak and in French oak 

barrel after nine months of ageing was found to be significant lower than TPC observed at 6 and 

at 12 months of ageing in each container (Duncan, p = 0.05). 

Comparison between the different containers after 3, 6, 9 and 12 months, revealed that phenolic 

content in acacia barrels was constantly statistically significant higher than any other container.  

After 3 months of ageing, comparing the phenolic content of the different containers, except 

from acacia barrel, there were no any statistically significant differences. Comparing phenolic 

content in stainless steel with and without oenosticks containers through ageing, showed only 

small differences between them. 

Total phenolic content of wine in acacia barrel was the highest amongst all containers after 12 

months of ageing (Figure 3.10), displaying higher total phenolic content than any other 

container, since the 6
th
 month of ageing. After 12 months of ageing TPC in acacia barrel, was 

42.6% higher than the initial one. Statistical differences in phenolic content at 12 months of 

ageing between containers are indicated with different letters in columns of Figure 3.10 

(Duncan, p = 0.05). 

 

 

Figure 3.10 Total phenolic content of Vilana wine ageing in SS, SO, AO, Ac and FO containers 

after 12 months of ageing. Different letters in columns indicate statistically significant 

differences. SS: stainless steel container, SO: stainless steel with oenosticks, AO: American oak 

barrel, Ac: acacia barrel, FO: French oak barrel. 
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C. Total phenolic content of Dafni wines during ageing 

 

Changes in total phenolic content of Dafni wine in each container are shown in Figure 3.11. 

Different letters within columns represent statistically significant differences (Duncan, p = 

0.05). 

One-way analysis of variance  for Dafni in stainless steel with and without oenosticks 

containers  revealed that, although not very intense, differences in total phenolic content of each 

wine during ageing were statistically significant (p = 0.05). The major differences in TPC were 

observed in phenolic content of wines in acacia barrel, increasing constantly since the beginning 

of the experiment. During the first 3 months of ageing TPC was statistically significant 

increased only in acacia barrels, increasing constantly through time.  

 

 

 

Figure 3.11 Changes in total phenolic content of Dafni wine ageing in SS, SO, AO, Ac and FO 

containers, through time. Measurements were taken directly after vinification and after 3, 6, 9 

and 12 months of ageing in the containers. Different letters in columns represent statistical 

differences within each container. SS: stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 
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Comparing the different containers through ageing, similarly to Vilana wines, phenolic content 

in acacia barrels was constantly statistically significant higher than that observed in any other 

container. In all containers, total phenolic content reached the highest levels after 12 months of 

ageing (Figure 3.11). In comparison with phenolic content of wine directly after vinification, 

total phenolic content was 51.5% higher in acacia barrels and 28.4% higher in French oak 

barrels. Similarly to Vilana wine, Dafni in FO barrels after 9 months of ageing had significant 

lower TPC than that after 6 and 12 months of ageing (Duncan, p = 0.05). 

Differences in phenolic content of wines at 12 months of ageing between containers are shown 

in Figure 3.12 (Duncan, p = 0.05). 

  

 

Figure 3.12 Total phenolic content of Dafni wine ageing in SS, SO, AO, Ac and FO containers 

after 12 months of ageing. Different letters in columns indicate statistically significant 

differences. SS: stainless steel container, SO: stainless steel with oenosticks, AO: American oak 

barrel, Ac: acacia barrel, FO: French oak barrel. 
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Changes in total phenolic content of Kotsifali wines ageing for 12 months in different 

containers are shown in Figure 3.13. In general, in stainless steel and stainless steel with 

oenosticks containers no or minor changes were observed during ageing. Phenolic content in all 

wooden barrels increased during ageing. The highest increase in all the wooden barrels was 

observed during the last 3 months of ageing. In acacia and chestnut barrels, phenolic content 

increased constantly through ageing, whereas in American and French oak barrel, a decrease 

was observed from the 6
th
 to 9

th
 month of ageing. 
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 Total phenolic content in Kotsifali wines increased after 12 months in containers by 41.9% in 

chestnut barrel, 37% in acacia, 33.4% in American oak and 21.7% in French oak barrels. As 

shown in Figure 3.14 phenolic content was not differentiated in stainless steel with and without 

oenosticks containers, on the contrary to phenolic content of wines in wooden barrels (Duncan, 

p = 0.05).  

 

Figure 3.13 Changes in total phenolic content of Kotsifali wine ageing in SS, SO, AO, Ac and 

FO containers, through time. Measurements were taken directly after vinification and after 3, 6, 

9 and 12 months ageing period in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel. 
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Figure 3.14 Total phenolic content of Kotsifali wine ageing in SS, SO, AO, Ac and FO 

containers, after 12 months of ageing in the containers. SS: Stainless steel container, SO: 

stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak 

barrel, Ch: chestnut barrel. 

 

E. Total phenolic content of Mandilari wines 

 

Changes in total phenolic content of Mandilari wine ageing in different containers is shown in 

Figure 3.15.  

In general, phenolic content increased during the first 6 months of ageing. In most of them the 

increase took place from the 3
rd

 to 6
th
 month of ageing. A statistically significant decrease was 

observed in total phenolic content after 9 months of ageing in American oak, French oak and 

stainless steel container, reaching the initial levels. During the 12 month ageing, changes were 

most intense in chestnut, acacia and French oak barrel. 

Total phenolic content increased from 17.8% in chestnut barrel, to 4.4% in stainless steel with 

oenosticks container after 12 months of ageing, compared to total phenolic content directly after 

vinification. Statistical differences in total phenolic content between the containers are indicated 

with different letters in Figure 3.16 (Duncan, p = 0.05). Compared with phenolic content of 

wine in stainless steel container, phenolic content was 12.9% higher in wine in chestnut barrel.  
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Figure 3.15 Changes in total phenolic content of Mandilari wine ageing in SS, SO, AO, Ac and 

FO containers, through time. Measurements were taken directly after vinification and after 3, 6, 

9 and 12 month ageing in the containers. Different letters in columns represent statistically 

significant differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel. 

 

 

Figure 3.16 Total phenolic content of Mandilari wine ageing in SS, SO, AO, Ac, FO and Ac 

containers, after 12 months of ageing in the containers. Different letters in columns represent 

statistically significant differences between the containers. SS: Stainless steel container, SO: 

stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak 

barrel, Ch: chestnut barrel. 
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The results of ANOVA for the determination of significant differences in TPC between the 

containers and during ageing are summarised in Table 3.3 and |Table 3.4.  
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Table 3.3: Comparison of the phenolic content of wines between the 

different containers after 3, 6, 9 and 12 months of ageing. Results of 

one-way ANOVA (significance level p = 0.05). 

           1st vinification        2nd vinification  

VILANA 

3 months NS S 

6 months S S 

9 months S S 

12 months S S 

DAFNI 

3 months NS S 

6 months S S 

9 months S S 

12 months S S 

KOTSIFALI 

3 months S NS 

6 months S S 

9 months S S 

12 months S S 

MANDILARI 

3 months S S 

6 months S NS 

9 months S S 

12 months S S 
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Table 3.4: Comparison of the phenolic content of wines within each 

container during ageing. Results of one-way ANOVA (significance level 

p = 0.05). 

                   1st vinification              2nd vinification  

VILANA 

SS S S 

SO NS S 

AO S S 

Ac S S 

FO S S 

DAFNI 

SS S S 

SO S S 

AO S S 

Ac S S 

FO S S 

KOTSIFALI 

SS S S 

SO S NS 

AO S S 

Ac S S 

FO S S 

Ch S S 

MANDILARI 

SS S S 

SO S S 

AO S S 

Ac S S 

FO S S 

Ch S S 
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3.1.2 Total antioxidant activity (TEAC) of Vilana, Dafni, Kotsifali and Mandilari 

wines 

 

3.1.2.1 Results of the first year vinification (2012) 

 

A. Total antioxidant activity (TEAC) of wines directly after vinification 

 

Total antioxidant activity of Vilana, Dafni, Kotsifali and Mandilari wines was determined 

directly after vinification. Total antioxidant activity of red wines, Kotsifali and Mandilari 

directly after vinification, was found approximately 9-17 times greater than that of white wines, 

Vilana and Dafni. Total antioxidant activity of wines directly after vinification (0 months) is 

shown in Table 3.5, in mM of Trolox. 

 

Table 3.5 Total antioxidant activity (TEAC) of first vinification wines. Results are expressed in 

mM of Trolox. 

WINE TEAC*  

Vilana 1.138 

Dafni 1.569 

Kotsifali 9.815 

Mandilari 19.280 

*Mean values 
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B. Antioxidant activity (TEAC) of Vilana wines during ageing 

 

Changes in total antioxidant activity (TEAC) of Vilana ageing are shown it Figure 3.17. 

Different letters in columns reveal statistically significant differences within each container 

during ageing (Duncan’s multiple range tests, p = 0.05).  

 

Figure 3.17 Changes in total antioxidant activity of Vilana wine ageing in SS, SO, AO, Ac and 

FO containers, through time. Measurements were taken directly after vinification and after 3, 6, 

9 and 12 months ageing period in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

In all containers, the antioxidant activity increased compared to antioxidant activity directly 

after vinification, with the exception of wine at 3 months of ageing, when it decreased 

significantly. The decrease varied from 21.3% in acacia to 43% in American oak barrel. The 

highest level in antioxidant activity was observed in Acacia barrel, followed by French oak 

barrel. Even though antioxidant activity in American oak barrel at 6 months of ageing was 

higher than the initial, it was the lowest observed compared to the rest of the containers, 

including stainless steel with and without oenosticks.  

Comparing different containers, differences in antioxidant activity between them, apart from 3 

months of ageing, were statistically significant at each time of measurement (Duncan p = 0.05).  
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Vilana in all containers had the highest total antioxidant activity after 12 months of ageing 

compared to the initial one. Acacia barrel and French oak barrel had the greatest increase 

amongst all the containers (132 % in acacia and 117 % in French oak barrel). Stainless steel 

with oenosticks container, when compared to stainless steel container had a slight but also 

statistical significant increase in antioxidant activity after twelve months of ageing (p =0.05). In 

comparison to antioxidant activity in stainless steel container, antioxidant activity in Acacia and 

French oak barrels was 31.6% and 23.1% higher respectively. Statistically significant 

differences between the containers are shown in Figure 3.18 (Duncan, p = 0.05). 

 

 

Figure 3.18 Total antioxidant activity of Vilana wine, after 12 month ageing in SS, SO, AO, Ac 

and FO containers. Different letters within containers, represent statistical differences between 

containers. SS: Stainless steel container, SO: stainless steel with oenosticks, AO: American oak 

barrel, Ac: acacia barrel, FO: French oak barrel. 
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C. Total antioxidant activity (TEAC) of Dafni wines during ageing 

 

Changes in total antioxidant activity (TEAC) of Dafni ageing in different containers are shown 

it Figure 3.19.  

 

Figure 3.19 Changes in total antioxidant activity of Dafni wine ageing in SS, SO, AO, Ac and 

FO containers, through time. Measurements were taken directly after vinification and after 3, 6, 

9 and 12 months ageing period in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

Same to Vilana wine, a statistically significant decrease was observed in antioxidant activity of 

wines in all the containers, at 3 months of ageing (Figure 3.19). Total antioxidant activity 

increased significantly afterwards, reaching levels higher than the begging of the experiment. 

Compared to antioxidant activity at 6 months of ageing, at the end of ageing antioxidant activity 

increased only in acacia and French oak barrels whereas in stainless steel with and without 

oenosticks containers was found significant lower. The highest levels of antioxidant activity 

were observed in acacia and French oak barrels. The differences in antioxidant activity between 

the containers, after 12 months of ageing, are shown in Figure 3.20 (p = 0.05).  
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The greatest increase in TEAC, compared to antioxidant activity directly after vinification, was 

observed in wine in acacia barrels (70% increase) followed by wine in French oak barrels 

(56.6% increase).  

 

 

Figure 3.20 Total antioxidant activity of Dafni after 12 months of ageing in containers. 

Different letters represent statistical differences between containers. SS: Stainless steel 

container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: 

French oak barrel, Ch: chestnut barrel. 

 

 

D. Total antioxidant activity (TEAC) of Kotsifali wines  

 

Antioxidant activity of Kotsifali during ageing and is shown in Figure 3.21. The level of 

antioxidant activity during ageing was, in most of the cases, lower than that observed in the 
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rd

 month of ageing no changes occurred in antioxidant 
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3
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 month of ageing. Antioxidant activity of wine in chestnut barrels, was constantly 

statistically significant higher that that observed in any other container. (Duncan, p = 0.05). 
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Figure 3.21 Changes in total antioxidant activity (TEAC) of Kotsifali wine ageing in SS, SO, 

AO, Ac, FO and Ch containers, through time. Measurements were taken directly after 

vinification and after 3, 6, 9 and 12 months ageing period in the containers. Different letters in 

columns represent statistical differences within each container. SS: stainless steel container. SO: 

stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak 

barrel, Ch: chestnut barrel.  

 

In Figure 3.22 is shown antioxidant activity of Kotsifali wine in the different containers after 12 

months of ageing. Compared to total antioxidant activity directly after vinification, TEAC 

decreased in the cases of wines in stainless steel container, stainless steel with oenosticks 

container, American oak and French oak barrels, and increased only in chestnut barrel (15% 

higher than in the beginning of the experiment). The greatest decrease was observed in wine in 

stainless steel container (15.2% lower). After 3 months of ageing in containers, antioxidant 

activity decreased in wines in all containers varying from 38.9% in American oak barrel to 

27.4% in chestnut barrel.  
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Figure 3.22 Total antioxidant activity of Kotsifali after 12 months of ageing in containers.  . 

Different letters in columns represent statistical differences between containers. SS: Stainless 

steel container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, 

FO: French oak barrel, Ch: chestnut barrel. 

 

E. Total antioxidant activity (TEAC) of Mandilari wines 

 

Changes in total antioxidant activity of Mandilari wine ageing in different containers for 12 

months are shown in Figure 3.23. Antioxidant activity of wines in all containers decreased 

during the first three months of ageing but afterwards an increase was observed leading to 

similar (in stainless steel, stainless steel with oenosticks and American oak barrel) or even 

higher (in chestnut, acacia and French oak barrels) antioxidant activity than the initial. 
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Figure 3.23 Changes in total antioxidant activity of Mandilari wine ageing in SS, SO, AO, Ac, 

FO and Ch containers, through time. Measurements were taken directly after vinification and 

after 3, 6, 9 and 12 months ageing period in the containers. Different letters in columns 

represent statistical differences within each container. SS: stainless steel container, SO: stainless 

steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel. 

 

Comparing the different containers, antioxidant activity of wines in Chestnut and acacia barrels 

was always statistically significant higher than the rest of the containers (p = 0.05). Antioxidant 

activity of wine in French oak barrel was significantly lower than that observed in chestnut and 

acacia barrels. 

Compared to total antioxidant activity directly after vinification total antioxidant activity 

increased by 13.8% in wine in chestnut barrel after 12 months of ageing (Figure 3.24).  
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Figure 3.24 Total antioxidant activity of Mandilari in different containers after 12 months of 

ageing. Different letters represent statistical differences between the containers. SS: stainless 

steel container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, 

FO: French oak barrel, Ch: chestnut barrel. 

 

Total antioxidant activity of wines decreased after 3 months of ageing in all containers (Figure 

3.25). The highest antioxidant activity was observed in chestnut barrel followed by acacia 

barrel. 

  

 

Figure 3.25 Total antioxidant activity of Mandilari in different containers after 3 months of 

ageing. Different letters in columns represent statistical differences between containers. SS: 

Stainless steel container, SO: stainless steel with oenosticks, AO: American oak barrel, Ac: 

acacia barrel, FO: French oak barrel, Ch: chestnut barrel. 
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3.1.2.2 Results of the second year of vinification (2013) 

 

A. Total antioxidant activity (TEAC) of wines, directly after vinification 

 

Total antioxidant activity directly after vinification, was approximately 6-12 times higher in red 

wines than that observed in white wines. TEAC directly after vinification (0 months) is shown 

in Table 3.6, in mM of Trolox. 

 

Table 3.6 Total antioxidant activity (TEAC) of second vinification wines. Results are expressed 

in mM of Trolox. 

WINE TEAC*  

Vilana 2.011293 

Dafni 1.374699 

Kotsifali 8.353361 

Mandilari 17.42835 

*Mean values 

 

B. Total antioxidant activity (TEAC) of Vilana wines during ageing 

 

Changes in total antioxidant activity of Vilana wines occurred during ageing for 12 months in 

different containers, as shown in Figure 3.26.  

Antioxidant activity of wines decreased in the first three months of ageing regardless the 

container. After the 6
th
 month of ageing antioxidant activity increased again resulting in all the 

containers in higher levels than those observed initially. Wines French oak barrel had the 

highest antioxidant activity at the end of the ageing period.    

At 3 months of ageing, a decrease in total antioxidant activity was observed in all containers. 

The decrease varied from 66.2% in French oak barrel to 29.3% in acacia barrel (Figure 3.28), 

(Duncan, p = 0.5).  After 12 months of ageing in the containers (Figure 3.27), total antioxidant 

activity of Vilana wine increased 43.7% in French oak and 35.2% % in American oak barrels 

compared to antioxidant activity of wine directly after vinification. However, in the last three 
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months of ageing in containers, antioxidant activity increased in all containers, apart from wine 

in acacia barrel where it decreased significantly (Figure 3.26).  

 

Figure 3.26 Total antioxidant activity of Vilana wine ageing in SS, SO, AO, Ac and FO 

containers, during 12 months of ageing in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel.  

 

 

Figure 3.27 Total antioxidant activity of Vilana wine ageing in SS, SO, AO, Ac and FO 

containers, after 12 months of ageing in the containers. Different letters in columns represent 

statistical differences between the containers. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

B 

D 
C 

D 
D 

C 

E D 

E 

E 

A 

C 
A 

B 

C AC 

B 

B 

A 

B 

A A 
A 

C 
A 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

SS SO AO Ac FO 

T
E

A
C

, 
T

ro
lo

x
 m

M
 

VILANA  

0 months 3 months 6 months 9 months 12 months 

D 

C B 
E 

A 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

SS SO AO Ac FO 

T
E

A
C

, 
T

ro
lo

x
 m

M
 

VILANA  12 months 



CHAPTER THREE: Results  81 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

 

 

Figure 3.28 Total antioxidant activity of Vilana wine ageing in SS, SO, AO, Ac and FO 

containers, after 3 months of ageing in the containers. Different letters in columns represent 

statistical differences between containers. SS: Stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 

 

 

C. Total antioxidant activity (TEAC) of Dafni wines during ageing 

 

Changes in total antioxidant activity of Dafni wines ageing in the different containers are shown 

in Figure 3.29 (Duncan, p = 0.05).  

After a decrease observed in the first three months of ageing, antioxidant activity increased in 

all the containers. Minor changes were observed in stainless steel with and without oenosticks 

containers, whereas in wooden barrels, it was increasing constantly until the 12
th
 month of 

ageing. Wine in acacia barrel, had the highest antioxidant activity, followed by French oak 

barrel.  

Comparison between containers revealed that antioxidant activity of wines was statistically 

significant differentiated after the 6
th
 month of ageing. Wine in acacia barrel had significantly 

higher antioxidant activity than wine in any other container. Total antioxidant activity decreased 

significantly after 3 months of ageing in containers (Duncan, p = 0.05). 
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Figure 3.29 Total antioxidant activity of Dafni wine ageing in SS, SO, AO, Ac and FO 

containers, during 12 months of ageing in the containers. Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel.  

 

Total antioxidant activity of Dafni increased in all barrels after 12 months of ageing. Compared 

to antioxidant activity directly after vinification wine ageing in acacia barrel displayed the major 

increase amongst all containers (96.2%). Changes in total antioxidant activity of wines in the 

different containers during 12 months of ageing are shown in Figure 3.29. Statistical differences 

within containers are shown with different letters in columns (Duncan’s multiple range tests, p = 

0.05). 
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Figure 3.30 Total antioxidant activity of Dafni wine ageing in SS, SO, AO, Ac and FO 

containers, after 12 months of ageing in the containers. Different letters in columns represent 

statistical differences between the containers. SS: Stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel.  

 

 

D. Total antioxidant activity (TEAC) of Kotsifali wines  

 

Changes in total antioxidant activity of Kotsifali wines ageing in the different containers are 

shown in Figure 3.31. Minor changes were observed in stainless steel with and without 
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Total antioxidant activity of Kotsifali wine ageing in different containers, compared to 

antioxidant activity directly after vinification, increased 36.1% in chestnut and 13.5% in acacia 

barrels (Figure 3.31). 

Statistically significant differences (p= 0.05) were reported after twelve months of ageing as 

shown in Figure 3.32. Antioxidant activity, in comparison to antioxidant activity in stainless 

steel container, was found 41.2% higher in chestnut barrel.  
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Figure 3.31 Total antioxidant activity of Kotsifali wine ageing in SS, SO, AO, Ac, FO and Ch 

containers, during 12 months of ageing in the containers. Different letters in columns represent 

statistical differences within each container. SS: Stainless steel container, SO: stainless steel 

with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel.  

 

 

                                                      

Figure 3.32 Total antioxidant activity of Kotsifali wine ageing in SS, SO, AO, Ac, FO and Ch 

containers, after 12 months of ageing in the containers.  Different letters in columns represent 

statistical differences between containers. SS: stainless steel container, SO: stainless steel with 

oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: chestnut 

barrel.  
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E. Total antioxidant activity (TEAC) of Mandilari wines 

 

Changes in total antioxidant activity of Mandilari wine during ageing for 12 months in different 

containers are shown in Figure 3.33. Different letters in columns indicate statistically significant 

differences within containers (p = 0.05).  

Antioxidant activity decreased significantly in the first three months of ageing in all the 

containers. An increase followed leading to even higher antioxidant activity at 6 months of 

ageing than that determined directly after vinification. Total antioxidant activity of wines after 

12 months of ageing, compared to total antioxidant activity directly after vinification increased 

from 16.1% in stainless steel container to 29.7% in French oak barrels. Statistically significant 

differences between the containers are shown with different letters in columns of Figure 3.34 (p 

= 0.05). 

In all containers, total antioxidant activity decreased after 3 months of ageing in containers 

compared to total antioxidant activity directly after vinification. No statistically significant 

differences were observed between the containers (ANOVA, p = 0.05). 

 

 

Figure 3.33 Total antioxidant activity of Mandilari wine ageing in SS, SO, AO, Ac, FO and Ch 

containers, during 12 months of ageing in the containers.  Different letters in columns represent 

statistical differences within each container. SS: stainless steel container, SO: stainless steel 
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with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: 

chestnut barrel.  

 

 

Figure 3.34 Total antioxidant activity of Mandilari wine ageing in SS, SO, AO, Ac, FO and Ch 

containers, after 12 months of ageing in the containers. Different letters in columns represent 

statistically significant differences between the containers. SS: Stainless steel container, SO: 

stainless steel with oenosticks, AO: American oak barrel, Ac: acacia barrel, FO: French oak 

barrel, Ch: chestnut barrel.  

 

The results of ANOVA for the determination of significant differences in TEAC between the 

containers and during ageing are summarised in Table 3.7 and in Table 3.8.  
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Table 3.7 Results of one-way ANOVA (significance level p = 0.05). 

Comparison of the antioxidant activity of wines within each container during 

ageing. 

  1st vinification  2nd vinification  

VILANA 

SS S S 

SO S S 

AO S S 

Ac S S 

FO S S 

DAFNI 

SS S S 

SO S S 

AO S S 

Ac S S 

FO S S 

KOTSIFALI 

SS S NS 

SO 
S S 

AO 
S S 

Ac 
S S 

FO 
S S 

Ch 
S S 

MANDILARI 

SS S S 

SO S S 

AO S S 

Ac S S 

FO S S 

Ch S S 
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Table 3.8 Results of one-way ANOVA (significance level p = 0.05). 

Comparison of the antioxidant activity of wines in the different 

containers at 3, 6, 9 and 12 months of ageing.  

  

         1st vinification          2nd vinification    

VILANA 

3 months S NS   

6 months S S 

 9 months S S 

 12 months S S   

DAFNI   

3 months NS NS   

6 months S S 

 9 months S S 

 12 months S S   

KOTSIFALI   

3 months S NS   

6 months S S 

 9 months S S 

 12 months S S   

MANDILARI   

3 months S NS   

6 months S S 

 9 months S S 

 12 months S S   
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 3.1.3 Correlation between total antioxidant activity and total phenolic content of 

wines 

 

3.1.3.1 Results of the first vinification year (2012) 

 

Pearson product-moment correlation coefficient calculation of antioxidant activity (Teac) and 

total phenolic content (TPC) revealed a significant positive correlation (at level 0,01) between 

total phenolic content and antioxidant activity of wines (r = 0.948, DF= 264, p < 0,001) (Figure 

3.35). 

 

Figure 3.35 Correlation between total phenolic content (TPC) and total antioxidant activity 

(TEAC) of first vinification wines (Pearson product-moment correlation coefficient calculation). 

 

3.1.3.2 Results of the second vinification year (2013) 

 

Pearson product-moment correlation coefficient calculation of antioxidant activity (Teac) and 

total phenolic content (TPC) revealed a significant positive correlation (at level 0,01) between 

total phenolic content and antioxidant activity (r = 0.980, DF= 248, p < 0,001) of wines (Figure 

3.36). 
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Figure 3.36 Correlation between total phenolic content (TPC) and total antioxidant activity 

(TEAC) of 2
nd

 vinification wines (Pearson product-moment correlation coefficient calculation).  

 

Pearson product-moment correlation coefficient calculation of antioxidant activity (Teac) and 

total phenolic content (TPC) revealed positive correlations (at level 0,01) between total phenolic 

content and antioxidant activity of white wines (r = 0.583, DF= 278) and of red wines of both 

vinifications (r = 0.944, DF= 334) (Figure 3.37). Correlation was much more intense in red 

wines than in white wines. 

 

Figure 3.37 Correlation between total phenolic content (TPC) and total antioxidant activity 

(TEAC) of (a) white wines and (b) red wines (Pearson product-moment correlation coefficient 

calculation). Results refer to both vinifications. 

  

       TPC 

(a)                                                                             (b) 
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3.1.3 Phenolic fingerprints of extracts obtained from Vilana, Dafni, Kotsifali and 

Mandilari wines.   

 

Phenolic extracts were obtained by Solid Phase Extraction (SPE). Absorption spectrum of each 

wine was obtained by attenuated total reflectance (ATR) FTIR, at mid-infrared (1800-900 cm
-1

) 

(100 scans at 4 cm
-1

).  

Absorption spectra of phenolic extracts of each variety were taken directly after vinification and 

through ageing, and characteristic peaks at the fingerprint region were determined.  

Directly after vinification, in Dafni phenolic extracts characteristic peaks were observed that are 

attributed to the phenol-structure at 1060, 1200, 1230, 1280, 1315, 1340, 1445 and 1520 cm
-1 

as 

shown in Figure 3.38. In Vilana characteristic peaks were observed attributed to the phenol-

structure at 1060, 1230, 1315, 1340, 1445 and 1520 cm
-1

, and 1110-1150 cm
-1

 (Figure 3.39). 

Differences between Vilana and Dafni extracts were observed at 1200 cm
-1 

and 1280 cm
-1

. Both 

peaks were observed in Dafni phenolic extracts but not in Vilana. Peaks at 1110-1150 cm
-1

, 

which were observed in Vilana, were not observed in Dafni extracts. 

In Kotsifali phenolic extracts peaks at 1060, 1200, 1230, 1280, 1315, 1340, 1445 and 1520 cm
-1 

were observed, attributed to phenol structure. Compared to Mandilari, there was absence of a 

peak at 1110 cm
-1

. A wick peak appeared at 1145 cm
-1

(Figure 3.40). Mandilari, absorbed 

strongly at 1060, 1110, 1145, 1200, 1230, 1280, 1340, 1445 and 1520 cm
-1 

(Figure 3.41), 

wavelengths that phenolics are known to absorb. The peak at 1200 cm
-1

 appeared stronger in 

Mandilari than in Kotsifali. 

Absorption spectra of phenolic extracts of each variety were taken through the 12 month period 

of ageing in containers. Overlays of typical absorption spectra, are shown in Figure 3.42, Figure 

3.43, Figure 3.44 and Figure 3.45. 
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Figure 3.38 Absorption spectrum of Dafni phenolic extract directly after vinification. Arrows 

point out characteristic peaks attributed to Vilana wine. 

 

 

Figure 3.39 Absorption spectrum of Vilana phenolic extract directly after vinification. Arrows 

point out characteristic peaks of phenolic moieties.  
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Figure 3.40 Absorption spectrum of Kotsifali phenolic extract directly after vinification. Arrows 

point out characteristic absorption peaks of phenolic moieties in Kotsifali wine. 

  

Figure 3.41 Absorption spectrum of Mandilari phenolic extract directly after vinification. 

Arrows point out characteristic peaks of phenolic moieties in Mandilari wine.  
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Figure 3.42 Spectra overlays of phenolic extracts of Dafni wine, after 9 months of ageing in 

different containers.SS: Stainless steel container, SO: stainless steel with oenosticks container, 

AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel.  

 

 

Figure 3.43 Spectra overlays of phenolic extracts of Vilana wine, after 9 months of ageing in 

different containers. SS: Stainless steel container, SO: stainless steel with oenosticks container, 

AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel. 
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Figure 3.44 Spectra overlays of phenolic extracts of Kotsifali wine, after 9 months of ageing in 

different containers. SS: Stainless steel container, SO: stainless steel with oenosticks container, 

AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: chestnut barrel 

 

Figure 3.45 Spectra overlays of phenolic extracts of Mandilari wine, after 6 months of ageing in 

different containers. SS: Stainless steel container, SO: stainless steel with oenosticks container, 

AO: American oak barrel, Ac: acacia barrel, FO: French oak barrel, Ch: chestnut barrel.  
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3.1.2 Results of PCA and PLS analysis 

 

i) PCA for the discrimination of wine varieties  

The infrared spectral data from the analysis of the wine samples ageing for 3, 6, 9 and 12 

months, were used to perform the principal components analysis (PCA). The first component 

(PC1) was the major contributor to the separation of the varieties. The sum of the first three PCs 

of white wines explained 97.5% of the total variance (the scores for PC1 for white wines 

explained 82.4% of the total variability; PC2 and PC3 explained 12.5% and 2.7% of the 

variability, respectively). The sum of the first three PCs of red wines explained 87.8% of the 

total variance. 

PCA Discriminant Analysis (PCA-DA) was performed on both white and red wines. A 

complete differentiation (100%) of the white (Figure 3.46, Table 3.9) and red (Figure 3.47, 

Table 3.10) wine samples was achieved by PCA-DA, based on their FT-IR spectra. (PCA was 

used to derive 16 principal components that ensured that at least 99.9 % of the variability was 

considered by the analysis).  

 

 

Figure 3.46 Discrimination results by PCA-DA regarding the variety of white wines.         

 (V: Vilana, D: Dafni) 

 

Table 3.9 Variety classification based on phenolic fingerprints (white wines) 

 

 

 

Number Misclassified 0 

Percent Misclassified 0 

 -2LogLikelihood 0.813 
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Figure 3.47 Discrimination results by PCA-DA regarding the variety of red wines.  

 (K: Kotsifali, M: Mandilari) 

 

Table 3.10 Variety classification based on phenolic fingerprints (red wines) 

Number Misclassified 0 

Percent Misclassified 0 

 -2LogLikelihood 9e-16  

 

 

ii) Prediction of total phenolic content by PLS models  

Total phenolic content of wine was achieved based on PLS analysis. Data from the FTIR 

spectra were used in order to predict the TPC of wines. Cross-validation (leave-one-out 

technique) was used in all cases for calibration models evaluation. Eight factors were used for 

the quantitative analysis, explaining 92.7% of the variance (phenolic content of wines) as 

presented in Table 3.11. A good correlation was determined by plotting the full cross-validated 

PLS predicted TPC values (r = 0.98) by the PLS model (Figure 3.50). 

 

Table 3.11 Model comparison summary 

Method Number of 

factors 

Percent Variation Explained 

for Cumulative Y 

NIPALS 8 92.733668 
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      Figure 3.48 Plot of actual by predicted TPC by PLS analysis  
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3.2 Influence of oleuropein and hydroxytyrosol on acetic acid bacteria 

wine spoilage as an alternative to sulphur dioxide. 

 

3.2.1 Changes in volatile and titratable acidity of wine B1. 

 

The effect of AAB and different concentrations of oleuropein and hydroxytyrosol on titratable 

acidity of wine B1 is shown in Figure 3.49. Statistical differences in titratable acidity within 

treatments are stated with different letters in columns of Figure 3.49 (Duncan, p = 0.05). All 

treatments were incubated at 30°C. In all cases, titratable acidity increased under the employed 

conditions. AAB was the treatment that had the highest titratable acidity level amongst the 

treatments. Titratable acidity of H0.5 treatment at the last measurement was significant different 

from any other treatment.  

 

 

Figure 3.49 Titratable acidity (TA) of wine B1 per treatment. Total acidity was measured at the 

beginning of the experiment and after 2, 5 days, 1 week, 10 days and one month. All treatments 

were incubated at 30°C. Statistical differences within treatments are indicated with different 

letters in columns; Wine treatments: C1: Positive control, AAB: acetic acid bacteria, H0.5: 

hydroxytyrosol 0.5mg/l + acetic acid bacteria, H1: hydroxytyrosol 1mg/l + acetic acid bacteria, 

OL2: oleuropein 2 mg/l +acetic acid bacteria, OL20: oleuropein 20mg/l + acetic acid bacteria. 
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Figure 3.50 displays the levels of volatile acidity of each the treatment, after seven weeks 

incubation period at 30°C. Control and H0.5 treatments had significant differences with AAB 

treatment.  Compared to control, VA in AAB treatment was 66.5% higher. The rest of 

treatments displayed smaller increase than AAB, varying from 24% in H0.5 treatment to 34% in 

H1 treatment.  

 

 

Figure 3.50 Volatile acidity of wine B1 after 7 week incubation period at 30° C. The different 

letters in columns indicate significant differences of volatile acidity between treatments; Wine 

treatments: C1: Positive control, AAB: acetic acid bacteria, H0.5: hydroxytyrosol 0.5mg/l + 

acetic acid bacteria, H1: hydroxytyrosol 1mg/l + acetic acid bacteria, OL2: oleuropein 2mg/l 

+acetic acid bacteria, OL20: oleuropein 20mg/l + acetic acid bacteria. 

 

Changes in intensity (I) and hue (T) of the wine through tine are shown in Table 3.12. The 

increase in density reflects the changes occurring due to wine oxidation. In all treatments, 

density increased through time, demonstrating more brownish– orange colour in wine, an effect 

of wine spoilage.  
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Table 3.12 Changes in colour characteristics of wine B1 in time. 

WINE B1 0 days 2 days 1 month 7 weeks 

Treatment I T I T I T I T 

C1 4.801 0.984 5.590 1.027 8.172 1.008 8.806 1.000 

AAB 5.101 0.976 5.510 1.017 8.110 1.011 8.978 1.010 

H0.5 5.458 0.991 5.605 1.021 8.08 1.024 8.946 1.013 

H1 4.993 0.983 5.958 1.018 7.337 1.101 8.941 1.000 

OL2 5.006 0.985 5.623 1.029 7.542 1.000 8.862 1.006 

OL20 5.040 0.989 5.601 1.028 7.568 1.000 8.851 1.006 

 

 

3.2.2 Changes in volatile and titratable acidity of wine B2. 

 

Wine B2 was treated with acetic acid bacteria, oleuropein 0.1mg/l and oleuropein 0.4mg/l. 

Titratable acidity increased during incubation for 3 weeks at 30° C. Wine treated with acetic 

acid bacteria had reached the highest level in titratable acidity amongst treatments at the end of 

the experiment (Figure 3.51).  

 

 

 Figure 3.51 Titratable acidity of B2 wine 1, 2, and 3 weeks after addition of oleuropein 0.1mg/l 

and oleuropein 0.4mg/l. Titratable acidity increased during that period. AAB treatment was the 

one with the biggest increase after 3 weeks in 30°C; Wine treatments: C1: Positive control, 

AAB: acetic acid bacteria, OL0.1: oleuropein 0.1mg/l +acetic acid bacteria, OL0.4: oleuropein 

0.4mg/l + acetic acid bacteria. 
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In all treatments titratable acidity increased compared to acidity of wine at the beginning of the 

essay ranging from 29.1% in acetic acid bacteria treatment to 12.2% in positive control.  

Volatile acidity of wine B2 treated with AAB, OL0.1 and OL0.4 increased during the 

experiment as shown in Figure 3.52. After 7 weeks of incubation volatile acidity reached the 

highest levels in OL0.04 treatment. After 7 weeks of incubation at 30°C compared to C2 

treatment (positive control), AAB treatment displayed 53%, OL0.1 50% and OL0.04 57% 

increased volatile acidity.  

 

 

Figure 3.52 Volatile acidity of wine B2, 0 days (t=0) and 7 weeks after the beginning of the 

experiments. Samples were stored at 30°C during the experiment. Statistical differences are 

indicate with different letters in columns (p = 0.05); Wine treatments: C2: Positive control, 

AAB: acetic acid bacteria, OL0.1: oleuropein 0.1mg/l +acetic acid bacteria, OL0.4: oleuropein 

0.4mg/l + acetic acid bacteria; t=0: volatile acidity at the beginning of the experiment). 

 

3.2.3 Changes in volatile acidity of wine B3. 

 

Wine treated with hydroxytyrosol 1mg/l had increased volatile acidity during a 3 month period 

in a lesser extent than the rest of the treatments (Figure 3.53). Acetic acid bacteria were not 

added in any of the treatments allowing wine’s existing population of acetic acid bacteria to 
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increase in order to monitor the effect the additives would have on volatile acidity. Statistically 

significant differences within treatments are shown in Figure 3.64 (p = 0.05). 

Statistically significant differences of volatile acidity between the different treatments, 3 months 

after the begging of the experiment, are shown in Figure 3.54. Statistically significant 

differences are indicated by different letters in the columns (Duncan, p = 0.05). 

 

 

Figure 3.53 Volatile acidity of wine B3. All samples were incubated at 30° C throughout the 

experiment. Samples were stored at 30°C during the experiment; Wine treatments: C3: Positive 

control, EtOH 10%: ethanol 10%, H1: hydroxytyrosol 1mg/l, H2: hydroxytyrosol 2mg/l, Ol100: 

oleuropein 100mg/l. 

 

 

Figure 3.54 Volatile acidity of wine B3, 3 months after the beginning of the experiment. All 

samples were incubated at 30° C. Statistical differences, are indicated by different letters in 
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columns; Wine treatments: C3: Positive control, EtOH 10%: ethanol 10%, H1: hydroxytyrosol 

1mg/l, H2: hydroxytyrosol 2mg/l, OL100: oleuropein 100mg/l. 

 

3.2.4 Changes in volatile and titratable acidity of wine B4 

 

Amongst all treatments in wine B4, hydroxytyrosol 0.5gr/l showed the lowest increase in 

volatile acidity amongst all the treatments – positive control excluded (Figure 3.55). In all cases, 

treated wine with AAB and hydroxytyrosol or oleuropein had increased volatile acidity 

compared to control. 

Oleuropein treatments in concentration 400mg/l and 800mg/l had very similar results to AAB 

treatment. Oleuropein 50mg/l treatment had similar effect to hydroxytyrosol 1mg/l treatment. 

Statistically significant differences of volatile acidity between the different treatments, 5 weeks 

after the begging of the experiment, are shown in Figure 3.56 (p = 0.05) 

  

 

 Figure 3.55 Titratable acidity of wine B4 5 weeks since the beginning of the essay. All samples 

were incubated at 30° C. Statistical differences, are indicated by different letters in columns; 

Wine treatments: C4: Positive control AAB: acetic acid bacteria, H0.5: hydroxytyrosol 0.5mg/l 

+ acetic acid bacteria,  H1: hydroxytyrosol 1mg/l + acetic acid bacteria, OL50: oleuropein 

50mg/l + acetic acid bacteria, OL400: oleuropein 400mg/l + acetic acid bacteria; OL800: 

oleuropein 800mg/l + acetic acid bacteria. 
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Figure 3.56 Volatile of wine B4 5 weeks since the beginning of the essay. All samples were 

incubated at 30° C. Statistical differences, are indicated by different letters in columns; Wine 

treatments: C4: Positive control AAB: acetic acid bacteria, H0.5: hydroxytyrosol 0.5mg/l + 

acetic acid bacteria, H1: hydroxytyrosol 1mg/l + acetic acid bacteria, OL50: oleuropein 50mg/l 

+ acetic acid bacteria, OL400: oleuropein 400mg/l + acetic acid bacteria, OL800: oleuropein 

800mg/l + acetic acid bacteria. 

 

3.2.5 Changes in volatile and titratable acidity of wine B5 

 

Wine B5 was treated with acetic acid bacteria, hydroxytyrosol 1mg/l + acetic acid bacteria (H1), 

oleuropein 1mg/l + acetic acid bacteria (OL1) and oleuropein 2mg/l + acetic acid bacteria 

(OL2). Throughout incubation at 30° C for one month, titratable acidity was measured. At the 

end of the experiment volatile acidity of each treatment was determined.   

In all treatments of wine B5 titratable acidity increased during a three period time (Figure 3.57). 

At the end of the experiment titratable acidity was significant lower in H1 treatment than the 

rest of the treatments (Duncan, p = 0.05). 

Volatile acidity was significantly different level in hydroxytyrosol 1mg/l treatment, compared to 

AAB and oleuropein mg/l and 2 mg/l (Figure 3.58). Hydroxytyrosol 1mg/l treatment exhibited 

50.7% lower volatile acidity than AAB treatment. Treatment with oleuropein 2mg/l was found 
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to have the highest volatile acidity after one month period, displaying significant differences 

than the rest of the treatments. (Duncanp = 0.05).  

 

 

Figure 3.57 Titratable acidity of wine B5 1 month since the beginning of the experiment. All 

samples were incubated at 30° C. Statistical differences, are indicated by different letters in 

columns; Wine treatments: AAB: acetic acid bacteria, H1: hydroxytyrosol 1mg/l + acetic acid 

bacteria, OL1: oleuropein 1mg/l + acetic acid bacteria, OL2: oleuropein 2mg/l + acetic acid 

bacteria. 

 

 

Figure 3.58 Titratable acidity of wine B5 1 month since the beginning of the experiment. All 

samples were incubated at 30° C. Statistical differences, are indicated by different letters in 

columns (Duncan’s multiple range tests, p = 0.05). Wine treatments: AAB: acetic acid bacteria, 
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H1: hydroxytyrosol 1mg/l + acetic acid bacteria, OL1: oleuropein 1mg/l+ acetic acid bacteria, 

OL2: oleuropein 2mg/l + acetic acid bacteria. 

 

 

 

3.3 Total phenolic content and total antioxidant activity of Vilana wine with 

natural phenolic extracts as additives instead of sulphites. 

 

Vilana wines were vinificated using GP extract and OMW residue in different concentrations as 

a replacement of sulphites during vinification.  

Differences in total phenolic content of Vilana wine amongst the treatments are shown in Figure 

3.59. Total phenolic content was 16.3% higher than positive control (C1) in V2 wine followed 

by O3 (15.6 % higher). Significantly statistical differences are shown in Figure 3.61 

 

 

Figure 3.59 Total phenolic content of Vilana wines directly after vinification. Different letters 

indicate statistical significant differences amongst the treatments. C1: control, O1: OMR 55%, 

0.875 gr/100l, O2: OMR 55%, 2.67 gr/100l, O3: OMR 95%, 2.7gr/100l, V1: GP 5 gr/100l, V2: 

GP, 7.5 gr/100l. (GP: grape pomace extract, OMW: olive oil mill waste water residue). 
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Total antioxidant activity of the wines obtained by the different vinifications of Vilana is shown 

in Figure 3.60. Total antioxidant activity was 96% higher than positive control (C1) in V2 wine 

followed by V1 (47 % higher)and  O3 (39 % higher) wines. 

 

 

Figure 3.60 Total antioxidant activity of the obtained Vilana wines directly after vinification. 

Different letters indicate statistical significant differences amongst the treatments. C1: control, 

O1: OMR 55%, 0.875 gr/100l, O2: OMR 55%, 2.67 gr/100l, O3: OMR 95%, 2.7gr/100l, V1: 

GP 5 gr/100l , V2: GP, 7.5 gr/100l (GP: grape pomace extract, OMW: olive oil mill waste water 

residue). 
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4.1 Total phenolic content, antioxidant activity and phenolic fingerprint of four 

Greek grape varieties.  

 

 

4.1.1 Total phenolic content of Vilana, Dafni, Kotsifali and Mandilari wines. Effect of different 

containers during ageing. 

 

Phenolic content and antioxidant activity of Vilana, Dafni, Kotsifali and Mandilari single grape 

varieties wines was determined and their evolution during ageing for 12 months in different 

containers was monitored. 

There are no previous data concerning phenolic content and antioxidant activity in Dafni and 

Kotsifali wine. Any information concerning Kotsifali wines is mainly about wines that are a 

combination of Kotsifali and Mandilari. No previous work has been reported concerning 

changes in total phenolic content and antioxidant activity of the tested wines during one year of 

ageing in different containers. Furthermore, there are some limitations in the ability to make 

direct comparisons with data concerning wine phenolics and antioxidant activity.  In general, 

the most of the studies on phenolic content have been carried out either in already commercial 

bottled wines or in wines undergoing ageing, using glass bottles as ageing medium rather than 

different containers. In the second case, in most of the researches wines were bottled directly 

after vinification and phenolic content was determined usually after 6, 12 or even more months. 

Very commonly in tests made in glass bottles there were no data concerning ageing conditions, 

whether wines had previously been aged in wooden barrels and if so, for how long.  

The red wines tested are commonly aged in oak barrels for at least 6 months or 12 months. As 

far as white wines are concerned, ageing in barrels in not commonly employed. However, lately 

the use of wooden barrels in white wine has been moderately used, in order to favour aroma and 

flavour.  

According to our results, white wine phenolic content is generally 3-5 times less than red wine 

content, an expected result as red wines contain more phenolic substances than white wines due 

to higher phenolic content of red grape berries and longer maceration time during vinification. 

In Table 4.1 reported phenolic content of commercial wines by several authors are shown, 

demonstrating the levels and differences between the phenolic contyent of red and white wines. 
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Phenolic content and antioxidant activity of Vilana wine is higher than Dafni wine regardless of 

ageing. Similarly, phenolic content and antioxidant activity of Mandilari wine is higher than 

Kotsifali wine regardless of ageing. Mandilari wine, is famous in Greece for its deep red colour, 

a characteristic owned to Mandilari grapes high phenolic content and to Mandilari grape seeds 

high tannin content, as reported by Mylona et al. (2013). Furthermore, according to Kallithraka 

et al. (2006), Mandilari is one of the richest Greek varieties in phenolic content ranking 3
rd

 out 

of 20, in tests run in 20 different wines mainly of Greek origin, supporting our results that 

indicated high phenolic content of Mandilari wine. 

 

Table 4.1 Examples of reported total phenolic content levels (mg/l) in red and white wines. 

TPC Vintage, container, origin/variety Author 

Red wines 

1019.2-2446.1 1996-1997, bottled Sánchez-Moreno et al. (1998)  

1800-3340 1987-1992, bottled, California wines Frankel et al. (1995)  

1827 2005, bottled, Portuguese wines Paixao et al. (2007) 

2334-3340 Cabernet Sauvignon Frankel et al. (1995)  

1800, 2133 Merlot Frankel et al. (1995)  

1458-2938 2003, 2004, bottled, Thailand wines (Woraratphoka et al., 2007) 

White wines 

178-486 1996-1997, bottled Sánchez-Moreno et al. (1998)  

165-331 1990-1992, bottled, California wines Frankel et al. (1995)  

282-434 2005, bottled , Portuguese wines Paixao et al. (2007) 

306-845 2004, bottled, Thailand wines (Woraratphoka et al., 2007) 

240, 259 Chardonay, bottled Paixao et al. (2007) 

 

Makris et al. (2003), reported phenolic content in three commercial bottled Vilana wines of 

223.6 mg/l, 311.6 mg/l and 347.6 mg/l. The three tested Vilana wines were of the same vintage 

(1999). However, as factors such as grape maturity and vinification procedures affect the 

phenolic content of wines, differences in their results can subsequently be observed. No 

information was given about whether the wines were aged in barrels or not prior to bottling - a 

factor that can also affect phenolic content - and for how long the tested wines were bottled.  

Mylona et al. (2013) reported a total phenolic content of Mavrokountoura wine (a Mandilari 

clone, growing in the island of Evoia) of 2.165mg/l  directly after vinification (before oak 

ageing), less in content than that observed in our experiments. Our mean value of the two 

vinifications directly after vinification was 2786.36mg/l. Kallithraka et al. (2006) reported a 

phenolic content of 2917.7mg/l  of Mandilari wine (island of Paros origin) a few months after 
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vinification and Kallithraka et al. (2011) reported phenolic content varying from 2764.3mg/l to 

3256.4mg/l  in bottled Mandilari wines (vintage 2007). Differences in phenolic content of wines 

can be explained by the dependency of the phenolic content on the grape berry maturity, cultivar 

conditions and origin, vinification procedures etc.  

According to our results phenolic content of wines varied amongst the containers during ageing, 

indicating the effect that the ageing medium can have on the phenolic content. Wooden barrels 

had the major influence on wines. Contribution of barrels to total phenolic concentration was 

greater in white wines, Vilana and Dafni in comparison to red wines, Kotsifali and Mandilari as 

the extraction of phenolic substances into wines, attributed in a greater extent to their final total 

phenolic content.  

In Vilana and Dafni wines, up until the 6
th
 month of ageing, a slight increase was observed in 

phenolic content in all containers. Afterwards, until the 12 month of ageing, the increase 

becomes more intense in wooden barrels reaching the highest content in wine in acacia barrel. 

Minor differences were observed between wines in American and French oak barrels. Phenolic 

content increased in stainless steel containers with and without oenosticks in Vilana but to a 

much lesser extent than in wooden barrels during ageing for 12 months. This increase might be 

explained by possible transformations of phenolics in wine that may have lead to revealing and 

therefore measuring under the employed method, higher phenolic content. In Dafni, similar 

changes were observed in stainless steel with oenosticks container; in stainless steel without 

oenosticks phenolic content decreased through ageing. 

In red wines, the effect of barrels in phenolic content was more intense in Kotsifali wine rather 

than in Mandilari. In both varieties, the highest phenolic content was observed at the end of the 

ageing period in wine in Chestnut barrel, followed by wine in Acacia barrel. In Kotsifali wine, 

phenolics were higher in American oak than in French oak barrels. The exact opposite was 

observed in Mandilari as phenolic content was higher in French oak than in American oak 

barrels. 

Contrary to our results, Fernández de Simón et al. (2003) reported that polyphenol content in 

wine ageing in French oak and American oak barrels decreased after 12 month ageing (red, 

Tempranillo wine). The decrease was higher in French oak than in American oak (by 16.5% in 

French oak and 10% in American oak). When low molecular weight phenolics were monitored, 

significantly lower concentrations of ellagic acid (the phenolic substance that is mainly 

extracted from wooden barrels) flavonols and flavanols were observed in American oak than in 

French oak barrel.  
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de Beer et al. (2005) in experiments carried out in red and white wines aged for 12 months in 

bottles, observed that the phenolic content as well as the antioxidant activity of wines, decreased 

during ageing and proposed that changes in individual phenolic compounds should be 

monitored in order to understand the effect of the phenolic composition of wines on their 

antioxidant activity. 

Wines aged in chestnut barrels, were richer in phenolic compounds and tannins compared to 

wines aged in French oak barrels according to Gambuti et al. (2010). These results agree with 

our findings, as both in Kotsifali and Mandilari wines phenolic content was higher in chestnut 

barrels than in French oak barrels.  

Alañón et al. (2013) reported that in wine aged for 6 months in chestnut barrels, ellagic acid and 

gallic acid concentrations increased greatly during ageing on the contrary, anthocyanin 

concentration decreased. Moreover, the major decrease in anthocyanin concentration was 

observed in the first three months of ageing in chestnut barrels. They also mentioned that wood 

components such as ellagic acid and ellagitannins may play a role in the decrease of the content 

of anthocyanins. This supports our results giving a possible explanation to the observed 

decrease in antioxidant activity of our wines during the first three months of ageing and the 

following increase as well. The decrease in antioxidant activity might be explained by oxidation 

of anthocyanins and conjunction with tannins. Hydroxycinammic acids extracted from the 

barrels might further induce anthocyanin decrease in wines. 

High gallic acid concentration in wine contributes to bitterness and astringency, affecting 

negatively wine taste. Furthermore as stated by Chira et al. (2014), ellagitannins attribute a 

smooth and velvety astringency to wines but only at low threshold concentrations, varying from 

0.9-2.8μmol/l. 

However, ellagitannins concentrations may become higher than these values, a characteristic 

that should be considered especially in the case of wooden barrels that may donate though 

extraction high ellagitannins’ concentration in wine, effecting negatively their organoleptic 

properties. Extensive extraction of ellagitannins in Vilana, Dafni, Kotsifali and Mandilari wines 

from wooden barrels may result in a negative effect on their quality especially in wines ageing 

in chestnut barrels, known for their high content in polyphenols that can be attributed to wine 

(De Rosso et al., 2009), pointing out the fact that many factors must be taken under 

consideration to determine the best medium for ageing of each wine.  

According to De Rosso et al. (2009) acacia barrels are more suitable for long term ageing than 

chestnut and oak barrels due to higher content of oxidazable polyphenols that indicates that 

acacia wood is the less oxidative environment. 
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As reported by Zafrilla et al. (2003) minor changes were observed in the phenolic content of 

white Airen wine during 7 month of ageing in bottles, whereas phenolic content of Monastrell 

wine (red wine) decreased during the same period of time. These results, compared to wines 

aged for 6 months in stainless steel containers (agree in general with our findings as far as 

Dafni, Kotsifali and Mandilari wines are concerned (in Vilana wine, total phenolic content 

increased during 6 months of ageing).  

(Castellari et al., 2001), agreeing with our results, observed a significant increase in total 

phenolic content in Sangiovese wine (red wine) ageing in chestnut barrel at the end of ageing 

period, being at the same time significantly higher to that ageing in French oak barrel (ageing 

period: 320 days). In both barrels, phenolic content increased during ageing. Compared to the 

initial phenolic content, a reduction was observed after 320 days in stainless steel container. 

Similar results were found in Kotsifali wine. Castellari et al. (2001) also found significant 

differences in phenolic content amongst wines in barrels and wine ageing in stainless steel 

container. They stated that phenolic substances extracted from chestnut barrels, were more 

tannic in chestnut wood that in oak barrels and were not compensated by the polymerization 

reactions occurring during ageing.   

Gómez-Plaza et al. (2000), reported statistically significant changes in the phenolic content of 

tested Monastrell wines during a 12 month, ageing in bottles, period. Phenolic content varied 

between 1006.66-1305.75mg/l during ageing. The highest content in phenolic substances was 

observed at 3 month ageing. At the end of the essay (12 months) they also observed that 

phenolic content was higher (but not statistically significant different than the initial).  

 

4.1.2 Total antioxidant activity of Vilana, Dafni, Kotsifali and Mandilari wines. Effect of 

different containers during ageing 

 

Total antioxidant activity of Vilana, Dafni, Kotsifali and Mandilari wine was determined. As 

expected, antioxidant activity in red wines was much higher than in white wines, due to the 

higher phenolic content of red wines. Great differences were observed in antioxidant activity of 

Kotsifali (9.82mM and 8.35M of Trolox) and Mandilari wine (17.43mM and 19.28 of Trolox), 

also attributed to differences in their phenolic content. Total antioxidant activity of all wines 

tested increased during ageing in wooden barrels. Changes in antioxidant activity after 12 

months of ageing was greater in white wines than in red wines, possibly due to the contribution 

of wine phenolics which also exhibit a markedly increase during ageing.  
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In Dafni and Vilana, the highest antioxidant activity was observed in Acacia barrel, followed by 

French oak and American oak barrels. It was interesting that regardless of the container, a 

significant decrease in total antioxidant activity occurred after three months of ageing, followed 

by such an increase in the next months that the antioxidant activity in most of the studied wines 

reached the initial levels. The same was observed in antioxidant activity of Kotsifali (1
st
 

vinification) and Mandilari wines. Changes in the phenolic composition of wines such as 

formation of new tannin molecules, oxidation and polymerization of anthocyanins to more 

complex molecules, are possible transformations affecting antioxidant activity. Furthermore, 

according to Psarra et al. (2002) the antiradical activity of white wines may also derive from 

synergistic phenomena between individual polyphenols. 

De Beer et al. (2003) determined total phenolic content and antioxidant activity (Teac method) 

of bottled red (Cabermet Souvignon, Merlot, Shiraz) and white wines (Sauvignon blanc, 

Chardonnay, Chenin blanc, Colombard), stating approximately 8 times higher phenolic content 

of red wines than of white wines. According to the results, phenolic content and antioxidant 

activity in red wines varied between 2016-2498.8mg/l and 13.177-15.757mM of Trolox 

respectively, whereas in white wines phenolic content varied between 242.0-292.7mg/l and 

antioxidant activity between 0.8-1.06mM of Trolox. In the same assay, lower values in 

antioxidant activity were observed when the determination was carried out using the DPPH 

method. The above results, demonstrate differences in phenolic content and antioxidant activity 

between red and wine wines, supporting the existing (although expected) differences in phenolic 

content and antioxidant activity of the Vilana, Dafni, Kotsifali and Mandilari wines tested in our 

assay, since both antioxidant activity and phenolic content were also higher in red wines than in 

white. According to our results phenolic content is approximately 5 times higher in red wines 

than in white wines, mainly due to the higher level of white wines phenolics than that observed 

by De Beer et al. (2003) (our mean value in white wines was 446 mg/l). 

(Zafrilla et al., 2003), contrary to our results, reported that antioxidant activity in red but also in 

white wines stored for 7 months in bottles was not significantly differentiated. However, they 

observed a decrease in antioxidant activity of Monastrell red wine, at 6 month of storage which 

was regained after the 7
th
 month of storage.  

(De Rosso et al., 2009) reported that ageing of wine in chestnut and oak barrels for 12 months 

lead to an increase in flavonoid content, whereas ageing in acacia barrel lead to decrease after 

six months of ageing followed by an increase at levels higher than the beginning of the 

experiments. In all barrels, anthocyanin content decreased constantly throughout ageing, but 

was not affected by the barrel type. Also, Ivanova et al. (2012) reported intensive decrease of 
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total anthocyanins in Vrenac wines after 2 months of bottle ageing, whereas total phenolic 

content remained almost stable for an even longer ageing period.  

These results supports the suggestion that a possible decrease in anthocyanin content either by 

oxidation or transformation, (reported by many researchers) a major contributor to wine 

antioxidant activity, might be responsible for the observed decrease in antioxidant activity of 

our tested wines, during the first months of ageing. del Álamo Sanza et al. (2004) reported that 

red wine ageing for 12 months in barrels (French, Hungarian and American oak barrels) lead to 

a smaller decrease in anthocyanin content than wine ageing in containers with oak chips, 

decreasing in all cases after the 3
rd

 month of ageing. Del Alamo Sanza et al. (2004) observed 

that anthocyanin content decreased during ageing, the highest decrease was in stainless steel, 

followed by sticks and wine ageing in American, French and Hungarian oak. According to 

Zafrilla et al. (2003), a high loss in anthocyanin concentration was observed during 7 months of 

ageing (88% decrease in 7 months, 76% decrease in the first three months). According to them, 

hydroxycinnamic acids’ and flavonols’ concentration did not have any significant variations 

during ageing. Furthermore, anthocyanins and other complex compounds contribute to the 

formation of tannins. Tannins are very effective antioxidants, being highly polymerized 

pigments and have many phenolic hydroxyl groups. In fact, according to Hagerman et al. 

(1998); Zafrilla et al. (2003), tannins are 15−30 times more effective at quenching free peroxyl 

radicals than simple phenolics. As a consequence alterations in tannin content may also have 

affected antioxidant activity of the wines tested in out experiments. 

Furthermore according to Zúñiga et al. (2014) apart from anthocyanins, gallic acid is a 

substance highly correlated with antioxidant activity. Comparatively high concentrations 

occurring as previously mentioned in wine ageing in wooden barrels, can affect their antioxidant 

activity.  

Rivero-Pe?rez et al. (2007) reported that antioxidant activity, is strongly related to the phenolic 

structure apart from the phenolic content. De Beer et al., 2005 in experiments carried out in red 

and white wines ageing for 12 months in bottles, observed a decrease in the phenolic content as 

well as in the antioxidant activity of wines during aging in bottles and proposed that changes in 

individual phenolic compounds should be monitored in order to understand the effect of the 

phenolic composition of wines to their antioxidant activity. This conclusion concerns our results 

as well - thus wines ageing in wooden barrels as well. In order to fully understand how 

phenolics affect antioxidant activity, phenolic content is not sufficient enough; an investigation 

on changes on the phenolic composition in wine must be made. 

In general, as far as antioxidant activity is concerned and aiming health benefits resulting for 

moderate wine consumption, acacia barrels and chestnut barrels are the containers showing the 



CHAPTER FOUR: Discussion, Conclusions and Further Work 117 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

most promising results as they result in higher levels of both phenolic content and antioxidant 

activity. Furthermore, ageing for at least 6 months increases antioxidant activity. Nevertheless, 

this is a usual procedure, especially for red wines as red wines are usually aged for at least 12 

months in wooden barrels.   

 

4.1.3 Correlation between total antioxidant activity and phenolic content.  

 

Correlation between total antioxidant activity and phenolic concentration of wines was studied. 

In the literature, most authors concluded that there is a positive correlation between total 

antioxidant activity and phenolic concentration (Paixao et al., 2007; Staško et al., 2008). 

According to our results, antioxidant activity correlates to phenolic content but more markedly 

in red than in white wines. The lower correlation observed in white wines is possibly affected 

by higher contribution of other substances present in wines such as sulphur dioxide, to 

antioxidant activity. White wines have lower phenolic concentration, however, as previously 

mentioned, some fractions of them have high antioxidant activity that despite their low 

concentrations, make them able of affecting the final antioxidant activity. The extraction of 

phenolic substances form wooden barrels also affects their antioxidant activity, either by their 

presence in wines or by their precipitation in reactions responsible for the formation of new 

antioxidants.  

In disagreement to our results, no relation between antioxidant activity and phenolic content of 

red and white wines was reported by Zafrilla, Morillas et al. (2003).  

 

4.2 General conclusions on antioxidant activity and phenolic content of wines 

 

The existing information on wine phenolic content can be a little conflicting mainly due to the 

many factors that contributes to and affect phenolic content. Apart from grape variety, factors 

such as grape maturity, cultivar conditions, vinification procedures and ageing media as well as 

temperature can play a great role in wine characteristics such as phenolic content, colour, taste 

and antioxidant activity. Wooden barrels can play a significant role in wines phenolic content 

affecting it through the compounds that are extracted into wine and their interaction with wine 

compounds. The addition of oak sticks or chips in containers is a cheap alteration of wooden 

barrels, lately used in wine ageing. According to our results they do not result in as high 

phenolic content and antioxidant activity as in acacia, French oak and chestnut barrels. 
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However, they were more effective than stainless steel containers and also, were quite close to 

American oak barrel effect. Furthermore as far as antioxidant activity is concerned, any results 

obtained by different researches are difficult to compare due to the differences in the methods 

used that make direct comparison of antioxidant activity almost impossible.  

The aim of this study was to determine the phenolic content and antioxidant activity of the four 

Greek wines and the influence different containers have on them during ageing. Acacia barrel 

for white wine and chestnut barrel followed by acacia barrel for red wines seemed to have the 

best behaviour as far as the above characteristics are concerned, resulting in wines with higher 

phenolic content and antioxidant activity.  Wooden barrels, such as acacia and chestnut barrels, 

are responsible for the extraction of different type and different amount of phenolic substances -

such as hydrolysable tannins - into wine, affecting in this way apart from the phenolic content, 

the antioxidant activity of wines, as well 

The most common practice for red wine ageing nowadays are oak barrels. Further analysis must 

be made to determine whether Kotsifali and Mandilari wines gain, apart from higher antioxidant 

activity and phenolic content, better organoleptic characteristics, making acacia and chestnut 

barrels a better alternative for ageing. The same goes for the white wines Vilana and Dafni; 

white wine ageing in wooden barrels for a long time is not that common, however interesting 

organoleptic characteristics can be gained though wooden barrel ageing, as long as wood 

characteristics do not overlap the wines organoleptic characteristics.  

In order to recommend the most appropriate type of barrel for each variety, factors such as taste, 

aromas etc, should be considered as well to achieve the best possible result. The optimum 

interaction between wood and wine should be achieved in order to result not only in wines with 

optimum health benefits (high in antioxidant potential) but also with most the desirable 

organoleptic characteristics for the consumers. 

 

4.3 Phenolic fingerprint of Vilana, Dafni, Kotsifali and Mandilari wines 

 

Phenolic fingerprints of Vilana, Dafni, Kotsifali, and Mandilari wines were obtained in the mid 

infrared region by means of FTIR-ATR, for the first time. Authentification and discrimination 

of wine varieties using their phenolic fingerprints in the mid infrared region has been recently 

used for red wines (Edelmann et al., 2001; Tarantilis et al., 2008). In this work, apart from red 

wines discrimination of two Greek white wines was also achieved using their phenolic 

fingerprints. 
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Phenolic fingerprint was found to be characteristic for each wine used in the experiment 

allowing discrimination amongst Vilana, Dafni, Kotsifali and Mandilari wines. Based on our 

knowledge, discrimination of white wines has not been made based on their phenolic fingerprint 

using FTIR-ATR. Although white wines contain fewer phenolic substances than red wines, 

discrimination of Vilana and Dafni directly after vinification was easily achieved, observing 

characteristic differences in absorption spectra of their phenolic extracts.  

Red wine extracts (Kotsifali and Mandilari) had also differences in their phenolic fingerprint as 

expected. The major difference through ageing was observed at 1110 cm
-1

, where only 

Mandilari gave a characteristic peak. 

In general, the method with some modification can be also used for quantification of total 

phenolics. As reported by Silva et al. (2014) FTIR-ATR can be used for a screening of phenolic 

content of wines and using the right methodologies, the technique can give a rough estimation 

for their antioxidant activity. In most cases, absorption spectra of phenolic extracts obtained in 

our experiments indicated differences in the phenolic concentration of wines but more intensive 

analysis must be carried out to make to such a determination. Phenolic fingerprint was 

determined aiming phenolic qualification of wines. Even minor differences in the volume of the 

extracts that do not affect phenolic fingerprint in terms of qualification can affect it in terms of 

quantification. 

 

4.4 Effect of hydroxytyrosol and oleuropein on volatile acidity of wines 

 

The effect of hydroxytyrosol and oleuropein in volatile acidity of wines as a cause of spoilage 

wine induced by acetic acid bacteria was determined. In most tests, in hydroxytyrosol 

treatments minor increases in volatile acidity were observed. Volatile acidity of control as well 

as acetic acid bacteria treatment was increased indicating wine spoilage in both cases.  

Comparing treatments to control, hydroxytyrosol displayed a smaller increase amongst the 

treatments. The differences between hydroxytyrosol and control were still significant. It 

appeared that hydroxytyrosol was more effective at low concentrations. Treatment with 0.5mg/l 

hydroxytyrosol gave better results than treatment with 1mg/l of hydroxytyrosol.   

Hydroxytyrosol is a substance already contained in wines and therefore could be approved for 

use as a wine additive. Obtained results, did not suggest that it could replace sulphites in wines. 

Even though, a potential to regulate wine spoilage was observed, it was not sufficient enough to 

prevent the spoilage. Further experiments should be carried out for its use in wines as an 
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additive instead of sulphites, maybe in combination with other compounds, or possibly in 

combination with sulphites, decreasing the used sulphites amounts. However, the high cost of 

hydroxytyrosol is a negative factor on its use especially in common commercial wines. 

However, some wine consumers including those with sensitivity in sulphites can disregard 

wine’s price in order to buy wines with certain characteristics (e.g sulphite-free wines).  

Minor differences were observed between acetic acid bacteria and oleuropein treatments. It was 

quite interesting that in one of the wines used in the experiment oleuropein gave higher volatile 

acidity compared to acetic acid bacteria, which - taken in account the antibacterial 

characteristics of oleuropein - was not expected. 

 

4.5 Effect of natural phenolic additives on phenolic content and antioxidant 

activity of Vilana wines. 

 

Vilana wines in which grape pomace extract obtained from vineries and olive oil mill waste-

water residue were used during vinification instead of sulphites, had higher phenolic content 

than that observed in control, increasing with concentration. Although there were no differences 

between them on the effect they had on phenolic content, differences existed on the antioxidant 

activity of wines. Grape pomace extract treated wines, resulted in wines with higher antioxidant 

activity, revealing that despite the similar attribution to phenolic content, the attribution of grape 

pomace extract to antioxidant activity was significantly higher than that of olive oil mill waste-

water. A possible explanation of this observation can be the higher antioxidant activity of the 

phenolic substances contained in grape pomace extract. Further research could reveal if this is 

due to interactions with wine substances or if this is a richer resource of antioxidant substances 

compared to olive oil mill waste-water residues. 
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4.6 Further work 

 

Wine quality is a combination of many factors. In order to determine the best medium for 

ageing of the tested wines, characteristics such as wine colour, aroma and taste (sensory 

analysis)  must be done and definitely be taken into account to determine the optimum ageing 

medium for each variety. The optimum ageing period for each wine must also be determined as 

a combination of the above characteristics. With the same aim, antioxidant activity and phenolic 

content of wines will be monitored during storage for one year in bottles. 

This study was carried out under an interlaboratory program with title “Evaluation and 

optimization of the quality factors during maturation of wines produced from Cretan red and 

white grape varieties for the production of high quality wines”. Results concerning sensory 

characteristics, colour development, anthocyanin and tannin and other wines components 

content and changes obtained by both classical and modern techniques and methods will be 

combined in order to evaluate the conditions favouring the tested wines quality.   

Vilana, Dafni, Kotsifali and Mandilari wines’ phenolic fingerprint was determined directly after 

vinification for their discrimination and changes occurring during ageing in containers were 

monitored. Phenolic fingerprint of wines can be characteristic allowing the discrimination of 

wines of different vintages, origin etc. Investigation of differences or similarities driven out by 

the two different vinifications of wines, ageing in containers and afterwards stored for one year 

in bottles will be made. Libraries based on the phenolic fingerprints of the wines should be used 

to investigate whether the ageing medium of the wines give distinctive characteristics to wine’s 

phenolic fingerprint or not.  

Volatile fingerprints of wines can be taken to investigate the possible prediction of volatile 

acidity by means of FTIR.  



 

   

 

 

 

REFERENCES



REFERENCES  123 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

 

References 

 

Alañón, M. E., R. Schumacher, L. Castro-Vázquez, M. C. Díaz-Maroto, I. Hermosín-

Gutiérrez and M. S. Pérez-Coello (2013). "Enological potential of chestnut wood for aging 

Tempranillo wines Part II: Phenolic compounds and chromatic characteristics." Food Research 

International 51(2): 536-543. 

Arnao, M. B. (2000). "Some methodological problems in the determination of antioxidant 

activity using chromogen radicals: a practical case." Trends in Food Science & Technology 

11(11): 419-421. 

Atoui, A. K., A. Mansouri, G. Boskou and P. Kefalas (2005). "Tea and herbal infusions: 

Their antioxidant activity and phenolic profile." Food Chemistry 89(1): 27-36. 

Bartowsky, E. J. and P. A. Henschke (2008). "Acetic acid bacteria spoilage of bottled red 

wine—A review." International Journal of Food Microbiology 125(1): 60-70. 

Baydar, N. G., G. Φzkan and O. Sagdiη (2004). "Total phenolic contents and antibacterial 

activities of grape (Vitis vinifera L.) extracts." Food Control 15(5): 335-339. 

Berente, B., D. De la Calle Garc  a, M. Reichenbächer and K. Danzer (2000). "Method 

development for the determination of anthocyanins in red wines by high-performance liquid 

chromatography and classification of German red wines by means of multivariate statistical 

methods." Journal of Chromatography A 871(1–2): 95-103. 

Bevin, C. J., A. J. Fergusson, W. B. Perry, L. J. Janik and D. Cozzolino (2006). 

"Development of a Rapid “Fingerprinting” System for Wine Authenticity by Mid-infrared 

Spectroscopy." Journal of Agricultural and Food Chemistry 54(26): 9713-9718. 

Brewer, M. S. (2011). "Natural Antioxidants: Sources, Compounds, Mechanisms of Action, 

and Potential Applications." Comprehensive Reviews in Food Science and Food Safety 10(4): 

221-247. 

Buenger, J., H. Ackermann, A. Jentzsch, A. Mehling, I. Pfitzner, K. A. Reiffen, K. R. 

Schroeder and U. Wollenweber (2006). An interlaboratory comparison of methods used to 

assess antioxidant potentials1. 28: 135-146. 



REFERENCES  124 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Carola Henriquez, C. A. E. L. (2002). Formation and decay of the ABTS derived radical 

cation: A comparison of different preparation procedures. 34: 659-665. 

Castellari, M., B. Piermattei, G. Arfelli and A. Amati (2001). "Influence of Aging Conditions 

on the Quality of Red Sangiovese Wine." Journal of Agricultural and Food Chemistry 49(8): 

3672-3676. 

Chira, K. and P.-L. Teissedre (2014). "Chemical and sensory evaluation of wine matured in 

oak barrel: effect of oak species involved and toasting process." European Food Research and 

Technology: 1-15. 

Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of 

Analytical Chemistry, John Wiley & Sons, Ltd. 

Cozzolino, D., M. J. Kwiatkowski, M. Parker, W. U. Cynkar, R. G. Dambergs, M. Gishen 

and M. J. Herderich (2004). "Prediction of phenolic compounds in red wine fermentations by 

visible and near infrared spectroscopy." Analytica Chimica Acta 513(1): 73-80. 

De Beer, D., E. Joubert, W. C. A. Gelderblom and M. Manley (2003). Antioxidant Activity of 

South African Red and White Cultivar Wines: Free Radical Scavenging. 51: 902-909. 

de Beer, D., E. Joubert, W. C. A. Gelderblom and M. Manley (2005). "Antioxidant activity of 

South African red and white cultivar wines and selected phenolic compounds: In vitro inhibition 

of microsomal lipid peroxidation." Food Chemistry 90(4): 569-577. 

De Rosso, M., A. Panighel, A. Dalla Vedova, L. Stella and R. Flamini (2009). "Changes in 

Chemical Composition of a Red Wine Aged in Acacia, Cherry, Chestnut, Mulberry, and Oak 

Wood Barrels." Journal of Agricultural and Food Chemistry 57(5): 1915-1920. 

Del Alamo Sanza, M., J. A. F. Escudero and R. De Castro Torío (2004). "Changes in 

Phenolic Compounds and Colour Parameters of Red Wine Aged with Oak Chips and in Oak 

Barrels." Food Science and Technology International 10(4): 233-241. 

del Álamo Sanza, M., I. Nevares Domínguez and S. García Merino (2004). "Influence of 

different aging systems and oak woods on aged wine color and anthocyanin composition." 

European Food Research and Technology 219(2): 124-132. 



REFERENCES  125 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Di Tommaso, D., R. Calabrese and D. Rotilio (1998). "Identification and Quantitation of 

Hydroxytyrosol in Italian Wines." Journal of High Resolution Chromatography 21(10): 549-

553. 

Du Toit, W. J. and M. G. Lambrechts (2002). "The enumeration and identification of acetic 

acid bacteria from South African red wine fermentations." Int J Food Microbiol 74(1-2): 57-64. 

Edelmann, A., J. Diewok, K. C. Schuster and B. Lendl (2001). "Rapid Method for the 

Discrimination of Red Wine Cultivars Based on Mid-Infrared Spectroscopy of Phenolic Wine 

Extracts." Journal of Agricultural and Food Chemistry 49(3): 1139-1145. 

Etiévant, P., P. Schlich, A. Bertrand, P. Symonds and J.-C. Bouvier (1988). "Varietal and 

geographic classification of French red wines in terms of pigments and flavonoid compounds." 

Journal of the Science of Food and Agriculture 42(1): 39-54. 

Fernández-Mar, M. I., R. Mateos, M. C. García-Parrilla, B. Puertas and E. Cantos-Villar 

(2012). "Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review." 

Food Chemistry 130(4): 797-813. 

Fernández de Simón, B., T. Hernández, E. Cadahía, M. Dueñas and I. Estrella (2003). 

"Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and 

American oak wood." European Food Research and Technology 216(2): 150-156. 

Fernández de Simón, B., M. Sanz, E. Cadahía, J. Martínez, E. Esteruelas and A. M. Muñoz 

(2014). "Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, 

chestnut, false acacia, ash and oak wood." Food Chemistry 143(0): 66-76. 

Fogliano, V., V. Verde, G. Randazzo and A. Ritieni (1999). Method for Measuring 

Antioxidant Activity and Its Application to Monitoring the Antioxidant Capacity of Wines. 47: 

1035-1040. 

Frankel, E. N., P. Lester, H. Midori and Y. Toshikazu (1999). Natural Phenolic Antioxidants 

and Their Impact on Health. Antioxidant Food Supplements in Human Health. San Diego, 

Academic Press: 385-392. 

Frankel, E. N., A. L. Waterhouse and P. L. Teissedre (1995). "Principal Phenolic 

Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting 

Oxidation of Human Low-Density Lipoproteins." Journal of Agricultural and Food Chemistry 

43(4): 890-894. 



REFERENCES  126 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Friedel, M., C.-D. Patz and H. Dietrich (2013). "Comparison of different measurement 

techniques and variable selection methods for FT-MIR in wine analysis." Food Chemistry 

141(4): 4200-4207. 

Gambuti, A., R. Capuano, M. Lisanti, D. Strollo and L. Moio (2010). "Effect of aging in new 

oak, one-year-used oak, chestnut barrels and bottle on color, phenolics and gustative profile of 

three monovarietal red wines." European Food Research and Technology 231(3): 455-465. 

Garde-Cerdán, T. and C. Ancín-Azpilicueta (2006). "Review of quality factors on wine 

ageing in oak barrels." Trends in Food Science & Technology 17(8): 438-447. 

Gikas, E., F. N. Bazoti and A. Tsarbopoulos (2007). "Conformation of oleuropein, the major 

bioactive compound of Olea europea." Journal of Molecular Structure: THEOCHEM 821(1-3): 

125-132. 

Gómez-Plaza, E., R. Gil-Muñoz, J. M. López-Roca and A. Martínez (2000). "Color and 

Phenolic Compounds of a Young Red Wine. Influence of Wine-Making Techniques, Storage 

Temperature, and Length of Storage Time." Journal of Agricultural and Food Chemistry 48(3): 

736-741. 

Gonçalves, J., C. L. Silva, P. C. Castilho and J. S. Câmara (2013). "An attractive, sensitive 

and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-

PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines." 

Microchemical Journal 106(0): 129-138. 

Gremlich, H.-U. (2008). Infrared and Raman Spectroscopy. Handbook of Analytical 

Techniques, Wiley-VCH Verlag GmbH: 465-507. 

Griffiths, P. R. and J. A. de Haseth (2006). Attenuated Total Reflection. Fourier Transform 

Infrared Spectrometry, John Wiley & Sons, Inc.: 321-348. 

Guillamón, J. M. and A. Mas (2011). Chapter 9 - Acetic Acid Bacteria. Molecular Wine 

Microbiology. A. V. Carrascosa and R. M. González. San Diego, Academic Press: 227-255. 

Hagerman, A. E., K. M. Riedl, G. A. Jones, K. N. Sovik, N. T. Ritchard, P. W. Hartzfeld and 

T. L. Riechel (1998). "High Molecular Weight Plant Polyphenolics (Tannins) as Biological 

Antioxidants." Journal of Agricultural and Food Chemistry 46(5): 1887-1892. 



REFERENCES  127 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Halliwell, B. (1989). "Free radicals, reactive oxygen species and human disease: a critical 

evaluation with special reference to atherosclerosis." British journal of experimental pathology 

70(6): 737-757. 

Hassen, I., H. Casabianca and K. Hosni "Biological activities of the natural antioxidant 

oleuropein: Exceeding the expectation – A mini-review." Journal of Functional Foods(0). 

Hernández-Orte, P., E. Franco, C. G. Huerta, J. M. García, M. Cabellos, J. Suberviola, I. 

Orriols and J. Cacho (2014). "Criteria to discriminate between wines aged in oak barrels and 

macerated with oak fragments." Food Research International 57(0): 234-241. 

Hernández, T., I. Estrella, M. Dueñas, B. Fernández de Simón and E. Cadahía (2007). 

"Influence of wood origin in the polyphenolic composition of a Spanish red wine aging in 

bottle, after storage in barrels of Spanish, French and American oak wood." European Food 

Research and Technology 224(6): 695-705. 

Ibern-Gómez, M., C. Andrés-Lacueva, R. M. Lamuela-Raventós, C. Lao-Luque, S. 

Buxaderas and M. C. De la Torre-Boronat (2001). "Differences in Phenolic Profile between Oak 

Wood and Stainless Steel Fermentation in White Wines." American Journal of Enology and 

Viticulture 52(2): 159-164. 

Ivanova, V., B. Vojnoski and M. Stefova (2012). "Effect of winemaking treatment and wine 

aging on phenolic content in Vranec wines." Journal of food science and technology 49(2): 161-

172. 

Jackson, R. S. (2000). Wine Science: Principles, Practice, Perception, Elsevier Science. 

Jackson, R. S. (2008). 1 - Introduction. Wine Science (Third Edition). R. S. Jackson. San 

Diego, Academic Press: 1-14. 

Jackson, R. S. (2008). 6 - Chemical Constituents of Grapes and Wine. Wine Science (Third 

Edition). R. S. Jackson. San Diego, Academic Press: 270-331. 

Japσn-Lujαn, R. and M. D. Luque de Castro (2006). "Superheated liquid extraction of 

oleuropein and related biophenols from olive leaves." Journal of Chromatography A 1136(2): 

185-191. 



REFERENCES  128 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Kallithraka, S., D. Kim, A. Tsakiris, I. Paraskevopoulos and G. Soleas (2011). "Sensory 

assessment and chemical measurement of astringency of Greek wines: Correlations with 

analytical polyphenolic composition." Food Chemistry 126(4): 1953-1958. 

Kallithraka, S., E. Tsoutsouras, E. Tzourou and P. Lanaridis (2006). "Principal phenolic 

compounds in Greek red wines." Food Chemistry 99(4): 784-793. 

Kanner, J., E. Frankel, R. Granit, B. German and J. E. Kinsella (1994). "Natural antioxidants 

in grapes and wines." Journal of Agricultural and Food Chemistry 42(1): 64-69. 

König, H., G. Unden and J. Fröhlich (2009). Biology of Microorganisms on Grapes, in Must 

and in Wine, Springer. 

Larson, R. A. (1988). "The antioxidants of higher plants." Phytochemistry 27(4): 969-978. 

Li, H., A. Guo and H. Wang (2008). "Mechanisms of oxidative browning of wine." Food 

Chemistry 108(1): 1-13. 

Li, S., G. Chen, C. Zhang, M. Wu, S. Wu and Q. Liu "Research progress of natural 

antioxidants in foods for the treatment of diseases." Food Science and Human Wellness(0). 

Long, L. H., B. Halliwell and P. Lester (2001). Antioxidant and prooxidant abilities of foods 

and beverages. Methods in Enzymology, Academic Press. Volume 335: 181-190. 

Lorrain, B., I. Ky, L. Pechamat and P.-L. Teissedre (2013). "Evolution of Analysis of 

Polyhenols from Grapes, Wines, and Extracts." Molecules 18(1): 1076-1100. 

Lupea, A. X., M. Pop and S. Cacig (2008). "Structure-radical scavenging activity 

relationships of flavonoids from Ziziphus and Hydrangea extracts." Revista De Chimie 59(3): 

309-313. 

Makris, D. P., E. Psarra, S. Kallithraka and P. Kefalas (2003). "The effect of polyphenolic 

composition as related to antioxidant capacity in white wines." Food Research International 

36(8): 805-814. 

McKelvy, M. L. (2006). Infrared Spectroscopy: Introduction. Encyclopedia of Analytical 

Chemistry, John Wiley & Sons, Ltd. 



REFERENCES  129 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Meyer, A. S., M. Heinonen and E. N. Frankel (1998). "Antioxidant interactions of catechin, 

cyanidin, caffeic acid, quercetin, and ellagic acid on human LDL oxidation." Food Chemistry 

61(1–2): 71-75. 

Moreno-Arribas, V. and C. Polo (2008). Wine Chemistry and Biochemistry, Springer. 

Mylona, A.-E., A. Bimpilas, D. Tsimogiannis and V. Oreopoulou (2013). "Characteristic 

phenolic composition of the Greek variety Mavrokountoura grape and wine." Food Science and 

Biotechnology 22(6): 1515-1522. 

Oberholster, A., B. L. Elmendorf, L. A. Lerno, E. S. King, H. Heymann, C. E. Brenneman 

and R. B. Boulton (2015). "Barrel maturation, oak alternatives and micro-oxygenation: 

Influence on red wine aging and quality." Food Chemistry 173(0): 1250-1258. 

Ortega-Heras, M., S. Pérez-Magariño, E. Cano-Mozo and M. L. González-San José (2010). 

"Differences in the phenolic composition and sensory profile between red wines aged in oak 

barrels and wines aged with oak chips." LWT - Food Science and Technology 43(10): 1533-

1541. 

Ozgen, M., R. N. Reese, A. Z. Tulio, J. C. Scheerens and A. R. Miller (2006). "Modified 2,2-

Azino-bis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Method to Measure Antioxidant 

Capacity of Selected Small Fruits and Comparison to Ferric Reducing Antioxidant 

Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods." Journal of Agricultural 

and Food Chemistry 54(4): 1151-1157. 

Paixao, N., R. Perestrelo, J. C. Marques and J. S. Camara (2007). "Relationship between 

antioxidant capacity and total phenolic content of red, rose and white wines." Food Chemistry 

105(1): 204-214. 

Pati, S., P. Crupi, I. Benucci, D. Antonacci, A. Di Luccia and M. Esti (2014). "HPLC-DAD–

MS/MS characterization of phenolic compounds in white wine stored without added sulfite." 

Food Research International 66(0): 207-215. 

Patz, C. D., A. Blieke, R. Ristow and H. Dietrich (2004). "Application of FT-MIR 

spectrometry in wine analysis." Analytica Chimica Acta 513(1): 81-89. 

Pavia, D., G. Lampman, G. Kriz and J. Vyvyan (2008). Introduction to Spectroscopy, 

Cengage Learning. 



REFERENCES  130 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Psarra, E., D. P. Makris, S. Kallithraka and P. Kefalas (2002). "Evaluation of the antiradical 

and reducing properties of selected Greek white wines: correlation with polyphenolic 

composition." Journal of the Science of Food and Agriculture 82(9): 1014-1020. 

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans (1999). 

"Antioxidant activity applying an improved ABTS radical cation decolorization assay." Free 

Radical Biology and Medicine 26(9–10): 1231-1237. 

Ribéreau-Gayon, P., Y. Glories, A. Maujean and D. Dubourdieu (2006). Handbook of 

Enology, The Chemistry of Wine: Stabilization and Treatments, Wiley. 

Rice-Evans, C., N. Miller and G. Paganga (1997). "Antioxidant properties of phenolic 

compounds." Trends in Plant Science 2(4): 152-159. 

Rice-Evans, C. A., N. J. Miller and G. Paganga (1996). "Structure-antioxidant activity 

relationships of flavonoids and phenolic acids." Free Radical Biology and Medicine 20(7): 933-

956. 

Rietjens, S. J., A. Bast, J. de Vente and G. R. M. M. Haenen (2007). The olive oil antioxidant 

hydroxytyrosol efficiently protects against the oxidative stress-induced impairment of the NO• 

response of isolated rat aorta. 

Rivero-Pe?rez, M. D., P. Mun?iz and M. L. Gonza?lez-Sanjose (2007). "Antioxidant profile 

of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of 

oxidative stress methodologies." Journal of Agricultural and Food Chemistry 55(14): 5476-

5483. 

Rivero-Pérez, M. D., M. L. González-Sanjosé, M. Ortega-Herás and P. Muñiz (2008). 

"Antioxidant potential of single-variety red wines aged in the barrel and in the bottle." Food 

Chemistry 111(4): 957-964. 

Rivero-Pérez, M. D., P. Muñiz and M. L. González-Sanjosé (2008). "Contribution of 

anthocyanin fraction to the antioxidant properties of wine." Food and Chemical Toxicology 

46(8): 2815-2822. 

Roussis, I. G., I. Lambropoulos, P. Tzimas, A. Gkoulioti, V. Marinos, D. Tsoupeis and I. 

Boutaris (2008). "Antioxidant activities of some Greek wines and wine phenolic extracts." 

Journal of Food Composition and Analysis 21(8): 614-621. 



REFERENCES  131 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Sagratini, G., F. Maggi, G. Caprioli, G. Cristalli, M. Ricciutelli, E. Torregiani and S. Vittori 

(2012). "Comparative study of aroma profile and phenolic content of Montepulciano 

monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME–GC–

MS and HPLC–MS." Food Chemistry 132(3): 1592-1599. 

Saija, A., D. Trombetta, A. Tomaino, R. Lo Cascio, P. Princi, N. Uccella, F. Bonina and F. 

Castelli (1998). "[`]In vitro' evaluation of the antioxidant activity and biomembrane interaction 

of the plant phenols oleuropein and hydroxytyrosol." International Journal of Pharmaceutics 

166(2): 123-133. 

Sanchez-Moreno, C. (2002). Review: Methods Used to Evaluate the Free Radical Scavenging 

Activity in Foods and Biological Systems. 8: 121-137. 

Sánchez-Moreno, C., J. A. Larrauri and F. Saura-Calixto (1998). "A procedure to measure the 

antiradical efficiency of polyphenols." Journal of the Science of Food and Agriculture 76(2): 

270-276. 

Schmidtke, L. M., J. P. Smith, M. C. Müller and B. P. Holzapfel (2012). "Rapid monitoring 

of grapevine reserves using ATR–FT-IR and chemometrics." Analytica Chimica Acta 732(0): 

16-25. 

Schrader, B. (2008). Infrared and Raman Spectroscopy: Methods and Applications, Wiley. 

Sen, I. and F. Tokatli (2014). "Authenticity of wines made with economically important grape 

varieties grown in Anatolia by their phenolic profiles." Food Control 46(0): 446-454. 

Shahidi, F. (2000). "Antioxidants in food and food antioxidants." Food / Nahrung 44(3): 158-

163. 

Shahidi, F., P. K. Janitha and P. D. Wanasundara (1992). "Phenolic antioxidants." Critical 

Reviews in Food Science and Nutrition 32(1): 67-103. 

Silva, S. D., R. P. Feliciano, L. V. Boas and M. R. Bronze (2014). "Application of FTIR-ATR 

to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant 

capacity." Food Chemistry 150(0): 489-493. 

Skoog, D. A., F. J. Holler and T. A. Nieman (1998). Principles of Instrumental Analysis, 

Saunders College Pub. 



REFERENCES  132 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Smith, B. C. (2011). Fundamentals of Fourier Transform Infrared Spectroscopy, Second 

Edition, CRC Press. 

Stanley, L. L. and M. J. Patricia Mazier (1999). "Potential explanations for the French 

paradox." Nutrition Research 19(1): 3-15. 

Staško, A., V. Brezová, M. Mazúr, M. Čertík, M. Kaliňák and G. Gescheidt (2008). "A 

comparative study on the antioxidant properties of Slovakian and Austrian wines." LWT - Food 

Science and Technology 41(10): 2126-2135. 

Stuart, B. H. (2005). Introduction. Infrared Spectroscopy: Fundamentals and Applications, 

John Wiley & Sons, Ltd: 1-13. 

Stuart, B. H. (2005). Organic Molecules. Infrared Spectroscopy: Fundamentals and 

Applications, John Wiley & Sons, Ltd: 71-93. 

Stuart, B. H. (2005). Spectral Analysis. Infrared Spectroscopy: Fundamentals and 

Applications, John Wiley & Sons, Ltd: 45-70. 

Suh, H.-J., Y.-H. Cho, M.-S. Chung and B. Hee Kim (2007). "Preliminary data on sulphite 

intake from the Korean diet." Journal of Food Composition and Analysis 20(3–4): 212-219. 

Sun, A. Y., A. Simonyi and G. Y. Sun (2002). "The “French paradox” and beyond: 

neuroprotective effects of polyphenols." Free Radical Biology and Medicine 32(4): 314-318. 

Tao, Y., Z. Zhang and D.-W. Sun (2014). "Experimental and modeling studies of ultrasound-

assisted release of phenolics from oak chips into model wine." Ultrasonics Sonochemistry 

21(5): 1839-1848. 

Tarantilis, P. A., V. E. Troianou, C. S. Pappas, Y. S. Kotseridis and M. G. Polissiou (2008). 

"Differentiation of Greek red wines on the basis of grape variety using attenuated total 

reflectance Fourier transform infrared spectroscopy." Food Chemistry 111(1): 192-196. 

Urbano Cuadrado, M., M. D. Luque de Castro, P. M. Pérez Juan and M. A. Gómez-Nieto 

(2005). "Comparison and joint use of near infrared spectroscopy and Fourier transform mid 

infrared spectroscopy for the determination of wine parameters." Talanta 66(1): 218-224. 

Vally, H. and P. Thompson (2003). "Allergic and asthmatic reactions to alcoholic drinks." 

Addiction Biology 8(1): 3-11. 



REFERENCES  133 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Villano, D., M. S. Fernandez-Pachon, A. M. Troncoso and M. C. Garcia-Parrilla (2004). "The 

antioxidant activity of wines determined by the ABTS[square root]+ method: influence of 

sample dilution and time." Talanta 64(2): 501-509. 

Villaño, D., M. S. Fernández-Pachón, A. M. Troncoso and M. C. Garc  a-Parrilla (2004). "The 

antioxidant activity of wines determined by the ABTS+ method: influence of sample dilution 

and time." Talanta 64(2): 501-509. 

Waterhouse, A. L. (1999). "Folin Ciocalteau micromethod for total phenol in wine." 

Waterhouse, A. L. (2001). Determination of Total Phenolics. Current Protocols in Food 

Analytical Chemistry, John Wiley & Sons, Inc. 

Woraratphoka, J., K.-O. Intarapichet and K. Indrapichate (2007). "Phenolic compounds and 

antioxidative properties of selected wines from the northeast of Thailand." Food Chemistry 

104(4): 1485-1490. 

Yang, W. H. and E. C. R. Purchase (1985). "Adverse reactions to sulfites." Canadian Medical 

Association Journal 133(9): 865-880. 

Zafrilla, P., J. Morillas, J. Mulero, J. M. Cayuela, A. Martínez-Cachá, F. Pardo and J. M. 

López Nicolás (2003). "Changes during Storage in Conventional and Ecological Wine:  

Phenolic Content and Antioxidant Activity." Journal of Agricultural and Food Chemistry 

51(16): 4694-4700. 

Zúñiga, M. C., R. E. Pérez-Roa, C. Olea-Azar, V. F. Laurie and E. Agosin (2014). 

"Contribution of metals, sulfur-dioxide and phenolic compounds to the antioxidant capacity of 

Carménère wines." Journal of Food Composition and Analysis 35(1): 37-43. 

  



 

   

 

 

 

 

 



 

   

 

 

 

APPENDIX A 

 

 

 

 

 



APPENDIX A  136 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

CONTENTS 

 

Figure A1 Absorption spectra of white wines (Dafni: --, Vilana: ---) directly after 

vinification…………………………………………….....................……….............................149 

Figure A2 Absorption spectra of red wines (Mandilari:---, Kotsifali:---) directly after 

vinification …………………………………………………................………………….......149 

Figure A3 Absorption spectra of Dafni, after 3 months ageing in stainless steel container......150 

Figure A4 Absorption spectra of Dafni after 3 months of ageing in stain.steel with oenosticks 

container.................................................................................................................................... 150 

Figure A5  Absorption spectra of Dafni after 3 months ageing in American oak barrel.......... 150 

Figure A6  Absorption spectrum of Dafni after 3 months ageing in acacia barrel................... 150 

Figure A7  Absorption spectrum of Dafni after 3 months ageing in French oak barrel.............151 

Figure A8 Absorption spectra of Vilana after 3 months of ageing in stainless steel container          

...................................................................................................................................................................151 

Figure A9: Absorption spectra of Vilana after 3 months of ageing in st. steel with oenosticks 

container..............................................................................................................................................151 

Figure A10: Absorption spectra of Vilana after 3 months of ageing in American oak barrel...151 

Figure A11: Absorption spectra of Vilana after 3 months of ageing in acacia barrel................152 

Figure A12: Absorption spectra of Vilana after 3 months of ageing in French oak barrel........152 

Figure A13: Absorption spectra of Kotsifali after 3 months of ageing in stainless steel 

container........................................................................................................... .......................................152 

Figure A14: Spectra of Kotsifali after 3 months of ageing in st.steel with oenosticks 

container...................................................................................................................................................152 

Figure A15: Absorption spectra of Kotsifali after 3 months of ageing in American oak 

barrel.........................................................................................................................................................153 

Figure A16: Absorption spectra of Kotsifali after 3 months of ageing in acacia barrel............153 

Figure A17: Absorption spectra of Kotsifali after 3 months of ageing in French oak barrel....153 

Figure A18: Absorption spectra of Kotsifali after 3 months of ageing in Chestnut barrel.......153 



APPENDIX A  137 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Figure A19: Absorption spectra of Mandilari after 3 months of ageing in stainless steel      

container...................................................................................................................................................154 

Figure A20: Spectra of Mandilari after 3 months of ageing in stainless steel with oenosticks 

container...................................................................................................................................................154 

Figure A21: Absorption spectra of Mandilari after 3 months of ageing in American oak 

barrel.........................................................................................................................................................154 

Figure A22: Absorption spectra of Mandilari after 3 months of ageing in acacia barrel.........154 

Figure A23: Absorption spectra of Mandilari after 3 months of ageing in French oak barrel..155 

Figure A24: Absorption spectra of Mandilari after 3 months of ageing in Chestnut barrel......155 

Figure A25: Absorption spectra of Dafni after 6 months of ageing in stainless steel  

container..................................................................................................................................................155 

Figure A26: Spectra of Dafni after 6 months of ageing in stain. steel with oenosticks 

container...................................................................................................................................................155 

Figure A27: Absorption spectra of Dafni after 6 months of ageing in American oak barrel....156 

Figure A28: Absorption spectra of Dafni after 6 months of ageing in acacia barrel.................156 

Figure A29: Absorption spectra of Dafni after 6 months of ageing in French oak barrel.........156 

Figure A30: Absorption spectra of Vilana after 6 months of ageing in stainless steel 

container...................................................................................................................................................156 

Figure A31: Spectra of Vilana after 6 months of ageing in st. steel with oenosticks 

container..................................................................................................................................................157 

Figure A32: Spectra of Vilana after 6 months of ageing in American oak barrel.....................157 

Figure A33: Spectra of Vilana after 6 months of ageing in acacia barrel.................................157 

Figure A34: Spectra of Vilana after 6 months of ageing in French oak barrel.........................157 

Figure A35: Absorption spectra of Kotsifali after 6 months of ageing in stainless steel 

container..................................................................................................................................................158  

Figure A36: spectra of Kotsifali after 6 months of ageing in st steel with oenosticks 

container.................................................................................. .................................................................158 

Figure A37: Absorption spectra of Kotsifali after 6 months of ageing in American oak 

barrel.........................................................................................................................................................158 



APPENDIX A  138 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Figure A38: Absorption spectra of Kotsifali after 6 months of ageing acacia barrel.................158 

Figure A39: Absorption spectra of Kotsifali after 6 months of ageing French oak barrel.......159 

Figure A40: Absorption spectra of Kotsifali after 6 months of ageing in Chestnut barrel..... 159 

Figure A41: Absorption spectra of Mandilari after 6 months of ageing in stainless steel 

container ................................................................................................................................... 159 

Figure A42: Absorption spectra of Mandilari after 6 months of ageing in st. steel with 

oenosticks container...............................................................................................................................159 

Figure A43: Absorption spectra of Mandilari after 6 months of ageing in American oak 

barrel.........................................................................................................................................................160 

Figure A44: Absorption spectra of Mandilari after 6 months of ageing in acacia barrel......160 

Figure A45: Absorption spectra of Mandilari after 6 months of ageing in French oak 

barrel.........................................................................................................................................................160 

Figure A46: Absorption spectra of Mandilari after 9 months of ageing in Chestnut barrel.....160 

Figure A47: Absorption spectra of Dafni after 9 months of ageing in stainless steel 

container...................................................................................................................................................161 

Figure A48: Spectra of Dafni after 9 months of ageing in st. steel with oenosticks container..161 

Figure A49: Absorption spectra of Dafni after 9 months of ageing in American oak barrel.....161 

Figure A50: Absorption spectra of Dafni after 9 months of ageing in French oak barrel.........161 

Figure A51: Absorption spectra of Dafni after 9 months of ageing in acacia barrel...................162 

Figure A52: Absorption spectra of Vilana after 9 months of ageing in stainless steel 

container..................................................................................................................................................162 

Figure A53: spectra of Vilana after 9 months of ageing in st. steel with oenosticks 

container..................................................................................................................................................162 

Figure A54: Absorption spectra of Vilana after 9 months of ageing in American oak barrel...162 

Figure A55: Absorption spectra of Vilana after 9 months of ageing in acacia barrel................163 

Figure A56: Absorption spectra of Vilana after 9 months of ageing in French oak barrel........163 

Figure A57: Absorption spectra of Kotsifali after 9 months of ageing in stainless steel 

container...................................................................................................................................................163 



APPENDIX A  139 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Figure A58: Spectra of Kotsifali after 9 months of ageing in st. steel with oenosticks 

container...................................................................................................................................................163 

Figure A59: Absorption spectra of Kotsifali after 9 months of ageing in American oak 

barrel........................................................................................................................................................164 

Figure A60: Absorption spectra of Kotsifali after 9 months of ageing in acacia barrel............164 

Figure A61: Absorption spectra of Kotsifali after 9 months of ageing in French oak barrel....164 

Figure A62: Absorption spectra of Kotsifali after 9 months of ageing in Chestnut barrel........164 

Figure A63: Absorption spectra of Mandilari after 9 months of ageing in stainless steel 

container..................................................................................................................................................165 

Figure A64: Spectra of Mandilari after 9 months of ageing in st. steel with oenosticks 

container..................................................................................................................................................165 

Figure A65: Absorption spectra of Mandilari after 9 months of ageing in American oak 

barrel........................................................................................................................................................165 

Figure A66: Absorption spectra of Mandilari after 9 months of ageing in acacia barrel...........165 

Figure A67: Absorption spectra of Mandilari after 9 months of ageing in French oak barrel...166 

Figure A68: Absorption spectra of Mandilari after 9 months of ageing in Chestnut barrel.......166 

Figure A69: Absorption spectra of Dafni after 12 months of ageing in stainless steel 

container..................................................................................................................................................166 

Figure A70: Spectra of Dafni after 12 months of ageing in st. steel with oenosticks container 

...................................................................................................................................................................166 

Figure A71: Absorption spectra of Dafni after 12 months of ageing in American oak barrel...167  

Figure A72: Absorption spectra of Dafni after 12 months of ageing in acacia barrel.................167 

Figure A73: Absorption spectra of Dafni after 12 months of ageing in French oak barrel........167 

Figure A74: Absorption spectra of Vilana after 12 months of ageing in stainless steel container 

...................................................................................................................................................................167 

Figure A75: Spectra of Vilana after 12 months of ageing in st. steel with oenosticks 

container..................................................................................................................................................168 

Figure A76: Absorption spectra of Vilana after 12 months of ageing in American oak 

barrel.........................................................................................................................................................168  

Figure A77: Absorption spectra of Vilana after 12 months of ageing in acacia barrel..............168 



APPENDIX A  140 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

Figure A78: Absorption spectra of Vilana after 12 months of ageing in French oak barrel .....168 

Figure A79: Absorption spectra of Kotsifali after 12 months of ageing in stainless steel 

container..................................................................................................................................................169 

Figure A80: Spectra of Kotsifali after 12 months of ageing in st. steel with oenosticks 

container.................................................................................................................................................169 

Figure A81: Absorption spectra of Kotsifali after 12 months of ageing in American oak 

barrel..................................................................................... ...................................................................169 

Figure A82: Absorption spectra of Kotsifali after 12 months of ageing in acacia barrel..........169 

Figure A83: Absorption spectra of Kotsifali after 12 months of ageing in French oak barrel ..170 

Figure A84: Absorption spectra of Kotsifali after 12 months of ageing in Chestnut barrel.......170 

Figure A85: Absorption spectra of Mandilari after 12 months of ageing in stainless steel 

container .................................................................................................................................................170 

Figure A86: Spectra of Mandilari after 12 months of ageing in st. steel with oenosticks 

container...................................................................................................................................................170 

Figure A87: Absorption spectra of Mandilari after 12 months of ageing in American oak barrel 

...................................................................................................................................................................171 

Figure A88: Absorption spectra of Mandilari after 12 months of ageing in acacia barrel ........171 

Figure A89: Absorption spectra of Mandilari after 12 months of ageing in French oak barrel 

...................................................................................................................................................................171 

Figure A90: Absorption spectra of Mandilari after 12 months of ageing in Chestnut barrel....171 

 



APPENDIX A  141 

 

Argiro Strataridaki Cranfield University  MSc Thesis, 2015 

A. Absorption spectra of Vilana, Dafni, Kotsifali and Mandilari wines during 

ageing 

          

 

Figure A1. Absorption spectrum of white wines (Dafni: --, Vilana: ---) directly after vinification 

 

 

Figure A2: Absorption spectrum of red wines (Mandilari:---, Kotsifali:---) directly after vinification 
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Figure A3: Absorption spectrum of Dafni, after 3 months ageing in stainless steel container. 

 

 

    Figure A4 Absorption spectra of Dafni after 3 months of ageing in stain.steel with oenosticks.container 

 

Figure A5: Absorption spectra of Dafni after 3 months ageing in American oak barrel.  

 

Figure A6: Absorption spectrum of Dafni after 3 months ageing in acacia barrel. 
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       Figure A7: Absorption spectrum of Dafni after 3 months ageing in French oak barrel. 

  

 

 
                 Figure A8: Absorption spectra of Vilana after 3 months of ageing in stainless steel container 

 
 

 
Figure A9: Absorption spectra of Vilana after 3 months of ageing in st. steel with oenosticks container 

 

 
                Figure A10: Absorption spectra of Vilana after 3 months of ageing in American oak barrel 
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  Figure A11: Absorption spectra of Vilana after 3 months of ageing in acacia barrel 

 

                                                
           Figure A12: Absorption spectra of Vilana after 3 months of ageing in French oak barrel 

 

 
         Figure A13: Absorption spectra of Kotsifali after 3 months of ageing in stainless steel container 

                                       
Figure A14: Spectra of Kotsifali after 3 months of ageing in st.steel with oenosticks container 
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                 Figure A15: Absorption spectra of Kotsifali after 3 months of ageing in American oak barrel 

 

 
       Figure A16: Absorption spectra of Kotsifali after 3 months of ageing in acacia barrel 

 

 
              Figure A17: Absorption spectra of Kotsifali after 3 months of ageing in French oak barrel 

 

 
           Figure A18: Absorption spectra of Kotsifali after 3 months of ageing in Chestnut barrel 
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               Figure A19: Absorption spectra of Mandilari after 3 months of ageing in stainless steel container 

 

 
        Figure A20: spectra of Mandilari after 3 months of ageing in stainless steel with oenosticks container 

 

 
                  Figure A21: Absorption spectra of Mandilari after 3 months of ageing in American oak barrel 

 

                                             
        Figure A22: Absorption spectra of Mandilari after 3 months of ageing in acacia barrel 
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                Figure A23: Absorption spectra of Mandilari after 3 months of ageing in French oak barrel 

 

 
            Figure A24: Absorption spectra of Mandilari after 3 months of ageing in Chestnut barrel 

 

 
                  Figure A25: Absorption spectra of Dafni after 6 months of ageing in stainless steel container 

      

 
                 Figure A26: Spectra of Dafni after 6 months of ageing in stain. steel with oenosticks container 
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              Figure A27: Absorption spectra of Dafni after 6 months of ageing in American oak barrel 

 

 
Figure A28: Absorption spectra of Dafni after 6 months of ageing in acacia barrel 

 

 
          Figure A29: Absorption spectra of Dafni after 6 months of ageing in French oak barrel 

 

 
                 Figure A30: Absorption spectra of Vilana after 6 months of ageing in stainless steel container 
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                  Figure A31: Spectra of Vilana after 6  months of ageing in st. steel with oenosticks container 

 

 
                Figure A32: Spectra of Vilana after 6  months of ageing in American oak barrel 

 

 
               Figure A33: Spectra of Vilana after 6  months of ageing in acacia barrel  

 

 
                Figure A34: Spectra of Vilana after 6  months of ageing in French oak barrel 
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               Figure A35: Absorption spectra of Kotsifali after 6 months of ageing in stainless steel container 

 

 
                  Figure A36: spectra of Kotsifali after 6 months of ageing in st steel with oenosticks container 

 

 
                 Figure A37: Absorption spectra of Kotsifali after 6 months of ageing in American oak barrel 

 

 
     Figure A38: Absorption spectra of Kotsifali after 6 months of ageing acacia barrel 
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            Figure A39: Absorption spectra of Kotsifali after 6 months of ageing French oak barrel 

 

 
             Figure A40: Absorption spectra of Kotsifali after 6 months of ageing in Chestnut barrel  

 

 
               Figure A41: Absorption spectra of Mandilari after 6 months of ageing in stainless steel container 

 

 
Figure A42: Absorption spectra of Mandilari after 6 months of ageing in st. steel with oenosticks 

container 
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                  Figure A43: Absorption spectra of Mandilari after 6 months of ageing in American oak barrel 

 

 
        Figure A44: Absorption spectra of Mandilari after 6 months of ageing in acacia barrel 

 

 
                Figure A45: Absorption spectra of Mandilari after 6 months of ageing in French oak barrel 

 

 
           Figure A46: Absorption spectra of Mandilari after 9 months of ageing in Chestnut barrel 
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                  Figure A47: Absorption spectra of Dafni after 9 months of ageing in stainless steel container 

 

 
                  Figure A48: Spectra of Dafni after 9 months of ageing in st. steel with oenosticks container 

 

 
              Figure A49: Absorption spectra of Dafni after 9 months of ageing in American oak barrel 

 

 
          Figure A50: Absorption spectra of Dafni after 9 months of ageing in French oak barrel 
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 Figure A51: Absorption spectra of Dafni after 9 months of ageing in acacia barrel 

 

 
                  Figure A52: Absorption spectra of Vilana after 9 months of ageing in stainless steel container 

 

 
                  Figure A53: spectra of Vilana after 9 months of ageing in st. steel with oenosticks container 

 

 
               Figure A54: Absorption spectra of Vilana after 9 months of ageing in American oak barrel 
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   Figure A55: Absorption spectra of Vilana after 9 months of ageing in acacia barrel 

 

 
           Figure A56: Absorption spectra of Vilana after 9 months of ageing in French oak barrel 

 

 
                 Figure A57: Absorption spectra of Kotsifali after 9 months of ageing in stainless steel container 

 

 
                  Figure A58: Spectra of Kotsifali after 9 months of ageing in st. steel with oenosticks container 
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                  Figure A59: Absorption spectra of Kotsifali after 9 months of ageing in American oak barrel 

 

 
      Figure A60: Absorption spectra of Kotsifali after 9 months of ageing in acacia barrel 

 

 
               Figure A61: Absorption spectra of Kotsifali after 9 months of ageing in French oak barrel 

 

 
           Figure A62: Absorption spectra of Kotsifali after 9 months of ageing in Chestnut barrel 
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               Figure A63: Absorption spectra of Mandilari after 9 months of ageing in stainless steel container 

 

 
                 Figure A64: Spectra of Mandilari after 9 months of ageing in st. steel with oenosticks container 

 

 
                  Figure A65: Absorption spectra of Mandilari after 9 months of ageing in American oak barrel 

 

 
         Figure A66: Absorption spectra of Mandilari after 9 months of ageing in acacia barrel 
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                  Figure A67: Absorption spectra of Mandilari after 9 months of ageing in French oak barrel 

 

 
             Figure A68: Absorption spectra of Mandilari after 9 months of ageing in Chestnut barrel 

 

 
    Figure A69: Absorption spectra of Dafni after 12 months of ageing in stainless steel container 

 

 
                  Figure A70: Spectra of Dafni after 12 months of ageing in st. steel with oenosticks container  
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                 Figure A71: Absorption spectra of Dafni after 12 months of ageing in American oak barrel  

 

 
    Figure A72: Absorption spectra of Dafni after 12 months of ageing in acacia barrel  

 

 
            Figure A73: Absorption spectra of Dafni after 12 months of ageing in French oak barrel  

 

                                          
               Figure A74: Absorption spectra of Vilana after 12 months of ageing in stainless steel container  
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Figure A75: Spectra of Vilana after 12 months of ageing in st. steel with oenosticks container 

 

 
Figure A76: Absorption spectra of Vilana after 12 months of ageing in American oak barrel  

 

 
      Figure A77: Absorption spectra of Vilana after 12 months of ageing in acacia barrel  

 

 
             Figure A78: Absorption spectra of Vilana after 12 months of ageing in French oak barrel  
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               Figure A79: Absorption spectra of Kotsifali after 12 months of ageing in stainless steel container 

 

 
Figure A80: Spectra of Kotsifali after 12 months of ageing in st. steel with oenosticks container 

 

 
                 Figure A81: Absorption spectra of Kotsifali after 12 months of ageing in American oak barrel  

 

 
        Figure A82: Absorption spectra of Kotsifali after 12 months of ageing in acacia barrel  
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                 Figure A83: Absorption spectra of Kotsifali after 12 months of ageing in French oak barrel 

  

 
             Figure A84: Absorption spectra of Kotsifali after 12 months of ageing in Chestnut barrel  

 
             Figure A85: Absorption spectra of Mandilari after 12 months of ageing in stainless steel container 

 

 
               Figure A86: Spectra of Mandilari after 12 months of ageing in st. steel with oenosticks container 
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                 Figure A87: Absorption spectra of Mandilari after 12 months of ageing in American oak barrel  

 

 
           Figure A88: Absorption spectra of Mandilari after 12 months of ageing in acacia barrel  

 

 
                 Figure A89: Absorption spectra of Mandilari after 12 months of ageing in French oak barrel  

                                         
                Figure A90: Absorption spectra of Mandilari after 12 months of ageing in Chestnut barrel 
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B1. Results of one-way analysis of variance (ANOVA) for total phenolic content and 

antioxidant activity of Vilana, Dafni, Kotsifali wines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B1: Results of one-way ANOVA (significance level p = 0.05). Comparison 

of the phenolic content of wines within each container during ageing. 

  1st vinification  2nd vinification  

VILANA 

SS F4.10 = 19.017, p < 0.05 F4.10 = 45.925, p < 0.05 

SO F4.10 = 2.049, p = 0.171 F4.10 = 86.078, p < 0.05 

AO F4.10 = 201.420,  p  < 0.05 F4.10 = 112.918, p < 0.05 

Ac F4.10 = 136.477,  p  < 0.05 F4.10 = 177.504, p < 0.05 

FO F4.10 = 62.645,  p  < 0.05 F4.10 = 237.388, p < 0.05 

DAFNI 

SS F4.9 = 6.208,  p < 0.05 F4.11 = 19.702, p < 0.05 

SO F4.9 = 12.428, p = 0.05 F4.10 = 41.883, p < 0.05 

AO F4.9 = 144.401, p < 0.05 F4.11 = 191.712, p < 0.05 

Ac F4.9 = 19.183, p < 0.05 F4.11 = 7.217, p < 0.05 

FO F4.9 = 52.185, p < 0.05 F4.10 = 14.539, p = 0.05 

KOTSIFALI 

SS F4.9 = 23.819, p < 0.05 F4.10 = 8.5513,  p < 0.05 

SO F4.9 = 21.991, p < 0.05 F4.10 = 0.925, p = 0.484 

AO F4.9 = 73.215, p < 0.05 F4.10 = 156.875, p < 0.05 

Ac F4.9 = 332.257, p < 0.05 F4.10 = 104.543, p < 0.05 

FO F4.9 = 70.405, p < 0.05 F4.10 =  32.105, p < 0.05 

Ch F4.9 = 205.256, p < 0.05 F4.10 = 130.902, p < 0.05 

MANDILARI 

SS F4.9  = 14.905,  p < 0.05 F4.10 = 14.142, p < 0.05 

SO F4.9 = 40.757, p < 0.05 F4.10 = 5.421  p < 0.05 

AO F4.9 = 27.072, p < 0.05 F4.10 = 10.576, p = 0.05 

Ac F4.9  = 36.994, p < 0.05 F4.11 = 54.685, p < 0.05 

FO F4.9 = 42.707, p < 0.05 F4.11 = 11.604, p < 0.05 

Ch F4.9 = 83.698, p < 0.05 F4.11 = 43.477, p < 0.05 
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Table B2: Results of one-way ANOVA (significance level p = 0.05). Comparison 

of the phenolic content of wines between the different containers at 3, 6, 9 and 12 

months of ageing.  

  1st vinification  2nd vinification  

VILANA 

3 MONTHS F4.10 = 1.290, p = 0.386 F4.10 = 5.959,  p < 0.05 

6 MONTHS F4.10 = 5.858,  p < 0.05 F4.10 = 84.258, p < 0.05 

9 MONTHS F4.10 = 4.669,  p < 0.05 F4.10 = 185.681, p < 0.05 

12 MONTHS F4.10 = 334.148, p < 0.05 F4.10 = 306.798, p < 0.05 

DAFNI 

3 MONTHS F4.10 = 4.693, p = 0.060 F4.10 = 4458,  p < 0.05 

6 MONTHS F4.10 = 15.463, p < 0.05 F4.10 = 56.165, p < 0.05 

9 MONTHS F4.10 = 18.822, p < 0.05 F4.10 = 70.709, p < 0.05 

12 MONTHS F4.10 = 335.414, p < 0.05 F4.10 = 146.558, p < 0.05 

KOTSIFALI 

3 MONTHS F5.6 = 16.238,  p < 0.05 F5.12 = 0.377, p = 0.855 

6 MONTHS F5.12 = 23.819, p < 0.05 F5.12 = 13.449, p < 0.05 

9 MONTHS F5.12 = 119.253, p < 0.05 F5.12 = 58.664, p < 0.05 

12 MONTHS F5.12 = 50.531, p < 0.05 F5.13 = 15.245, p < 0.05 

MANDILARI 

3 MONTHS F5.6 = 16.238, p = 0.05 F5.12 = 5.560,  p < 0.05 

6 MONTHS F5.12 = 85.983, p < 0.05 F5.12 = 1.529, p = 0.258 

9 MONTHS F5.13 = 51.558, p < 0.05 F5.12 = 7.303,  p < 0.05 

12 MONTHS F5.12 = 85.166, p < 0.05 F5.16 = 7.377,  p < 0.05 
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Table B3: Results of one-way ANOVA (significance level p = 0.05). Comparison 

of the antioxidant activity of wines within each container during ageing. 

  1st vinification  2nd vinification  

VILANA 

SS F4.10 = 190.423, p < 0.05 F4.10 = 122.743, p < 0.05 

SO F4.10  = 334.871, p < 0.05 F4.10 = 1923.48, p < 0.05 

AO F4.10  = 351.337, p < 0.05 F4.10 = 77.536,  p < 0.05 

Ac F4.10  = 542.639, p < 0.05 F4.9= 508.239,  p < 0.05 

FO F4.10  = 390.377, p < 0.05 F4.10 = 404.573, p < 0.05 

DAFNI 

SS F4.10  = 44.783, p < 0.05 F4.9 = 804.629,  p < 0.05 

SO F4.10  = 53.320, p < 0.05 F4.9 = 105.848,  p < 0.05 

AO F4.10  = 143.617, p < 0.05 F4.9 = 111.229,  p < 0.05 

Ac F4.10  = 628.101, p < 0.05 F4.9 = 716.438,  p < 0.05 

FO F4.10  = 283.617, p < 0.05 F4.9 = 496.682,  p < 0.05 

KOTSIFALI 

SS F4.10  = 18.188, p < 0.05 F4.9 = 3.083,  p = 0.074 

SO F4.9= 32.501, p < 0.05 F4.9 = 4.742,  p < 0.05 

AO F4.10  = 41.948, p < 0.05 F4.9 = 3.029,  p < 0.05 

Ac F 4.10 =27.696, p < 0.05 F4.9 = 89.519,  p < 0.05 

FO F4.10  = 32.790, p < 0.05 F4.9 = 27.986,  p < 0.05 

Ch F4.9 = 20.399, p < 0.05 F4.10 = 82.654,  p < 0.05 

MANDILARI 

SS F4.10  = 118.945, p < 0.05 F4.9 = 198.585,  p < 0.05 

SO F4.10  = 84.787, p < 0.05 F4.9 = 254.269,  p < 0.05 

AO F4.10  = 40.729, p < 0.05 F4.9 = 123.124,  p < 0.05 

Ac F4.10  = 82.623, p < 0.05 F4.9 = 632.671,  p < 0.05 

FO F4.10  = 116.187, p < 0.05 F4.9 = 166.924,  p < 0.05 

Ch F4.10 = 174.649, p < 0.05 F4.9 = 168.986,  p < 0.05 
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Table B4: Results of one-way ANOVA (significance level p = 0.05). Comparison of 

the antioxidant activity of wines within each container at 3, 6, 9 and 12 months of 

ageing.  

  1st vinification  2nd vinification  

VILANA 

3 MONTHS F4,10= 5.567,  p < 0.05 F4.10= 6.457, p = 0.033 

6 MONTHS F4,10= 49.565, p < 0.05 F4.10 = 160.142, p < 0.001 

9 MONTHS F4,10= 735.75 p < 0.05 F4.11 = 464.166, p < 0.001 

12 MONTHS F4,10= 1566.03, p < 0.05 F4.11 = 205.935, p < 0.001 

DAFNI 

3 MONTHS F4,10= 2.541, p = 0.106 F4.10 = 2.602, p = 0.161 

6 MONTHS F4,10 = 35.068, p < 0.05 F4.10 = 80.473, p < 0.001 

9 MONTHS F4,10= 509.365, p < 0.05 F4.10 = 2529.179, p < 0.001 

12 MONTHS F4,10 = 2837.747, p < 0.05 F4.10 = 450.410, p < 0.001 

KOTSIFALI 

3 MONTHS F5,12= 6.929,  p < 0.05 F5.6 = 5.097, p = 0.036 

6 MONTHS F5.12 = 40.027, p < 0.05 F5.12 = 15.930, p < 0.001 

9 MONTHS F5,12= 867.796, p < 0.05 F5.12 = 56.832, p < 0.001 

12 MONTHS F5.12= 379.119 p < 0.05 F5.13 = 102.191, p < 0.001 

MANDILARI 

3 MONTHS F5.12 = 13.148, p < 0.05 F5.6 = 2422, p = 0.156 

6 MONTHS F5.12 = 231.47,  p < 0.05 F5.12 = 376.761, p < 0.001 

9 MONTHS F5.12 = 458.824, p < 0.05 F5.12 = 23.996, p < 0.001 

12 MONTHS F5.12 = 292.965, p < 0.05 F5.12 = 18.044, p < 0.001 
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Summary 

Ageing of white wines in wooden barrels is not a common practise as white wines’ 

organoleptic properties can be strongly affected by the barrels’ aromas. Hence, if ageing in 

wooden barrels is preferred, it is suggested to last only for a period of a few months. Apart from 

oak barrels, acacia barrels have been recently used for wine ageing, showing promising results. 

Twelve month ageing of wines of the white Cretan variety Dafni in Acacia and French oak 

barrels was studied. Wines from the region of Peza in Heraklion, Crete were used for the 

purposes of the experiments. Wine samples were taken at the begging and after six and twelve 

months of ageing and their total phenolic and total tannin content were determined. At the same 

time, organoleptic properties evaluation was performed by a qualified panel of wine experts, 

monitoring their aroma and astringency evolution. In comparison to French oak, wines in 

Acacia barrels were richer in both phenolic and tannic substances during ageing. However, in 

contrast to French oak, their organoleptic profile revealed stronger floral and fruit aromas 

instead of wood aromas, a quite interesting result as far as the use of Acacia barrels in white 

wine ageing, is concerned. 
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